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Dynamical excitations in thin liquid films ofHe adsorbed to a substrate are investigated by using a
microscopic theory of excitations that includes multiple-phonon scattering. We study the dispersion relation,
excitation mechanisms, transition densities, and particle currents as a function of surface coverage. A primary
new result is that we have included three-phonon scattering processes in the calculation of the dynamic
structure function and the one-body current densities. With the exception that our ground state is determined by
our variational theory, rather than taken from experiment, our work on the dynamic structure function is the
generalization of that of Jacks¢Rhys. Rev. A4, 2386(1971)] to inhomogeneous syster(fims). Using sum
rules for the dynamic structure function as a guide, we suggest a simple scaling argument for improving the
agreement between our dynamic structure function and the experimental one. The addition of three-phonon
contributions bring about the following changes. First, the energy of most modes is lowered by a non-
negligible amount for finite momentum excitations. Second, the film’s surface mode is the exception; it is only
slightly affected. Third, for monolayer films there is large scattering at high energies at intermediate values of
momenta. This scattering can be traced back to an anomalously large contribution to the two-particle density
of states. Fourth, all modes with energy above a critical energy decay, and the associated peaks of the dynamic
structure function are broadened. Fifth, the maxonlike character is enhanced in the bulklike modes.

I. INTRODUCTION from multiple scattering off the substrate-liquid system oc-
curs. In very thick films, this does not introduce any real
The dynamic structure functioig(k,w), provides useful complication; multiple scattering between the liquid roton
information about the strength, lifetime, and dispersion ofexcitation and the Bragg peak produces a dispersionless
the dynamical excitations of a quantum fluid. Inelastic neu-‘flat” mode with energy of roughly the roton gap energy
tron scattering experiments performed at the Institute Laueand an intensity which is orders of magnitude less than the
Langevin's (ILL) neutron scattering facility, on atomically bulk modes. In thin films it is not cleaa priori that the
thin liquid “He films, have measured a dynamic structuremultiple scattering modes should be as easily discernable
function that is rich in structure and complexity. To gain afrom the liquid modes. In part, this complication arises, as
full understanding of the experiment8(k,w) for this sys- we discuss momentarily, because the single phonon-maxon-
tem requires precise theoretical guidance. This is the motiroton in the bulk limit is replaced by a set of modes in thin
vation for the present work. liquid films. Consequently it is possible to have multiple
In contrast to the bulk system, the interpretation of thescattering occurring from a set of modes in the thin film
experimentalS(k, ) in terms of fundamental excitations is system.
hampered by both experimental complications and the rich- Pertaining to the second point, it is known from previous
ness of the types of excitations. Expounding on the firsstudies that, already at the most basic level of the Feynman
point, the intensity of experimental scattering peaks scaletheory, thesingle phonon-maxon-roton dispersion curve in
approximately with the amount dfHe present; in thin fims the bulk is replaced by aetof modes in the films. These
a typical scattering peak i8(k,w) may be 3 or 4 orders of modes propagate at frequencies in close proximity to one
magnitude less than scattering peaks measured in the bu#ihother(indeed mode crossings are not uncomijnamd can
system. Even with the enormous abilities of the ILL's neu-be categorized as being surface modes, layer phonons, and
tron source and detectors, the thin film's scattering peakdfor thicker filmg bulklike modes. Sorting out these various
corresponding to excitations of physical interest, are nevemodes in the experimexif they exis) is not a trivial task —
considerably larger than peaks that can be attributed to stagain the need for a quantitative first principles theory be-
tistical fluctuations(noise. Furthermore, aside from well- comes apparent.
defined low energy Bragg peaks coming from scattering off This paper follows a series of othéfshereafter referred
of the underlying solid substrate, scattering intensity arisingo as papers | and)llwhich were devoted to the microscopic
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0.05 . . . . . In paper Il, we have examined the nature of the film's
low-lying excited states. The theory mostly used there pro-
004 vided an intuitive and qualitatively reasonable picture of the
) low-lying excitations of such systems, but it had a number of
guantitative deficiencies. In an attempt to provide more reli-
5. 003 able estimates for the dispersion curves of higher-lying exci-
g tations, and the intensities and linewidths of the scattering
3 0.02 peaks inS(k,w), the present work has several improvements
over these earlier calculations; in particular we include mul-
0.01 tiphonon contributions in the current densities and the
S(k,w). Our theory for determining multiphonon contribu-
0.00 tions to theS(k,w) will be considered in detail in the next

0 s 10 15 20 25 30

2 Q) section; here we make a few introductory comments. At the

heart of the approach is the fundamental theory first pro-
iE-7
FIG. 1. A family of density profiles ofHe films on a graphite- posed by Saarelet al. for bulk quantum fluids™" and then

solid helium substrate are shown. The coveragesnar®.033, developed for the study of excitations in quantum film

0.035, 0.040, ..., 0.065, 0.068A2 for monolayersn—0.100,  Structures. _ _ _
0.105, ..., 0.135, 0.137 A2 for double layers, anah=0.165, If a small time-dependent perturbation momentarily
0.170, ..., 0.300, 0.315,. .., 0.435, 0.450A2 for thicker films.  drives the film out of its ground state, a logical extension of
The coverages considered in this paper0.065, 0.165, and the usual Jastrow-Feenberg variational wave function to ex-
n=0.240A"2 are highlighted as heavy solid lines. cited states is

study of the structure and the dynamics of monolayer and W (1)) = e Fol/hg12oVM| g >Ee_iE0t/h|\If 1)
multilayer helium films. An accompanying papewill dis- [(Wo|eV Vw12 oL/
cuss the neutron scattering experiments, the data analysis, (1.2
and the interpretation of the data. The system under consid-
eration is comprised of a liquid helium film adsorbed to a
solid *He bilayer which itself is physisorbed to a graphite
substrate. The ground-state structure of this system and our
theoretical tools, specifically the optimized hypernetted- SU= suy(r;;t)+ >, Suy(ri,ri;t)+---, (1.3
chain (HNC-EL) theory, have been discussed in detail in i i<]
paper I(see also Ref.)4 The films are highly layered in the g 4,0 complexexcitation operator.
sense that their density profiles show a number of distinct .
oscillations persisting considerable distance from the subg t'(l;f;sﬂﬂr;deS;zﬁn:;?gncg:{ﬁé?;%n&n(rl, cofit), are
strate. We represent the inert substrate and the two layers OF
solid helium by an external substrate potentid) z), J
which is taken to depend only on the coordinateAs a 8. = 5f dt<\lf(t)’H—ihE\lf(t)> =0. (1.9
consequence, the liquid is translationally invariant in xhe
y plane and exhibits a layered density profile in théirec-  where the variations are taken treating the
tion. A peculiarity of the system is that stable, translationallysu (r,, ... r,:t) as independent functiods:’ In Eq.
invariant configurationsannotbe obtained for all surface (1.4), H is the Hamiltonian for the perturbed system
coverages; we refer the reader to paper | for a discussion of
this. 52

For further reference, we show in Fifj a set of density H=2 [— —V- +UgufIi) + Ueudlri ,t)]
profiles for helium films on the above-mentioned substrates.
These profiles are characterized by the surface coverage

where|W ) is the ground-state wave functioBj is its en-
ergy, and

+ p U(|r|_r]|):H0+5H(t), (15)
:f dzpa(2). (4.0 whereUg{r) is an external static “*substrate” potential, and

v(|ri—r;|) is the interaction between individual particles,

The void regions betweem=0.068 A2 andn=0.1A"2as  which we take to be the Aziz potentifl The time-dependent
well as betweem=0.137 A"? andn=0.165 A2 are the part

areas where no translationally invariant configurations of the

system exist. These areas depend to a large extent on the

range of the substrate potential; long-range potentials typi- 5H(t)=§i: Uex(ri;t) (1.9

cally tend to show fewer regimes of instability, cf. Ref. 4.

The calculations of the present paper concentrate on a fedescribes an external scalar perturbation which we assume is
typical examples: a monolayer film with=0.065 A"2, and  sufficiently small to permit a linearization of the equations of

a triple and quadruple layer film with=0.165A"2 and  motion in terms of theSu,(r, ... r,:t). By keeping terms
n=0.240A 2, respectively. These examples are highlightedwith leading order in the dynamical correlations, the result-
in Fig. 1. ing Euler equations can be cast in the form of coupqda-
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tions of motion(EOM). The conjugate variable to the time is use (Appendix B, a proof of sum rules for the generalized
the excitation energyi w. In general it is complex; the real theory(Appendix O, and the calculation of particle currents
part is the excitation’s dispersion and the imaginary partAppendix D).
gives its inverse lifetime. Section 1l is devoted to the applications of our theory.
The truncation of the excitation operatdr.3) defines the We first discuss the essence of our working formulas and
level of approximation in which we treat the excitations. ThePossibilities to introduce phenomenological input to the
simplest approximation, which ignores all fluctuating corre-theory. We then apply the theory to the bulk two- and three-
lation functions excepbu,(r;t) is referred to, hereafter, as dimensional liquid and calculate both the phonon-roton spec-
the Feynman approximatiorin this case the resulting is UM and the static response function. Having convinced our-
purely real. This approximation leads, in the bulk limit, to selves that the theory provides quite satisfactory agreement
the  wel-known  Feynman  dispersion  relation with knowndata, we then proceed to apply our theory to a
fhw(k)=h2k2/2mgK). It is a reasonable approximation as study of the excitations of a representative sample of liquid

long as the wavelength of the excitation is large compared t§'°nolayer and multilayer films. In these more complicated
the average particle spacing: in particular, it is exact in thgdeometries, we will find a muIntude of dn:ferent e>‘<‘C|t§1t|ons
long-wavelength limit. Subsequent work of Feynman andCerresponding to surface phonaffisipplons” and/or “third
Cohert! and Feenberg and co-work&s* showed that Sound’) and volume excitations“bulk phonons”) which
while the theory is qualitatively correct, higher order scatter-My be confined to individual liquids layer¢layer

ing processesinvolving multiple Fourier componentsare p_honons). To_ achieve an appreC|at|on_of full scope of_pos-
essential for a full understanding of the excitation spectrumSiPle mechanisms, we study the particle currents. Finally,
In the short-wavelength regim@bove 1.0 A1) the Feyn- Sec. IV contains a brief summary of our results.

man approximation significantly overestimates the excitation

energy, and keepingu,(r;,r;;t) leads to a significant low- Il. THEORY OF MULTIPHONON EXCITATIONS

ering of the excitation energy.’

