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Bilayer Heisenberg model studied by the Schwinger-boson Gutzwiller-projection method

T. Miyazaki, I. Nakamura, and D. Yoshioka
Institute of Physics, College of Arts and Sciences, University of Tokyo Komaba, Meguro-ku, Tokyo 153, Japan
(Received 13 November 1995

A two-dimensional, bilayer, square lattice Heisenberg model with different intrapljheagd interplane
(J,) couplings is investigated. The model is first solved in the Schwinger-boson mean-field approximation.
Then the solution is Gutzwiller projected to satisfy the local constraint that there should be only one boson at
each site. For these wave functions, we perform variational Monte Carlo simulation ux@422 sites. It
is shown that the Na order is destroyed as the interplane coupling is increased. The obtained critical value,
J, 13)=3.51, is smaller than that obtained by the mean-field theory. The excitation spectrum is calculated by
a single-mode approximation. It is shown that the energy gap develops oncéehertler is destroyed.

. INTRODUCTION given by Matsuda and Hida™® and the Schwinger-boson
mean-field theor$® resulted in a quite large critical value,

The spin pseudogap observed in underdopedr.=4.24 for the former and 4.48 for the latter. On the other
YBa,Cu;0,_, is one of the fascinating characteristics of hand, more sophisticated methods have resulted in much
the highT, cuprates. NMR experiments showed that evenlower critical values. Quantum Monte Carlo calculation
above the transition temperature of superconductivity,  gives it as 2.5%0.01* and the dimer expansion, which is
the static uniform susceptibility and the NMR relaxation ratean approach from the—c limit, gives 2.56° One of the
T, decrease with decreasing temperafuxieutron scattering aims of the present paper is to obtain this critical value by
experiments showed the decrease of low-energy magnetanother method, the Schwinger-boson Gutzwiller-projection
excitation with decreasing temperature and found the precumethod.
sor of a finite spin gap.It has been pointed out that these  In the Schwinger-boson Gutzwiller-projection method we
astonishing experimental results can be explained providefirst solve the Hamiltonian by the Schwinger-boson mean-
that there is a spin pseudogap in the normal state of higHfield theory'®!’ The obtained ground-state wave function is
T. materials. These phenomena indicating the spirGutzwiller projected to fix the spin at each site to be 1/2. The
pseudogap, however, have not been observed in theave function thus obtained is a kind of resonating valence
La,_,Sr,CuO, systems Therefore it is speculated that the bond®!° (RVB) wave function where long-range bonds are
number of CuQ layers between the insulating layers is es-allowed with amplitude depending on the distance between
sential for the formation of this gap, although a successfuthe sites® This method was first used by Chen and Xiu for
theory has not been presented* the square lattice antiferromagnetic Heisenberg meldgl.

It is conceivable that the finite concentration of holes af-was shown that the wave function obtained this way is quite
fects the spin configuration and the excitation considerablyclose to the true ground state. This method has also been
However, as a first step toward understanding of the spimpplied to the anisotropic Heisenberg motfeThere it was
pseudogap behavior, it is meaningful to study the propertieshown that even in the one-dimensional limit the ground-
of the bilayer CuQ system at zero doping; namely, we in- state energy;-0.43770 per site, is quite close to the exact
vestigate a bilayer square lattice Heisenberg model of spimalue, —0.4431) per site>> Therefore we expect that this
1/2: method gives wave functions quite close to the actual ground

state in the present system, too. A merit of the present

method is that the wave function is given as a RVB wave

H:‘]HZ % a:zl,z S'a'SHW'a”L‘]LZi S1S2 @ function. Thus the vertically coupled dimer state in the limit

of a—o, the disordered state at intermediate valuespf
wherew=x,y, i +w represents a site next to the siten the  and the Nel state at smalk can be described in a unified
w direction, andS , is a spin 1/2 operator at sitein plane  way by wave functions with the same structure.
a. The nearest neighbor spins interact antiferromagnetically In this paper, using this method we show that theeNe
with the intraplane coupling constadit and interplane cou- order at smalk is destroyed atr.=3.51. It is expected that
pling constant), . What we want to know is how the prop- a gap appears in the excitation spectrunwata.. This is
erties of the system change &s/Jj=a increases: at what confirmed by our calculation of the spectrum by a single-
value of « is the Nel order destroyed, and how the excita- mode approximation. To obtain these results we solve the
tion spectrum varies. present Hamiltonian by the Schwinger-boson mean-field

