
Multiphonon excitations in boson quantum films

B. E. Clements*

Institute Laue Langevin, 38042 Grenoble Cedex, France
and Department of Physics, Texas A&M University, College Station, Texas 77843

E. Krotscheck
Institut für Theoretische Physik, Johannes Kepler Universita¨t, A-4040 Linz, Austria
and Department of Physics, Texas A&M University, College Station, Texas 77843

C. J. Tymczak†

Department of Physics, Texas A&M University, College Station, Texas 77843
~Received 5 September 1995; revised manuscript received 22 November 1995!

Dynamical excitations in thin liquid films of4He adsorbed to a substrate are investigated by using a
microscopic theory of excitations that includes multiple-phonon scattering. We study the dispersion relation,
excitation mechanisms, transition densities, and particle currents as a function of surface coverage. A primary
new result is that we have included three-phonon scattering processes in the calculation of the dynamic
structure function and the one-body current densities. With the exception that our ground state is determined by
our variational theory, rather than taken from experiment, our work on the dynamic structure function is the
generalization of that of Jackson@Phys. Rev. A4, 2386~1971!# to inhomogeneous systems~films!. Using sum
rules for the dynamic structure function as a guide, we suggest a simple scaling argument for improving the
agreement between our dynamic structure function and the experimental one. The addition of three-phonon
contributions bring about the following changes. First, the energy of most modes is lowered by a non-
negligible amount for finite momentum excitations. Second, the film’s surface mode is the exception; it is only
slightly affected. Third, for monolayer films there is large scattering at high energies at intermediate values of
momenta. This scattering can be traced back to an anomalously large contribution to the two-particle density
of states. Fourth, all modes with energy above a critical energy decay, and the associated peaks of the dynamic
structure function are broadened. Fifth, the maxonlike character is enhanced in the bulklike modes.

I. INTRODUCTION

The dynamic structure function,S(k,v), provides useful
information about the strength, lifetime, and dispersion of
the dynamical excitations of a quantum fluid. Inelastic neu-
tron scattering experiments performed at the Institute Laue-
Langevin’s ~ILL ! neutron scattering facility, on atomically
thin liquid 4He films, have measured a dynamic structure
function that is rich in structure and complexity. To gain a
full understanding of the experimentalS(k,v) for this sys-
tem requires precise theoretical guidance. This is the moti-
vation for the present work.

In contrast to the bulk system, the interpretation of the
experimentalS(k,v) in terms of fundamental excitations is
hampered by both experimental complications and the rich-
ness of the types of excitations. Expounding on the first
point, the intensity of experimental scattering peaks scales
approximately with the amount of4He present; in thin films
a typical scattering peak inS(k,v) may be 3 or 4 orders of
magnitude less than scattering peaks measured in the bulk
system. Even with the enormous abilities of the ILL’s neu-
tron source and detectors, the thin film’s scattering peaks,
corresponding to excitations of physical interest, are never
considerably larger than peaks that can be attributed to sta-
tistical fluctuations~noise!. Furthermore, aside from well-
defined low energy Bragg peaks coming from scattering off
of the underlying solid substrate, scattering intensity arising

from multiple scattering off the substrate-liquid system oc-
curs. In very thick films, this does not introduce any real
complication; multiple scattering between the liquid roton
excitation and the Bragg peak produces a dispersionless
‘‘flat’’ mode with energy of roughly the roton gap energy
and an intensity which is orders of magnitude less than the
bulk modes. In thin films it is not cleara priori that the
multiple scattering modes should be as easily discernable
from the liquid modes. In part, this complication arises, as
we discuss momentarily, because the single phonon-maxon-
roton in the bulk limit is replaced by a set of modes in thin
liquid films. Consequently it is possible to have multiple
scattering occurring from a set of modes in the thin film
system.

Pertaining to the second point, it is known from previous
studies that, already at the most basic level of the Feynman
theory, thesingle phonon-maxon-roton dispersion curve in
the bulk is replaced by aset of modes in the films. These
modes propagate at frequencies in close proximity to one
another~indeed mode crossings are not uncommon! and can
be categorized as being surface modes, layer phonons, and
~for thicker films! bulklike modes. Sorting out these various
modes in the experiment~if they exist! is not a trivial task —
again the need for a quantitative first principles theory be-
comes apparent.

This paper follows a series of others1,2 ~hereafter referred
to as papers I and II!, which were devoted to the microscopic
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study of the structure and the dynamics of monolayer and
multilayer helium films. An accompanying paper3 will dis-
cuss the neutron scattering experiments, the data analysis,
and the interpretation of the data. The system under consid-
eration is comprised of a liquid helium film adsorbed to a
solid 4He bilayer which itself is physisorbed to a graphite
substrate. The ground-state structure of this system and our
theoretical tools, specifically the optimized hypernetted-
chain ~HNC-EL! theory, have been discussed in detail in
paper I~see also Ref. 4!. The films are highly layered in the
sense that their density profiles show a number of distinct
oscillations persisting considerable distance from the sub-
strate. We represent the inert substrate and the two layers of
solid helium by an external substrate potentialUsub(z),
which is taken to depend only on the coordinatez. As a
consequence, the liquid is translationally invariant in thex-
y plane and exhibits a layered density profile in thez direc-
tion. A peculiarity of the system is that stable, translationally
invariant configurationscannot be obtained for all surface
coverages; we refer the reader to paper I for a discussion of
this.

For further reference, we show in Fig. 1 a set of density
profiles for helium films on the above-mentioned substrates.
These profiles are characterized by the surface coverage

n5E dzr1~z!. ~1.1!

The void regions betweenn50.068 Å22 andn50.1 Å22 as
well as betweenn50.137 Å22 and n50.165 Å22 are the
areas where no translationally invariant configurations of the
system exist. These areas depend to a large extent on the
range of the substrate potential; long-range potentials typi-
cally tend to show fewer regimes of instability, cf. Ref. 4.
The calculations of the present paper concentrate on a few
typical examples: a monolayer film withn50.065 Å22, and
a triple and quadruple layer film withn50.165 Å22 and
n50.240Å22, respectively. These examples are highlighted
in Fig. 1.

In paper II, we have examined the nature of the film’s
low-lying excited states. The theory mostly used there pro-
vided an intuitive and qualitatively reasonable picture of the
low-lying excitations of such systems, but it had a number of
quantitative deficiencies. In an attempt to provide more reli-
able estimates for the dispersion curves of higher-lying exci-
tations, and the intensities and linewidths of the scattering
peaks inS(k,v), the present work has several improvements
over these earlier calculations; in particular we include mul-
tiphonon contributions in the current densities and the
S(k,v). Our theory for determining multiphonon contribu-
tions to theS(k,v) will be considered in detail in the next
section; here we make a few introductory comments. At the
heart of the approach is the fundamental theory first pro-
posed by Saarelaet al. for bulk quantum fluids,5–7 and then
developed for the study of excitations in quantum film
structures.2

If a small time-dependent perturbation momentarily
drives the film out of its ground state, a logical extension of
the usual Jastrow-Feenberg variational wave function to ex-
cited states is

uC~ t !&5
e2 iE0t/\e~1/2!dU~ t !uC0&
@^C0uedU~ t !uC0&#1/2

[e2 iE0t/\uC0~ t !&,

~1.2!

whereuC0& is the ground-state wave function,E0 is its en-
ergy, and

dU5(
i

du1~r i ;t !1(
i, j

du2~r i ,r j ;t !1•••, ~1.3!

is the complexexcitation operator.
The time-dependent correlations,dun(r1 , . . . ,rn ;t), are

determined by an action principle:8,9

dS 5dE dtK C~ t !UH2 i\
]

]tUC~ t !L 50. ~1.4!

where the variations are taken treating the
dun(r1 , . . . ,rn ;t) as independent functions.2,5–7 In Eq.
~1.4!, H is the Hamiltonian for the perturbed system

H5(
i51

N H 2
\2

2m
¹ i
21Usub~r i !1Uext~r i ;t !J

1 (
1< i, j<N

v~ ur i2r j u!5H01dH~ t !, ~1.5!

whereUsub(r ) is an external static ‘‘substrate’’ potential, and
v(ur i2r j u) is the interaction between individual particles,
which we take to be the Aziz potential.10 The time-dependent
part

dH~ t !5(
i
Uext~r i ;t ! ~1.6!

describes an external scalar perturbation which we assume is
sufficiently small to permit a linearization of the equations of
motion in terms of thedun(r1 , . . . ,rn ;t). By keeping terms
with leading order in the dynamical correlations, the result-
ing Euler equations can be cast in the form of coupledequa-

FIG. 1. A family of density profiles of4He films on a graphite-
solid helium substrate are shown. The coverages aren50.033,
0.035, 0.040, . . . , 0.065, 0.068Å22 for monolayers,n50.100,
0.105, . . . , 0.135, 0.137 Å22 for double layers, andn50.165,
0.170, . . . , 0.300, 0.315,. . . , 0.435, 0.450Å22 for thicker films.
The coverages considered in this papern50.065, 0.165, and
n50.240Å22 are highlighted as heavy solid lines.
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tions of motion~EOM!. The conjugate variable to the time is
the excitation energy,\v. In general it is complex; the real
part is the excitation’s dispersion and the imaginary part
gives its inverse lifetime.

