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We explore the influence of the finite conductivity on spin waves in metallic ferromagnetic films. We
consider propagation perpendicular to the magnetization, which is parallel to the surface, and wavelengths
sufficiently long that the influence of exchange may be ignored. Precession of the magnetization induces eddy
currents which damp the spin waves, and also renormalize the dispersion relation of the Damon-Eshbach mode
encountered in this geometry. We provide analytic formulas which describe these effects, in various limits.
Studies through use of a Green’s-function method explore the influence of the conductivity on the spectrum of
spin fluctuations, in various wavelength regimes.

I. INTRODUCTION

The theory of spin-wave excitations in ferromagnetic
films is a classic topic in magnetism, treated theoretically in
various limits many years ago.1 Experimentally, these modes
may be probed by ferromagnetic resonance, or by the Bril-
louin scattering of light.2 In such experiments, the modes
excited have wavelengths very long compared to a lattice
constant. In this regime, exchange interactions contribute
negligibly to the excitation energy. Such spin waves are then
described accurately by a theory based on magnetostatics,
not only for films, but for samples of diverse shapes.3

Interest in this area has revived in recent years, as a con-
sequence of modern sample preparation techniques, which
allow the preparation of very thin ferromagnetic films and
multilayers of extraordinary quality, on diverse substrates.2,4

The early studies of spin waves in thin films, spheres or
ellipsoids, were directed largely toward insulating ferrites,
such as YIG.3 The new materials described in the previous
paragraph incorporate films of ferromagnetic metals, such as
Fe. Theoretical descriptions of spin excitations directed to-
ward these materials include features such as the anisotro-
pies, dipolar couplings and interfilm exchange couplings
found in these samples,5–8 but do not explicitly acknowledge
the fact that the constituent films are metallic in nature. It is
the purpose of this paper to present and explore the influence
of finite conductivity on the spin-wave excitations of a fer-
romagnetic film.

The issue of concern is the following. When a spin wave
is excited, of course the magnetization precesses at each
point in space, generally on a trajectory of elliptical charac-
ter. The precessing magnetization generates a time-
dependent internal magnetic inductionb~x,t! everywhere. By
Faraday’s Law, this time-dependent magnetic induction must
induce an electric fielde~x,t!. If the conductivity is finite,
eddy currents are generated by this electric field. The ohmic
dissipation associated with the eddy currents is a source of
linewidth for the spin-wave mode. We show below that in
addition, the eddy currents can renormalize the dispersion
relation of the modes.

It is of interest to inquire if the films and multilayers can
be utilized for device applications. The lifetime of the spin-
wave modes is a critical parameter when such applications

are considered. We show below that in certain regimes of
wavelength and film thickness, eddy current damping be-
comes very severe indeed. It is also the case, however, that
for film thicknesses and wavelengths examined in numerous
recent experiments, its influence is modest.

We confine our attention to a geometry encountered com-
monly. We consider a ferromagnetic film with magnetization
parallel to the surfaces, and we consider spin waves which
propagate perpendicular to the magnetization. This is the
case studied in most current experiments.2 In this geometry,
one encounters the Damon-Eshbach wave, a mode which in
the limit of wavelength short compared to the sample thick-
ness becomes a surface spin wave,1 bound to either the upper
or lower film surface, depending on its direction of propaga-
tion. The methods used here are readily extended to other
magnetization orientations, or propagation directions.

We begin our discussion in Sec. II with a derivation of the
dispersion relation of the Damon-Eshbach wave in the pres-
ence of finite conductivity. One may extract from this infor-
mation on the linewidth of the mode by extracting the imagi-
nary part of the frequency, for a given wave vectorki parallel
to the surface. We are led to simple, useful analytic formulas
here, in special limits.

It is difficult to extract useful information from the im-
plicit dispersion relation, in regimes where eddy current
damping and renormalization effects are severe. Thus, in
Sec. III, we derive a set of Green’s functions which may be
used to describe the response of the metallic ferromagnet to
an arbitrary external microwave field, applied in the plane
perpendicular to the magnetization. These response functions
can be used for diverse purposes. By invoking the
fluctuation-dissipation theorem, for example, we can use
them to explore the frequency spectrum of thermal spin fluc-
tuations, and also to describe the Brillouin spectrum of the
film.5,6 By such a study, we extract information on the nature
of the spin excitations, in the frequency and wavelength re-
gime where the influence of eddy currents is severe.