As for the zero-temperature critical value af for the theory in Sec. Il. The obtained ground-state wave function is
destruction of the Nal order, there have been several inves-Gutzwiller projected in Sec. lIl. The single mode approxima-
tigations by various methods: the spin wave approximationtion for the RVB wave function is discussed in Sec. IV. In
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Sec. V, we perform a variational Monte Carlo simulation for

' i in-spi Hue= > > Mt o Skat1+S ca S-kal)
these wave functions and calculate its energy, spin-spin cor-Fwmr ~ < k,a,15k.a,17 T S—k,a,|S—k,a,|
relation, staggered magnetization, and low-lying excitation

- . S ) t - ,
spectrum. In Sec. VI the critical point and the excitation +Hiy(SE 208 k2 = SharS k)~ 1 Vi(Sk21S—k2,
spectrum are discussed.
H ok
~Si11S-k1,) 107 (Sk1,18k2. ~Sk218-k11)

Il. MEAN-FIELD SOLUTION +i5(3;1,1311(,2,1_Sl,z,TSEk,l,L)+C0n5t 9
We introduce four kinds of Bose operatorg,; and jth
Si,a,| (@=1,2), to express the spin operators
A=p—J, (10
S+ _ f SZ _1 T _F 2
a=SiaiSials Sa~5(SiaSia1"SaSa): (2 ie=2J)(A,Sink, + A sink,), (11)
The commutation relations of the spin operatSrare satis- S=—iJ A,. 12

fied in this replacement. We impose a constraint, . . . .
P P The Hamiltonian can be diagonalized by a paraunitary Bo-

SiT,a,TSi,a,T_"siT,a,Lsi,a,L:11 3) goliubov transformation,
in order to guarante®= 1/2. Then the Hamiltonian is rewrit- 1 _ .
ten as skl,FE(cosm;akT—cosmk Bi; +isinhey a’
1 —isinhg; BT, ), (13
HZEJHEI % a:”E (SiT,a,g-SiT-kw,a,—o-Si+W,a,o'si,a,—0' !
TGt poo L fsinhg— + 1
~Sla0Si twa-oSitwa, - oSia0) S-iy = (sl ayg —Tsinhdy Big = cosfl ay
1 ot
+ E‘]LEi ; (S 1,651 2-6Si 20Si1— 0 +coshty BZy), (14
t o ot t s =i(cosh9+ +costoy By +isinhe, a’
_Si,l,a'si,2,70'Si,2,*0'5i,1,0')+/LZ a;l 2 ; Si,a,asi,a,o . K,2,7 \/E k akT k Pkt k aikl
(4 +isinhg, BT, (15

Here u is a chemical potential introduced to enforce the

constraint Eq(3) on the average. To solve the Hamiltonian .t = (—isinhg] ay,—isinhby By +cosh; a'
in the mean-field approximation, we introduce the mean-field —k2.l J2 k Tkt k £kt koKl
order parameter,, ,, A,, andn, ,, which give the ampli-

. . ; . : - ot
tudes of the intralayer singlet correlations, interlayer singlet +coshgy By)), (16)
correlations, and an averaged occupation number, respegere
tively:

+ )\+Eki
1 cost¥, =\/—=
Ay=Ay=— Aw,1=§<si,2,13i w21~ Si21Si+wz2,) (5 2B+

1 i h0+——\/—ki My * 6) (17)
sinhg,, = g Sorly ,
(6) k k=* g K

Az=§<si,l,1si,2,T —Si11Si2,.)