The truncation of the excitation operator~1.3! defines the
level of approximation in which we treat the excitations. The
simplest approximation, which ignores all fluctuating corre-
lation functions exceptdu1(r ;t) is referred to, hereafter, as
the Feynman approximation.In this case the resultingv is
purely real. This approximation leads, in the bulk limit, to
the well-known Feynman dispersion relation
\v(k)5\2k2/2mS(k). It is a reasonable approximation as
long as the wavelength of the excitation is large compared to
the average particle spacing; in particular, it is exact in the
long-wavelength limit. Subsequent work of Feynman and
Cohen11 and Feenberg and co-workers12–14 showed that
while the theory is qualitatively correct, higher order scatter-
ing processes~involving multiple Fourier components! are
essential for a full understanding of the excitation spectrum.
In the short-wavelength regime~above 1.0 Å21) the Feyn-
man approximation significantly overestimates the excitation
energy, and keepingdu2(r i ,r j ;t) leads to a significant low-
ering of the excitation energy.5–7

In the film problem a full evaluation of the EOM for
fluctuating pair correlations is numerically very time con-
suming and approximations are necessary. The approxima-
tion that we will use is tantamount to keeping ‘‘three-phonon
scattering processes.’’~Parenthetically, this nomenclature is
conventional but should not to be taken literally since the
coupling matrix element may be between layer phonons and
surface modes, for example.! In bulk 4He, the Feynman ap-
proximation and theories that include three-phonon contribu-
tions differ in two significant ways. First, in the latter theory
the magnitude of the excitation energy is reduced from the
Feynman value, especially for wavelengths corresponding to
the bulk maxon and roton. This is desirable since the Feyn-
man approximation overestimates the roton minimum in the
bulk by a factor of 2. One should not expecta priori that the
different modes in the Bose film will be reduced by the same
amount; the physical character of the various modes differs
considerably and this will play an important role in determin-
ing the amount that a particular mode is renormalized by
three-phonon processes. Second, in the latter theory, above a
given critical energy,\vc the modes are complex, i.e., they
will have a linewidth which reflects the inverse lifetime of
the mode.

Our paper is organized as follows: In the next section, we
will outline a general theory of excited states which is based
on the concept of fluctuating correlation functions, alluded to
above. We will formulate the equations of motion for time-
dependent one-body and two-body correlations. Input to the
theory are one-body and two-body densities obtained from
the ground-state calculations. In the limit that only single-
particle functions are allowed to be time dependent, the
theory reduces to the generalized Feynman theory of collec-
tive excitations. This section will essentially display only the
first and the last step of the analytical manipulations. In an
attempt to improve the readability of the paper we have
saved the majority of the technical points for a set of appen-
dices. These present the details of the derivation of the equa-
tions of motion~Appendix A!, the approximations that we

use~Appendix B!, a proof of sum rules for the generalized
theory~Appendix C!, and the calculation of particle currents
~Appendix D!.

Section III is devoted to the applications of our theory.
We first discuss the essence of our working formulas and
possibilities to introduce phenomenological input to the
theory. We then apply the theory to the bulk two- and three-
dimensional liquid and calculate both the phonon-roton spec-
trum and the static response function. Having convinced our-
selves that the theory provides quite satisfactory agreement
with knowndata, we then proceed to apply our theory to a
study of the excitations of a representative sample of liquid
monolayer and multilayer films. In these more complicated
geometries, we will find a multitude of different excitations
corresponding to surface phonons~‘‘ripplons’’ and/or ‘‘third
sound’’! and volume excitations~‘‘bulk phonons’’! which
may be confined to individual liquids layers~‘‘layer
phonons’’!. To achieve an appreciation of full scope of pos-
sible mechanisms, we study the particle currents. Finally,
Sec. IV contains a brief summary of our results.

II. THEORY OF MULTIPHONON EXCITATIONS

This section contains the basic ideas of the method of
fluctuating multiparticle correlations and the working formu-
las of our theory. Details on the somewhat lengthy algebraic
manipulations are presented in Appendices A and B. We
start with the action principle~1.4!, and assume an excitation
operator that includes time-dependent one-body and two-
body components,5 i.e., we assume

dU~ t !5(
i

du1~r i ;t !1(
i, j

du2~r i ,r j ;t !. ~2.1!

Taking into account the explicit time dependence of the
wave function spelled out in Eq.~1.2!, the action principle
~1.4! assumes the form

S 5E dtL~ t !5E dtK C0~ t !UH2E02 i\
]

]tUC0~ t !L .
~2.2!

If the time-dependent part of the correlations is small, we can
expand the Lagrangian to second order indU(t)

L~ t !5
1

8
^C0u@dU* ,@T,dU##uC0&

2
i\

8 F K C0UdU̇@dU*2^C0udU* uC0&# UC0L
2c.c.G1K C0~ t !U(

i
Uext~r i ;t !UC0~ t !L . ~2.3!

The original Feynman theory of collective excitations15 is
obtained by restricting the excitation operator~2.1! to the
one-body componentdu1(r i ;t). Since the ‘‘Feynman-
phonon’’ states also form a convenient basis for the formu-
lation of the generalized theory, we shall review this ap-
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proach briefly. Omitting du2(r i ,r j ) in dU(t), the
Lagrangian~2.3! can be expressed in terms of one-body and
two-body densities,

L1~ t !5
\2

8mE d3rr1~r !u¹du1~r ;t !u2

2
i\

8 E d3r ṙ1~r ;t !du1* ~r ;t !

1E d3rU ext~r ;t !Rer1~r ;t !, ~2.4!

where, to first order in the time-dependent function,

r1~r ;t !5r1~r !1dr1~r ;t !,

dr1~r ;t !5r1~r !du1~r 8;t !1E d3r 8@r2~r ,r 8!

2r1~r !r1~r 8!#du1~r 8;t !. ~2.5!

Note that in Eq.~2.5! dr1(r ;t) is complex; the physical den-
sity fluctuation is the real part of this function. In these equa-
tions, then-body densities are defined by

rn~r1 ,•••,rn!5
N!

~N2n!!

*d3r n11•••d
3r NC0

2~r1 , . . . ,rN!

*d3r 1 . . .d
3r NC0

2~r1 , . . . ,rN!
,

~2.6!

and the corresponding distribution functions by

gn~r1 , . . . ,rn!5
rn~r1 , . . . ,rn!

r1~r1!•••r1~rn!
. ~2.7!

The manipulations needed to derive the fluctuating part of
the density in terms of the time-dependent external field are
a subset of those carried out in Appendix A; they may also
be found in Ref. 16. It is convenient to work in the space
spanned by the eigenfunctions of a generalized Feynman ei-
genvalue problem. Assuming harmonic time dependence,
du1(r ;t)5du1(r )e

ivt, and defining

c~r !5Ar1~r !du1~r !, ~2.8!

the solution of the action principle~1.4! may be represented
by the solutionsc (n)(r ) of the generalized eigenvalue prob-
lem

H1c
~n!~r !5\vnE d3r 8S~r ,r 8!c~n!~r 8! ~2.9!

with the coordinate space representation of the static struc-
ture function

S~r ,r 8!5d~r2r 8!1
r2~r ,r 8!2r1~r !r1~r 8!

Ar1~r !r1~r 8!
~2.10!

and the kinetic energy operator

H152
\2

2m

1

Ar1~r !
¹r1~r !¹

1

Ar1~r !
. ~2.11!

The bulk limit of the eigenvalue problem~2.9! is the Feyn-
man dispersion relationv(k)5\k2/2mS(k). A convenient
normalization of the eigenstates of the generalized eigen-
value problem~2.9! is

~c~m!uH1uc~n!!5\vmdmn . ~2.12!

These eigenstates are related to the Feynman excitation func-
tions du1(r ) through Eq.~2.8!. The adjoint states

f~m!~r ![
1

\vn
H1c

~n!~r ! ~2.13!

are related to the physical density fluctuations~cf. Refs. 16
and 2!

dr1~r !5Ar1~r !f
~n!~r !. ~2.14!

We note in passing that the eigenstatesf (n)(r ) andc (n)(r )
are also the essential ingredients of the solution of the Euler
equation for the pair correlations and provide a convenient
basis for the representation of optimized triplet correlations.1

Within the Feynman approximation, which corresponds
here to the random phase approximation~RPA!, we construct
from these states the density-density response function:

xRPA~r ,r 8,v!5Ar1~r !(
st

f~s!~r !@Gst
RPA~v!1Gst

RPA~2v!#f~ t !~r 8!Ar1~r 8!, ~2.15!

where

Gst
RPA~v!5

dst
\@v2vs1 i e#

~2.16!

is the Greens’ function for a free Feynman phonon. The static form factor is calculated from the response function~2.15! by
frequency integration:

S~r ,r 8!52
1

Ar1~r !r1~r 8!
E
0

`d~\v!

p
ImxRPA~r ,r 8;v!5(

s
f~s!~r !f~s!~r 8!. ~2.17!

We note that this ‘‘RPA’’ static structure function obtained here, by frequency integration of the response function, isidentical
to the one obtained in the ground-state calculation. In the latter calculation, excitations are not involved in any explicit way.
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In Appendices A and B, we derive an improved expression for the dynamic response function by including three-phonon
scattering processes. We shall call the resulting response function the CBF response function, after the first derivation14 of this
form within the theory of correlated basis functions~CBF’s!. In terms of the Feynman states introduced above, this response
function also has the form~2.15!, i.e.,

xCBF~r ,r 8,v!5Ar1~r !(
st

f~s!~r !@Gst
CBF~v!1Gst

CBF~2v!#f~ t !~r 8!Ar1~r 8! ~2.18!

but where now

Gst
CBF~v!5@\@v2vs1 i e#dst1Sst~v!#21 ~2.19!

is the CBF Greens’s function, with the self-energy correction

Sst~v!5
1

2(mn

Vmn
~s!Vmn

~ t !

\~vm1vn2v1 i e!
, ~2.20!

where theVmn
(s) are three-phonon coupling matrix elements

and are given in Appendix B. Thenormal modesof the sys-
tem are determined by the poles of the Green’s function, or
the zeros of its inverse

Est
CBF~v!5\@v2vs1 i e#dst1Sst~v!, ~2.21!

in other words by the nonlinear eigenvalue problem

\vsws2
1

2(mn

Vmn
s Vmn

t

\~vm1vn2v!
w t5\vws . ~2.22!

The time-dependent part of the density can then be expressed
as a linear superposition of the Feynman density fluctuations,

dr1~r !5Ar1~r !(
n

wnfn~r !. ~2.23!

Equation~2.22! has evidently the structure of a Brillouin-
Wigner~BW! perturbation formula, we will therefore refer to
the theory as correlated-basis-function Brillouin-Wigner
~CBF-BW! expression.

We now argue that a major strength of the present theory
is that it does not compromise the precision of quantities that
were calculated with great precision in the ground-state
theory. The important quantity to consider is the static struc-
ture function. In paper I, it is shown that the static structure
function, and the related pair distribution function, deter-
mined from the ground-state theory, agree to great accuracy
with the experimentally determined bulk quantities. The
Feynman theory, by definition, does not change the static
structure function. The obvious question that arises is, how
much, if at all, will the ground-state static structure function
differ from one produced by the frequency integration of the
CBF-BW dynamic response function:

SCBF~r ,r 8!52
1

Ar1~r !r1~r 8!
E
0

`d~\v!

p
ImxCBF~r ,r 8;v!.