In the analysis presented here, we ignore the influence of
exchange. The precessing moments, in the present picture,
generate dipolar fields which influence the dispersion rela-
tion of the spin waves we consider. Under the conditions
explored here, exchange effects on the Damon-Eshbach
waves are quite modest, and may be set aside with little
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consequence. One may appreciate this from earlier discus-
sions, in which exchange is included fully.5 In the particular
case of Brillouin spectra, exchange influences the spectrum
of standing spin waves importantly, by introducing splittings
between the various standing wave modes. This feature is
absent from the calculations presented below. It is straight-
forward, in principle, to extend earlier discussions5 to in-
clude both exchange and also the eddy current effects ex-
plored here. The cost in complexity is substantial. We leave
this for future work, when we wish quantitative contact be-
tween theory and experiment, in the standing spin-wave
spectra of conducting films.

II. THE INFLUENCE OF FINITE CONDUCTIVITY
ON THE DISPERSION RELATION
OF DAMON-ESHBACH WAVES

The geometry we consider is illustrated in Fig. 1. We
have a ferromagnetic film of thicknessD, with magnetization
M s parallel to the surface. An external magnetic fieldH0 is
applied parallel toM s . The coordinate system is aligned so
M s is along thez axis, the film lies betweeny50 andy5D,
and the waves we consider propagate in thex direction.
Their wavelength will be sufficiently long that we ignore
exchange effects.

The spin waves have frequencyV. As remarked in Sec. I,
the precessing magnetization generates magnetic fieldh and
a magnetic inductionb, both of which oscillate in time with
the frequencyV. Both h andb lie in the xy plane, for the
geometry in Fig. 1. For the ferromagnet, we have the consti-
tutive relations9

bx5m1hx1 im2hy ~2.1a!

and

by5m1hy2 im2hx , ~2.1b!

where

m1511
4pVMVH

VH
2 2~V1 i /t!2

~2.2a!

and

m25
4pVM~V1 i /t!

VH
2 2~V1 i /t!2

. ~2.2b!

HereVH5gH0 andVM5gMs , while t is a phenomeno-
logical relaxation time. Within the film, we have

¹3h5
4ps

c
e, ~2.3a!

¹•b50, ~2.3b!

and also

¹3e5 i
V

c
b, ~2.3c!

wheree is the electric field generated by the precessing mag-
netization. The conductivity of the medium iss. For the
geometry in Fig. 1, the electric fielde is parallel to thez
direction. We have ignored the displacement current term on
the right-hand side of Eq.~2.3a!, an approximation valid so
long as we are concerned with lengths smallerc/V. The re-
tardation effects introduced by this term will be negligible
for the examples explored here.

All fields in the above equations are proportional to
exp(ik ix), with a y dependence to be determined. It is a
short exercise to find a pair of equations obeyed byhx and
hy :

F ik i
21

2m1

d0
2 Ghy2Fki

]

]y
1 i

2m2

d0
2 Ghx50 ~2.4a!

and

i Fm1ki2m2

]

]yGhx1Fm1

]

]y
2m2kiGhy50. ~2.4b!

In these equations, we have introduced the classical skin
depthd0, in a medium with conductivitys:

d05
c

~2psV!1/2
. ~2.5!

We seek solutions in the medium with the spatial varia-
tion exp@6Qy#. One finds, after a brief calculation,

Q5H ki
21

2mV

id0
2 J 1/2, ~2.6!

where here and elsewhere in the paper we choose Re(Q).0.
The quantity

mV5
m1
22m2

2

m1
5

VB
22~V1 i /t!2

VHVB2~V1 i /t!2
. ~2.7!

FIG. 1. The geometry considered in the present paper. We have
a ferromagnetic film of thicknessD, with magnetizationM s parallel
to the surface. An external magnetic fieldH0 is applied parallel to
the surface. We consider spin waves, with wave vectorki that
propagate parallel to thex axis.
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In Eq. ~2.7!, VB5VH14pVM5g(H014pMS).
Some comments on the physical content of Eq.~2.6! are

in order. First of all, in a conducting material, the expres-
sion in Eq.~2.5! is the well-known classical skin depth. In a
material with a nonzero magnetic permeability, the skin
depth is modified by the magnetic response. The combina-
tion

dFM5
d0

AmV

~2.8!

which appears in Eq.~2.6! is the effective skin depth in the
ferromagnet. Clearly, this is strongly frequency dependent,
in the vicinity of the resonances in the structure. Recall that
(VHVB)

1/2 is the ferromagnetic resonance frequency of a
thin film with magnetization parallel to the surface.10 Near
resonance,mV becomes very large, and the skin depth is
reduced dramatically from the classical valued0. If DH is
the linewidth, defined as the full width at half maximum of
the absorption line~then in our phenomenologyDH52/t!,
on resonance the skin depth is well approximated by

dFM„V5~VHVB!1/2…[dR5d0S gDH

4pVM
D 1/2S VH

VB
D 1/4.

~2.9!