In the film problem a full evaluation of the EOM for This section contains the basic ideas of the method of
f|uctuating pair Corre'ations is numerica”y Very t|me con- ﬂuctuating multipal’ticle correlations and the Working formu-
suming and approximations are necessary. The approximd@s of our theory. Details on the somewhat lengthy algebraic
tion that we will use is tantamount to keeping “three-phononManipulations are presented in Appendices A and B. We
scattering processes(Parenthetically, this nomenclature is Start with the action principlel.4), and assume an excitation
conventional but should not to be taken literally since theoperator that includes time-dependent one-body and two-
coupling matrix element may be between layer phonons anB0dy component3j.e., we assume
surface modes, for examplédn bulk “He, the Feynman ap-
proximation and theories that include three-phonon contribu-
tions differ in two significant ways. First, in the latter theory 5U(t)22 U (ri ;t)+i2< Sup(ririst).  (2.1)
the magnitude of the excitation energy is reduced from the .

Feynman value, especially for_wavelen_gths quresponding t?aking into account the explicit time dependence of the

the bulk maxon _and roton. Th|s Is desirable since the .Feynﬁvave function spelled out in Eq1.2), the action principle

man approximation overestimates the roton minimum in the(1 2) assumes the form

bulk by a factor of 2. One should not expecpriori that the '

different modes in the Bose film will be reduced by the same 5

amount; the physical character of the various modes differs i .

considerably and this will play an important role in determin- = f drz(n= f dt< \PO(t)‘ H=Eo—in at wO(t)> '

ing the amount that a particular mode is renormalized by (2.2

three-phonon processes. Second, in the latter theory, above a

given critical energyfi w; the modes are complex, i.e., they If the time-dependent part of the correlations is small, we can

will have a linewidth which reflects the inverse lifetime of expand the Lagrangian to second ordesln(t)

the mode.

Our paper is organized as follows: In the next section, we 1

will outline a general theory of excited states which is based #(t)= §<\Po|[5u* [T, 8U]]| o)

on the concept of fluctuating correlation functions, alluded to

above. We will formulate the equations of motion for time- i% [<
——| (¥,

8

dependent one-body and two-body correlations. Input to the
theory are one-body and two-body densities obtained from
the ground-state calculations. In the limit that only single-
particle functions are allowed to be time dependent, the —cC.C.
theory reduces to the generalized Feynman theory of collec-
tive excitations. This section will essentially display only the
first and the last step of the analytical manipulations. In an The original Feynman theory of collective excitatiohis
attempt to improve the readability of the paper we haveobtained by restricting the excitation operat@l) to the
saved the majority of the technical points for a set of appenene-body componentsu,(r;;t). Since the *“Feynman-
dices. These present the details of the derivation of the equ@honon” states also form a convenient basis for the formu-
tions of motion(Appendix A), the approximations that we lation of the generalized theory, we shall review this ap-

SU[SU* —(Wo|5U* [Wo)] wo>

+<‘1’o(t)2 Uex(Ti ;t)‘l’o(t)> . 23
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proach briefly. Omitting Suy(r;,r;) in 8U(t), the the solution_of the action principlél.4)_ may k_Je represented
Lagrangian(2.3) can be expressed in terms of one-body andoy the solutionsy("(r) of the generalized eigenvalue prob-

two-body densities, lem
hZ
Zl(t)zS_mj d3rpo(r)|V uy(r;t)|? leﬂ(”)(r)=ﬁwnf d3r ' S(r,r") " (r") (2.9
i% _ with the coordinate space representation of the static struc-
- §f d3rpy(r;t)Sui(r;t) ture function
p2(r,r") = pa(r)pa(r’)
+f d3rU o (r;t)Rep4(r;t), (2.9 S(r,r)y=68(r—r')+ (2.10
> ' Vpa(N)pa(r’)
where, to first order in the time-dependent function, and the kinetic energy operator
p1(r;t)=p1(r)+ dpy(r;t), . 22 1 - 1 o1
= — Ny —e. .
. ’. 37 ’ ! 2m pl(r) P1 P]_(r)
Opa(r;t)=pa(r)ouy(r';t)+ [ dr'[po(r,r’)
The bulk limit of the eigenvalue probleif2.9) is the Feyn-
—p1(N)p(r")]duq(r’;t). (2.5 man dispersion relatiom (k) =%k?2mgKk). A convenient

. o ] . normalization of the eigenstates of the generalized eigen-
Note that in Eq(2.5) Jp,(r;t) is complex; the physical den- value problem(2.9) is

sity fluctuation is the real part of this function. In these equa-

tions, then-body densities are defined by (P ™[H | ™) = wmSmn- (2.12
N Sd8r g -d3rN\I’§(r1, ceaIN) These eigenstates are related to the Feynman excitation func-
pn(Fy, - ln)= (N=n)! [dPr, .. dBryWa(re, ... N tions du,(r) through Eq.(2.8). The adjoint states
(2.6 1
and the corresponding distribution functions by ¢™(r)= mHllﬂ(n)(f) (213
n
an(r Fy= Pn(ry, - fn) 27 e related to the physical density fluctuatiqns Refs. 16
ML p(ry) - pa(rn) ' and 2
The manipulations needed to derive the fluctuating part of Sp1(r)=+p1(r)p™(r). (2.19

the density in terms of the time-dependent external field are _ _ _

a subset of those carried out in Appendix A; they may alsoVe note in passing that the eigensta#®(r) and y"(r)

be found in Ref. 16. It is convenient to work in the spaceare also the essential ingredients of the solution of the Euler
spanned by the eigenfunctions of a generalized Feynman egquation for the pair correlations and provide a convenient
genvalue problem. Assuming harmonic time dependencdasis for the representation of optimized triplet correlations.

Suy(r;t)=duy(r)e'®t, and defining Within the Feynman approximation, which corresponds
here to the random phase approximatiBfA), we construct
P(r)=+pq(r)duy(r), (2.9 from these states the density-density response function:
|
XA, 0)=pa(N 2 $F(NIGE @)+ BT = @)1 (r)Vpa(r), (219
where
d.
RP. _ st
G (w) = fo—wgtie] (2.19

is the Greens’ function for a free Feynman phonon. The static form factor is calculated from the response (2riGidoy
frequency integration:

1 ~d(fw)
rr')y=— IMxRPAr I w)= S (r)pS(r’). (2.1
. p1<r>p1<r'>Jo  MEAr e =2 #0$

We note that this “RPA” static structure function obtained here, by frequency integration of the response funaiemtjésl
to the one obtained in the ground-state calculation. In the latter calculation, excitations are not involved in any explicit way.
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In Appendices A and B, we derive an improved expression for the dynamic response function by including three-phonon
scattering processes. We shall call the resulting response function the CBF response function, after the first'derivhion
form within the theory of correlated basis functiof@BF’s). In terms of the Feynman states introduced above, this response
function also has the forr2.15, i.e.,

XCBF(r,r’,w):vPl(r)g (NG (@) + G (= )] (1) Vpa(r') (2.18
|
but where now man theory and, hence, in the ground-state calculation. In

CBF _ 1 other words, the introduction of multiphonon processes
Gst (0)=[Alo—wsti€e]dst2s(w)] (219  merely causes a shift and redistribution of spectral weights in
is the CBF Greens'’s function, with the self-energy correctionthe dynamc structure. f“”C“Of." but does not change the fre-

quency integrals. It is plausible that the same statement
1 QYL should be true in the inhomogeneous geometry, however the
Sel@)== LU (2.20  proof of the theorem is nontrivial and will be presented in
2t h(omton—otie) Appendix C. It would be interesting to carry out a similar
analysis on the density-functional approach proposed in Ref.
18. By introducing a Gaussian current-current coupling term
in the density functional, containing several adjustable pa-
rameters, these authors obtain a very good fit to the bulk
static response function and the phonon-roton spectrum. The

where theV(), are three-phonon coupling matrix elements
and are given in Appendix B. Theormal mode®f the sys-
tem are determined by the poles of the Green’s function, o
the zeros of its inverse

ESBR o) =fi[ 0 — ws+i €] Ssi+ S e ), (2.27 Vvalidity of the parametrization can, of course, be assessed
only by comparison to results that are sufficiently well
in other words by the nonlinear eigenvalue problem known, but were not used for the choice of the energy func-
tional. The static structure function, the spectrum of higher-
1 V%nV}nn lying “multiphonon” excitations, and the natural broadening
hwsps— E% h(wm+ wy— o) pi=hogs. (222 ot these excitations due to phonon decay would be a prime

candidate for such consistency tests.
The time-dependent part of the density can then be expressed

as a linear superposition of the Feynman density fluctuations,
Ill. APPLICATIONS OF THE THEORY