~2.24!

For thehomogeneoussystem it has been proven by Jackson17

that the static structure function obtained from the mul-
tiphonon theory isidentical to the one obtained in the Feyn-

man theory and, hence, in the ground-state calculation. In
other words, the introduction of multiphonon processes
merely causes a shift and redistribution of spectral weights in
the dynamic structure function, but does not change the fre-
quency integrals. It is plausible that the same statement
should be true in the inhomogeneous geometry, however the
proof of the theorem is nontrivial and will be presented in
Appendix C. It would be interesting to carry out a similar
analysis on the density-functional approach proposed in Ref.
18. By introducing a Gaussian current-current coupling term
in the density functional, containing several adjustable pa-
rameters, these authors obtain a very good fit to the bulk
static response function and the phonon-roton spectrum. The
validity of the parametrization can, of course, be assessed
only by comparison to results that are sufficiently well
known, but were not used for the choice of the energy func-
tional. The static structure function, the spectrum of higher-
lying ‘‘multiphonon’’ excitations, and the natural broadening
of these excitations due to phonon decay would be a prime
candidate for such consistency tests.

III. APPLICATIONS OF THE THEORY

A. Practical considerations

Before we turn to the numerical application of our theory
we would like to discuss why we feel that our approach is
appropriate, and why it describes the correct physics; what
the approximations are and how these approximations could
be improved; and how potentially phenomenological input
may be used to circumvent the most laborious and unreward-
ing aspects of the microscopic theory.

Formally, the method oftime-dependentmultiparticle cor-
relations is the logical extension of the variational method
for the ground state. The question arises, of course,which
portion of the correlations must be allowed to be time depen-
dent in order to correctly describe the physics of a specific
excitation. In that respect, it is perfectly plausible that long-
wavelength excitations are described well by allowing for a
fluctuating one-body component only. It is equally plausible
and well established that such an approximation becomes
invalid when the wavelength of the excitation is comparable
to the average particle separation. Letting correlations fluc-
tuate that dominate the behavior of the system at these wave-
lengths appears to be natural from the variational point of
view.

A simple consideration provides a rough estimate of the
expected accuracy of theory: Whenall three correlation
functions are allowed to bear the full symmetry breaking, the
variational theory provides very satisfactory agreement with
Monte Carlo simulations even for systems with very strong,
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macroscopic density modulations.19 Indeed, we find almost
perfect agreement with Monte Carlo data for the strongest
conceivable density modulation, namely the two-
dimensional limit.1 It is therefore expected that one should
have equally good agreement for infinitesimally weak den-
sity fluctuations, in other words for thestatic response func-
tion. The neglect of fluctuating triplet correlations could, at
worst, introduce an uncertainty of the order of the contribu-
tion of triplet correlations to the ground state, which is about
10%.20 While this argument applies rigorously for thestatic
response function only, we shall see below that both the
static response function and the phonon roton dispersion re-
lation are improved, with the degree of sophistication of the
theory, at the same rate. We estimate therefore that the
theory is capable — subject to the removal of some of the
approximation discussed in Appendix B — of reproducing
both the static response function and the phonon/roton dis-
persion relation within an accuracy no worse than 10%.

Our estimate is consistent with applications of the theory
for the bulk liquid. By doing a rather complete evaluation of
the EOM at the level of two-body time-dependent fluctua-
tions, Saarelaet al.7 found an energy value of 9.7 K for the
roton minium. In comparison, the experimental value21 for
the roton minimum in the bulk is 8.6 K. Furthermore, Saare-
la’s calculated dispersion relation is in excellent agreement
with experiment at momentum values well above
k52 Å22. The same is true for the static response
function.6

In the nonuniform system, a calculation at the level of
Ref. 7 is much more tedious and, before we embark on the
numerically laborious route of improving the purely micro-
scopic description, we shall explore simpler versions of the
theory and, in a more phenomenological manner, the pos-
sible sources of mismatch between experiment and theory.
As outlined in the Appendices, the numerical implementa-
tion of our theory corresponds to the generalization of the
correlated basis functions theory used by Jackson,14

Campbell,12,22and collaborators. The theory exhausts, at this
level, somewhat over 50% of the difference between the
Feynman approximation and the experiment for both the
phonon-roton spectrum~Fig. 2! and the static response func-
tion ~Fig. 3!.

It appears that one can conclude two things from the com-
parison between Saarela’s and Campbell’s results: First, this
approach correctly describes the phonon-roton spectrum ob-
served experimentally. Second, it is apparently sufficient to
include only two-body time dependent fluctuations —there is
no need to include three-body or higher time dependent fluc-
tuations. The dominant part of any discrepancy between
theory and experiment lies in the actual numerical imple-
mentation of the theory at the level of fluctuating pair corre-
lations.

Returning to the questions on which approximations are
implied, and what the route of potential microscopic or phe-
nomenological improvement could be, we assert that, from
the structure~2.19! and ~2.20! of the Green’s function and
the self-energy matrixSst three approximations are evident.

~i! The approximation used here ignores four-phonon cou-
pling effects. This is a consequence of our treatment of the
equations of motion, specifically the ‘‘uniform limit’’ ap-
proximation.

~ii ! The working formulas for the three-body coupling
matrix elementsVmn

(s) , derived in Appendix B, make assump-
tions on the optimal triplet correlation functions,

~iii ! Finally, the energy denominator of the self-energy
equation~2.20! contains the Feynman phonon energies, but
no further self-energy corrections. This is also a consequence
of the ‘‘uniform limit’’ approximation, more specifically the
treatment of the integral operator on the left-hand side of Eq.
~A18! through Eq.~B9!.

B. Bulk limit in three and two dimensions

The goal of the present work is not only to present a
generically microscopic theory of excitations in adsorbed
films, but also to help interpret the rich and complicated
experimental data. We feel, therefore, free to use some infor-

FIG. 2. The phonon-dispersion relation is shown, for bulkthree-
dimensional 4He, at experimental saturation densityr50.021 85
Å23 in ~a! Feynman approximation~long-dashed line! and in
CBF-BW approximation~short-dashed line!, ~c! CBF-BW approxi-
mation with scaled spectrum~solid line!, and~d! from experiments
~Ref. 21! ~diamonds!.

FIG. 3. The static response function2x(k,0) is shown, for bulk
three-dimensional 4He, at experimental saturation density
r50.021 85 Å23 in ~a! Feynman approximation~long-dashed line!
and in CBF-BW approximation~short-dashed line!, ~c! CBF-BW
approximation with scaled spectrum~solid line!, ~d! from experi-
ments~Ref. 21! ~diamonds!, and ~e! from Monte Carlo data~Ref.
24! ~boxes!.
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mation on ‘‘how an improved theory would look’’ in order
to modestly introduce phenomenological information.

The first point that needs clarification is to what degree
our approximations effect the validity of our theoretical re-
sults, and how one can compensate for the approximations
dictated by computational considerations. This is best tested
in the bulk liquid, where comparisons with more complete
evaluations of the EOM, experiments, and Monte Carlo data
are available. From Eq.~2.22! it is obvious that two simple
adjustments of the relevant quantities can be made: these are
to adjust the strength of the three-body vertex, and~or! the
spectrum in the energy denominator.

From our calculations on triplet correlations in the ground
state in He4 we have confidence in our calculation of the
three-phonon three-body vertex. In Ref. 20 we have found
that the next correction to the triplet function provides only
perhaps a 10% correction to the vertexXi jk @cf. Eqs.~B29!
and ~B31!# which itself is a small correction to the leading
term @Vmn

t #0 @Eq. ~B30!# of the three-phonon vertex. Note,
however, that the three-body vertexXi jk in the form used
here cannot be neglected since it is necessary for obtaining
the correct density dependence of the roton minimum.12

On the other hand, it is also clear that the energy denomi-
nator in Eq.~2.22! should not contain the Feynman states,
but rather the proper self-energy. To estimate the importance
of this effect, one can insert theexperimentalspectrum into
the energy denominators and find, indeed, a significant im-
provement of the spectrum. Moreover, the multiphonon con-
tinuum is correctly moved downwards in energy.

However, for the problem at hand of calculating the dy-
namic structure function of adsorbed films, the procedure of
putting anexperimentalspectrum in the energy denominators
is impractical. Instead, we have scaled the Feynman energies
in the denominator to roughly agree with the experimental
spectrum. For this purpose, a scaling factor of 0.6–0.65 leads
to satisfactory agreement in the bulk calculation; we have
used a scaling factor of 0.65 throughout all calculations. In
the work below, we will refer to this as the ‘‘scaled’’
CBF-BW approximation. The results from these calculations
are also shown in Figs. 2 and 3. Note that the proof of the
sumrules presented in Appendix C is independent of the spe-
cific details of both the three-phonon coupling matrix ele-
ments and the spectrum in the energy denominator, hence
our scaling procedure does not compromise the precision of
the static structure function obtained in the ground state
theory.

The agreement of the calculated spectrum with the experi-
mental phonon-roton spectrum is promising; it could be fur-
ther improved by a momentum-dependent scaling or by an
independent scaling of both the interaction and the spectrum.
We have refrained from such a procedure since the inclusion
of more uncontrolled parameters would jeopardize the pre-
dictive power of the theory.

The validity of our procedure can, however, only be
judged by looking at quantities that are well enough known
to make definitive statements, but werenot used as ‘‘phe-
nomenological input’’ for determining the scaling of the en-
ergy denominator. A prime candidate for such data is the
density dependenceof the roton parameters. A compilation
of relevant data has recently been given by Montfrooij and
de Schepper~Ref. 23!. Figures 4 and 5 compare these ex-

perimental data for the energy and the momentum of the
roton minimum with our theoretical results. We see that the
theoretical location follows closely the experimental data;
our minimum being shifted consistently by 0.05 Å21 to-
wards higher momenta, and the energy is accurate to within
0.5 K. The agreement is certainly satisfactory given our ad-
mittedly crude way to account for self-energy corrections.

