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A two-dimensional, bilayer, square lattice Heisenberg model with different intraplane (Ji) and interplane
(J') couplings is investigated. The model is first solved in the Schwinger-boson mean-field approximation.
Then the solution is Gutzwiller projected to satisfy the local constraint that there should be only one boson at
each site. For these wave functions, we perform variational Monte Carlo simulation up to 2432432 sites. It
is shown that the Ne´el order is destroyed as the interplane coupling is increased. The obtained critical value,
J' /Ji53.51, is smaller than that obtained by the mean-field theory. The excitation spectrum is calculated by
a single-mode approximation. It is shown that the energy gap develops once the Ne´el order is destroyed.

I. INTRODUCTION

The spin pseudogap observed in underdoped
YBa2Cu3O72x is one of the fascinating characteristics of
the high-Tc cuprates. NMR experiments showed that even
above the transition temperature of superconductivity,Tc ,
the static uniform susceptibility and the NMR relaxation rate
T1 decrease with decreasing temperature.

1 Neutron scattering
experiments showed the decrease of low-energy magnetic
excitation with decreasing temperature and found the precur-
sor of a finite spin gap.2 It has been pointed out that these
astonishing experimental results can be explained provided
that there is a spin pseudogap in the normal state of high-
Tc materials. These phenomena indicating the spin
pseudogap, however, have not been observed in the
La22xSrxCuO4 systems.

3 Therefore it is speculated that the
number of CuO2 layers between the insulating layers is es-
sential for the formation of this gap, although a successful
theory has not been presented.4–11

It is conceivable that the finite concentration of holes af-
fects the spin configuration and the excitation considerably.
However, as a first step toward understanding of the spin
pseudogap behavior, it is meaningful to study the properties
of the bilayer CuO2 system at zero doping; namely, we in-
vestigate a bilayer square lattice Heisenberg model of spin
1/2:

H5Ji(
i

(
w

(
a51,2

Si ,a•Si1w,a1J'(
i
Si ,1•Si ,2 , ~1!

wherew5x,y, i1w represents a site next to the sitei in the
w direction, andSi ,a is a spin 1/2 operator at sitei in plane
a. The nearest neighbor spins interact antiferromagnetically
with the intraplane coupling constantJi and interplane cou-
pling constantJ' . What we want to know is how the prop-
erties of the system change asJ' /Ji[a increases: at what
value ofa is the Néel order destroyed, and how the excita-
tion spectrum varies.

As for the zero-temperature critical value ofac for the
destruction of the Ne´el order, there have been several inves-
tigations by various methods: the spin wave approximation

given by Matsuda and Hida12,13 and the Schwinger-boson
mean-field theory7,8 resulted in a quite large critical value,
ac54.24 for the former and 4.48 for the latter. On the other
hand, more sophisticated methods have resulted in much
lower critical values. Quantum Monte Carlo calculation
gives it as 2.5160.01,14 and the dimer expansion, which is
an approach from thea→` limit, gives 2.56.15 One of the
aims of the present paper is to obtain this critical value by
another method, the Schwinger-boson Gutzwiller-projection
method.

In the Schwinger-boson Gutzwiller-projection method we
first solve the Hamiltonian by the Schwinger-boson mean-
field theory.16,17 The obtained ground-state wave function is
Gutzwiller projected to fix the spin at each site to be 1/2. The
wave function thus obtained is a kind of resonating valence
bond18,19 ~RVB! wave function where long-range bonds are
allowed with amplitude depending on the distance between
the sites.20 This method was first used by Chen and Xiu for
the square lattice antiferromagnetic Heisenberg model.21 It
was shown that the wave function obtained this way is quite
close to the true ground state. This method has also been
applied to the anisotropic Heisenberg model.22 There it was
shown that even in the one-dimensional limit the ground-
state energy,20.4377J per site, is quite close to the exact
value, 20.4431J per site.23 Therefore we expect that this
method gives wave functions quite close to the actual ground
state in the present system, too. A merit of the present
method is that the wave function is given as a RVB wave
function. Thus the vertically coupled dimer state in the limit
of a→`, the disordered state at intermediate values ofa,
and the Ne´el state at smalla can be described in a unified
way by wave functions with the same structure.