8p1(N=p1(1) X enen(r). (2.23 A. Practical considerations
n

Before we turn to the numerical application of our theory
Equation(2.22 has evidently the structure of a Brillouin- we would like to discuss why we feel that our approach is
Wigner (BW) perturbation formula, we will therefore refer to appropriate, and why it describes the correct physics; what
the theory as correlated-basis-function Brillouin-Wignerthe approximations are and how these approximations could
(CBF-BW) expression. be improved; and how potentially phenomenological input
We now argue that a major strength of the present theorynay be used to circumvent the most laborious and unreward-
is that it does not compromise the precision of quantities thaihg aspects of the microscopic theory.
were calculated with great precision in the ground-state Formally, the method dime-dependennultiparticle cor-
theory. The important quantity to consider is the static strucfelations is the logical extension of the variational method
ture function. In paper I, it is shown that the static structurefor the ground state. The question arises, of courddch
function, and the related pair distribution function, deter-portion of the correlations must be allowed to be time depen-
mined from the ground-state theory, agree to great accuraayent in order to correctly describe the physics of a specific
with the experimentally determined bulk quantities. Theexcitation. In that respect, it is perfectly plausible that long-
Feynman theory, by definition, does not change the statiwvavelength excitations are described well by allowing for a
structure function. The obvious guestion that arises is, hoWluctuating one-body component only. It is equally plausible
much, if at all, will the ground-state static structure functionand well established that such an approximation becomes
differ from one produced by the frequency integration of theinvalid when the wavelength of the excitation is comparable
CBF-BW dynamic response function: to the average particle separation. Letting correlations fluc-
tuate that dominate the behavior of the system at these wave-
<d(fw) lengths appears to be natural from the variational point of
J Imx B (r,1r'; o). view.
o7 (2.24 A simple consideration provides a rough estimate of the
' expected accuracy of theory: Whall three correlation
For thehomogeneousystem it has been proven by JackSon functions are allowed to bear the full symmetry breaking, the
that the static structure function obtained from the mul-variational theory provides very satisfactory agreement with
tiphonon theory isdentical to the one obtained in the Feyn- Monte Carlo simulations even for systems with very strong,

1

Vpa(r)pa(r’)

SCBF(T,I',)Z—
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macroscopic density modulatiofisindeed, we find almost 25
perfect agreement with Monte Carlo data for the strongest
conceivable density modulation, namely the two-
dimensional limit® It is therefore expected that one should / .
have equally good agreement for infinitesimally weak den- o °
sity fluctuations, in other words for th&tatic response func- 5r V4
tion. The neglect of fluctuating triplet correlations could, at
worst, introduce an uncertainty of the order of the contribu-
tion of triplet correlations to the ground state, which is about /
10%2° While this argument applies rigorously for tiseatic st 1
response function only, we shall see below that both the
static response function and the phonon roton dispersion re- 0 - - :
lation are improved, with the degree of sophistication of the 0.0 05 Lo 15 20 23
theory, at the same rate. We estimate therefore that the k (A
theory is capable — subject to the removal of some of the
approximation discussed in ApperdB — of reproducing FIG. 2. The phonon-dispersion relation is shown, for ibllee-
both the static response function and the phonon/roton diglimensional®He, at experimental saturation densjiy-0.021 85
persion relation within an accuracy no worse than 10%. ~*in (@) Feynman approximatior{long-dashed line and in

Our estimate is consistent with applications of the theorycBF-BW approximatior(short-dashed ling (c) CBF-BW approxi-
for the bulk liquid. By doing a rather complete evaluation of Mation with scaled spectrussolid line), and(d) from experiments
the EOM at the level of two-body time-dependent fluctua-(Ref- 21 (diamonds.
tions, Saarela&t al.” found an energy value of 9.7 K for the
roton minium. In comparison, the experimental vafufor (if) The working formulas for the three-body coupling
the roton minimum in the bulk is 8.6 K. Furthermore, Saare-matrix elements/{),, derived in Appendix B, make assump-
la’s calculated dispersion relation is in excellent agreementions on the optimal triplet correlation functions,
with experiment at momentum values well above (i) Finally, the energy denominator of the self-energy
k=2 A“2. The same is true for the static responseequation(2.20 contains the Feynman phonon energies, but
function® no further self-energy corrections. This is also a consequence

In the nonuniform system, a calculation at the level ofof the “uniform limit” approximation, more specifically the
Ref. 7 is much more tedious and, before we embark on th&reatment of the integral operator on the left-hand side of Eq.
numerically laborious route of improving the purely micro- (A18) through Eq.(B9).
scopic description, we shall explore simpler versions of the
theory and, in a more phenomenological manner, the pos- B. Bulk limit in three and two dimensions
sible sources of mismatch between experiment and theory. .
As outlined in the Appendices, the numerical implementa- € goal of the present work is not only to present a

tion of our theory corresponds to the generalization of thegenerlcally mlcroscoplc_theory of excitations in ads_orbed
correlated basis functions theory used by Jackéon, f|Ims,.but also to help interpret the rich and comphce_xted
Campbell222and collaborators. The theory exhausts, at thisexperlmental data. We feel, therefore, free to use some infor-

level, somewhat over 50% of the difference between the

N\, ; |
/
/ N ;
/ N / ;
/ . / ;
20 + / N / s
4 AN pd .
/ N ;
/ L ;
/ - ;

hatk) (K)

Feynman approximation and the experiment for both the 0.25
phonon-roton spectrurfig. 2) and the static response func-
tion (Fig. 3. 0.20
It appears that one can conclude two things from the com-
parison between Saarela’s and Campbell’s results: First, this &
approach correctly describes the phonon-roton spectrum ob- 0.15
served experimentally. Second, it is apparently sufficient to Z
include only two-body time dependent fluctuations —there is R 0.10

no need to include three-body or higher time dependent fluc-
tuations. The dominant part of any discrepancy between 0.05
theory and experiment lies in the actual numerical imple-
mentation of the theory at the level of fluctuating pair corre- 0.00 . . , .
lations. 0.0 0.5 1.0 1.5 2.0 2.5
Returning to the questions on which approximations are k Al
implied, and what the route of potential microscopic or phe-
nomenological improvement could be, we assert_that, from £ 3. The static response functieny(k,0) is shown, for bulk
the structure(2.19 and (2.20 of the Green’s function and  (hree-dimensional “He, at experimental ~saturation density
the self-energy matri% g, three approximations are evident. ,—0.021 85 A2 in (a) Feynman approximatiofiong-dashed ling
(i) The approximation used here ignores four-phonon couand in CBF-BW approximatiorishort-dashed line (c) CBF-BW
pling effects. This is a consequence of our treatment of thepproximation with scaled spectrufsolid line), (d) from experi-
equations of motion, specifically the “uniform limit” ap- ments(Ref. 21 (diamond3, and(e) from Monte Carlo datdRef.
proximation. 24) (boxes.
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mation on “how an improved theory would look” in order 9.0
to modestly introduce phenomenological information.

The first point that needs clarification is to what degree
our approximations effect the validity of our theoretical re-
sults, and how one can compensate for the approximations
dictated by computational considerations. This is best tested
in the bulk liquid, where comparisons with more complete
evaluations of the EOM, experiments, and Monte Carlo data 75
are available. From Ed2.22 it is obvious that two simple
adjustments of the relevant quantities can be made: these are

85

A X

8.0

to adjust the strength of the three-body vertex, éomi the "0z o0z 0023 o024 0025 0026

. . -1
spectrum in the energy denominator. p A

From our calculations on triplet correlations in the ground . . .
state in H& we have confidence in our calculation of the _ FIG. 4. The roton energy is shown as a function of density.
three-phonon three-body vertex. In Ref. 20 we have founJhe solid line shows our calculated scaled CBF-BW results and the
that the next correction to the triplet function provides only diamonds represent experimental data of Refs. 33-35.
perhaps a 10% correction to the vertéx, [cf. Eqgs.(B29)

term [Vi,alo [Eq. (B30)] of the three-phonon vertex. Note, roton minimum with our theoretical results. We see that the
however, that the three-body verte;, in the form used theoretical location follows closely the experimental data;
here cannot be neglected since it is necessary for obtainingur minimum being shifted consistently by 0.05 A to-
the correct density dependence of the roton minimi&im.  wards higher momenta, and the energy is accurate to within
On the other hand, it is also clear that the energy denomig.5 K. The agreement is certainly satisfactory given our ad-
nator in Eq.(2.22 should not contain the Feynman states, mittedly crude way to account for self-energy corrections.
but rather the proper self-energy. To estimate the importance Qur results for thestatic response function at saturation
of this effect, one can insert thexperimentaspectrum into  density (Fig. 3) are particularly satisfactory. Note thab
the energy denominators and find, indeed, a significant imadditional adjustments needed to be made. Figure 3 shows a
provement of the spectrum. Moreover, the multiphonon concomparison with both experimental ddtaand diffusion
tinuum is correctly moved downwards in energy. Monte Carlo simulationé* Apparently, our results of the
However, for the problem at hand of calculating the dy-scaled theory are, for momentum valuesowthe maximum
namic structure function of adsorbed films, the procedure opf the static response function, almost identical to Monte
putting anexperimentaspectrum in the energy denominators Carlo data; they deviate for wave numbatsovethat of the
is impractical. Instead, we have scaled the Feynman energig@gaximum from experiments by about the same amount as
in the denominator to roughly agree with the experimentathe Monte Carlo data, albeit in the opposite direction. It ap-
spectrum. For this purpose, a scaling factor of 0.6-0.65 leadsears therefore that a density-density response function of
to satisfactory agreement in the bulk calculation; we havehe type(2.18 with the self-energy(2.20 can quite accu-
used a scaling factor of 0.65 throughout all calculations. Invately describéoth static and dynamiproperties of a quan-
the work below, we will refer to this as the “scaled” tum liquid in the relevant density regime. Unfortunately,
CBF-BW approximation. The results from these calculationghere are, to our knowledge, no experimental data for the
are also shown in Figs. 2 and 3. Note that the proof of thestatic response function at higher densities; we have there-
sumrules presented in Appendix C is independent of the spgore resorted to comparison with Monte Carlo data by Mo-

cific details of both the three-phonon coupling matrix ele-roni et al?* This comparison is shown in Fig. 6. At high
ments and the spectrum in the energy denominator, hence

our scaling procedure does not compromise the precision of
the static structure function obtained in the ground state 2.15 . . : .
theory.