In Fe, 4pMs>2.13104 G. If the linewidthDH5100 G, and
the resonance frequency is in the 10 GHz range,dR is smaller
thand0 by a factor of roughly 25. The influence of the spin
system on the penetration depth of electromagnetic radiation
is thus dramatic, near resonance. The skin depthdFM be-
comes very large nearV5VB . The film ‘‘opens up,’’ and its
transmissivity increases dramatically. This is the phenom-
enon of ‘‘antiresonance,’’ discovered some years ago.11

We recover the theory appropriate to insulating media in
the limit d0→`. ThenQ5ukiu. Suppose we consider an in-
finitely thick film, D→`, and a Damon-Eshbach wave
propagating down its surface. The spatial variation of the
disturbances associated with the wave is controlled by
exp(2Qy), which becomes exp(2ukiuy), asd0→`. As the
wave vectorki→0, the fields penetrate ever more deeply into
the material, in a manner identical to Rayleigh surface acous-
tic waves.12 This behavior is modified dramatically by the
presence of the finite conductivity, where now

lim
ki→0

Q5S 2

idFM
D 1/2. ~2.10!

The fields can penetrate no deeper than the skin depthdFM
associated with the frequency of the wave. WhenD@dFM , in
the long-wavelength limit, the fields of the Damon-Eshbach
wave will be confined to a channel of depthdFM , near the
surface. Clearly, in this regime, the eddy currents not only
limit the lifetime of the wave, but will modify its effective
dispersion relation dramatically as well.

It is a straightforward matter, following procedures now
standard, to determine the implicit dispersion relation of the
wave. Inside the film, the various fields are supposed a su-
perposition of exp(1Qy), and exp(2Qy). These are
matched to fields in the vacuum through standard boundary

conditions~conservation ofhx andby!. For y.D, all fields
vary as exp„2ki(y2D)… and for y,0, they scale as
exp(1kiy).

It should be remarked that here, and throughout the re-
mainder of the paper, we supposeki.0. The frequencyV
can then be either positive or negative.13 Disturbances which
propagate from left to right are described by choosingV.0,
and those which propagate from right to left by choosing
V,0.

When the analysis is completed, we find the implicit dis-
persion relation may be written

~Q1mVki!
22~m2 /m1!

2ki
2

~Q2mVki!
22~m2 /m1!

2ki
2 5exp~22QD!. ~2.11!

This may be rearranged to read

~V1 i /t!25VHVB1
8p2VM

2 ki
2tanh~QD!

kiQ1~ki
22 i /d0

2!tanh~QD!
,

~2.12!

which asd0→`, yields the standard dispersion relation1 ap-
propriate to the insulating film~for t→`!:

V2~ki!5g2~H012pMs!
224p2g2Ms

2exp~22kiD !.
~2.13!

From Eq. ~2.12!, which remains an implicit dispersion
relation by virtue of the presence of the frequency-dependent
quantity Q on the right-hand side, we can extract simple
formulas in special limits. To treat the regimekid0@1, for
example, we replaceQ byQ>ki[12 imV/(kid0)

21•••] and
expand the right-hand side in powers of~kid0!

22, retaining
only the leading term. After some algebra, we obtain~we let
t→` for the moment!

V25g2~H012pMs!
224p2g2Ms

2exp~22QD!

2
2p ig2Ms

~kid0!
2 @~H012pMs!1~H016pMs!e

22QD#

1••• . ~2.14!

The result in Eq.~2.13! remains an implicit dispersion rela-
tion, by virtue of the presence ofQ on the right-hand side.
There are two limits where we may generate simple results:
the very thin film limitD→0, and the thick film limitD→`.
We have, restoring the influence of the relaxation timet,

lim
D→`

V~ki!5g~H012pMs!2
i

t
2
ipgMs

~kid0!
2 1••• ,

~2.15a!

lim
D→0

V~ki!5g~H0B!1/22
i

t
2
2ipgMs

~kid0!
2 S BH D1••• .

~2.15b!

Clearly, the last terms in Eqs.~2.14! describe damping pro-
duced by the eddy currents induced by the spin motion.
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We may also extract the behavior of the effective disper-
sion relation for smallki , from Eq. ~2.11!. Quite clearly, as
ki→0, V tends to (VHVB)

1/22 i /t, the ~damped! ferromag-
netic resonance frequency of the film. The task of extracting
the first correction to this term in tricky, in the smallki limit.
For kid0!1, clearly we may ignorek i

2 compared toi /d0
2.

Also, in Eq. ~2.11!, we replace Q by simply
Q>(2mV/ id 0

2)1/2. Note that as ki→0, and (V1 i /t)
→(VHVB)

1/2, mV and thusQ become very large. We shall
assumeQD→` aski→0, so tanh(QD)→1. The criterion for
the validity of this assumption will be stated when the analy-
sis is complete. We then have

S V1
i

t D 2>VHVB1
8p2VM

2 ~kid0!
2

@kid0~2mV / i !
1/22 i #

. ~2.16!