Our results for thestatic response function at saturation
density ~Fig. 3! are particularly satisfactory. Note thatno
additional adjustments needed to be made. Figure 3 shows a
comparison with both experimental data21 and diffusion
Monte Carlo simulations.24 Apparently, our results of the
scaled theory are, for momentum valuesbelowthe maximum
of the static response function, almost identical to Monte
Carlo data; they deviate for wave numbersabovethat of the
maximum from experiments by about the same amount as
the Monte Carlo data, albeit in the opposite direction. It ap-
pears therefore that a density-density response function of
the type~2.18! with the self-energy~2.20! can quite accu-
rately describeboth static and dynamicproperties of a quan-
tum liquid in the relevant density regime. Unfortunately,
there are, to our knowledge, no experimental data for the
static response function at higher densities; we have there-
fore resorted to comparison with Monte Carlo data by Mo-
roni et al.24 This comparison is shown in Fig. 6. At high

FIG. 4. The roton energyD is shown as a function of density.
The solid line shows our calculated scaled CBF-BW results and the
diamonds represent experimental data of Refs. 33–35.

FIG. 5. Same as Fig. 4 for the wave number of the roton mini-
mum.
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densities, the maximum of our static response function ap-
pears to be somewhat too high compared to the Monte Carlo
data. This is of no further consequence for the validity of our
results since we are here concerned mainly with thedynamic
response at densities at or below saturation densities. For the
sound propagation in the highly compressed atomic mono-
layers close to the substrate, data on the phonon-roton spec-
trum in two dimensions are more relevant.

Further nontrivial predictions of our theory and in particu-
lar the treatment of self-energy corrections are the phonon-
roton dispersion relation and the static structure function in
two dimensions. Results are shown, for three densities be-
low, at, and above saturation, in Figs. 7 and 8. It would be
extremely interesting to verify our estimate that the unrenor-
malized CBF theory underestimates the importance of mul-
tiphonon corrections by about the same amount as in three

dimensions, by either more complete solutions of the equa-
tions of motion7 or by Monte Carlo calculations for the
phonon-roton spectrum25 or the static response function.24

For our purposes, the examination of the two-dimensional
limit is by-in-large a consistency test: We have seen in II that
low-coverage atomic monolayers behave essentially like
two-dimensional systems up to a crossover point at which
the population of a second layer becomes energetically fa-
vorable over the compression of the first layer. A precursor
to this transition is that a visible ripplon mode appears. On
the substrate under consideration here, this happens at a
crossover coverage of approximatelyn'0.055 Å22, the ac-
tual three-dimensional nature of the film, which is our main
concern, becomes visible only above such coverages.

An extensive discussion of the dynamic structure function
for the bulk liquid can be found in Ref. 14. Our calculation,
has, apart from having more accurate input, not much to add
to Jackson’s analysis for the bulk liquid.

C. Monolayer films

1. Dynamic structure function

Let us now turn to our numerical results on excitations in
adsorbed4He films. We have numerically calculated the full
dynamic response function for several film thicknesses from
one (n50.065 Å22) to four layers (n50.240 Å22). To
keep the computational effort reasonable, one must limit, in
Eq. ~2.22!, the sum over the intermediate states. We have
chosen this cutoff, dependent on the momentum transfer,
several degrees above the highest energy inS(k,v) that we
have considered; tests were carried out to verify the conver-
gence. For the monolayer film this is not critical since most
of the spectral weight appears in the lowest Feynman exci-
tation. As the number of layers increase, however, the num-
ber of Feynman states needed in the summations over the
intermediate states in the self-energy~2.20! increases rap-
idly, and the computation becomes very time consuming.

Following the strategy of paper II, we use thetransition
densitiesandparticle currentsto determine the nature of the
modes that we observe in the dynamic structure function. We
surpass that work by now including the multiphonon scatter-
ing processes, as described above. By comparing quantitative

FIG. 6. The static response function2x(k,0) is compared, for
bulk three-dimensional4He, with Monte Carlo results of Moroni
et al. ~Ref. 24! for densities of r50.019 64 Å23 ~diamonds!,
r50.021 86 Å23 ~boxes!, and r50.026 22 Å23 ~triangles!, and
our calculations for r50.0195 Å23 ~long-dashed line!,
r50.0220 Å23 ~solid line!, and r50.0260 Å23 ~short-dashed
line!.

FIG. 7. The phonon-roton spectrum intwo-dimensional4He, ~a!
Feynman approximation~long-dashed line!, ~b! CBF-BW approxi-
mation ~short-dashed line!, and ~c! CBF-BW approximation with
scaled spectrum~solid lines!. Densities are n50.035 Å22,
n50.041 Å22, and n50.053 Å22, the upper curves with the
lower roton minimum corresponding to the higher density.

FIG. 8. Same as Fig. 7 for the static response function
2x(k,0). The functions with the higher peaks correspond to the
higher densities.
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differences in the Feynman and CBF-BW theories we can
assess the importance of the coupling of the various modes.
The appearance of scattering intensity in the CBF-BW
S(qi ,v) has either a Feynman counterpart~a Feynman
mode!, but perhaps renormalized in energy and strength, or
arises from a hybridization of Feynman states. In that case
there will be no counterpart in the Feynman theory. In going
from the Feynman to the CBF-BW theories, the amount of
renormalization that a mode will experience depends
strongly on the strength of the mode coupling@through the
three-phonon vertices in Eq.~2.22!# and the energetics of the
corresponding Feynman modes~the corresponding energy
denominator!. Such coupling of modes can be either self- or
mixed-mode coupling. Self-mode coupling refers to coupling
of modes with the same~Feynman! dispersion branch, for
example, ripplon-ripplon coupling. The term, self-mode,
cannot be taken too literally since, even in the absence of
mode crossings, the nature of an excitation can change dra-
matically at different momenta along the same dispersion
branch.2 Similarly, mixed mode refers to the coupling be-
tween two modes having different dispersion branches. As a
useful rule of thumb, the strength of the three-phonon cou-
pling will depend on the locality within the film, where the
modes are propagating~and, of course, energy and momen-
tum considerations!.

We first consider the monolayer films. Within the Feyn-
man approximation, we have calculated the dynamic struc-
ture function S(qi ,v) and the transition densities
dr(z;qi ,v). For a complete discussion of the Feynman re-
sults, we refer the reader to paper II; our only intent here is to
compare these with the corresponding quantities calculated
in our more accurate CBF-BW calculation.

Figure 9 shows our results at a coverage ofn50.065
Å22 in the Feynman approximation. This is close to the
maximum coverage for which, at zero temperature, the film
can still uniformly cover the substrate in the form of a mono-
layer. We have chosen this coverage since it displays already
a strong ripplonlike excitation. The dotted line in the figure is
the energy-momentum continuum boundary given by

\vcb52m1
\2qi

2

2m
, ~3.1!

it separates regions, in energy-momentum space, where the
modes are discrete from regions where the modes form a
continuum. Here,m is the chemical potential. The Feynman
modes are strictly real, therefore we have broadened the dis-
crete ones by 0.5 K, which is slightly less than the instru-
mental resolution of the neutron scattering experiments.3

Figure 10 shows our results for the same coverage in the
scaled CBF calculation. In both figures, one observes a clear
phonon-maxon-roton signature, typical of bulk systems. The
CBF calculation displays the expected effect of lowering the
roton minimum significantly. This mode is essentially a two-
dimensional phonon~called a layer phonon! and is longitu-
dinally polarized. We also see the appearance of the ripplon
~see discussion below!, in both approximations. Now the rip-
plon has substantial spectral weight extending to long wave-
lengths. The ripplon level crosses at a momenta of approxi-
mately 1.4 Å21.

Comparing the Feynman and CBF-BW results, we find
that the ripplon’s energy is largely unaffected by three-
phonon corrections. One can understand this result by con-
sidering the strength of the coupling between the Feynman
modes. For momentum below 0.5 Å21 only the Feynman
ripplon has substantial spectral weight. Moreover, the transi-
tion densities2 show that the ripplon and layer phonon have
most of their strength located at different regions in the film;
the ripplon propagates near the outer surface while the pho-
non is largely localized within the film.~This behavior is
apparent in the CBF-BW transition densities, discussed be-
low, as well.! Consequently, at these wavelengths, there is
very little coordinate space overlap of these modes. This
means that only ripplon-ripplon coupling will influence the
amount, relative to the Feynman ripplon, by which the
CBF-BW ripplon is renormalized.

The next relevant point follows from the approximately
linear nature of the monolayer ripplon’s dispersion. A dis-
cussion on scattering processes involving excitations having
linear dispersion can be found, for example, in the text by
Pines and Nozie`res.26 In our case, we have in mind the pro-
cess in which a ripplon of momentumk and energyv(k)
scatters, producing two other ripplon excitations of momenta
q and (k2q), and energiesv(q) and v(uk2qu). It then
scatters back into the state with momentumk and energy
v(k). For this process, the total energy between scattering
events will be

FIG. 9. The dynamic structure function in the Feynman approxi-
mation for n50.065 Å22 film. The solid line is the continuum
boundary\vcb52m1\2qi

2/2m. The level of grayscale indicates
the strength ofS(qi ,v).

FIG. 10. The dynamic structure function in the scaled CBF ap-
proximation forn50.065 Å22 film. The solid line is\vc described
in the text.
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v5v~ uk2qu!1v~ uqu!. ~3.2!

The important point, then, is that for linear dispersion, the
only energy and momentum conserving processes are for-
ward or backward scattering. This has the effect of severely
limiting the phase space over which three-phonon scattering
can occur. Thus one can understand the comparatively small
ripplon renormalization, observed in Fig. 10, from these
simple arguments.

Another important observation is that at momentum
above 1.1 Å21 the intensity of the ripplon is highly reduced.
This broadening is due mainly to the decay of the ripplon
into a long-wavelength ripplon and a layer roton. This effect
will also be encountered at higher coverages.

Unlike the Feynman results, there now appears scattering
intensity at a momentumk.1.5 Å21 above 20 K. The en-
ergy of the peak is approximately the sum of the~Feynman!
energies of the layer maxon and the layer roton. Conse-
quently, the observed scattering intensity is easily traced to a
large contribution to the two-body density of states coming
from the hybridization of these two modes. This is basically
a bulk effect that has also been observed in the three-
dimensional liquids,14 we find here the two-dimensional ana-
log of this phenomenon. The effect is of no further concern
for our discussion of excitations that are specific to the film
geometry.