Exe = 2= (nx )% (18
nayg=(sﬁajgsi,a,g>= 7 (7) After the transformation, the Hamiltonian finally becomes

After decoupling the Hamiltonian, we rewrite the operator
using its Fourier transformation:

1 +E— (B} B+ B B-x,) +const.  (19)

_ ik-ri
Siao™ \/NEKD € Skao ®  The ground stat¢G) is defined as the vacuum of the Bose
operator ay;, a_y;, By, and B_y , such that
whereN is the total number of lattice sites for each layer, ay;|G)=a_y||G)=By;|G)=B_|G)=0.
and k summation is taken over the Brillouin zone For a finite-size system, the self-consistent equations for
—m<ksm, —ws<ksw. The mean-field Hamiltonian X, A,, A,, andA, are given by Egs(5)—(7), which lead
Hue is written as to

— t T
H MF_; Ex+ (oot a_y ay))

y il
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1 ; . : : The intra- (inter-) layer spin-spin correlatiolS; 5- Sj a)
({(S.1'S;»)) in the ground state is given as

o) 3[ 1 AN

é-: ] <Si'a.8j’a>:§[m; (Ek+ Ex- )COSk i

<

z 1 2 3[1 SR
+ngCoK, - rj ; “2an% | B

— 2
. : . : + %9 sink-r; i +ngSinK_, - 1; ; (26)
%9 1 2 3 4 A 5 = LI UBREI L
o 4.48 4.62
1 A A
FIG. 1. Mean-field values of order parametdrsandA, , Bose (S 1-Sj2) =5 > | —— —]sink-1; i
. - Y 21ANE \ By Eyl :
condensat@g, and energy gagy as a function ofx.
: 2 3[1 Ywtdé w46
1 N A +nesinKy 1| — 5l g -
g + — , (20) 2 4N k Ek+ Ek*
4N k Ek+ Ek* N
X COK- I+ NgCOK, -1 ;| , (27)
YWwté w9
Aw= 4N2 sink,, Ek+ = Ey_ ) (1) wherer; ;=r;—r;. The summations ovek in Egs.(26) and
(27) vanish in the limit|r; ;| —. Therefore the correlation
. extends to infinity only ifng>0, which means the existence
A _I—E Wwto w96 22 of antiferromagnetic long-range order. Thus, in the mean-
ZTANA Ek+ = field approximation, the critical point of the order-disorder

transition is 4.48.
We find that the free energy takes the same minimal value

fqr AXZAy (slwave) and Ax:—Ay (d wave.z“.'ZS Since IIl. RVB WAVE FUNCTION
either state gives the same result, we consider only the
s-wave state from now on. We denote,=A,=A; and The ground-state wave function obtained in the mean-

—iA,=A, . The solution depends on the size of the systemfield theory is expressed as
N. WhenN is finite, E,. never becomes zero. However, in

the limit of N—oo it is possible thatE,. vanishes at tanhg;” +tanhg;
k=K.=*(m/2,7/2). In such a case it is known that we |G)= H exp{ 5 (Sh218 k2 = Sh11S k1)
need to introduce the Bose condensate and Eqs.(20)—
(22) are rewritten as + -
_.tanh9k tanhg, ot 0
'—2 (SZk1,Sk2.1 ~Sk1,1S—k2,) |0),
1= Jﬁ F Mo Jakdkong, (23 28
“aemn?) ) Bl TR/ Te (29

where |0) is the vacuum of the Schwinger bosons. By the
5 5 Fourier transformation forsj,,, s',, , sf,;, and
T (m + - t - - ot :
J f sink (Yk L )dkdk tng, sl 2., We can get a real-space representation for this
k+ k ground state,

(24

7k+5 Y~
A= 4(277 fwfw( Ex+ Ex- )dkdk e
(25 +; (s 1 8T =St 48,0 [10), (29)

When the Bose condensate; becomes finite, we have

A=4J)A +J, A, . The self-consistent equations are numeri- )

cally solved. Figure 1 shows the dependence of order pa- a: :'_2 [tanhg;’ + tanhgy, Jexg(ik-T; ) (30)
rametersA| andA, , Bose condensatez, and energy gap b2N K K b

Ey. The Bose condensate vanishesvat4.48, and the gap

opens fora>4.48. The intralayer RVB order parametf .

vanishes atr=4.62. Fora>4.62, only the interlayer nearest ) _:__'2 [tanhg; — tanhg; Jexp(ik-T; ;) (31)
neighbor spin-spin correlation exists. ' k K h