The agreement of the calculated spectrum with the experi-
mental phonon-roton spectrum is promising; it could be fur-
ther improved by a momentum-dependent scaling or by an
independent scaling of both the interaction and the spectrum.
We have refrained from such a procedure since the inclusion
of more uncontrolled parameters would jeopardize the pre- 2.00 b ° 8
dictive power of the theory.

The validity of our procedure can, however, only be

2.10 b

205+ ©

k (A

judged by looking at quantities that are well enough known 19 o

to make definitive statements, but weret used as “phe- ° .

nomenological input” for determining the scaling of the en- L0 T 0022 003 004 005 0026
ergy denominator. A prime candidate for such data is the p AP

density dependenaaf the roton parameters. A compilation
of relevant data has recently been given by Montfrooij and FIG. 5. Same as Fig. 4 for the wave number of the roton mini-
de ScheppefRef. 23. Figures 4 and 5 compare these ex-mum.
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FIG. 6. The static response functieny(k,0) is compared, for FIG. 8. Same as Fig. 7 for the static response function

bulk three-dimensional'He, with Monte Carlo results of Moroni  — x(k,0). The functions with the higher peaks correspond to the
et al. (Ref. 24 for densities of p=0.019 64 A3 (diamondg,  higher densities.
p=0.02186 A3 (boxes, and p=0.026 22 A3 (triangles, and

our calculations for p=0.0195 A (long-dashed line  dimensions, by either more complete solutions of the equa-
p=0.0220 A™* (solid line), and p=0.0260 A" (short-dashed {ions of motiof or by Monte Carlo calculations for the
line). phonon-roton spectrufh or the static response functiéf.
For our purposes, the examination of the two-dimensional
densities, the maximum of our static response function aptimit is by-in-large a consistency test: We have seen in Il that
pears to be somewhat too high compared to the Monte Carlw-coverage atomic monolayers behave essentially like
data. This is of no further consequence for the validity of ourwo-dimensional systems up to a crossover point at which
results since we are here concerned mainly withdyreamic  the population of a second layer becomes energetically fa-
response at densities at or below saturation densities. For th@rable over the compression of the first layer. A precursor
sound propagation in the highly compressed atomic monop this transition is that a visible ripplon mode appears. On
layers close to the substrate, data on the phonon-roton spegre substrate under consideration here, this happens at a
trum in two dimensions are more relevant. crossover coverage of approximately:0.055 A 2, the ac-
Further nontrivial predictions of our theory and in particu- tyal three-dimensional nature of the film, which is our main
lar the treatment of self-energy corrections are the phonorconcern, becomes visible only above such coverages.
roton dispersion relation and the static structure function in An extensive discussion of the dynamic structure function
two dimensions. Results are shown, for three densities beor the bulk liquid can be found in Ref. 14. Our calculation,

low, at, and above saturation, in Figs. 7 and 8. It would benhas, apart from having more accurate input, not much to add
extremely interesting to verify our estimate that the unrenorto Jackson’s analysis for the bulk liquid.

malized CBF theory underestimates the importance of mul-

tiphonon corrections by about the same amount as in three C. Monolayer films

1. Dynamic structure function

20 . : .
Let us now turn to our numerical results on excitations in
adsorbed*He films. We have numerically calculated the full
dynamic response function for several film thicknesses from
one (1=0.065 A"?) to four layers 6=0.240 A"?). To
keep the computational effort reasonable, one must limit, in
Eqg. (2.22, the sum over the intermediate states. We have
chosen this cutoff, dependent on the momentum transfer,
several degrees above the highest energg(lgw) that we
have considered; tests were carried out to verify the conver-
gence. For the monolayer film this is not critical since most
o & . of the spectral weight appears in the lowest Feynman exci-
0.0 0.5 1.0 L5 2.0 tation. As the number of layers increase, however, the num-
k ADH ber of Feynman states needed in the summations over the
intermediate states in the self-ener(®/20 increases rap-

FIG. 7. The phonon-roton spectrumtino-dimensionafHe, (@) 1dly, and the computation becomes very time consuming.

Feynman approximatiofiong-dashed ling (b) CBF-BW approxi- Following the strategy of paper Il, we use tiransition
mation (short-dashed line and (c) CBF-BW approximation with ~ densitiesandparticle currentsto determine the nature of the

scaled spectrum(solid lineg. Densities aren=0.035 A2, modes that we observe in the dynamic structure function. We
n=0.041 A2 and n=0.053 A2, the upper curves with the surpass that work by now including the multiphonon scatter-
lower roton minimum corresponding to the higher density. ing processes, as described above. By comparing quantitative

15

10

hok) (K)
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FIG. 9. The dynamic structure function in the Feynman approxi- /G- 10. The dynamic structure function in the scaled CBF ap-
mation for n=0.065 A2 film. The solid line is the continuum Proximation forn=0.065 A2 film. The solid line isfiw. described
boundary? wg,= — u+#2qf/2m. The level of grayscale indicates M the text.
the strength of5(q , w).

it separates regions, in energy-momentum space, where the

differences in the Feynman and CBF-BW theories we cafnodes are discrete from regions where the modes form a
assess the importance of the coupling of the various mode§Ontinuum. Herex is the chemical potential. The Feynman
The appearance of scattering intensity in the CBE-BwModes are strictly real,th_erefore we have broadened_the dis-
S(q), ) has either a Feynman counterpde Feynman crete ones by _0.5 K, which is slightly Ies§ than the_ instru-
mode, but perhaps renormalized in energy and strength, 0;n.ental resolution of the neutron scattering experlménts.
arises from a hybridization of Feynman states. In that cas§'9ure 10 shows our results for the same coverage in the
there will be no counterpart in the Feynman theory. In gomgscaled CBF calculatlon'. In both flgu_res, one observes a clear
from the Feynman to the CBF-BW theories, the amount offl0non-maxon-roton signature, typical of bulk systems. The
renormalization that a mode will experience dependsCBF cal_cglatlon dlspl_ays the ex_pected e_ffect of Iqwerlng the
strongly on the strength of the mode couplifigrough the roton minimum significantly. This mode is esse_ntlally a two-
three-phonon vertices in E€R.22)] and the energetics of the dimensional phonoricalled a layer phondnand is longitu-

corresponding Feynman modée corresponding energy dinally_ polari;ed. We glso see the appearance of the ripplon
denominator. Such coupling of modes can be either self- or (S€€ discussion belgyin both approximations. Now the rip-

mixed-mode coupling. Self-mode coupling refers to couplingP!on has substantial spectral weight extending to long wave-
of modes with the saméFeynman dispersion branch, for lengths. The ripplon level crosses at a momenta of approxi-

1
example, ripplon-ripplon coupling. The term, self-mode,m"’ltely 1'4,A : '
cannot be taken too literally since, even in the absence of Comparing the Feynman and CBF-BW results, we find

mode crossings, the nature of an excitation can change dri1at the ripplon’s energy is largely unaffected by three-
matically at different momenta along the same dispersiof?Onon corrections. One can understand this result by con-
branch? Similarly, mixed mode refers to the coupling be- sidering the strength of the coupling between the Feynman
tween two modes having different dispersion branches. As g0des. For momentum below 0.5A only the Feynman
usefulrule of thumb the strength of the three-phonon cou- r_|ppI0n hqs_ substantial spectr_al weight. Moreover, the transi-
pling will depend on the locality within the film, where the tion densitieé show that the ripplon and layer phonon have

modes are propagatin@nd, of course, energy and momen- most of their strength located at different regions in the film;
tum considerations ’ ' the ripplon propagates near the outer surface while the pho-

We first consider the monolayer films. Within the Feyn- 1ON is largely localized within the film(This behavior is

man approximation, we have calculated the dynamic struc@pparent in the CBF-BW transition densities, discussed be-

ture function S(qj,©) and the transition densities low, as well) ansequently, at these wavelengths, there i.s
8p(z:q;,). For a complete discussion of the Feynman revery little coordinate space overlap of these modes. This

sults, we refer the reader to paper II; our only intent here is tg"€aNS thatlor_ﬂy rippI%n—ripplon coup!ingl will ianuerr:_cE thhe
compare these with the corresponding quantities calculate@MoUnt, relative to the Feynman ripplon, by which the

in our more accurate CBF-BW calculation. CBF-BW ripplon is renormalized. _
Figure 9 shows our results at a coveragensf0.065 The next relevant point follows from the approximately