In this paper, using this method we show that the Ne´el
order at smalla is destroyed atac53.51. It is expected that
a gap appears in the excitation spectrum ata.ac . This is
confirmed by our calculation of the spectrum by a single-
mode approximation. To obtain these results we solve the
present Hamiltonian by the Schwinger-boson mean-field
theory in Sec. II. The obtained ground-state wave function is
Gutzwiller projected in Sec. III. The single mode approxima-
tion for the RVB wave function is discussed in Sec. IV. In
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Sec. V, we perform a variational Monte Carlo simulation for
these wave functions and calculate its energy, spin-spin cor-
relation, staggered magnetization, and low-lying excitation
spectrum. In Sec. VI the critical point and the excitation
spectrum are discussed.

II. MEAN-FIELD SOLUTION

We introduce four kinds of Bose operators,si ,a,↑ and
si ,a,↓ (a51,2), to express the spin operators

Si ,a
1 5si ,a,↑

† si ,a,↓ , Si ,a
z 5

1

2
~si ,a,↑

† si ,a,↑2si ,a,↓
† si ,a,↓!. ~2!

The commutation relations of the spin operatorsSi are satis-
fied in this replacement. We impose a constraint,

si ,a,↑
† si ,a,↑1si ,a,↓

† si ,a,↓51, ~3!

in order to guaranteeS51/2. Then the Hamiltonian is rewrit-
ten as

H5
1

2
Ji(

i
(
w

(
a51,2

(
s

~si ,a,s
† si1w,a,2s

† si1w,a,ssi ,a,2s

2si ,a,s
† si1w,a,2s

† si1w,a,2ssi ,a,s!

1
1

2
J'(

i
(
s

~si ,1,s
† si ,2,2s

† si ,2,ssi ,1,2s

2si ,1,s
† si ,2,2s

† si ,2,2ssi ,1,s!1m(
i

(
a51,2

(
s

si ,a,s
† si ,a,s .

~4!

Here m is a chemical potential introduced to enforce the
constraint Eq.~3! on the average. To solve the Hamiltonian
in the mean-field approximation, we introduce the mean-field
order parametersDw,a , Dz , andna,s , which give the ampli-
tudes of the intralayer singlet correlations, interlayer singlet
correlations, and an averaged occupation number, respec-
tively:

Dw[Dw,252Dw,15
1

2
^si ,2,↓si1w,2,↑2si ,2,↑si1w,2,↓&, ~5!

Dz5
1

2
^si ,1,↓si ,2,↑2si ,1,↑si ,2,↓&, ~6!

na,s5^si ,a,s
† si ,a,s&5

1

2
. ~7!

After decoupling the Hamiltonian, we rewrite the operator
using its Fourier transformation:

si ,a,s5
1

AN(
k
eik•risk,a,s , ~8!

whereN is the total number of lattice sites for each layer,
and k summation is taken over the Brillouin zone
2p<kx<p, 2p<ky<p. The mean-field Hamiltonian
HMF is written as

HMF5(
k

(
a

l~sk,a,↑
† sk,a,↑1s2k,a,↓

† s2k,a,↓!

1 igk~sk,2,↑
† s2k,2,↓

† 2sk,1,↑
† s2k,1,↓

† !2 igk
!~sk,2,↑s2k,2,↓

2sk,1,↑s2k,1,↓!2 id!~sk,1,↑s2k,2,↓2sk,2,↑s2k,1,↓!

1 id~sk,1,↑
† s2k,2,↓

† 2sk,2,↑
† s2k,1,↓

† !1const ~9!

with

l5m2Ji , ~10!

gk52Ji~Dxsinkx1Dysinky!, ~11!

d52 iJ'Dz . ~12!

The Hamiltonian can be diagonalized by a paraunitary Bo-
goliubov transformation,

sk,1,↑5
1

A2
~coshuk

1ak↑2coshuk
2bk↑1 isinhuk

1a2k↓
†

2 isinhuk
2b2k↓

† !, ~13!

s2k,1,↓
† 5

1

A2
~ isinhuk

1ak↑2 isinhuk
2bk↑2coshuk

1a2k↓
†

1coshuk
2b2k↓

† !, ~14!

sk,2,↑5
1

A2
~coshuk

1ak↑1coshuk
2bk↑1 isinhuk

1a2k↓
†

1 isinhuk
2b2k↓

† !, ~15!

s2k,2,↓
† 5

1

A2
~2 isinhuk

1ak↑2 isinhuk
2bk↑1coshuk

1a2k↓
†

1coshuk
2b2k↓

† !, ~16!

where

coshuk
65Al1Ek6

2Ek6
,

sinhuk
652Al2Ek6

2Ek6
sgn~gk6d!, ~17!