_ t o of toof
|G>—eXF{i§;¢ (S 2,152, ~Si11S.1)
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It is evident that the local constraint E@) is not satisfied in

: , - o -1 ~ iker
this wave function. We remove this difficulty by projecting Sca= _2 S|,ae'k N (34)
the wave function to a space where each site is singly occu- \/N !
pied; namely, we perform the Gutzwiller projection, using o _ o
the Gutzwiller projection operatd®, where|E..) are the variational excited states. The excitation

spectrumw - (K) is calculated as

_ T T T +
|G)=P 12#1 a;,i(Si215j 2, = Si11S)1,) £, (K)

N (k)= S (35
+; (81,8 01— ST 118050 ] 10). (32)
From Eq.(32) it is clear that the ground stat&) is a RVB .
state. The we|ghts of the bond, ; andb; ;, decay propor- S.(k)= —2 (G|(S1=87)(S1%S,)IG)e ",
tionally tor; except forb; ; at smaIIJL Although it would (36)

be possible to regard eveay ; andb; ; as variational param-
eters, we here restrict them to be those given in E.and
(31). In the case ofx=0, this restriction is justified by the
result itself: Chen and Xftt have shown that this choice of k-

. fo(k)=% G +S)[H,(S ;=S ,)]|G)e
a; ; gives excellent results for the ground-state energy and (k) 2 (GI(S1=SH.(51 5 1IG)e™
the staggered magnetization. The weigafs andb; ; de-
pend ona=J, /J; through the order parameters. We con- H G +
sider thise in a;; andb;; as a variational parameter. In E { |(S' = S' (=
order to avoid confusion, we use a symlg to mean the

|1 + !, 1"'32 )

Ila)

value of a used to obtain the ground state. +§01S 0 17 S0 o )G
IV. EXCITATION SPECTRUM +(1+1)_2 (G(S'12SH)(S4S 5
Once the approximate ground state is obtained, the exci- - ,
tation spectrum can be calculated by a method given by —S,S7,)|G)elk i (37)

Feynman for liquid *He, namely, the single-mode

approximatiorf®?” The essential point of this method is to Here,o'=*+x, *y, i+’ represents a site next to the site

consider a low-lying excited state intuitively and calculatei in the w’ direction,S.. (k) is the static structure factor and

the excitation spectrum from a known ground state. In ourf . (k) is a three-point correlation function of spin operators.

case, the low-lying state of this Hamiltonian should be theThe two modes represent in-phase,(k), and out-of-phase,

spin wave excitation. Thus we consider the following excitedw _ (k), spin excitations of the two layers.

states: Since |G) is a RVB state, we must consider a loop-
covering associated with two valence bond configurations,
|c,) and|c,), to calculate Eqs(36) and(37).%° For Eq.(36)

[E+)=(S1%S¢2)|G), (33 we use known results,

(i,a),(j,b) belong to the same loop and the same sublattice

(c1|S7aSjplca)

= 1

(cqlcy) ~ 5 (i,a),(j,b) belong to the same loop and different sublattices (38)

0, (i,a),(j,b) belong to different loops.

For Eq.(37) the following rule is found:
1 . . .
7 (i,b),(i+ 8,¢c) belong to the same loop arit,a)=(i+ é,c)
(1S5S b+ 6.c/C2) _ (39
(cq]cy) - 7 (i,b),(i+ 8,c) belong to the same loop aifba)=(i,b)

0 otherwise.
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Here, i+ 6 means the nearest neighbor of thih site. 0 } . ‘ °
S. (k) can be calculated directly from the first rule. Using oo ° °
the second rulef . (k) becomes o
~ -0.2 | ® o] B
_Jd g 80
f. (k)= 2 (2—cok,—Coy) 5 o OF
N 5 -0.4 | :
5 ¢
X2 3 3 (OIS waS oS wal®) T ol * |
' o «lap) LI
4(1¥1)J, o oz o cuap) e s e e e
+T2i (G|S2S11S2G). (40) -0.8 ] 2 . 3 a 5
]