2. Particle currents and transition densities

The physical nature of individual excitations is best re-
vealed in thetransition densitiesand theparticle currents.
The reader is referred to Appendix D for a complete descrip-
tion of the theoretical current calculation. Again we mention
the Feynman approximation only for comparison. Basically,
we found that the CBF corrections@i.e., the second term in
Eq. ~B17!# do not, to any appreciable fashion, change the
general flow patterns except, of course, for the shift in energy
in particular in the roton region.

FIG. 11. The particle current
in the CBF theory for a monolayer
film with n50.065 Å22 as a
function of wave number. The
gray-shaded area depicts the back-
ground density, the solid line the
transition density corresponding
to the excitation, and the superim-
posed vector field is the particle
current flow.

FIG. 12. The dynamic structure function in the Feynman ap-
proximation for then50.165 Å2 film.
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Figures 11~a!–11~f! show our results for transition densi-
ties and particle currents at a monolayer coverage of
0.065Å22. The density profile~grey-shaded region! and tran-
sition densities~solid lines! have been included in the figure
as indicators of the location where the mode propagates. The
arrows indicate the direction of the current parallel to the
surface@as, for example, in Fig. 11~b!# and perpendicular to
the surface@as in Fig. 11~a!#.

Figure 11~a! shows the transition density and the particle
current for the lowest excited state at the rather long wave-
length ofk50.5 Å21. Obviously, the excitation propagates
in the very low-density regime of the film, and the currents
show the circular flow pattern typical for a ripplon. The next
excitation@note that we use the term ‘‘excitation’’ in a some-
what loose sense, we refer to it as a peak in theS(k,v)# is,
on the other hand, localized mostly within the layer and
shows the longitudinal flow pattern of a phonon.

Figures 11~c! and 11~d! show basically the same situation
at a somewhat larger momentum. Note that, while the lowest
excitation is already rather diffuse, the ripplon character is
clearly revealed in the current patterns shown in Fig. 11~c!.
At higher wave numbers, the ripplon loses most of its
strength and the most visible resonance is the phonon-roton
@Figs. 11~e! and 11~f!#. Note, however, that the ripplon still
can be traced up to higher momentum transfers above the
phonon-roton spectrum, however it is, as opposed to the
Feynman approximation, very diffuse. Therefore, we call
this a level crossing, as opposed to a level repulsion. In the

later case the lowest-energy mode would still be the surface
mode. We shall show, in the next sections, examples for the
ripplon appearing above the roton minimum further below.

D. Multilayer films

1. Dynamic structure function

Let us now turn to our numerical results of the Feynman
and CBF-BW theories for multilayer films. For the purpose
of discussion, we have chosen two representative cases: a
triple-layer film at 0.165 Å22 and a four-layer film at
0.240 Å22. Figures 12 and 13 show the triple-layer film’s
dynamic structure function in the Feynman and the scaled
CBF-BW approximation. Figure 14 shows, for comparison,
the dynamics structure function in the ‘‘unscaled’’ version of
the CBF-BF theory. The essential effect of the more realistic
energy denominator used in the ‘‘scaled’’ approximation is
that the continuum boundary and the modes at medium and
short wavelengths (qi.0.5 Å21) are moved to lower ener-
gies. This has the effect that the ripplon is, in the momentum
regime 0.75 Å21,quu,1.25 Å21, hardly visible. Other-
wise, the relative location and strengths of individual modes
is essentially unaltered. Figures 15 and 16 show our results
for the dynamic structure function at a coverage of
0.240 Å22. This coverage was chosen since the cleanest ex-
perimental data are available; the film consists of three com-
plete and a fourth half-filled layer, cf. Fig. 1.

At both coverages one can see, in the Feynman results, a
clear signature of two layer phonons, a ripplon, and another

FIG. 13. The dynamic structure function in the scaled CBF ap-
proximation for then50.165 Å2 film.

FIG. 14. The dynamic structure function in the unscaled CBF
approximation for then50.165 Å2 film.

FIG. 15. The dynamic structure function in the Feynman ap-
proximation for then50.240 Å22 film.

FIG. 16. The dynamic structure function in the scaled CBF ap-
proximation for then50.240 Å22 film.
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excitation of similar dispersion to the ripplon. In the
CBF-BW theory we find, however, that the intermediate en-
ergy mode is highly damped. This is a manifestation of the
fact that theories more sophisticated than the Feynman
theory~such as the CBF-BW theory! contain mode coupling
as an important ingredient. It is also consistent with experi-
mental data in that the area between the ripplon and the
phonon-roton spectrum is filled by a broad plateau. The ac-
companying paper, Ref. 3, will display the effect of filling
the plateau more clearly in a different representation of the
theoretical and experimental results forS(qi ,v).

Near the momentumqi'1.3 Å21 we find a second, less
intense, layer mode~better described as a resonance! gaining
significant spectral weight~see Fig. 16!. At that momentum,
which is between the maxon and roton, the intense layer
phonon~the third resonance! is distributed over the two outer
layers. This is the first case where modes having pronounced
spectral weight encompassing multiple layers are becoming
present in the film.~Support for these statements are given
below.! The low-intensity mode~second-excited state! has a
substantial amount of weight located at the film’s inner layer
at this momentum. Atqi'2.0 Å21, well above the level
crossing, a mode with spectral weight distributed over the
two outer layers is again obvious. Now, however, it is the
second excited state. The lowest-energy state is the layer
roton propagating in the first layer of the solid-liquid inter-
face. The ripplon is the third-excited state.

2. Particle currents and transition densities

Some of the statements made above about the physical
nature of individual resonances need to be substantiated by
looking atwherein the film the excitations are propagating,
and what the particle motion is. Figures 17 and 18 show our
results for the CBF currents, for selected wave numbers, at
coverage of 0.165 Å22 for the first two or three excitations.
Figures 19 and 20 give the corresponding results for the
four-layer film. In both cases, the lowest, long- to medium-

wavelength excitations are ripplons — the transition density
indicates that they propagate in the surface and the current
shows the characteristic circular pattern. Note that, when
considering theS(qi ,v), the ripplon is in fact quite diffuse
and weak for a wave number ofqi'1Å21, nevertheless it
can be clearly identified by its current patterns. The second
excitation propagates mostly in the innermost layer, but, with
increasing wavelength, has also a significant overlap with the
outer layers of the film, note@cf. Figs. 17~b! and 20# that the
transition density for wave numberqi50.5 Å21 is almost in
phase with the background density.

While the interpretation of long-wavelength results is
relatively straightforward, the situation is more complicated
in the vicinity of the roton minimum. Figures 18 and 20
show the particle currents for the three lowest pronounced
resonances in that area. One of the resonances still displays
some of the circular flow pattern of a ripplon, but there is
less motion perpendicular to the surface. This resonance is
the lowest mode atqi'1.5 Å21, it reappears after the level
crossing atqi'1.7 Å21 as the second resonance, whereas a
layer-phonon propagating in the layer closest to the substrate
is now the lowest mode. In both cases, thethird resonance
appears to be a mode that propagates with sizable probability
throughout the whole film. We conjecture therefore that this
mode will eventually develop into the bulk phonon-roton
spectrum in the limit of infinite film thickness.

E. Comparison with neutron scattering experiments

Inelastic neutron scattering experiments on low tempera-
ture helium films have been performed at the time-of-flight
spectrometer at the Insitut Laue-Langevin’s reactor, and the
resulting dynamic structure function from these experiments
has been analyzed in an accompanying paper.3 That work
dealt with a four-layer film of coverage of 0.240 Å22 which
provided the motivation for us to use the same coverage
here. In Ref. 3, the experimental aspects of the problem are
stressed so here we concentrate on the theoretical explana-

FIG. 17. The particle currents
for then50.165 Å22 film at long
and intermediate wavelengths. See
Fig. 11 for further explanations.
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tions. We proceed by first stating the experimental observa-
tion, and then use our theoretical results to explain it. In part,
this section serves as a summary of some of the important
findings of the previous sections.

First, the experimental ripplon has significant strength at
low momenta, but appears to lose much of it at intermediate
momenta. As already mentioned above, both the CBF-BW
and scaled CBF-BW theories provide a clear explanation for
this. At low momenta, only the ripplon has significant
strength; at this coverage there is a sizable energy gap sepa-
rating the higher energy modes; the theory finds these modes
to have minimal strength. The argument for why the ripplon
is largely undamped rests on the restricted phase space al-
lowed by energy and momentum conservation for ripplon-
ripplon scattering to take place. However, as the ripplon
reaches an energy comparable to the layer roton, it can decay
into a long-wavelength ripplon and a layer roton, for ex-
ample, and thus damping is apparent.

Second, the experiment yields a strong mode that can be
interpreted as the precursor to the bulk phonon-maxon roton.
At the level of the Feynman theory of paper II, this observa-
tion was disturbing because it meant that the experimental
results might be biased towards bulklike behavior. The cause

was thought to be the helium condensation at the boarders of
the graphite crystallites making up the scattering sample. The
problem arose when the Feynman theory~Fig. 15!, at that
coverage, produced a clear, distinct set of layer modes~at the
energy of the Feynman phonon-maxon roton! reflecting the
layered nature of athin film. The CBF-BW and, more so, the
scaled CBF-BW theories help to resolve this. When mode
coupling is included, we see immediately from Figs. 15 and
16 that the maxon-roton region of the excitation is enhanced.
As already described above, this is a natural consequence of
reducing the independence of the individual layer modes. In
the corresponding transition densities, modes of large spec-
tral weight distributed over considerable portions of the film
— the signature of bulk coherence — now exist at those
momenta and energies.

Third, the experiment finds a substantial plateau in the
scattering intensity between the ripplon and bulklike mode.
A theoretical explanation for this observation was already
proposed in II, which invoked the obvious argument that the
intermediate energy modes must account for the additional
scattering intensity. In our more refined CBF theories we
certainly see that this remains to be the proper explanation.
Furthermore, scattering arising from hybridization of modes

FIG. 18. The particle currents for then50.165 Å22 film in the vicinity of the roton mimimum and the level crossings. See Fig. 11 for
further explanations.
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FIG. 19. The particle currents for then50.240 Å22 film at long and intermediate wavelengths. See Fig. 11 for further explanations.