Ek65Al22~gk6d!2. ~18!

After the transformation, the Hamiltonian finally becomes

H MF5(
k
Ek1~ak↑

† ak↑1a2k↓
† a2k↓!

1Ek2~bk↑
† bk↑1b2k↓

† b2k↓!1const. ~19!

The ground stateuG& is defined as the vacuum of the Bose
operator ak↑ , a2k↓ , bk↑ , and b2k↓ , such that
ak↑uG&5a2k↓uG&5bk↑uG&5b2k↓uG&50.

For a finite-size system, the self-consistent equations for
l, Dx , Dy , andDz are given by Eqs.~5!–~7!, which lead
to
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15
1

4N(
k

S l

Ek1
1

l

Ek2
D , ~20!

Dw5
1

4N(
k
sinkwS gk1d

Ek1
1

gk2d

Ek2
D , ~21!

Dz5
i

4N(
k

S gk1d

Ek1
2

gk2d

Ek2
D . ~22!

We find that the free energy takes the same minimal value
for Dx5Dy (s wave! and Dx52Dy (d wave!.24,25 Since
either state gives the same result, we consider only the
s-wave state from now on. We denoteDx5Dy[D i and
2 iDz[D' . The solution depends on the size of the system,
N. WhenN is finite,Ek6 never becomes zero. However, in
the limit of N→` it is possible thatEk6 vanishes at
k5K656(p/2,p/2). In such a case it is known that we
need to introduce the Bose condensatenB , and Eqs.~20!–
~22! are rewritten as

15
1

4~2p!2
E

2p

p E
2p

p S l

Ek1
1

l

Ek2
Ddkxdky1nB , ~23!

D i5
1

4~2p!2
E

2p

p E
2p

p

sinkwS gk1d

Ek1
1

gk2d

Ek2
Ddkxdky1nB ,

~24!

D'5
1

4~2p!2
E

2p

p E
2p

p S gk1d

Ek1
2

gk2d

Ek2
Ddkxdky1nB .

~25!

When the Bose condensatenB becomes finite, we have
l54JiD i1J'D' . The self-consistent equations are numeri-
cally solved. Figure 1 shows thea dependence of order pa-
rametersD i andD' , Bose condensatenB , and energy gap
Eg . The Bose condensate vanishes ata54.48, and the gap
opens fora.4.48. The intralayer RVB order parameterD i
vanishes ata54.62. Fora.4.62, only the interlayer nearest
neighbor spin-spin correlation exists.

The intra- ~inter-! layer spin-spin correlation̂Si ,a•Sj ,a&
(^Si ,1•Sj ,2&) in the ground state is given as

^Si ,a•Sj ,a&5
3

2 F 1

4N(
k

S l

Ek1
1

l

Ek2
D cosk•r i , j

1nBcosK1•r i , j G22 3

2 F 1

4N(
k

S gk1d

Ek1

1
gk2d

Ek2
D sink•r i , j1nBsinK1•r i , j G2, ~26!

^Si ,1•Sj ,2&5
3

2 F 1

4N(
k

S l

Ek1
2

l

Ek2
D sink•r i , j

1nBsinK1•r i , j G22 3

2 F 1

4N(
k

S gk1d

Ek1
2

gk2d

Ek2
D

3cosk•r i , j1nBcosK1•r i , j G2, ~27!

wherer i , j5r i2r j . The summations overk in Eqs.~26! and
~27! vanish in the limitur i , j u→`. Therefore the correlation
extends to infinity only ifnB.0, which means the existence
of antiferromagnetic long-range order. Thus, in the mean-
field approximation, the critical point of the order-disorder
transition is 4.48.

III. RVB WAVE FUNCTION

The ground-state wave function obtained in the mean-
field theory is expressed as

uG&5)
k
expF i tanhuk11tanhuk

2

2
~sk,2,↑

† s2k,2,↓
† 2sk,1,↑

† s2k,1,↓
† !