A2 in the Feynman approximation. This is close to thellnear nature of the monolayer ripplon’s dispersion. A dis-
maximum coverage for which, at zero temperature, the filPUSSIOn On scattering processes involving excitations having

can still uniformly cover the substrate in the form of a mono-M€& d'SOFI)T'\IrS'Qn cz%r: be found, for ehxample, n éhi text by
layer. We have chosen this coverage since it displays already €S and Nozies: In our case, we have in mind the pro-

a strong ripplonlike excitation. The dotted line in the figure is ess in which a ripplon of mo_mentuln a_nd.energyw(k)
the energy-momentum continuum boundary given by scatters, producing two other ripplon excitations of momenta
g and k—q), and energiess(q) and w(|k—ql). It then

scatters back into the state with momentlkmand energy
(k). For this process, the total energy between scattering
events will be

h2qf
ﬁwcb:_M+ om’ (31)
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o=o0(lk—q|)+o(|q]). 3.2 2. Particle currents and transition densities

The physical nature of individual excitations is best re-
The important point, then, is that for linear dispersion, thevealed in thetransition densitiesand theparticle currents
only energy and momentum conserving processes are for-he reader is referred to Appendix D for a complete descrip-
ward or backward scattering. This has the effect of severel§ion of the theoretical current calculation. Again we mention
limiting the phase space over which three-phonon scatterinthe Feynman approximation only for comparison. Basically,
can occur. Thus one can understand the comparatively smaile found that the CBF correctiorise., the second term in
ripplon renormalization, observed in Fig. 10, from theseEq. (B17)] do not, to any appreciable fashion, change the
simple arguments. general flow patterns except, of course, for the shift in energy

Another important observation is that at momentumin particular in the roton region.
above 1.1 A1 the intensity of the ripplon is highly reduced.

This broadening is due mainly to the decay of the ripplon 30
into a long-wavelength ripplon and a layer roton. This effect
will also be encountered at higher coverages.

Unlike the Feynman results, there now appears scattering 20
intensity at a momenturk>1.5 A~! above 20 K. The en-
ergy of the peak is approximately the sum of tReynman
energies of the layer maxon and the layer roton. Conse-
qguently, the observed scattering intensity is easily traced to a
large contribution to the two-body density of states coming
from the hybridization of these two modes. This is basically
a bulk effect that has also been observed in the three- Y 10
dimensional liquidg; we find here the two-dimensional ana- q A
log of this phenomenon. The effect is of no further concern
for our discussion of excitations that are specific to the film FIG. 12. The dynamic structure function in the Feynman ap-
geometry. proximation for then=0.165 A? film.

ho (K)

101

n = 0.165A2

5 20
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FIG. 13. The dynamic structure function in the scaled CBF ap- FIG. 15. The dynamic structure function in the Feynman ap-
proximation for then=0.165 A2 film. proximation for then=0.240 A~2 film.

later case the lowest-energy mode would still be the surface
fnode. We shall show, in the next sections, examples for the
ripplon appearing above the roton minimum further below.

Figures 118)-11(f) show our results for transition densi-
ties and particle currents at a monolayer coverage o
0.065A2. The density profilégrey-shaded regigrand tran-
sition densitiegsolid lineg have been included in the figure

as indicators of the location where the mode propagates. The D. Multilayer films

arrows indicate the direction of the current parallel to the 1. Dynamic structure function

surfacefas, for example, in Fig. 1lb)] and perpendicular to )

the surfacdas in Fig. 118)]. Let us now turn to our numerical results of the Feynman

Figure 11a) shows the transition density and the particle2Nd CBF-BW theories for multilayer films. For the purpose
of discussion, we have chosen two representative cases: a

current for the lowest excited state at the rather long wave*

. . 2 .
length ofk=0.5 A~1. Obviously, the excitation propagates tnple-la:g\xe; flm at 0.165A* and a four-layer film at
in the very low-density regime of the film, and the currents0-240 A “. Figures 12 and 13 show the triple-layer film’s

show the circular flow pattern typical for a ripplon. The next dynamic structure function in the Feynman and the scaled
excitation[note that we use the term “excitation” in a some- CBF-BW approximation. Figure 14 shows, for comparison,
what loose sense, we refer to it as a peak inStie »)] is, the dynamics structure functlon_m the “unscaled version of
on the other hand, localized mostly within the layer angthe CBF-BF th(_aory. The es_sentlal effect of the more re.al|s'.uc
shows the longitudinal flow pattern of a phonon. energy denommator used in the “scaled” approximation is
Figures 11c) and 11d) show basically the same situation that the continuum boundar;_/land the modes at medium and
at a somewhat larger momentum. Note that, while the lowest0rt wavelengthsg>0.5 A™*) are moved to lower ener-
excitation is already rather diffuse, the ripplon character ji€s- This has thle effect that thﬁ ripplon is, in the momentum
clearly revealed in the current patterns shown in Figclll regime 0.75 A*<q <1.25 A", hardly visible. Other-
At higher wave numbers, the ripplon loses most of itsWiSe; the_relat|ve location _and strengths of individual modes
strength and the most visible resonance is the phonon-rotdfi €ssentially unaltered. Figures 15 and 16 show our results
[Figs. 11e) and 11f)]. Note, however, that the ripplon still for theigynamlc structure function at a coverage of
can be traced up to higher momentum transfers above th8-240 A™2. This coverage was chosen since the cleanest ex-
phonon-roton spectrum, however it is, as opposed to th@erimental data are available; the film consists of three com-

Feynman approximation, very diffuse. Therefore, we callP'ete and a fourth half-filled layer, cf. Fig. 1.
this a level crossing, as opposed to a level repulsion. In the At both coverages one can see, in the Feynman results, a
clear signature of two layer phonons, a ripplon, and another

30

30

20t 20}
S S
3 3
10 = 10
n= 0.165A2 n= 24047
%0 0.5 L5 2.0 %0 0.5 15 2.0

0 1.0
q AN q; A

FIG. 14. The dynamic structure function in the unscaled CBF FIG. 16. The dynamic structure function in the scaled CBF ap-
approximation for then=0.165 A? film. proximation for then=0.240 A~2 film.
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excitation of similar dispersion to the ripplon. In the wavelength excitations are ripplons — the transition density
CBF-BW theory we find, however, that the intermediate en-ndicates that they propagate in the surface and the current
ergy mode is highly damped. This is a manifestation of theshows the characteristic circular pattern. Note that, when
fact that theories more sophisticated than the Feynmanonsidering thes(q;,), the ripplon is in fact quite diffuse
theory(such as the CBF-BW thegrgontain mode coupling and weak for a wave number qﬂ%lﬁ\*l, nevertheless it

as an important ingredient. It is also consistent with experican be clearly identified by its current patterns. The second
mental data in that the area between the ripplon and thexcitation propagates mostly in the innermost layer, but, with
phonon-roton spectrum is filled by a broad plateau. The acincreasing wavelength, has also a significant overlap with the
companying paper, Ref. 3, will display the effect of filling outer layers of the film, notgcf. Figs. 17b) and 2q that the

the plateau more clearly in a different representation of theransition density for wave numbej=0.5 A 1is almostin
theoretical and experimental results (g , ). phase with the background density.

Near the momentung~1.3 A~ we find a second, less While the interpretation of long-wavelength results is
intense, layer modéetter described as a resonangaining  relatively straightforward, the situation is more complicated
significant spectral weightsee Fig. 15 At that momentum, in the vicinity of the roton minimum. Figures 18 and 20
which is between the maxon and roton, the intense layeshow the particle currents for the three lowest pronounced
phonon(the third resonanges distributed over the two outer resonances in that area. One of the resonances still displays
layers. This is the first case where modes having pronouncezsbme of the circular flow pattern of a ripplon, but there is
spectral weight encompassing multiple layers are becomintess motion perpendicular to the surface. This resonance is
present in the film(Support for these statements are giventhe lowest mode afy~1.5 A%, it reappears after the level
below) The low-intensity modésecond-excited statbas a  crossing ag~1.7 ~1 as the second resonance, whereas a
substantial amount of weight located at the film’s inner layerayer-phonon propagating in the layer closest to the substrate
at this momentum. Ag~2.0 A~1, well above the level is now the lowest mode. In both cases, the#d resonance
crossing, a mode with spectral weight distributed over theappears to be a mode that propagates with sizable probability
two outer layers is again obvious. Now, however, it is thethroughout the whole film. We conjecture therefore that this
second excited state. The lowest-energy state is the layenode will eventually develop into the bulk phonon-roton
roton propagating in the first layer of the solid-liquid inter- spectrum in the limit of infinite film thickness.
face. The ripplon is the third-excited state.