FIG. 20. The particle currents forn50.240 Å22 film in the vicinity of the roton minimum and the level crossings. See Fig. 11 for further
explanations.
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occurs at these intermediate~and higher! energies adds to the
background scattering intensity. Finally, multiphonon scat-
tering processes are known to increase rapidly with tempera-
ture, and had we been able to take this into account, we
might have recovered the full strength of the observed pla-
teau.

IV. DISCUSSION AND SUMMARY

Most of our findings, theoretical ramifications, and com-
parisons with experiments, have been discussed in the pre-
ceding sections, there is no point for repetition. It appears
that excitations that are, in essence, density fluctuations, spe-
cifically ‘‘phononlike’’ and ‘‘ripplonline’’ excitations, are
well understood. The transition from the Feynman descrip-
tion to the CBF theory has added two new important quali-
tative features to the theory: mode-mode coupling and natu-
ral broadening. In many aspects, however, the qualitative
picture derived from the Feynman theory has not changed.
These are the specific types of modes~layer phonons, bulk
phonons, and ripplons!, their relative energetics, and their
level crossings. Unfortunately, thenatural width of our
modes has turned out to be significantly smaller than the
experimental width. We have gone through a very careful
analysis of experimental data3 and have concluded that there
is indeed compelling experimental evidence that our overall
picture of the dynamics of liquid films is a valid one.

This does not necessarily mean that nothing else can be
learned from neutron scattering experiments on liquid films.
We have stressed above that we believe that we have a good
understanding of excitations that are essentially density fluc-
tuations. However, there may beother, newtypes of excita-
tions. These could, for example, be precritical phenomena to
the liquid-solid phase transition in the highly compressed

inner layers,27 or vortex-type excitations.28 In particular the
‘‘flat’’ modes found in low energy neutron scattering
data29,30 could be signatures of the latter. Neutron scattering
experiments with a significantly improved energy resolution
would be highly desirable since such experiments have the
potential of pointing towards new physics beyond phonons,
rotons, and ripplons.
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APPENDIX A: EQUATIONS OF MOTION

We start our considerations with the Lagrangian~2.3!

L~ t !5
1

8
^C0u@dU* ,@T,dU##uC0&

2
i\

8 F K C0UdU̇@dU*

2^C0udU* uC0&# UC0L 2c.c.G
1K C0~ t !U(

i
Uext~r i ;t !UC0~ t !L . ~A1!

For the derivation of the double-commutator term in the
above equation, one normally assumes thatuC0& is the exact
ground state. However, for the specific form~2.1! of the
excitation operator, it is sufficient to assume that the corre-
lations up tou4 have been optimized. Inserting the explicit
form of our time-dependent correlations allows us to rewrite
the double-commutator term in terms of one-, two-, and
three-body densities:

1

8
^C0u@dU* ,@T,dU##uC0&5

\2

8m H E d3rr1~r !u¹du1~r ;t !u21E d3r 1d
3r 2r2~r1 ,r2!@¹1du1~r 1;t !•¹1du2* ~r1 ,r2 ;t !1c.c.

1u¹1du2r1 ,r2 ;t !u2]1E d3r 1d
3r 2d

3r 3r3~r1 ,r2 ,r3!¹1du2~r1 ,r2!¹1du2* ~r1 ,r2!J . ~A2!

The time-derivative term is conveniently expressed in terms of~time derivatives of! the time-dependent one- and two-body
densitiesdr1(r ;t) anddr2(r i ,r j ;t) to be taken to first order in the fluctuations:

K C0UdU̇@dU*2^C0udU* uC0&# UC0L 5E d3r ṙ1~r ;t !du1* ~r ;t !1
1

2E d3r 1d
3r 2ṙ2~r1 ,r2 ;t !du2* ~r1 ,r2 ;t !. ~A3!

FIG. 21. The diagrammatic representation of the three-body dis-
tribution functiong(r1 ,r2 ,r3) in terms of pair distribution functions
h(r i ,r j )5g(r i ,r j )21 ~solid lines! and an irreducible triplet func-
tion X3(r1 ,r2 ,r3) ~shaded triangle!.
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A word is in order concerning the interpretation of the time derivative of the above densities: These arenot the time
derivatives of the~real! physical density, but rather should be understood as an abbreviation of the operation

ṙ1~r1 ;t ![E d3r 2Fdr1~r1!

du1~r2!
Gdu̇1~r2 ;t !1E d3r 2d

3r 3F dr1~r1!

du2~r2 ,r3!
Gdu̇2~r2 ,r3 ;t ! ~A4!

and a corresponding equation for the time-dependent pair density. In other words,ṙ1(r1) and ṙ2(r1 ,r2) are complex.The
physical time-dependent densities are obtained by taking the real part of these functions.

Finally, we calculate the term containing the external field to first order in the fluctuations

E d3rRer1~r ;t !Uext~r ;t !5ReH E d3r 1Uext~r1 ;t !Fr1~r1!du1~r1 ;t !1E d3r 2@r2~r1 ,r2!2r1~r1!r1~r2!#du1~r2 ;t !G
1
1

2E d3r 1d
3r 2@Uext~r1 ;t !1Uext~r2 ;t !#r2~r1 ,r2!1

1

2E d3r 1d
3r 2d

3r 3Uext~r3 ;t !@r3~r1 ,r2 ,r3!

2r1~r3!r2~r1 ,r2!#du2~r1 ,r2 ;t !J . ~A5!

Taking the variations of the second-order functional leads to two EOM’s of the form

\2

2m
¹1• H r1~r1!¹1du1~r1 ;t !1E d3r 2r2~r1 ,r2!¹1du2~r1 ,r2 ;t !J
52 i\ṙ1~r1 ;t !12H r1~r1!Uext~r1 ;t !1E d3r 2@r2~r1 ,r2!2r1~r1!r1~r2!#Uext~r2 ;t !J ~A6!

and

\2

2m
¹1• H r2~r1 ,r2!¹1du1~r1 ;t !1r2~r1 ,r2!¹1du2~r2 ,r2 ;t !1E d3r 3r3~r1 ,r2 ,r3!¹1du2~r1 ,r3 ;t !J 1same for ~1↔2!

52 i\ṙ2~r1 ,r2 ;t !12r2~r1 ,r2!@Uext~r3 ;t !1Uext~r3 ;t !#12E d3r 3@r3~r1 ,r2 ,r3!2r2~r1 ,r2!r1~r3!#Uext~r3 ;t !. ~A7!

Equations~A6! and~A7! are the starting point for the equations-of-motion method for the calculation of collective excitations
in quantum liquids. Different implementations12,5,6,31differ by the approximations used for the three- and four-body densities
appearing in the equations of motion and the time derivative of one- and two-body densities. An important consideration is that
the one- and the two-body equations arenot independent: The one-body equation~1.6! results from the two-body equation in
the limit ur12r2u→`. Moreover, using the sequential relations

E d3r nrn~r1 , . . . ,rn!5~N2n!rn~r1 , . . . ,rn! ~A8!

it is easily seen that the one-body equation also results when Eq.~A7! is integrated over one coordinate, say,r2 . In order to
decouple the two equations, we first subtract the asymptotic limit, multiplied byg(r1 ,r2). At the same time, the equations can
be shortened considerably by introducing the one-body current

2 i j ~r ;t !5
\r1~r !

2m H¹du1~r ;t !1E d3r 8r1~r 8!g~r ,r 8!¹du2~r ,r 8;t !J . ~A9!

The one-body equation is then readily identified with the continuity equation,

i\@¹• j ~r ;t !2 ṙ1~r ;t !#12r1~r !FUext~r ;t !1E d3r 8r1~r 8!h~r ,r 8!Uext~r 8;t !G50, ~A10!

whereh(r ,r 8)[g(r ,r 8)21, and the two-body equation becomes

\2

2m

1

r1~r1!
¹1r1~r1!•H g~r1 ,r2!¹1du2~r1 ,r2!1E d3r 3r1~r3!@g3~r1 ,r2 ,r3!2g~r1 ,r3!g~r1 ,r2!#¹1du2~r1 ,r3 ;t !J

1same for ~1↔2!1 i\ġ~r1 ,r2!5 i\F j ~r1!r1~r1!
•¹1g~r1 ,r2!1

j ~r2!

r1~r2!
•¹2g~r1 ,r2!G12E d3r 3r1~r3!$g3~r1 ,r2 ,r3!

2g~r1 ,r2!@g~r1 ,r3!1g~r2 ,r3!21#%Uext~r3 ;t !. ~A11!
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Before we turn to approximations, we carry out a cumulant analysis of the three-body distribution function. Using the usual
diagrammatic notation, this cumulant expansion is shown in Fig. 21. In this figure, the solid line represents a function
h(r1 ,r2) and the shaded triangle is the partX3(r1 ,r2 ,r3) of the three-body distribution function that is non-nodal in all three
external points. We also abbreviate the part ofg3(r1 ,r2 ,r3) that is non-nodal in pointr3 by

Y~r1 ,r2 ;r3!5h~r1 ,r3!h~r2 ,r3!1E d3r 4d
3r 5@d~r12r4!1r1~r4!h~r4 ,r1!#@d~r22r5!1r1~r5!h~r5 ,r2!#X3~r4 ,r5 ,r3!.

~A12!

Finally, we change the independent one-body function fromdu1(r ;t) to dr1(r ;t) For this purpose, we express the functional
derivatives of the densities occurring in Eq.~A4! through two- and three-body densities,

dr1~r ;t !5H r1~r1!ddu1~r1 ;t !1E d3r 2@r2~r1 ,r2!2r1~r1!r1~r2!#du1~r2 ;t !1E d3r 2r2~r1 ,r2!du2~r1 ,r2 ;t !

1
1

2E d3r 2d
3r 3@r3~r1 ,r2 ,r3!2r1~r3!r2~r1 ,r2!#du2~r2 ,r3 ;t !J . ~A13!