Thus we have only to count the number of nearest neighbors
in the same loop for each loop covering. This simplifies the £ 2 The nearest neighbor spin correlation for each direction

numerical calculation. is shown. Open circles are fef, and solid circles are fot, . Error
bars result from Monte Carlo statistical errors.
V. NUMERICAL RESULTS

In this section, we show numerical results of the ground-estimated value of-0.33487%?° The magnitude ofe; de-
state energy, spin-spin correlation, staggered magnetizatioreases ag;, increases and finally vanishesa@j=4.62. On
and excitation spectrum as a function ef We perform  the other hand, the magnitude f(«,) increases and satu-
Monte Carlo simulations in which RVB states are sampled tgates to 0.75 at,=4.62. At a,=>4.62 the intraplane spin
satisfy detailed balance for lattices withxLx2 sites, correlation vanishes and the dimerized state is realized.
whereL=<24. All the numerical calculations are performed  The ground-state energy per site at a giveis calculated
with periodic boundary conditions. For each system size w&@s a minimum ofE(ap)=2Jj€|(ap) +3J, €, (ap) with re-
solve the self-consistent equatio(®0)—(22), and calculate Spect toa,. Thus we can get an optimal variational param-
a; ;, andb; ; to be used to construct the wave function at thateter and energy for a giver. The relation between the
system size. variational parametera(,) and a real couplingd) is shown

in Fig. 3, and the ground-state energy per site is shown in
A. Ground-state energy Fig. 4. In Fig. 4 we also show the energy of the dimerized
i i , state per site;- %aJ” (straight ling, for reference. The dif-
The energy per site of the bilayer Heisenberg moBels  ference between the optimal energy and the dimerized en-

given by the nearest neighbor spin-spin correlationsy gy hecomes smaller with increasing interlayer coupling.
€(L,ap) ande, (L,ap) for a given wave function specified

by the parametew,, :
B. Staggered magnetization

1
E(L,ap)IZJHGH(L,ap)-i-EJLQ(L,ap), (41 We calculated the spin-spin correlatiof .- S ,), be-
tween two arbitrary sitesi(a) and (j,b). The results for a
where 24X 24X 2 lattice system are shown in Fig. 5, where the

absolute value of the intralayer spin-spin correlation is plot-
1 ted as a function of the distance between the two sites. Open
éi(Lap)= WZ ZN“ a;u (GlS.a* SwalG). (42 circles are fora=0.4 and solid circles are fak=4.6. It is
obvious that there is a long-range orderaat 0.4 and no

1 long-range order ak=4.6. In the latter case, the correlation
e.(Liap)= 72 (GlS1-S4G). (43
3 T T
To estimate the energy in the thermodynamic limit, the o
size dependence is examined and we find the following size o
scaling for any fixedu,: ©
2 ° ]
GH(L,ap)=E”(ap)+)\L_3+---, (44 Uy o ©
e (Liap)=e (ap) +AL 3+, (45 )b ’ f
O
where\ is a constant. This size scaling coincides with the 5
spin wave theory for a square lattice. In Fig.e(«,) and
€, (ap) are shown. Open circles and solid circles indicate 09 ] 3 2

o 2
€/(ap) ande, (a,). Error bars show the standard deviation o
of the Monte Carlo simulation. The interplane nearest neigh-

bor spin-spin correlation ¢y has a value of FIG. 3. The variational paramete, which minimizes the

—0.3333£0.0006 ata,=0, which is quite close to the best ground-state energy for a given parameter
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0 J T 0.4 T 0.8
E/J” Mo (L) Me‘l 2

.
-0.5 | ] 0.3 M 0.0

-1.5 T 0.1 <46l
) , , I . /
0 1 2 3 4
2 0 0.05 ., 0.1 0.15
FIG. 4. Total energy per site as a functionaafOpen circles are FIG. 6. Mo(L) versus 1 for «=0.0, 0.8, 1.7, 3.1, and 4.6.
for variational Monte Carlo results and the straight line is for dimer-
ized state,~0.375x. whereu is a constant. This scaling agrees with the prediction