We seek a solution of Eq.~2.15! with

~V1 i /t!25VHVB2 iA~kid0!
2, ~2.17!

whereA is to be determined. Now

mV5
VB

22~V1 i /t!2

VBVH2~V1 i /t!2
>
4pVMVB

iA~kid0!
2 , ~2.18!

as ki→0. When Eq.~2.16! and Eq.~2.17! are inserted into
Eq. ~2.15!, we find two solutions forA:

A652pVM~VB
1/26VH

1/2!. ~2.19!

We then have, for each choice of wave vector, two propa-
gating modes, each characterized by a different lifetime and
propagation length:

V6~ki!5g~H0B!1/22
i

t
2 ipgMSH S BH0

D 1/26SH0

B D 1/2J
3~kid0!

21••• . ~2.20!

The origin of the two-mode behavior is the resonance in the
Voigt susceptibility mV which controls the effective skin
depth. A discussion of the excitation of these modes requires
an analysis of any particular experiment of interest, to assess
their relative amplitude. The Green’s functions discussed in
Sec. III will allow one to perform such analyses, for any
desired excitation scheme.

We remark on the requirement for our assumption
uQDu@1 to be valid. From Eq.~2.17!, aski→0, one sees

uQDu5
D

kid0
2 S 8pVMVB

A D 1/2, ~2.21!

so we must haveD@kid0
2, or kid0!(D/d0).

The results in Eqs.~2.14! and Eq.~2.19! allow one to
estimate the influence of eddy current damping, for various
experimental situations of interest. For instance, in typical
Brillouin-scattering experiments, the modes excited have
ki>105 cm21, while for metallic Fe, in the microwave fre-
quency range~10 GHz, for example!, one findsd0>1024 cm.
We thus havekid0>10 in such studies, and we may use Eqs.
~2.14! to estimate the eddy current damping effects. If one

recalls 4pMs521 kG for Fe, one sees the eddy current con-
tribution to the linewidth is in the range of a few tens of
Gauss. This is below current experimental resolution, but is
by no means negligible.

The limit kid0!1 applies to ferromagnetic resonance ex-
periments. One sees from Eqs.~2.19! that ki must be finite
for eddy current damping to influence the linewidth. This
suggests that in most such experiments, eddy current damp-
ing should be very small. We expectki>p/W, with W the
width of the sample, if one has spin pinning at the edges.

The approximate formulas obtained above suggest that
whenkid0>1, the eddy current damping should be very sub-
stantial. It is difficult to extract meaningful information from
the effective dispersion relation, in this regime. Thus, in Sec.
III we turn to a discussion of the Green’s-function method
used in numerous earlier papers. This method can provide
information on the excitations in the system, even in the limit
of strong damping.

III. GREEN’S-FUNCTION DESCRIPTION OF THE FILM
RESPONSE IN THE PRESENCE

OF EDDY CURRENTS

In Sec. II, we examined the influence of eddy currents on
the dispersion relation of the magnetostatic spin waves of the
ferromagnetic film, for the geometry illustrated in Fig. 1. We
saw that the eddy currents introduce damping, which could
be very severe in the wave-length regime wherekid0;1, if
the asymptotic formulae of Sec. II are extrapolated into this
regime. In principal, at least, we could explore this issue
further through examination of the dispersion relation found
in Sec. II, through numerical studies which trace out the
complex frequency as a function of wave vector. In the re-
gime where damping is strong, such studies are of limited
usefulness, since it is often unclear how the dispersion rela-
tion or damping rate rate which emerges are related to vari-
ous experimental probes of the system. We recall earlier dis-
cussions which led to unphysical conclusions in other
contexts,14 and as a consequence we turn to the development
of a Green’s-function technique within which strong dissipa-
tive effects can be incorporated, and related to diverse ex-
periments in an unambiguous manner.

One proceeds by supposing the film is driven by a weak
external magnetic field in thexy plane, given by

h~e!~x,t !5@ x̂hx
~e!~y!1 ŷhy

~e!~y!#exp~ ik ix2 iVt !,
~3.1!

where the profile of the external field in they direction is
arbitrary. In response to this field, in linear-response theory,
the magnetization of the film is

M ~x,t !5 ẑMs1m~x,t !, ~3.2a!

where

m~x,t !5@ x̂mx~y!1 ŷmy~y!#exp~ ik ix2 iVt !. ~3.2b!

The elements of the external field„h x
(e)(y),h y

(e)(y)… are re-
lated to the system response„mx(y),my(y)… by a matrix of
Green’s functions introduced below.