2 i
tanhuk

12tanhuk
2

2
~s2k,1,↓

† sk,2,↑
† 2sk,1,↑

† s2k,2,↓
† !G u0&,

~28!

where u0& is the vacuum of the Schwinger bosons. By the
Fourier transformation for sk,1,↑

† , s2k,1,↓
† , sk,2,↑

† , and
s2k,2,↓
† , we can get a real-space representation for this
ground state,

uG&5expF(
i , j

ai , j~si ,2,↑
† sj ,2,↓

† 2si ,1,↑
† sj ,1,↓

† !

1bi , j~sj ,1,↓
† si ,2,↑

† 2si ,1,↑
† sj ,2,↓

† !G u0&, ~29!

ai , j5
i

2N(
k

@ tanhuk
11tanhuk

2#exp~ ik•r i , j !, ~30!

bi , j5
2 i

2N(
k

@ tanhuk
12tanhuk

2#exp~ ik•r i , j !. ~31!

FIG. 1. Mean-field values of order parametersD i andD' , Bose
condensatenB , and energy gapEg as a function ofa.
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It is evident that the local constraint Eq.~3! is not satisfied in
this wave function. We remove this difficulty by projecting
the wave function to a space where each site is singly occu-
pied; namely, we perform the Gutzwiller projection, using
the Gutzwiller projection operatorP,

uG&5PF(
iÞ j

ai , j~si ,2,↑
† sj ,2,↓

† 2si ,1,↑
† sj ,1,↓

† !

1bi , j~sj ,1,↓
† si ,2,↑

† 2si ,1,↑
† sj ,2,↓

† !GNu0&. ~32!

From Eq.~32! it is clear that the ground stateuG& is a RVB
state. The weights of the bond,ai , j andbi , j , decay propor-
tionally to r i , j

23 except forbi , j at smallJ' . Although it would
be possible to regard everyai , j andbi , j as variational param-
eters, we here restrict them to be those given in Eqs.~30! and
~31!. In the case ofa50, this restriction is justified by the
result itself: Chen and Xiu21 have shown that this choice of
ai , j gives excellent results for the ground-state energy and
the staggered magnetization. The weightsai , j and bi , j de-
pend ona5J' /Ji through the order parameters. We con-
sider thisa in ai , j and bi , j as a variational parameter. In
order to avoid confusion, we use a symbolap to mean the
value ofa used to obtain the ground state.

IV. EXCITATION SPECTRUM

Once the approximate ground state is obtained, the exci-
tation spectrum can be calculated by a method given by
Feynman for liquid 4He, namely, the single-mode
approximation.26,27 The essential point of this method is to
consider a low-lying excited state intuitively and calculate
the excitation spectrum from a known ground state. In our
case, the low-lying state of this Hamiltonian should be the
spin wave excitation. Thus we consider the following excited
states:

uE6&5~Sk,1
2 6Sk,2

2 !uG&, ~33!

Sk,a
2 [

1

AN(
i
Si ,a

2 eik•ri, ~34!

whereuE6& are the variational excited states. The excitation
spectrumv6(k) is calculated as

v6~k!5
f6~k!

S6~k!
, ~35!

S6~k!5
1

N(
i , j

^Gu~Si ,1
1 6Si ,2

1 !~Sj ,1
2 6Sj ,2

2 !uG&eik•ri , j ,

~36!

f6~k!5
1

N(
i , j

^Gu~Si ,1
1 6Si ,2

1 !@H,~Sj ,1
2 6Sj ,2

2 !#uG&eik•ri , j

5
Ji

N (
i ,l ,v8

^Gu~Sl ,1
1 6Sl ,2

1 !~2Si ,1
2 Si1v8,1

z
7Si ,2

2 Si1v8,2
z

1Si ,1
z Si1v8,1

2
6Si ,2

z Si1v8,2
2

!uG&eik•ri ,l

1~171!
J'

N(
i ,l

^Gu~Sl ,1
1 6Sl ,2

1 !~Si ,1
z Si ,2

2

2Si ,1
2 Si ,2

z !uG&eik•ri ,l. ~37!

Here,v856x, 6y, i1v8 represents a site next to the site
i in thev8 direction,S6(k) is the static structure factor and
f6(k) is a three-point correlation function of spin operators.
The two modes represent in-phase,v1(k), and out-of-phase,
v2(k), spin excitations of the two layers.