of the spin wave theory and arguments given by Hiysghe
decreases exponentially and the typical correlation length fostaggered magnetizatiod ;=M () as a function ofa is
the disordered state is of the order of a lattice constant.  given in Fig. 7. In this figure, the results of the mean-field
The long-range order is of the antiferromagnetic type. Intheory (MFT) are also shown. In the case of small the
the ordered phase the staggered magnetization of the infinitinterlayer coupling enhances the antiferromagnetic long-
size system is obtained from the size dependence of the stagange order. This is because the system acquires a weak three
gered spin-spin correlation between the most separated paigimensionality and quantum fluctuation is suppressed. On
For a given lattice siz&, we calculated both the intralayer the other hand, for largew, the magnetizations are sup-
correlationMo(L)? and the interlayer correlatiol ,(L)?: pressed. This behavior is consistent with the result of Mat-
suda and Hida in the spin wave thedfThe staggered mag-
1 , netization vanishes at.= 3.51+0.05.
Mo(L)?= 552" 2 (IS Sa (49

C. Excitation spectrum

PEIANE We calculate the structure fact@®@. (k) and excitation
Ma(L)™= le;’ (IS4 S"2|>’ @ spectrumw. (k) as a function of couplingr. The calcula-

tions are done for a 2424x2 lattice. The behavior of

where the summation is taken for all the pairs ahdj such  S.(k) and w. (k) strongly depends on whether the system

thatri—rj=(=L/2,=L/2). has long-range order or not. The result &r(k) is shown in

Except ata=0, My(L) and M;(L) coincide within the Fig. 8 andw. (k) is shown in Fig. 9. Here, three typical
Monte Carlo statistical error. As shown in Fig. 6, they arecouplings are takenx=0.4 (open circley a=2.4 (closed
well fitted by the size scaling circleg, anda= 3.6 (open squargsThe third coupling is for
the system in the disordered phase. For each figarés for

Mo(L)=My(L)=M(=)+puL "+, (48)
0.5 [ ' ' T ' 0.025
0.8 T MD é) (S} o a1
=04
* 3 Z=46 0.445 O % 1 o0.02
' «* 3 @
0.6 1 " (e}
= 0.3 ¢ o 7 0.015
2 g o
'« 0.4 1 4
o) 5 ]
~= o 0.2 . o 0.01
0.2 r 92 B B NI =} ]
%% (GO(AO (O Q:(E0 (€S (((OL(E98(ESE OO © 0 ° 1 © M ® o aI 0 ’ o 0 5
® VMC o
0 0 P 1 1. Je 5O L 0
0 1 2 3 4 5 6
o
FIG. 5. Spin-spin correlation fow=0.4 (open circles and FIG. 7. Staggered magnetization as a functionaof Open

a=4.6 (solid circles. Each calculation is done for a 224X 2 circles are for the mean-field theory and solid circles are for varia-
lattice. Herey; j means the distance between two sites. It is obviougional Monte Carlo results. The magnitude of tkdinear term in
that there is a long-range order far=0.4 but no long-range order the expansion of, (k) around thel’ point, a;, is also shown by
for a=4.6. open squares.
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1 - 5 0.04"""’"“\*"’"‘""7%’%?? (a)
0.03[ :}5% - o a=04
a=24
1 @E} ] é% ° o a-3s]
= el o 0
+ 0 o
n JR= N o o
B F ){ 0] o 1
0.5 °
o
o0 OOOO o
© PEYIII N o
oooinoobn““’ QQQooo
0 -aAREeS A n0n00000n0DI00I0N000na, O 9Ra
r X M r
4 T
(b)
+ o a=04
3 r o e a=24]
o a=36
—_ o
= f
42 : f
i
oZ®o Ogm
1 DDDDDDDQ.o o0 _
[]DDDDDDEEEEOQO...;OO OO..EDDDDD
0...... Ooooooooo OOO....||
0 ooooooO N L 0000
r X M T

FIG. 8. The structure factor&@) S, (k) and(b) S_(k). Open
circles, closed circles, and open squares areafer0.4, 2.4, and
3.6, respectively. Inset shows the detailed structure-68.6 along
the I'-X line. Note that the value at thel point of S_(k) is too
large to be shown in the figure.

the plus mode and(b) is for the minus mode, and
I'=(0,0), X=(0,7), M=(ar,7) in momentum space.