53 12 235EDDY CURRENTS AND SPIN EXCITATIONS IN CONDUCTING . . .



We consider the system driven by an external perturbation
characterized by only a single frequencyV, and wave vector
ki parallel to the surface. Within linear-response theory,
straightforward Fourier synthesis may be used to describe
the response of the film to a perturbation of arbitrary form in
space and time. By this means, for example, with the use of
our Green’s functions, one can develop the theory of spin-
wave generation by a current bearing strip or meander line
~modeled as a periodic structure! deposited on the surface. In
this paper, we do confine our attention to propagation per-
pendicular to the magnetization, as illustrated in Fig. 1.

The fluctuation-dissipation theorem also may be em-
ployed to relate our Green’s functions to the amplitude of
thermal spin fluctuations in the film, of frequencyV and
wave vectorki . The spatial variation of the thermal spin
fluctuations may be explored by this means. Brillouin-
scattering experiments provide us with a probe of such ther-
mal spin fluctuations, within the optical skin depth. Thus, our
earlier theories of the Brillouin spectrum of ferromagnetic
films and superlattices utilized similar Green’s functions for
this purpose.5,6 One may view the present paper as an exten-
sion of an earlier description5 of spin waves in thin films to
include the influence of eddy currents induced by the fluctu-
ating magnetization. The earlier study incorporated exchange
effects ignored here; as noted in Sec. I the present discussion
is readily extended to include exchange, at a cost in technical
complexity. Our interest will center on the Damon-Eshbach
portion of the response presently; exchange effects on this
mode are quite modest, in the experiments which motivate
our analysis.

We now turn to the formalism. As noted above, our task
is to generate a description of the response of the film when
it is driven by the external magnetic field in Eq.~3.1!. The
basic equation we solve describes the precession of the mag-
netization of the film in an external field:

dm

dt
52 iVm5g~M3h!, ~3.3!

where in the spirit of spin-wave theory, we linearize the
right-hand side of Eq.~3.3! with respect to the fluctuating
portion of the magnetization defined in Eqs.~3.2!. The quan-
tity g is the gyromagnetic ratio. The magnetic fieldh in Eq.
~3.3! is the externally applied fieldh(e)~x,t! described in Eq.
~3.1!, and to this is added the fluctuating dipolar field
h(d)~x,t! generated bym~x,t!. The dipolar field is linear inm,
and is calculated by solving Maxwell’s equation. We pose
the problem of generating formulas formx(y),my(y) in Eq.
~3.2b! when h x

(e)(y),h y
(e)(y) in Eq. ~3.1! are arbitrary, un-

specified functions ofy. All quantities exhibit the time de-
pendence exp~2iVt!, and vary withx as exp(ik ix). The
dipolar fieldh(d) also lies in thexy plane for the geometry
considered, and the eddy currents are parallel to thez direc-
tion. Thus, the electric field is parallel toz also.

We defineVH5gH0 , andVM5gMs . The magnetization
components then are found from

iVmx~y!1VHmy~y!2VMhy
~d!~y!5VMhy

~e!~y!
~3.4a!

and

2VHmx~y!1 iVmy~y!1VMhx
~d!~y!52VMhx

~e!~y!,
~3.4b!

while after elimination of the electric field, we may generate
the dipolar field from

4p il2mx~y!1F ]2

]y2
1 il2Ghx~d!~y!2 ik i

]hy
~d!~y!

]y
50

~3.4c!

and

4p il2my~y!2 ik i

]hx
~d!~y!

]y
2@ki

22 il2#hy
~d!~y!50.

~3.4d!

In these last two equations,l252/d0
2, whered0 is the classi-

cal skin depth defined in Eq.~2.5!. The processing magneti-
zation generates fields in the vacuum, which must be
matched to those in the film through appropriate boundary
conditions. These are conservation of tangentialh @continu-
ity of h x

(d)(y) at the film surfaces#, and normalb @continuity
of h y

(d)(y)14pmy(y)#. The fields in the vacuum are de-
scribed by Eqs.~3.4c! and ~3.4d! with l2 set to zero.

We rewrite Eqs.~3.4! by introducing two four component
vectors.

u5S mx~y!

my~y!

hx
~d!~y!

hy
~d!~y!

D ~3.5!

and

f5S VMhy
~e!~y!

2VMhx
~e!~y!

0
0

D , ~3.6!

so they acquire the form

(
j51

4

Li j uj~y!5 f i~y! ~3.7!

with Li j a 434 matrix of differential operators. We obtain
the solution of Eqs.~3.7! by introducing a matrix of Green’s
functionsGi j (y,y8) which satisfy

(
j51

4

LikGk j~y,y8!5d i jd~y2y8!. ~3.8!

We then have

ui~y!5(
j51

4 E
0

D

Gi j ~y,y8! f j~y8!dy8. ~3.9!