Since uG& is a RVB state, we must consider a loop-
covering associated with two valence bond configurations,
uc1& anduc2&, to calculate Eqs.~36! and~37!.20 For Eq.~36!
we use known results,

^c1uSi ,a
1 Sj ,b

2 uc2&
^c1uc2&

55
1

2
, ~ i ,a!,~ j ,b! belong to the same loop and the same sublattice

2
1

2
, ~ i ,a!,~ j ,b! belong to the same loop and different sublattices

0, ~ i ,a!,~ j ,b! belong to different loops.

~38!

For Eq.~37! the following rule is found:

^c1uSl ,a
1 Si ,b

2 Si1d,c
z uc2&

^c1uc2&
55

1

4
, ~ i ,b!,~ i1d,c! belong to the same loop and~ l ,a!5~ i1d,c!

2
1

4
, ~ i ,b!,~ i1d,c! belong to the same loop and~ l ,a!5~ i ,b!

0 otherwise.

~39!
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Here, i1d means the nearest neighbor of thei th site.
S6(k) can be calculated directly from the first rule. Using
the second rule,f6(k) becomes

f6~k!5
Ji

N
~22coskx2cosky!

3(
i

(
w

(
a51,2

^GuSi1w,a
1 Si ,a

2 Si1w,a
z uG&

1
4~171!J'

N (
i

^GuSi ,2
1 Si ,1

2 Si ,2
z uG&. ~40!

Thus we have only to count the number of nearest neighbors
in the same loop for each loop covering. This simplifies the
numerical calculation.

V. NUMERICAL RESULTS

In this section, we show numerical results of the ground-
state energy, spin-spin correlation, staggered magnetization,
and excitation spectrum as a function ofa. We perform
Monte Carlo simulations in which RVB states are sampled to
satisfy detailed balance for lattices withL3L32 sites,
whereL<24. All the numerical calculations are performed
with periodic boundary conditions. For each system size we
solve the self-consistent equations~20!–~22!, and calculate
ai , j , andbi , j to be used to construct the wave function at that
system size.

A. Ground-state energy

The energy per site of the bilayer Heisenberg model,E, is
given by the nearest neighbor spin-spin correlations
e i(L,ap) ande'(L,ap) for a given wave function specified
by the parameterap :

E~L,ap!52Jie i~L,ap!1
1

2
J'e'~L,ap!, ~41!

where

e i~L,ap!5
1

4L2(i (
w

(
a51,2

^GuSi ,a• Si1w,auG&, ~42!

e'~L,ap!5
1

L2(i ^GuSi ,1•Si ,2uG&. ~43!

To estimate the energy in the thermodynamic limit, the
size dependence is examined and we find the following size
scaling for any fixedap :

e i~L,ap!5e i~ap!1lL231•••, ~44!

e'~L,ap!5e'~ap!1lL231•••, ~45!

wherel is a constant. This size scaling coincides with the
spin wave theory for a square lattice. In Fig. 2,e i(ap) and
e'(ap) are shown. Open circles and solid circles indicate
e i(ap) ande'(ap). Error bars show the standard deviation
of the Monte Carlo simulation. The interplane nearest neigh-
bor spin-spin correlation e i has a value of
20.333360.0006 atap50, which is quite close to the best

estimated value of20.3348.28,29 The magnitude ofe i de-
creases asap increases and finally vanishes atap54.62. On
the other hand, the magnitude ofe'(ap) increases and satu-
rates to 0.75 atap54.62. At ap>4.62 the intraplane spin
correlation vanishes and the dimerized state is realized.

The ground-state energy per site at a givena is calculated
as a minimum ofE(ap)52Jie i(ap)1

1
2J'e'(ap) with re-

spect toap . Thus we can get an optimal variational param-
eter and energy for a givena. The relation between the
variational parameter (ap) and a real coupling (a) is shown
in Fig. 3, and the ground-state energy per site is shown in
Fig. 4. In Fig. 4 we also show the energy of the dimerized
state per site,2 3

8aJi ~straight line!, for reference. The dif-
ference between the optimal energy and the dimerized en-
ergy becomes smaller with increasing interlayer coupling.