Inserting the cumulant expansion of Fig. 21 for the three-body and defining

dv1~r1 ;t !5r1~r2!du1~r1 ;t !1E d3r 2r2~r1 ,r2!du2~r1 ,r2 ;t !1
1

2E d3r 2d
3r 3r1~r2!r1~r3!Y~r2 ,r3 ,r1!du2~r2 ,r3 ;t !,

~A14!

let us rewritedr1(r ;t) as

dr1~r ;t !5r1~r1!Fdv1~r1 ;t !1E d3r 2h~r1 ,r2!r1~r2!dv1~r2 ;t !G ~A15!

which is readily solved fordv1(r1 ;t) by inverting the convolution integral in Eq.~A15!:

r1~r1!dv1~r1 ;t !5dr1~r ;t !2E d3r 2X~r1 ,r2!dr1~r2 ;t !, ~A16!

whereX(r1 ,r2) is the ‘‘direct correlation function.’’ The change of variables is useful since the HNC equations provide a
relationship betweeng(r1 ,r2), u2(r1 ,r2), andr1(r ) in which u1(r ) does not appear. In other words, we can from now on
considerdr1(r ;t) anddu2(r1 ,r2 ;t) as the independent variables. The time derivative of the two-body distribution function
can then be written as

ġ~r1 ,r2!5E d3r 3
dg~r1 ,r2!

dr1~r3!
dṙ1~r3 ;t !1E d3r 3d

3r 4
dg~r1 ,r2!

du2~r3 ,r4!
du̇2~r3 ,r4![E d3r 3Y~r1 ,r2 ;r3!dṙ1~r3 ;t !1

]u
]t
g~r1 ,r2!,

~A17!

where the first term in the last line is a definition of the operation]u , and the first term again stems from graphical analysis.

\2

2m

1

r1~r1!
¹1r1~r1!•H g~r1 ,r2!¹1du2~r1 ,r2!1E d3r 3r1~r3!@g3~r1 ,r2 ,r3!2g~r1 ,r3!g~r1 ,r2!#¹1du2~r1 ,r3 ;t !J

1same for ~1↔2!1 i\
]u
]t
g~r1 ,r2 ;t !5 i\F j ~r1!r1~r1!

•¹1g~r1 ,r2!1
j ~r2!

r1~r2!
•¹2g~r1 ,r2!2E d3r 3Y~r1 ,r2 ;r3!¹• j ~r3!G .

~A18!

The equation still satisfies a sequential relation: Observing that

E d3r 2@g3~r1 ,r2 ,r3!2g~r1 ,r2!g~r1 ,r3!#r1~r2!52g~r1 ,r3! ~A19!

and

E d3r 2r1~r2!Y~r1 ,r2 ;r3!52h~r1 ,r3! ~A20!

it is readily shown that volume integral ofbothsides of the equation of motion~A18! vanishes. The advantage of the present
formulation is that this is true forany triplet functionX3(r1 ,r2 ,r3).

The interesting feature of the equation of motion~A18! is that the external potential has been eliminated. Evidently, the time
dependence of thepair correlationsis driven by the one-body current alone. Thus it is appropriate to identify the equations of
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motion method with asystematicapproach to introduce current-current coupling effects into the theory of excitations. Note
that we have at this point made no approximations other than assuming that the time dependence of the wave function is
described appropriately by a one-body and a two-body component.

The current then reads, in these variables,

2 i j ~r1!5
\r1~r1!

2m
¹1Fdr1~r1 ;t !

r1~r1 ;t !
2E d3r 2X~r1 ,r2!dr1~r2 ;t !G1

\r1~r1!

2m E d3r 2r1~r2!du2~r1 ,r2 ;t !¹1g~r1 ,r2!

1
\r1~r1!

4m
¹1E d3r 2d

3r 3r1~r2!r1~r3!Y~r2 ,r3 ,r1!du2~r2 ,r3 ;t ! ~A21!

and the continuity equation is, when written in these variables,

i\ṙ1~r ;t !52
\2

2m
¹1H r1~r1!¹Fdr1~r1 ;t !

r1~r1 ;t !
2E d3rX~r1 ,r2!dr1~r2 ;t !G J

2
\2

2m
¹1Fr1~r1!E d3r 2r1~r2!du2~r1 ,r2 ;t !¹1g~r1 ,r2!G

2
\2

4m
¹1Fr1~r1!¹1E d3r 2d

3r 3r1~r2!r1~r3!Y~r2 ,r3 ,r1!du2~r2 ,r3 ;t !G
12r1~r1!FUext~r1 ;t !1E d3r 2r1~r2!h~r1 ,r2!Uext~r2 ;t !G . ~A22!

The Feynman theory is recovered, from this form, by omit-
ting the second and the third line of Eq.~A22!.

APPENDIX B: CONVOLUTION APPROXIMATION

We now need to make a specific approximation to all the
three-body or distribution functions and densities, as well as
for the connection between the fluctuating pair correlation
function to the time-dependent part of the two-body distribu-
tion functions. We will refer to the approximation scheme
we have chosen as the convolution approximation since it is
diagrammatically equivalent to the approximation used by
Chang and Campbell12 for the bulk system. The approxima-
tion is equivalent to the ‘‘uniform limit’’ approximation32

which assumes that the two-body quantities under consider-
ation are small in coordinate space, but not necessarily small
in momentum space. This allows for long-range effects like
phonons.

It is useful to introduce the tilde notation, for example for
any one-body functionf 1(r ) we define

f̃ 1~r ![Ar1~r ! f 1~r !, ~B1!

for a two-body functionf 2(r ,r 8) we define

f̃ 2~r ,r 8![Ar1~r !r1~r 8! f 2~r ,r 8!, ~B2!

and for the current

j ~̃r ![
j ~r !

Ar1~r !
. ~B3!

It is also useful to abbreviate the convolution product of a
pair of two-body functionsÃ(r ,r 8) and B̃(r ,r 8) as

@Ã* B̃#~r ,r 8![E d3r 9Ã~r ,r 9!B̃~r 9,r 8!. ~B4!

Besides the Feynman statesc (n)(r ) and their adjoints
f (n)(r ), we will also need the abbreviations

z~n!~r1!5
f~n!~r1!2c~n!~r1!

Ar1~r1!
~B5!

and

j~n!~r1!5Ar1~r1!f
~n!~r1!. ~B6!

In keeping with the philosophy of the ‘‘uniform limit ap-
proximation,’’ we first rewrite the time-dependent pair cor-
relation function in terms of the time dependence of the
‘‘non-nodal’’ function X(r1 ,r2 ;t):

]udg̃~r1 ,r2 ;t !

]t
5FS* ]udX̃

]t
*SG~r1 ,r2 ;t !. ~B7!

Two simplifications of the equations are made on the left-
hand side of Eq.~A18!: We approximate

g~r1 ,r2!¹1du2~r1 ,r2 ;t !'¹1du2~r1 ,r2 ;t !'¹1dX~r1 ,r2 ;t !
~B8!

and the three-body term as
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E d3r 3r1~r3!@g3~r1 ,r2 ,r3!2g~r1 ,r3!g~r1 ,r2!#¹1du2~r1 ,r3 ;t !'E d3r 3r1~r3!¹1du2~r1 ,r3 ;t !h~r3 ,r2!

'E d3r 3r1~r3!¹1dX~r1 ,r3 ;t !h~r3 ,r2!. ~B9!

This approximation is actually less dramatic as it may seem
at the first glance; a careful diagrammatic analysis of the
three-body distribution function shows that, by expressing
du2(r1 ,r3 ;t) in terms of dX(r1 ,r3 ;t), a large number of
diagrams are eliminated that would contribute if one worked
in terms ofdu2(r1 ,r3 ;t). Unfortunately, a complete elimi-
nation of du2(r1 ,r3 ;t) in favor of either dX(r1 ,r3 ;t) or
dg(r1 ,r3 ;t) on the left-hand side of the EOM does not lead
to any simplifications and appears to be impractical for the
nonuniform geometry. Finally, we use for the triplet function
X3(r1 ,r2 ,r3) the expression obtained in paper I from the
optimization of the triplet correlations.

From here on, it is advantageous to work entirely in the
space defined by the Feynman wave functions and to express
the one- and two-body fluctuations as

dr1~r ;t !

Ar1~r !
5(

m
rm~ t !f~m!~r !,

dX̃~r1 ,r2 ;t !5(
mn

Xmn~ t !c
~m!~r1!c

~n!~r2!, ~B10!

Ũext~r ;t !5(
m

Uext
~m!~ t !c~m!~r !.

In this basis, the static structure function has the form~2.17!,
and the direct correlation function is

X̃~r1 ,r2!5d~r12r2!2(
m

c~m!~r1!c
~m!~r2!. ~B11!

Projecting the equations of motion~A22! and ~A18! on the
Feynman statesuc (m)& produces the one-body equation

i\
]rm
]t

5\vmrm1
1

2(st Vst
~m!dXst12Uext

~m!~ t ! ~B12!

and the two-body equation

F i\ ]

]t
2\vm2\vnGdXnm5 i\E d3r j̃ ~r !•W̃mn~r !,

~B13!

where

W̃mn~r !5f~m!~r !¹z~n!~r !1f~n!~r !¹z~m!~r !

1Ar1~r !¹Xmn~r ! ~B14!

with

Xmn~r !5
1

Ar1~r !
E d3r 1d

3r 2f
~m!~r1!f

~n!~r2!X̃3~r1 ,r2 ,r !

~B15!

and

Vmn
~s!5

\2

2mE d3r
c~s!~r !

Ar1~r !
¹•@Ar1~r !W̃st~r !#. ~B16!

To eliminate the current from Eq.~B13! we write

j̃ ~r1!5
i\

2mFAr1~r1!¹1

1

Ar1~r1!
d ṽ1~r1!

2
1

2(mn
W̃mn~r1!dX̃mnG . ~B17!

We can now combine Eqs.~A15!, ~B13!, and ~B17! and
obtain

F i\ ]

]t
2\vm2\vnGdXnm

2
\2

4m(
st

E d3rWmn~r !•Wst~r !dXst5(
s
Vmn

~s! r s . ~B18!