By tracing through the definitions, we see thatVMG11(y,y8)
provides thex component of magnetizationmx(y) at pointy,
in response to an external driving field applied parallel to the
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y axis, and with the spatial variationd(y2y8). Similarly
VMG21(y,y8) givesmy(y) for such a driving field, while
2VMG12(y,y8) givesmx(y), in response to a field with this
spatial variation, but applied parallel tox. Finally,
2VMG22(y,y8) is my(y) in response to a field applied par-
allel to x, localized aty5y8.

Our task is to solve Eqs.~3.7! subject to the boundary
conditions that for any choice ofy8,G3 j (y,y8), considered a
function of y, is continuous at the film surface, as is the
combinationG4 j (y,y8)14pG2 j (y,y8). These ensure con-
servation of tangentialh and normalb, respectively.

It is a tedious exercise to carry through the solution of the
above set of equations, but the procedure is straightforward
in principle. We thus omit details, and present a tabulation of
the results in the Appendix.

The Green’s functionsGi j (y,y8) can be used to explore
the amplitude of thermal spin fluctuations in the film, as
remarked earlier. Letmx~x,t! andmy~x,t! denote thex andy
components of the fluctuating magnetization. We can always
Fourier transform these variables:

ma~x,t !5E d2kidt

~2p!3
eiki•xie2 iVtma~kiV;y!, ~3.10!

where ma~kiV;y! is the amplitude, within the plane
y5const, of the thermal fluctuation of frequencyV, and
wave vectorki , in the plane parallel to the film surfaces. If
\V!kBT, the limit of interest for the long-wavelength
dipolar-dominated spin waves of interest here, then the fluc-
tuation dissipation theorem tells us that Im$G12(y,y8)% is
proportional to (kBT/\V)^mx* (kiV;y)mx(kiV;y8)&T ,
where the angular brackets denote a statistical average over
an ensemble at the temperatureT. Similarly Im$G21(y,y8)%
is proportional to (kBT/\V)^my* (kiV;y)my(kiV;y8)&T . A
precise statement of these connections is found elsewhere.15

Again, the present paper confines its attention to wave vec-
tors ki perpendicular to the magnetization.

We shall explore the thermal fluctuations sensed by a
probe that extends into the sample a depthd5a0

21, with an
exponential profile. The fluctuations of wave vectorki and
frequencyV parallel to the surface sample by such a probe
are described by

sxx~ki ,V!5E
0

D

dyE
0

D

dy8e2a0~y1y8!Im$G12~y,y8!%

~3.11a!

while those normal to the surface are given by

syy~ki ,V!5E
0

D

dyE
0

D

dy8e2a0~y1y8!Im$G21~y,y8!%.

~3.11b!

A description of the Brillouin light-scattering spectrum is
obtained by suitably synthesizing these and other closely re-
lated spectral density functions.5,6,15

In Fig. 2, we show the spectral densitysyy(ki ,V), calcu-
lated for the following parameters, chosen to display clearly
the influence of eddy current damping. We haved051025

cm for the microwave skin depth, anda0 has been chosen

equal to 105 cm21. The calculations are for a film whose
thickness isD51024 cm. Finally,H050.5 kG, and we set
B054 kG, while we use a frequency-dependent relaxation
rate 1/t50.01V, with V the frequency.

These numbers do not describe any real material, but are
chosen for convenience in display. Notice that one may scale
the above results to apply to real materials, since the fre-
quency dependence is controlled by the two dimensionless
ratios ~V/VH! and ~VH/VB!, and we have two parameters
~d0/D! andkid0 which control the wave vector dependence.

The prominent peak in Fig. 2 is the structure associated
with the Damon-Eshbach wave of the film. In the absence of
eddy current effects, from Eq.~2.12! we see that forkiD→`,
its frequency isg(H012pMs)52.25 kG, while askiD→0,
we haveg(H0[H014pMs])

1/251.41 kG. For the largest
and smallest values ofki in Fig. 2, the peak indeed coincides
with these limiting values.

One sees clearly from Fig. 2 the very strong eddy current
damping effects whenkid0;1. There is some eddy current
damping in the feature shown forki543105 cm21, the mode
becomes very broad indeed forki51.03105 cm21 and also
for ki50.53105 cm21, and then narrows down whenki drops
to 0.13105 cm21. This behavior is compatible with the be-
havior provided by the asymptotic formulas in Sec. II.