B. Staggered magnetization

We calculated the spin-spin correlation,^Si ,a•Sj ,b&, be-
tween two arbitrary sites (i ,a) and (j ,b). The results for a
2432432 lattice system are shown in Fig. 5, where the
absolute value of the intralayer spin-spin correlation is plot-
ted as a function of the distance between the two sites. Open
circles are fora50.4 and solid circles are fora54.6. It is
obvious that there is a long-range order ata50.4 and no
long-range order ata54.6. In the latter case, the correlation

FIG. 2. The nearest neighbor spin correlation for each direction
is shown. Open circles are fore i , and solid circles are fore' . Error
bars result from Monte Carlo statistical errors.

FIG. 3. The variational parameterap which minimizes the
ground-state energy for a given parametera.
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decreases exponentially and the typical correlation length for
the disordered state is of the order of a lattice constant.

The long-range order is of the antiferromagnetic type. In
the ordered phase the staggered magnetization of the infinite-
size system is obtained from the size dependence of the stag-
gered spin-spin correlation between the most separated pairs.
For a given lattice sizeL, we calculated both the intralayer
correlationM0(L)

2 and the interlayer correlationM1(L)
2:

M0~L !2[
1

2N(
i , j

8 (
a51,2

^uSi ,a• Sj ,au&, ~46!

M1~L !2[
1

N(
i , j

8 ^uSi ,1•Sj ,2u&, ~47!

where the summation is taken for all the pairs ofi and j such
that r i2r j5(6L/2,6L/2).

Except ata50, M0(L) andM1(L) coincide within the
Monte Carlo statistical error. As shown in Fig. 6, they are
well fitted by the size scaling

M0~L !5M1~L !5M ~`!1mL211•••, ~48!

wherem is a constant. This scaling agrees with the prediction
of the spin wave theory and arguments given by Huse.30 The
staggered magnetizationM05M (`) as a function ofa is
given in Fig. 7. In this figure, the results of the mean-field
theory ~MFT! are also shown. In the case of smalla, the
interlayer coupling enhances the antiferromagnetic long-
range order. This is because the system acquires a weak three
dimensionality and quantum fluctuation is suppressed. On
the other hand, for largera, the magnetizations are sup-
pressed. This behavior is consistent with the result of Mat-
suda and Hida in the spin wave theory.12 The staggered mag-
netization vanishes atac53.5160.05.

C. Excitation spectrum

We calculate the structure factorS6(k) and excitation
spectrumv6(k) as a function of couplinga. The calcula-
tions are done for a 2432432 lattice. The behavior of
S6(k) andv6(k) strongly depends on whether the system
has long-range order or not. The result forS6(k) is shown in
Fig. 8 andv6(k) is shown in Fig. 9. Here, three typical
couplings are taken:a50.4 ~open circles!, a52.4 ~closed
circles!, anda53.6 ~open squares!. The third coupling is for
the system in the disordered phase. For each figure,~a! is for

FIG. 4. Total energy per site as a function ofa. Open circles are
for variational Monte Carlo results and the straight line is for dimer-
ized state,20.375a.

FIG. 5. Spin-spin correlation fora50.4 ~open circles! and
a54.6 ~solid circles!. Each calculation is done for a 2432432
lattice. Here,r i , j means the distance between two sites. It is obvious
that there is a long-range order fora50.4 but no long-range order
for a54.6.

FIG. 6. M0(L) versus 1/L for a50.0, 0.8, 1.7, 3.1, and 4.6.

FIG. 7. Staggered magnetization as a function ofa. Open
circles are for the mean-field theory and solid circles are for varia-
tional Monte Carlo results. The magnitude of thek-linear term in
the expansion ofS1(k) around theG point, a1 , is also shown by
open squares.
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the plus mode and~b! is for the minus mode, and
G5(0,0), X5(0,p), M5(p,p) in momentum space.

It is obvious from Fig. 8 thatS1(k) of the ordered state
(a50.4, 2.4) is proportional tok near theG point and
S2(k) has an antiferromagnetic peak at theM point. On the
other hand,S1(k) at a53.6 increases quadratically withk
near theG point @see the inset of Fig. 8~a!#. In the Néel state,
the excitation is gapless at two points. One isv1(k) at the
G point. Around this point, since the functionf1(k) in Eq.
~35! behaves asf1(k)}k

2 and the structure factor as
S1(k)}k, the excitation is proportional tok. The other is
v2(k) at theM point whereS2(k) diverges due to the an-
tiferromagnetic long-range order. Thus the gap opens when
the structure factor becomes proportional to the square ofk
for the former point and when the structure factor does not
diverge, that is, the system becomes the disordered state for
the latter point. In the former case, we should determine the
critical couplingac2 where the gap opens. We take fivekx
points and do the following fitting along theG-X line:
S1(kx)5a1kx1a2kx