E. Comparison with neutron scattering experiments

2. Particle currents and transition densities Inelastic neutron scattering experiments on low tempera-

Some of the statements made above about the physicaire helium films have been performed at the time-of-flight
nature of individual resonances need to be substantiated tgpectrometer at the Insitut Laue-Langevin’s reactor, and the
looking atwherein the film the excitations are propagating, resulting dynamic structure function from these experiments
and what the particle motion is. Figures 17 and 18 show ouhas been analyzed in an accompanying papEmat work
results for the CBF currents, for selected wave numbers, atealt with a four-layer film of coverage of 0.240 & which
coverage of 0.165 A? for the first two or three excitations. provided the motivation for us to use the same coverage
Figures 19 and 20 give the corresponding results for thdwere. In Ref. 3, the experimental aspects of the problem are
four-layer film. In both cases, the lowest, long- to medium-stressed so here we concentrate on the theoretical explana-
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FIG. 18. The particle currents for the=0.165 A2 film in the vicinity of the roton mimimum and the level crossings. See Fig. 11 for
further explanations.

tions. We proceed by first stating the experimental observawas thought to be the helium condensation at the boarders of
tion, and then use our theoretical results to explain it. In partthe graphite crystallites making up the scattering sample. The
this section serves as a summary of some of the importagiroblem arose when the Feynman the@fjg. 15, at that
findings of the previous sections. coverage, produced a clear, distinct set of layer mdaethe
First, the experimental ripplon has significant strength aenergy of the Feynman phonon-maxon roteeflecting the
low momenta, but appears to lose much of it at intermediatéayered nature of ¢in film. The CBF-BW and, more so, the
momenta. As already mentioned above, both the CBF-BWscaled CBF-BW theories help to resolve this. When mode
and scaled CBF-BW theories provide a clear explanation focoupling is included, we see immediately from Figs. 15 and
this. At low momenta, only the ripplon has significant 16 that the maxon-roton region of the excitation is enhanced.
strength; at this coverage there is a sizable energy gap sepas already described above, this is a natural consequence of
rating the higher energy modes; the theory finds these modeeducing the independence of the individual layer modes. In
to have minimal strength. The argument for why the ripplonthe corresponding transition densities, modes of large spec-
is largely undamped rests on the restricted phase space atal weight distributed over considerable portions of the film
lowed by energy and momentum conservation for ripplon— the signature of bulk coherence — now exist at those
ripplon scattering to take place. However, as the ripplormomenta and energies.
reaches an energy comparable to the layer roton, it can decay Third, the experiment finds a substantial plateau in the
into a long-wavelength ripplon and a layer roton, for ex-scattering intensity between the ripplon and bulklike mode.
ample, and thus damping is apparent. A theoretical explanation for this observation was already
Second, the experiment yields a strong mode that can bgroposed in Il, which invoked the obvious argument that the
interpreted as the precursor to the bulk phonon-maxon rotorintermediate energy modes must account for the additional
At the level of the Feynman theory of paper Il, this observa-scattering intensity. In our more refined CBF theories we
tion was disturbing because it meant that the experimentalertainly see that this remains to be the proper explanation.
results might be biased towards bulklike behavior. The causBurthermore, scattering arising from hybridization of modes
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o o o o inner layers’’ or vortex-type excitation® In particular the
. “flat” modes found in low energy neutron scattering
o O O ----O O----O o e dat&®3° could be signatures of the latter. Neutron scattering

experiments with a significantly improved energy resolution
o would be highly desirable since such experiments have the
' ‘ potential of pointing towards new physics beyond phonons,

GAS 3 O e o) rotons, and ripplons.
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Most of our findings, theoretical ramifications, and com—l's‘hed dataRef. 24.
parisons with experiments, have been discussed in the pre-
ceding sections, there is no point for repetition. It appears APPENDIX A: EQUATIONS OF MOTION

that excitations that are, in essence, density fluctuations, spe- \ye start our considerations with the Lagrangiarg)
cifically “phononlike” and “ripplonline” excitations, are

well understood. The transition from the Feynman descrip- 1

tion to the CBF theory has added two new important quali- L) = g(Wol[8U,[T,8U]][Wo)
tative features to the theory: mode-mode coupling and natu-

ral broadening. In many aspects, however, the qualitative if .

picture derived from the Feynman theory has not changed. - §[<‘I’o su[oU*

These are the specific types of modksyer phonons, bulk

phonons, and ripplonstheir relative energetics, and their

level crossings. Unfortunately, theatural width of our —(Wo|8U*[Wo)] ‘\If0>—c.c.
modes has turned out to be significantly smaller than the

experimental width. We have gone through a very careful

analysis of experimental ddtand have concluded that there + < lI’o(t)‘ Z Uex(rist) ‘I’o(t)> - (AD

is indeed compelling experimental evidence that our overall

picture of the dynamics of liquid films is a valid one. For the derivation of the double-commutator term in the

This does not necessarily mean that nothing else can ba&bove equation, one normally assumes {H&j) is the exact
learned from neutron scattering experiments on liquid filmsground state. However, for the specific forfd.1) of the
We have stressed above that we believe that we have a goedcitation operator, it is sufficient to assume that the corre-
understanding of excitations that are essentially density fludations up tou, have been optimized. Inserting the explicit
tuations. However, there may lo¢her, newtypes of excita- form of our time-dependent correlations allows us to rewrite
tions. These could, for example, be precritical phenomena tthe double-commutator term in terms of one-, two-, and
the liquid-solid phase transition in the highly compressedhree-body densities:

1 72
g(‘I’o|[5U*,[T,6U]]|‘I’O)=8—m{Jd3rp1(r)|V5U1(r;t)|2+J d3r 103 5po(rq,r2)[ V18U (ry;t) - Vidub (ry,ry5t) +c.c.
+|V16u2r1,r2;t)|2]+fd3r1d3r2d3r3p3(r1,rz,r3)V15u2(r1,rz)Vléu’z‘(rl,rz) . (A2

The time-derivative term is conveniently expressed in tern$imie derivatives ofthe time-dependent one- and two-body
densitiessp4(r;t) and dp,(r;,rj;t) to be taken to first order in the fluctuations:

lo,

. ) 1 )
SU[SU* —(W | SU* | W )] ‘\If0>=f d3rpy(r;t)Sul (r;t)+ Ef d3r 103 ,po(ry,rpst)SUS (ry,rp5t).  (A3)
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A word is in order concerning the interpretation of the time derivative of the above densities: Thesat #re time
derivatives of thgrea) physical density, but rather should be understood as an abbreviation of the operation

op1(ry) op1(ry)
ouy(ry) OUy(ry,r3)

and a corresponding equation for the time-dependent pair density. In other wefdg, and p,(r,,r,) arecomplex.The
physical time-dependent densities are obtained by taking the real part of these functions.
Finally, we calculate the term containing the external field to first order in the fluctuations

bl(rl?t)EJ d3r, }5(11(r2;t)+f d3r,d% 5 Suy(rp,ra;t) (A4)

J’ dsrRepl(r;t)Uext(r;t):Re{Jdsrluext(rl;t) pl(rl)aul(rl;t)_l'J d3r 5[ po(ry,r2) = pa(ra) pa(ra)18us(ry;t)
1( 5 3 1( 5 3 3
+§f d>r1d°r o[ Ueud(r15t) + U r2:t) 1pa(rq,rp) + zf d°r1d°r,d°r 3U ey r3;t)[p3(re,r2,r3)

_Pl(rs)Pz(rlarz)]5uz(r1,r2;t)]- (A5)

Taking the variations of the second-order functional leads to two EOM’s of the form

hZ
ﬁvl'[pl(rl)vléul(rl;t)"_j d3r2P2(rl,rz)V15U2(r1,r2§t)]
:_iﬁpl(rl;t)+2[Pl(rl)uext(rl;t)+J d3r2[p2(rlvr2)_pl(rl)Pl(rZ)]Uext(rZ;t)] (A6)
and
hZ
ﬁvl'{Pz(rlarz)V15U1(|’1;t)+P2(f1,rz)V15U2(r2,fz;t)"'f d3r3P3(|’1.rz,rs)V15U2(r1,f32t)]+Same for (1+2)

:_iﬁpz(rl,rz;t)+2p2(rlar2)[uext(r3;t)+Uext(rS;t)]"_zf d3r3[pa(ry,r2,r3) = pa(r1,r2)pa(ra)Ue(rs;t). (A7)

Equationg/A6) and (A7) are the starting point for the equations-of-motion method for the calculation of collective excitations

in quantum liquids. Different implementatioris®!differ by the approximations used for the three- and four-body densities
appearing in the equations of motion and the time derivative of one- and two-body densities. An important consideration is that
the one- and the two-body equations amtindependent: The one-body equatidné) results from the two-body equation in

the limit [r;—r,|—c. Moreover, using the sequential relations

J’ dsrnpn(rla ool =(N=n)py(ry, ... M) (A8)

it is easily seen that the one-body equation also results whe(AEgis integrated over one coordinate, say, In order to
decouple the two equations, we first subtract the asymptotic limit, multiplieg{by,r,). At the same time, the equations can
be shortened considerably by introducing the one-body current

fipy(r)
2m

—ij(r;t)= [V(Sul(r;t)+fd3r’pl(r’)g(r,r’)V&uz(r,r’;t)}. (A9)

The one-body equation is then readily identified with the continuity equation,

1ALV (1) = pa(rit)]+2pa(r) Uext(r;t)+f dgr'pl(r')h(r.r’)Uext(f’;t)}zoy (A10)

whereh(r,r')=g(r,r')—1, and the two-body equation becomes

ﬁ2
ﬁmvlpl(rl)' g(rl,rz)Vléuz(rl,rZ)nLjd3r3pl(r3)[g3(r1,r2,r3)—g(rl,r3)g(rl,rz)]Vléuz(rl,rg;t)]
. iy j(r2) X
+same for(l—2)+ifg(rqy,ry)=inh M‘Vlg(r1!r2)+W'VZQ(rler) +2 | d°r3pq(rg){gsa(ry,ra,ra)