To get the expression for the response function, we now
make a harmonic expansion of the external field and the
fluctuations

Uext
~m!~ t !5U ~m!@e2 ivt1eivt#,

rm~ t !5xme
2 ivt1yme

ivt,

dXmn~ t !5xmne
2 ivt1ymne

ivt, ~B19!

where we can assume that thexm , ym andxmn , ymn are real.
Defining

Tmn,st~v!5\@vn1vm2v#dmsdnt

1
\2

4mE d3rW̃mn~r !•W̃st~r ! ~B20!

and separating the portions with positive and negative fre-
quency allows us to formally solve for the one- and two-
body equations for thexm , ym and thexmn andymn :

xmn52(
r ,pq

@T21~v!#mn,pqṼpq
~r !xr ,

ymn52(
r ,pq

@T21~2v!#mn,pqṼpq
~r !yr ,
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\~v2vs!xs5
1

2(mn
Ṽmn

~s!xmn12Uext
~s! , ~B21!

\~2v2vs!ys5
1

2(mn
Ṽmn

~s!ymn12Uext
~s! ,

and obtain the full solutions of the problem:

(
t
Est~v!xt52Uext

~s! ,

(
t
Est~2v!yt52Uext

~s! ,

with

Est~v!5\~v2vs!dst1
1

2 (
mn,pq

Ṽmn
~s! @T21~v!#mn,pqṼpq

~ t ! .

~B22!

Evidently, we can identifyEst(v) with the inverse of the
one-phonon Green’s function

Gst~v!5@\~v2vs1 i e!dst1Sst~v!#21 ~B23!

with the self-energy

Sst~v!5
1

2 (
mn,pq

Ṽmn
~s! @T21~v!#mn,pqṼpq

~ t ! . ~B24!

We are now ready to calculate the real part of the density
fluctuations:

Rer s~ t !5
1

2
@xs1ys#@e

2 ivt1eivt#

5(
t

@Gst~v!1Gst~2v!#Ũext
~ t !@e2 ivt1eivt#.

~B25!

The term in the square bracket can be identified with the
density-density response functionxst(v) in Feynman space.
The coordinate representation is then

x~r1 ,r2 ;v!5(
st

Ar1~r1!f
~s!~r1!@Gst~v!1Gst~2v!#f~ t !~r2!Ar1~r2!. ~B26!

The normal modesof the system are given, as usual, by the singularities of the response function, in other words by the
solutions of the generalized eigenvalue problem

(
t
Est~v!xt50. ~B27!

In the nonuniform geometry, it is presently computationally too time consuming to keep the off-diagonal term of the
propagator~B20!. If we keep only the diagonal terms of@T21(v)#mn,st , we recover the CBF-BW perturbation theory derived
by Chang and Campbell12 for the uniform system.

Sst
CBF~v!5

1

2(mn

Ṽmn
~s! Ṽmn

~ t !

\~vm1vn2v!
, ~B28!

cf. Eqs.~B20! and ~B24!. We will use the same approximation for the numerical parts of this paper.
To complete this appendix, we display the ‘‘three-phonon’’ vertex functionVmn

(t) :

Ṽmn
~ t ! 5E d3r1f

~ t !~r1!Ṽmn~r1!52
\2

2mE d3r1¹1F c~ t !~r1!

Ar1~r1!
G•$j~m!~r1!¹1z

~n!~r1!1j~n!~r1!¹1z
~m!~r1!%

2E d3r1X̃mn~r1!H1c
~ t !~r1!5@Ṽmn

~ t ! #01v tX̃mnt5@Ṽmn
~ t ! #01

v tṼmnt

vm1vn1v t
, ~B29!

where

@Ṽmn
~ t ! #05

\2

2mE d3r1F c~ t !~r1!

Ar1~r1!
G¹1•$j

~m!~r1!¹1z
~n!~r1!1j~n!~r1!¹1z

~m!~r1!%, ~B30!
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Ṽmnt52
\2

2mE d3r1$j
~m!~r1!¹1z

~n!~r1!•¹1z
~ t !~r1!1cycl.%, ~B31!

note thatVmnt is the three-body vertex of the ground-state
theory. Inclusion of this term is necessary to obtain the cor-
rect density dependence of the roton energy in the bulk
liquid.12

APPENDIX C: SUM RULES

In this appendix we will prove that first two moments of
the improved dynamic structure function are identical to
those of the Feynman approximation, in particular that the
static structure function obtained within our theory — i.e.,
including time-dependent pair fluctuations — isidentical to
the one of the ground-state theory. In Eq.~2.18!, we have
expressed the density-density response function in coordi-
nate space as

xCBF~r ,r 8,v!5Ar1~r !(
st

f~s!~r !xst
CBF~v!f~ t !~r 8!Ar1~r 8!

~C1!

with the matrix representation of the density-density re-
sponse function

xst
CBF~v!5@Gst

CBF~v!1Gst
CBF~2v!#, ~C2!

where~cf. Eq. ~B23!# Gst
CBF(v) is the three-phonon approxi-

mation of the Green’s function

Gst
CBF~v!5@\~v2v t1 i e!dst1Sst

CBF~v!#21 ~C3!

with the self-energy correction~B28!.
In the Feynman basis,v0 and thev1 sum rules simply

state that

2ImE
0

`d~\v!

p
xst~v!5dst ~C4!

and

2ImE
0

`d~\v!

p
\vxst~v!5\vsdst . ~C5!

We will follow the general procedure outlined in Ref. 17.
First, we have to show thatGst

CBF(v) is, as a function of
v, analytic everywhere off the real axis. We will prove this
by first assuming the converse and showing it leads to a
contradiction. Let us assume thatGst

CBF(v) is singular for
some complexv. This assumption is equivalent to assuming
that there is acomplexvalue ofv for which the nonlinear
eigenvalue equation~2.22! has a solution, i.e., explicitly that

\vws5(
t

F\v tdst2(
mn

Vmn
~s!Vmn

~ t !

\~vm1vn2v!Gw t . ~C6!

Without loss of generality, we can assume thatws is normal-
ized. Projecting Eq.~3.6! on ws gives

\v5\vs2
1

2 (
mn,st

wsVmn
~s!Vmn

~ t ! w t

\~vm1vn2v!
. ~C7!

Let us assume thatv is complex and can be written as

v5vR1 iv I . ~C8!

The imaginary part of Eq.~C7! is then equivalent to

152
1

2 (
mn,i j

wsVmn
~s!Vmn

~ t ! w t

@\~vm1vn2vR!#21~\v I !
2 . ~C9!

This equation obviously cannot be fulfilled and, hence, the
nonliner eigenvalue problem~C6! has only real solutions.
ThereforeGst

CBF(v) is analytic everywhere off the real axis.
Two more important properties, which can be read directly
off Eqs. ~C3! and ~B28! are thatGst

CBF(v) is real on the
negative realv axis, and that

Gst
CBF~v!5

dst
\~v2vs1 ie!

1O~v23! ~asuvu→`!.

~C10!

We are now ready to verify thev0 and thev1 sum rules.
For thev0 sum rule~C4!, the frequency integration is easily
carried out by the usual contour integration procedure:

E
0

`d~\v!

p
Im@Gst

CBF~v!1Gst
CBF~2v!#

5E
2`

` d~\v!

p
Im@Gst

CBF~v!#. ~C11!

SinceGst
CBF(v) has no poles in the upper half plane, we can

deform the contour to a large semicircle in the upper half
plane. Hence, due to~C10! we obtain for the integral~C11!

ImE
2`

` d~\v!

p
Gst
CBF~v!5dst ~C12!

which is the identity we sought to prove.
The proof of the first-order sum rule~C5! is analogous.

Let us calculate the integral
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2E
0

`d~\v!

p
@\v2\vs#Imxst~v!5E

0

`d~\v!

p
@\v2\vs#ImGst

CBF~v!5ImE
2`

` d~\v!

p
@\v2\vs#Gst

CBF~v!.

~C13!

In both of the above steps we have used that ImGst
CBF(v)50 on the negative real axis. The last integral can again be evaluated

by contour integration. Due to the asymptotic behavior~C10! we can close the contour integral in the upper half plane. Letting
\v5\vs1Reif,

ImE
2`

` d~\v!

p
Gst
CBF~v!@\v2\vs#52Im i lim

R→`
E
0

pdf

p
ReifGst

CBF~v!@\v2\vs#52 lim
R→`

Im F2Rp 1O~R21!G50.

~C14!

This is the relation we wanted to prove.

APPENDIX D: PARTICLE CURRENTS

Since thed ṽ(r ) are obtained in the Feynman basis, it is
also convenient to represent the particle currents by the same
basis states. Operating on Eq.~B17! from the left with the
Feynman states we get

j̃ t~v!5^f~ t !~r1!u j̃ ~r1!&

5
i\

2mF K f~ t !~r1!uAr1~r1!¹1

1

Ar1~r1!
d ṽ1~r1!L

2
1

2(mn
^f~ t !~r1!uW̃mn~r1!&dX̃mnG ~D1!

which can be rewritten as

j̃ t~v!5
i\

2m(
s

FDtsvs2
1

2(mn

W̃mn
t Ṽmn

s vs
\~vm1vn2v!G , ~D2!

where

Dts5K f~ t !~r !UAr1~r1!¹1

1

Ar1~r1!
Uc~s!~r !L ,

W̃mn
t 5@W̃mn

t #01(
p
DtpX̃mnp, ~D3!

@W̃mn
t #05K f~ t !~r !U 1

Ar1~r1!
@zn~r !¹jm~r !

1zm~r !¹jn~r !#L . ~D4!

A useful property of Eq.~D2! is obtained by operating on
Eq. ~D2! with Dst

21 . With some manipulation we can show
for thecollective modes, i.e., for the solutions of the nonlin-
ear eigenvalue equation~2.22! that

vs5
2m

i\v(
t
Dst

21
• j̃ t~v!, ~D5!

where we have defined

Dst
215

\2

2m K c~ t !~r !UAr1~r1!¹1

1

Ar1~r1!
Uf~s!~r !L ,

(
t
Dst

21
•Dtp5\vsdsp ,

(
t
Dst

21
•Wmn

t 5@Ṽmn
~s! #0 . ~D6!

Within our numerical calculations, we found that the identity
~D6! provides a useful test of the numerical accuracy of our
calculation. Specifically, we have calculated Eq.~D5! in our
truncated basis in order to determine how many intermediate
states we needed to keep such that we obey this identity is
satisfied within an accuracy of about 1%.
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