It is obvious from Fig. 8 that, (k) of the ordered state
(a=0.4, 2.4) is proportional t&k near thel’ point and
S_(k) has an antiferromagnetic peak at tilepoint. On the
other hand S, (k) at = 3.6 increases quadratically with
near thel” point[see the inset of Fig.(8)]. In the Neel state,
the excitation is gapless at two points. Onewis(k) at the
I' point. Around this point, since the functidn (k) in Eq.

(35 behaves asf, (k)xk? and the structure factor as 30 ' zl o wi(k=0,0) '

S, (k)xk, the excitation is proportional t&. The other is o5 | #5F <. o @ w-(k=mm) ]
w_(k) at theM point whereS_(k) diverges due to the an-

tiferromagnetic long-range order. Thus the gap opens when _ 5,4 [ *° o ] ]
the structure factor becomes proportional to the squate of 2 25t i ©

for the former point and when the structure factor does not = 15 [~ 00 © ]
diverge, that is, the system becomes the disordered state for3 15 e °

the latter point. In the former case, we should determine the 10fF ° 1% 1
critical coupling e, where the gap opens. We take fikg o ?
points and do the following fitting along th&-X line: 57 o b ]
S, (k) =aky+ a2k§+a3k)3(, wherea,,a,, andas are fit- e ®

ting parameters. The result af versusa is shown in Fig. 7 0o 'ef‘ =é * %:e 4 ' 5 é 7 8
(open squargs Comparing the result of staggered magneti- o

zation with this coefficient, we find that the critical point
ac is equal toa, within the statistical and fitting errors,
which givesa.=3.51+0.05. Thea dependence of the gap
is shown in Fig. 10. All values are scaled by. Open circles

10 o ai0.4 (a)
e =24
I Da=3.6 C i
oy ? #%
T
~ §§§Q§6061b§§§§§
3’ 4 —%‘ §§§§§§"§§§ Qé %]
L]
8% 00000000000, 0000,®
2 4 Sgoo OOOo OOO og b
® 8
°r X M r
6 o o=04 ‘ (b)
Boag, o 0=24 oag
5 Pog,, U 0=3.6 o
IR L TR a0
= Hémm{,;u% gt
=, ey e
~ [ ]
2 .° “oe”  e° e
o° O © 04
1 r O [ ] i
80
i 'y
oy X M r

FIG. 9. Excitation spectrunta) w.(k) and (b) w_(k). The
same values fowr are chosen and indicated by the same symbols as
in Fig. 8. At «=3.6, a gap opens at tHé point for w, (k) and at
the M point for w_(K).

are forw,(0,0) and closed circles are far_(, ). In the
disordered phase, the excitation energy (m,7) always
takes a smaller value. The spin wave velocity alonglthe

X line is calculated for the ordered state and the result is
shown in the inset of Fig. 10. Herg, is the renormalization
factor; namely, the spin wave velocity is given kﬁZCJH.

As the coupling increases, the velocity first slightly decreases
and then suddenly increases near the critical point.

FIG. 10. The a« dependence of the gap fap,(0,0) and
w_(m,). In the inset, the renormalization factor of the linear spin
wave velocity,Z., is also shown.
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VI. DISCUSSION the disordered state the antiferromagnetic spin fluctuation is

strong. It should be remarked that even though the spectrum

In this paper we first solved the Hamiltonian by the _ . B 2
Schwinger-boson mean-field theory. Then the solution wa%”a‘s(g) Z::u:];'filtogﬁ(s)usﬁjngbuelar L?Ed_rastﬁ:, Tgkt_hg)'ssngéghg
Gutzwiller projected to obtain variational ground-state Wavebeha.vior is not apparent in Fi%](b) due to the Iaék of data
functions, which were examined by Monte Carlo simulation | ht
for finite sizes. close enough t®.