—g(ry,r)[g(ry,r3) +9(ra,rz) — 1] Ueu(rs;t). (A11)
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Before we turn to approximations, we carry out a cumulant analysis of the three-body distribution function. Using the usual
diagrammatic notation, this cumulant expansion is shown in Fig. 21. In this figure, the solid line represents a function
h(rq1,r,) and the shaded triangle is the pAg(r4,r,,r3) of the three-body distribution function that is non-nodal in all three
external points. We also abbreviate the pargefr,r,,r3) that is non-nodal in point; by

Y(ry,ra;rg)=h(rq,rz)h(ry,rz)+ J A3 4 d3r5[ 8(ry1—14) +p1(ra(rg,r)[8(ro—r5)+pa(rs)n(rs,r)1Xs(ry,rs,r3).
(A12)

Finally, we change the independent one-body function f&un(r;t) to dp4(r;t) For this purpose, we express the functional
derivatives of the densities occurring in E§4) through two- and three-body densities,

opy(rit)=

P1("1)55U1(r1?t)+f dgrz[Pz(rl,rz)_Pl(rl)Pl(rz)]5U1(rz;t)+f d3r5po(rq,12) SUy(ry,ra5t)

1
+ Ef d3r2d3r3[p3(r1,r2,r3)—pl(r3)p2(r1,rz)]5u2(r2,r3;t)] : (A13)

Inserting the cumulant expansion of Fig. 21 for the three-body and defining

1
501(r1§t)=P1(r2)5U1(r1;t)+f dgrzpz(rl,rz)&lz(rl,fz§t)+EJ d3r 203 3p1(r2)pa(ra)Y(ra,ra,ry) dus(ro,ra;t),

(A14)
let us rewritedp4(r;t) as
3pu(0=pa(r2) 8051330+ | @Eh(rr)pa(r2) 801210 (A15)
which is readily solved fovv(rq;t) by inverting the convolution integral in EGA15):
A1) 801230 = Spu(1i0) — [ X (112 3pa(r) (A16)

whereX(r,r,) is the “direct correlation function.” The change of variables is useful since the HNC equations provide a
relationship between(r,r,), us(rq,r»), andp,(r) in which u;(r) does not appear. In other words, we can from now on
considersp4(r;t) and du,(rq,r,;t) as the independent variables. The time derivative of the two-body distribution function
can then be written as

. og(ry,ra) . . d
5p1(l‘3,t)+f d3r3d3r4m5U2(r3,r4)EJ d3r3Y(r1,I’z;r3)5p1(r3;t)+ a_:g(rl,rz),

(A17)
where the first term in the last line is a definition of the operatignand the first term again stems from graphical analysis.

69(ry,ry)

'g(flyfz)=f d3f3m

ﬁZ
5= - V1pa(ra)- g(rl,rz)V15u2(r1,r2)+jd3r3p1(r3)[g3(r1,r2,r3)—g(rl,r3)g(r1,rz)]V15u2(rl,r3;t)
2m py(ry)
+same for(1<—>2)+iﬁ@g(r r 't)=iﬁ[&~v g(rq,r )+j(r—2)-V g(rq,r )—f d3raY(ry,ro:ra)V-j(r )}
ot 1:12» pl(rl) 1 1.12 Pl(rz) 2 1,12 3 1,12,13 3/
(A18)
The equation still satisfies a sequential relation: Observing that
Jd3r2[93(r1arzars)_g(rlarz)g(rlars)]m(rz):—g(rlars) (A19)
and
f d3rp1(ra)Y(ry,ra;ra)=—h(ry,ra) (A20)

it is readily shown that volume integral bbth sides of the equation of motid@18) vanishes. The advantage of the present
formulation is that this is true foany triplet function X3(r,r,,rs).

The interesting feature of the equation of mot{@138) is that the external potential has been eliminated. Evidently, the time
dependence of theair correlationsis driven by the one-body current alone. Thus it is appropriate to identify the equations of
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motion method with asystematiapproach to introduce current-current coupling effects into the theory of excitations. Note
that we have at this point made no approximations other than assuming that the time dependence of the wave function is
described appropriately by a one-body and a two-body component.

The current then reads, in these variables,

fdsrzx(rbrz)&)l(rz;t)

o hipa(ry) [ Opa(ryst)
—ij(ry)= 1 -

fip1(ry)
"’#j d3r,p1(rp) Suy(ry,ro5t)Vag(ry,ry)

2m pa(ra;t)
fipy(rq)
+ Afml Vlf d3r 203 3p1(r2)pa(ra)Y(ro,ra,ry) Sus(ro,ra;t) (A21)

and the continuity equation is, when written in these variables,

2

. fi op1(ry;t)
|hpl(r;t):_ﬁvl[ﬁ’l(rl)v[ S

W—J d3rX(r1,r2)5p1(r2;t)”

hZ

_%Vl{Pl(rl)J d3r2p1(r2)6u2(r1,r2;t)Vlg(rl,r2)}

ﬁZ

_mvl{l)l(rl)vlj d3r2d3r3p1(r2)p1(r3)Y(r2,r3,r1)6u2(r2,r3;t)}

+2pl(rl)[uext(rl;t)+ f dgrzpl(rZ)h(rl-rZ)Uext(rZ;t)}- (A22)

The Feynman theory is recovered, from this form, by omit-It is also useful to abbreviate the convolution product of a
ting the second and the third line of E@A22). pair of two-body functiongA(r,r’) andB(r,r’) as

APPENDIX B: CONVOLUTION APPROXIMATION _— ~ ~

[A* B](r,r’)zf d3r”A(r,r")B(r",r"). (B4)
We now need to make a specific approximation to all the
three-body or distribution functions and densities, as well as , n) . .
for the connection between the fluctuating pair correlation (nl?e5|des the Feynman statess (r) and their adjoints
function to the time-dependent part of the two-body distribu-¢""(r), we will also need the abbreviations
tion functions. We will refer to the approximation scheme
we have chosen as the convolution approximation since it is

¢ (ry) =y (ry)

diagrammatically equivalent to the approximation used by [M(ry)= (B5)
Chang and Campbéfifor the bulk system. The approxima- Vpa(ry)
tion is equivalent to the “uniform limit” approximatiotf d
which assumes that the two-body quantities under conside"
ation are small in coordinate space, but not necessarily small
in momentum space. This allows for long-range effects like EMr)=py(ry) d™(ry). (B6)
phonons.
It is useful to introduce the tilde notation, for example for In keeping with the philosophy of the “uniform limit ap-
any one-body functiori;(r) we define proximation,” we first rewrite the time-dependent pair cor-
relation function in terms of the time dependence of the
~ “non-nodal” function X(r,r,;t):
f1(r)=+pa(r)fa(r), (B1)
] i / i 9u89(ry,ro;t JuSX
for a two-body functionf,(r,r’) we define uég(ra,ra;t) AT TR, 87)
ot ot
To(r,r)=pa(Npa(r ) fa(r,r), (B2)  Two simplifications of the equations are made on the left-

hand side of Eq(A18): We approximate
and for the current

g(ri,rp)Vyouy(ry,rot)=Vyduy(ry,ry;t)=Vy16X(rqy,rp;t)

~ (B8)

j (= . (B3)
palr

d

and the three-body term as
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f d3r3p1(r3)[gg(rl,r2,r3)—g(rl,r3)g(r1,rz)]Vlﬁuz(rl,rg;t)~fd3r3p1(r3)V15u2(r1,r3;t)h(r3,r2)

“J d°r3p1(ra) VidX(ry,rg;t)h(rs,rp). (B9)
|
This approximation is actually less dramatic as it may seenand
at the first glance; a careful diagrammatic analysis of the
three-body distribution function shows that, by expressing ,/,<s _
Suy(rq,ra;t) in terms of 6X(rq,rs;t), a large number of S> fd3 V- [Vpi(r)Wg(r)]. (B16)
diagrams are eliminated that would contribute if one worked
in terms of Su,(rq,r5;t). Unfortunately, a complete elimi- I .
nation of 8u,(ry.r4:t) in favor of either SX(r1.ra:t) of To eliminate the current from Eq4B13) we write
69(rq,rs;t) on the left-hand side of the EOM does not lead
to any simplifications and appears to be impractical for the /—
nonuniform geometry. Finally, we use for the triplet function i(r)= prr)Va——=—== Jp (rl) Go1(ra)
Xs(rq,rp,r3) the expression obtained in paper | from the
optimization of the triplet correlations. 1 ~ ~
From here on, it is advantageous to work entirely in the - 5% Winn(r1) 6Xmn| - (B17)

space defined by the Feynman wave functions and to express
the one- and two-body fluctuations as We can now combine EqgA15), (B13), and (B17) and

Spa(rt) obtain
Pl
=2 rm(He™(r),
Vea(r) - m iﬁ%—ﬁwm—ﬁwn SXo
r&(rl,rz;t):% X D™ (r)™(ry),  (B10)
~ f d3rWpnq(r)- wst<r>6xst—2 ViSrs. (B18)

Uexd(r;t)=2 U (6)g™(r).