There are two length scales in the problem. One is the
film thicknessD, and the other by the microwave skin depth
d0. Whend0!D, the near surface spectral densities are con-
trolled by the parameterkid0, and are insensitive tokiD. We
may see this by calculating spectral density functions for
D51023 cm, a value ten times larger than that in Fig. 2. The

FIG. 2. The spectral density functionsyy(ki ,V) defined in Eq.
~3.11b!, calculated fora05105 cm21, d051025 cm, D51024 cm,
H050.5 kG,H014pMS54 kG, and 1/t50.01V, whereV is the
frequency.
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results are identical to those in Fig. 2, to graphical accuracy.
In essence, the microwave skin depthd0 acts as the active
channel, to which the fields of the Damon-Eshbach wave are
confined.

We may extract the variation of the linewidth with fre-
quency, and also an effective dispersion relation, from spec-
tral density plots such as that displayed in Fig. 2. We show
this information in Fig. 3, for the model film used to generate
Fig. 2. The dotted line is the frequency variation of the line-
width; the peak occurs whenkid0.0.85. The effective dis-
persion relation is given by the solid line, and this differs
qualitatively from that appropriate to the case where eddy
current damping is absent@Eq. ~2.12!#. For this film, we
show the prediction of Eq.~2.12! as a dotted line. Qualita-
tively, the solid line bears resemblance to the prediction of
Eq. ~2.12!, but withD replaced byd0.

In Fig. 4 we show the variation with wavelength of the
linewidth ~dotted line!, the effective dispersion relation
~solid line! and the dispersion relation given by Eq.~2.12!,
for a film with thicknessD51025 cm. All other parameters
are identical to those used in Figs. 2 and 3. We thus have a
case whereD5d0. The peak in the linewidth occurs very
close tokid050.85, the same value where we have the peak
in Fig. 2. We see in this figure the dramatic fall off in the
eddy current damping, askid0 drops below unity, and also as
kid0 increases above 0.85. The dispersion relation now is
quite close to that applicable in the absence of eddy current
damping. WhenD<d0, it is the film thickness and not the
skin depth which controls the effective dispersion relation.

As noted earlier, the calculations presented above use pa-
rameters chosen to illustrate eddy current damping effects,
but the microwave skin depthd0 has been chosen equal to
1025 cm, an order of magnitude smaller than the value ap-
propriate to a transition-metal film such as Fe. The results
may be applied to various materials by the appropriate scal-
ing procedure, when one realizes the characteristic quantities
enter only in the productskiD andkid0, as remarked above.

If we have actual light-scattering studies of Fe in mind,

the eddy current damping will affect the spectra severely
only at values ofki smaller than those accessed in typical
experiments, which explore the regimeki;105 cm21. We
illustrate this in Fig. 5, with a series of spectra calculated for
d051024 cm, appropriate to Fe. Severe eddy current broad-
ening is evident in the spectrum for whichki;0.13105 cm,
but its influence is rather modest at the large wave vectors.
Access to the regime whereki;104 cm21 would require de-
tection of scattered light reflected off the sample very close

FIG. 3. From plots such as that in Fig. 2, we extract the line-
width DH of the Damon-Eshbach mode~dotted line!, and its effec-
tive dispersion relation, shown as the solid line. The prediction of
Eq. ~2.12!, appropriate for a film with no eddy current damping, is
shown as the dashed line.

FIG. 4. The same as Fig. 3, but now the film thicknessD51025

cm.

FIG. 5. The spectral density functionsyy(ki ,V) defined in Eq.
~3.11b! calculated fora05105 cm21, d051024 cm,D5531025 cm,
H050.5 kG, andH014pMS54 kG, with also 1/t50.01V, where
V is the frequency.
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in angle to the specular beam. This would present an experi-
mental challenge, since surface roughness would most likely
lead to an elastic component in the same angular regime, and
the signals detected in such experiments are very weak.

IV. RESULTS AND DISCUSSION

We have presented the theory of eddy current damping
and frequency renormalization of spin waves in conducting
ferromagnetic films. We focus our attention on the Damon-
Eshbach wave, when it propagates perpendicular to the mag-
netization. The methods used here are readily extended to
other propagation geometries.

In Sec. II, we obtain an implicit dispersion relation for the
waves. Ifki is their wave vector, we see that eddy currents
influence the modes modestly in the two regimeskid0!1,
andkid0@1, whered0 is the microwave skin depth. We give
analytic approximations which apply to these limits in Eqs.
~2.13!, ~2.14!, and~2.19!.

The approximate formulas, when extrapolated to the re-
gime kid0;1, suggest eddy current effects can be large in
this regime of wave vector. In Sec. III, we present a Green’s
function analysis which yields forms that may be applied to
analyze the response of the film to a diverse array of probes.
The fluctuation dissipation theorem allows us to use the same
functions to simulate light-scattering spectra. Calculations
we present indeed show eddy current damping to be strong
whenkid0;1, and we have also a dramatic renormalization
of the dispersion relation, when the film thicknessD@d0. In
essence, the skin depth acts as a channel within which the
wave is trapped, and the dispersion relation becomes quali-
tatively similar to that of a wave confined to a film of thick-
nessd0, rather than a film of thicknessD.