We first see the advantage of our variational Monte Ca”%egten%:ro XQS: ::J? rr;soudlflca:)rfcboemssmthaerezlnv8i|§1-|3¥r?ér
simulation. In the mean-field calculation, the system be- 9 ’ P

comes dimerized forr>4.62. For this region, the interlayer ;?r?tTg-drs(:) dsep;n ‘;V;(‘{fnatt?;gfgg Osuer”rzssuﬁxfgﬁﬁleogséc?rTJdm the
order parameted | is zero and only dimer coupling between 9 pp . P

the layers is permitted. In addition, the excitation spectrumIS roughly proportional to those of other methods over the

becomes flat in momentum spadgy(k) = \?— &% As a entire Brillouin zone. The maximal value is around 2165t

matter of fact, theoretically, this state must only be realizecf( or L.=(m/2,m/2). Series expansions predict the maximum
0 y, th ony Is about 2.35; at theL point** and the single-mode approxi-
at a—. This disadvantage is removed in Monte Carlo

simulation. It is estimated from Fig. 4 that the virtual critical mation based on the expansions around the Ising limit esti-
: 9- _ates the maximum about 25atL point* Both results are

point where the system stabilizes with the dimerized state Rlose to our result. The most remarkable difference from the

11.0. This means that the Guizwiller projection improves theother methods is the spin wave velocity. The renormalization

wave functions. The improved wave function can describ(%actOrZ is 1.99+0.03 ata=0 which is 1.69 times larger
C . . - .

the disordered state without dimerization at least up tq[han the best estimated value. around % 08023 This dif-

a=110. . S ference indicates that multimagnon contributionSto(k) is
There have been many investigations for the order- - . X . .

. iy i ) . . not negligible. However, since this method gives a qualita-
disorder critical point. Our mean-field result is essentially the

same as those of the previous repamd the modified spin tively correct behavior, we b_elleve it gives qualitatively cor-
wave theory® These give the critical value of around rect spectrum a0 also. Finally, we remark that t_he non-
4531 This value is much larger than the results by othermO"CtONIC behavior of the spin wave velocity with

Y ) . 9 i Y increasing interlayer coupling can be understood from that of
methods: 2.56 by the dimer expansion, and 2.8101 by I P

the coefficient &;) of the structure factor shown in Fig. 7,
the quantum Monte Carlo method. However, these latter val-. . S .
: . . ; since the spin wave velocity is inversely proportional to
ues are still formidably larger than the valuemfealized in
. S : a;.

the bilayer cuprates. Our motivation for this work was to see
if our method gives a critical value closer to the experimentabe

_ 32
value or not. Our resultec=3.51+0.057 does not meet method. We find that there is an order-disorder transition

th.|s expectgtlon, anq conflrm_s the previous theones.tha\}vith increasing interlayer coupling. The critical point is
without doping the bilayer Heisenberg model will not give a.=3.51+0.05. The excitation spectrum can be calculated

. i ’ ) c
an explanation for the spin gap behavior of the expenments,ror a wide range of coupling and we find that the spin exci-

We also calculated the excitation spectrum, especially fo{ation always has a finite gap for the disordered phase and

the disordered phase. It is not obvious whether the systen L : .
- X . . the minimum of the spectrum is located at tepoint. Our
has always a finite gap in the disordered state. For instance

there is no long-range order for the one-dimensi@all/2 model corresponds to the half-filled case for high-cu-

. . . .. prates. Although, in this case is quite large, it is possible
antiferromagnetic Heisenberg model, though the exCItatlorf[i)hat hole doping reduces the value extremely. Then it will be

spectrum is gapless. In our bilayer two-dimensional Heisen- " . ) ) :
: ; - ossible that our disordered state continuously changes into

berg model, we find that there is always a finite gap for th . L

. I S L .the spin gap state. A similar treatment for a hole doped
disordered state. Within the statistical and fitting errors, Itmodel thet-t’-J model. is our next problem
occurs ata.=3.51+0.05. In the disordered region, the spin- k ' P )
spin correlation decays exponentially with distance. The
structure factorS_(k) near the critical coupling, however,
has a large maximal value at thé point, which minimizes The authors thank M. Ogata for useful comments on the
the excitation spectrum at that point. This shows that even imesults of our Monte Carlo simulations.

In conclusion, we have investigated the bilayer Heisen-
rg model using the Schwinger-boson Gutzwiller-projection
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