In this basis, the static structure function has the f(2m7),
and the direct correlation function is

%(rl,r2>=5(r1—rz>—§ P ™(ry) ™ (ry). (B11)

Projecting the equations of motidA22) and (A18) on the
Feynman statejgs(™) produces the one-body equation

Lar 1
|ﬁ&—tm:ﬁwmrm+ E; V(ST)(SXSH_ zug)’?t)(t) (812)
and the two-body equation

J
iﬁﬁ—hwm—ﬁwn

Xpm=ii f d3rj(r)- W),
(B13)

where
Wi 1)= ¢ MO V() + S ()T EM(r)
+Vp1(r)VXmn(r)

(B14)
with

Xl 1) = Jd3rld3r2¢(m)(rl)qb(“)(rz)xg(rl,r2,r)

(B15)

Pl(r

To get the expression for the response function, we now
make a harmonic expansion of the external field and the
fluctuations

t U (m) |wt+ it
UtR()=UM[e '+ e,
rm(t):Xme—iwt+ymeiwt’

(1) =Xmre "+ Y'Y, (B19)

where we can assume that the, Y, andXy,, Ymn are real.
Defining

Tmn,st(w):ﬁ[wn+wm_w] OmsOnt
#? _ ~
+mf d3rW (1) -We(r)  (B20)

and separating the portions with positive and negative fre-
quency allows us to formally solve for the one- and two-
body equations for th&,,, y,, and thex,,, andyn,:

n— _I%q [T l(w)]mn ququr )

mn— — r,qu [T_l( - w)]mn,pqv(r)r(;yr )
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Gsi(@)=[h(0—wstie)dgtSs(w)]™t  (B23
fi(o— wg)Xs= _E anxmn+2U£ai)tv (B21) (@) =[Alo-0stie)dst2s(w)] ( )

with the self-energy
h(—0—wly :—EV YonnF2US) -
o e So(w)=5 2 ST ) TnpaVig (B24)
and obtain the full solutions of the problem:
We are now ready to calculate the real part of the density

Et Es@)x=2U%,, fluctuations:
1 —iwt i wt
2 Eol — 0)y;=2U%), Rerg(t)=5[xstysl[e”" +e']
ith ~ ot e
" =2 [Cui(@)+ G~ ) UL e "+ e,
Es(@)=h(0— 098t 5 E v<s>[T*1<w>]mn,pq\7ﬁa. (B25)
(B22) The term in the square bracket can be identified with the
Evidently, we can identifyE.(w) with the inverse of the density-density response functig(w) in Feynman space.
one-phonon Green'’s function The coordinate representation is then
X(rlyrz;w)=§ VP1(r1) ¢ (r)[Gs ) + Gy — )18V (rp) Vpa(ro). (B26)

The normal modesof the system are given, as usual, by the singularities of the response function, in other words by the
solutions of the generalized eigenvalue problem

Z E @)% =0. (B27)

In the nonuniform geometry, it is presently computationally too time consuming to keep the off-diagonal term of the
propagatolB20). If we keep only the diagonal terms Bf () Jnst» We recover the CBF-BW perturbation theory derived
by Chang and Campbéfifor the uniform system.

'\"/(S)'\"/(t)
3. CBF L mn
()= E O (B29)

cf. Egs.(B20) and(B24). We will use the same approximation for the numerical parts of this paper.
To complete this appendix, we display the “three-phonon” vertex funcﬂ{:ﬁﬂ:

= = h? Pp(ry)
V(rr?n:f dsrld’(t)(rl)vmn(rl):_%f dsrlvl[ \/Frll)]-{§(m)(r1)V1§(”)(r1)+§(”)(r1)V1§(m)(r1)}

~ —~ ~ ~ (l)t‘\v/ t
- f A3 K r ) H1 O (r) = [V Jo+ 0 X = [ViR o+ —————, (B29)

ontT oyt o

where

t)( 1)

Vl' {EM(r VLM (ry) +EM(r) VL™ (ry)}, (B30)

V(tn]O:_f d3
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ﬁZ
V= — %f darl{g(m)(rl)vlg(n)(rl) : Vlf(t)(rl) +cycl.}, (B31)

note thatV ., is the three-body vertex of the ground-state Without loss of generality, we can assume thais normal-

theory. Inclusion of this term is necessary to obtain the corized. Projecting Eq(3.6) on ¢ gives

rect density dependence of the roton energy in the bulk

liquid.? oo
1 EAVISAVICR

ﬁw:ﬁws_EE sV'mnY mn%¥t

mnst A{On+T oy~ )’

APPENDIX C: SUM RULES (C7)
In this appendix we will prove that first two moments of . _

the improved dynamic structure function are identical tolet us assume thab is complex and can be written as

those of the Feynman approximation, in particular that the

static structure function obtained within our theory — i.e., )

including time-dependent pair fluctuations —idkentical to w=wrtio;. (C8

the one of the ground-state theory. In Eg.18, we have

expressed the density-density response function in coordiFhe imaginary part of EQC7) is then equivalent to

nate space as

! OV iV bt
XCBF(r,r’,w)Wpl(r)% (N xst (@) V(1) Vpa(r') 1__5%,- (ont on—wp 2t o2 2
(CY

. . . . . This equation obviously cannot be fulfilled and, hence, the
with the ma'_mx representation of the density-density re-,gnliner eigenvalue problerfCé) has only real solutions.
sponse function ThereforeGSE () is analytic everywhere off the real axis.

Two more important properties, which can be read directly
xS (0) =[G (w) + GSEF(— )], (C2)  off Egs. (C3) and (B28) are thatGSE (w) is real on the

st
CBE, - : _negative real axis, and that
where(cf. Eq. (B23)] G4 (w) is the three-phonon approxi-

mation of the Green’s function
)
G (w)=7———+0(0™% (ago|—x).

G (w)=[A(0—w+ie) S+ S (@)™ (CI " h(w—wtie)
(C10

with the self-energy correctio(B28).

In the Feynman basisy® and thew® sum rules simply _ o .
state that We are now ready to verify the” and thew™ sum rules.

For thew® sum rule(C4), the frequency integration is easily
carried out by the usual contour integration procedure:

d(#
_lmfo (,n_w)Xst(w):5st (C9
>d(#
" f m—:)'m[GiBWct)HG?FF(—w)]
0
“d(hw) = d(fiw)
_Imf0 ﬂ-“’ hoxsi(w)=hwgds;. (CH :fﬁw - |m[G§tBF(w)]. (C1D)

We will follow the general procedure outlined in Ref. 17.

First, we have to show thaBS®(w) is, as a function of

w, analytic everywhere off the real axis. We will prove this

by first assuming the converse and showing it leads to

contradiction. Let us assume th&(f (o) is singular for

some complexv. This assumption is equivalent to assuming foo d(hw)
m

SinceGSEF(w) has no poles in the upper half plane, we can
deform the contour to a large semicircle in the upper half
glane. Hence, due t@C10) we obtain for the integralC11)

that there is acomplexvalue of » for which the nonlinear —— G (w) =64, (C12
eigenvalue equatiof.22 has a solution, i.e., explicitly that -

which is the identity we sought to prove.

(C6) The proof of the first-order sum rulgC5) is analogous.

V)
hops= hwSsi— . .
s Et st 2 ) # Let us calculate the integral

mn A(ont o~
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—f A o hoImye( @) = F—[hw ﬁws]ImGCBF(w)zlmfw m[ﬁw 1 0] GSBF ).
O — 0
(C13

In both of the above steps we have used thaﬁ;fﬁf(w)zo on the negative real axis. The last integral can again be evaluated

by contour integration. Due to the asymptotic behaviot0) we can close the contour integral in the upper half plane. Letting
ho=hostRe?,

©» d(hw wd : 2R
Imf (T)GgBF(w)[ﬁw—hws]:—mi lim f 7¢Ré¢G§BF (0)[io—hog]=— limIm|—+O(R" 1)}
—*® R—® R— o
(C19
|
This is the relation we wanted to prove.
Winnlo={ ¢“(r) [£"(r)VEM(r)
APPENDIX D: PARTICLE CURRENTS pa(ry)
Since thesv(r) are obtained in the Feynman basis, it is
also convenient to represent the particle currents by the same +HMNVEM] ). (D4)
basis states. Operating on E&®17) from the left with the
Feynman states we get A useful property of Eq(D2) is obtained by operating on
_ _ Eq. (D2) with D_,'. With some manipulation we can show
j(0)=(O(rplj(ry) for the collective modesi.e., for the solutions of the nonlin-
ear eigenvalue equatid2.22) that
1
(r)Npa(r)Vy— 5~1(r1)> 2m ~
~2m < Vpa(ry) ve=r7—2 Dy i(w), (D5)
t
1 ~ - .
— E% (V) Winn(r1)) 8Xmn (D1)  Where we have defined
which can be rewritten as D’ — < O(r) /—(r v ¢(s)(r)>
P1 1 1 ’
Vpa(ry)
~ i 1 WL VS v
=t _ _ - mnYmn“¥s -1 _
Iw) 2m§ {Dtsvs 2% ﬁ(wm-i-wn—w)}’ (©2) Z Dt Dip=tiwsbsp,
where
2 D Wonn=[Viatlo- (D6)
< V()| Vpi(r)V,—— ¢(5>(r)>, Within our numerical calculations, we found that the identity
Vp1(ry) (D6) provides a useful test of the numerical accuracy of our

calculation. Specifically, we have calculated HQ5) in our
truncated basis in order to determine how many intermediate
t gt v states we needed to keep such that we obey this identity is
=[W + DipXimnps D3 e e
mn=[Wmnlo Ep: tp7imnp (©3) satisfied within an accuracy of about 1%.
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