We conclude with a discussion of the implication of these
results for various experimental probes of metallic ferromag-
netic films. We have in mind the case of Fe, for which the
microwave skin depthd0;1024 cm. Most of the transition
metals have skin depths very close to this value.

There are two types of experiments where eddy current
effects may play a role: ferromagnetic resonance studies, and
Brillouin light scattering~BLS!.

In an idealized ferromagnetic resonance experiment, one
haski50, if microwaves strike the film at normal incidence.
We see from Eq.~2.11! that in this limit, the film responds at
the ferromagnetic resonanceVHVB , unaffected by eddy cur-
rent effects. In fact, one expects a mode with nonzeroki to
be excited in such experiments. Suppose the sample is finite
in size, possibly in the form of a square or disc with linear
dimensionW. Then one may expect the edges to act as pin-
ning centers, so one will excite a mode withki;p/W. For
typical samples, we expectkid0 to be very small compared to
unity under these circumstances, and eddy current effects
should be quite negligible.

In the BLS studies, as noted above,ki;105 cm21, so for
Fe,kid0;10 or so. Eddy current effects are again small; we
estimated in Sec. II that the linewidth of the modes may
contain a contribution in the range of a few tens of Gauss.
This is significant, and may affect light-scattering spectra.
For example, we may expect eddy current effects in metallic
magnetic superlattices to be comparable to those estimated

for Fe. The additional damping introduced may obscure fine
structure expected in superlattices with a finite number of
layers. Such finite superlattices have a rich spectrum of spin-
wave modes affected sensitively by an external magnetic
field.8 The mode structure of finite Fe/Cr~211! superlattices
has been studied by BLS recently,16 and compared with
theory. The theoretical spectra are considerably richer in de-
tail than the experimental counterparts. The difference may
be due, at least in part, to broadening with origin in eddy
current damping.

It is the case that Damon-Eshbach waves may be
launched in ferromagnetic films via a small scale structures
laid over the film. Meander lines provide an example of such
an excitation source. Numerous microwave and magneto-
optic devices excite modes of finite wave vector by this
means.17 If a structure used for excitation has a linear dimen-
sion w in the direction perpendicular to the direction of
propagation, then the waves excited most efficiently will
haveki;p/w. If w is in the range of 1mm or so, a dimen-
sion quite appropriate to small scale devices, then the waves
launched in an Fe film will havekid0;1. Eddy current damp-
ing may then have a strong effect on the pulse shape gener-
ated, and its propagation length. The Green’s functions in the
Appendix will allow the quantitative study of this issue. We
plan to address this question in the near future.
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APPENDIX: THE EXPLICIT FORM OF THE GREEN’S
FUNCTIONS

The Green’s functionsGi j (y,y8) introduced in Sec. III
are functions not only ofy andy8, but alsoki andV. In the
interest of brevity, we have omitted reference toki andV in
the main paper, and in this section as well. In what follows,
we provide the form of the Green’s functions only for posi-
tive values ofki. The frequencyV may be either positive or
negative.13 One may generate forms valid forki,0, by not-
ing that the functionsGi j (y,y8) are invariant under simulta-
neous reversal of the signski andV.

In the expressions that follow, we haveVH5gH0, VM
5gMS, andVB5g(H014pMS), whileQ is defined in Eq.
~2.5!. We take the root with Re~Q!.0. Note also the defini-
tion of m1 and m2 @Eqs. ~2.2!#, and also that ofmV @Eq.
~2.7!#. Finally, Ṽ5V1 i /t, and we suppose the film lies
betweeny50 andy5D.

Each of the Green’s functions may be written in the form

Gi j ~y.y8!5Gi j
~`!~y2y8!1DGi j ~y,y8!, ~A1!

whereGi j
(`)(y2y8) describes the response of the infinitely

extended ferromagnetic medium, andDGi j (y2y8) correc-
tions which arise from the presence of the two film surfaces.

We have
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A quantity which enters the expressions for the functions
DGi j (y,y8) is

d~V,ki!5F @Q1kimV#22ki
2S m2

m1
D 2Ge1QD2F @Q2kimV#2

2ki
2S m2

m1
D Ge2QD. ~A3!

One sees from the discussion in Sec. II, and Eq.~2.10!
that this quantity has a pole, for fixedki, at the~complex!
frequency of the Damon-Eshbach wave of the film.

Then we have the unfortunately lengthy formulas
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3S m2ki2Q~m1mV2m1

2m1
2d~V,ki!

D Fe2QD@m1Q2ki~m1mV1m2!#S ~Ṽ2VB!
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and finally
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