21a3kx
3 , wherea1 ,a2 , and a3 are fit-

ting parameters. The result ofa1 versusa is shown in Fig. 7
~open squares!. Comparing the result of staggered magneti-
zation with this coefficient, we find that the critical point
ac2 is equal toac within the statistical and fitting errors,
which givesac53.5160.05. Thea dependence of the gap
is shown in Fig. 10. All values are scaled byJi . Open circles

are forv1(0,0) and closed circles are forv2(p,p). In the
disordered phase, the excitation energyv2(p,p) always
takes a smaller value. The spin wave velocity along theG-
X line is calculated for the ordered state and the result is
shown in the inset of Fig. 10. Here,Zc is the renormalization
factor; namely, the spin wave velocity is given byA2ZcJi .
As the coupling increases, the velocity first slightly decreases
and then suddenly increases near the critical point.

FIG. 8. The structure factors~a! S1(k) and ~b! S2(k). Open
circles, closed circles, and open squares are fora50.4, 2.4, and
3.6, respectively. Inset shows the detailed structure ofa53.6 along
the G-X line. Note that the value at theM point of S2(k) is too
large to be shown in the figure.

FIG. 9. Excitation spectrum~a! v1(k) and ~b! v2(k). The
same values fora are chosen and indicated by the same symbols as
in Fig. 8. At a53.6, a gap opens at theG point for v1(k) and at
theM point for v2(k).

FIG. 10. The a dependence of the gap forv1(0,0) and
v2(p,p). In the inset, the renormalization factor of the linear spin
wave velocity,Zc , is also shown.
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VI. DISCUSSION

In this paper we first solved the Hamiltonian by the
Schwinger-boson mean-field theory. Then the solution was
Gutzwiller projected to obtain variational ground-state wave
functions, which were examined by Monte Carlo simulation
for finite sizes.

We first see the advantage of our variational Monte Carlo
simulation. In the mean-field calculation, the system be-
comes dimerized fora.4.62. For this region, the interlayer
order parameterD i is zero and only dimer coupling between
the layers is permitted. In addition, the excitation spectrum
becomes flat in momentum space:Eg(k)5Al22d2. As a
matter of fact, theoretically, this state must only be realized
at a→`. This disadvantage is removed in Monte Carlo
simulation. It is estimated from Fig. 4 that the virtual critical
point where the system stabilizes with the dimerized state is
11.0. This means that the Gutzwiller projection improves the
wave functions. The improved wave function can describe
the disordered state without dimerization at least up to
a511.0.

There have been many investigations for the order-
disorder critical point. Our mean-field result is essentially the
same as those of the previous report7 and the modified spin
wave theory.13 These give the critical value ofa around
4.5.31 This value is much larger than the results by other
methods: 2.56 by the dimer expansion, and 2.5160.01 by
the quantum Monte Carlo method. However, these latter val-
ues are still formidably larger than the value ofa realized in
the bilayer cuprates. Our motivation for this work was to see
if our method gives a critical value closer to the experimental
value or not. Our result,ac53.5160.05,32 does not meet
this expectation, and confirms the previous theories that
without doping the bilayer Heisenberg model will not give
an explanation for the spin gap behavior of the experiments.

We also calculated the excitation spectrum, especially for
the disordered phase. It is not obvious whether the system
has always a finite gap in the disordered state. For instance,
there is no long-range order for the one-dimensionals51/2
antiferromagnetic Heisenberg model, though the excitation
spectrum is gapless. In our bilayer two-dimensional Heisen-
berg model, we find that there is always a finite gap for the
disordered state. Within the statistical and fitting errors, it
occurs atac53.5160.05. In the disordered region, the spin-
spin correlation decays exponentially with distance. The
structure factorS2(k) near the critical coupling, however,
has a large maximal value at theM point, which minimizes
the excitation spectrum at that point. This shows that even in

the disordered state the antiferromagnetic spin fluctuation is
strong. It should be remarked that even though the spectrum
v2(k) at a53.6 looks singular atQ5(p,p), this is not the
case. AroundQ it should be quadratic in (k2Q). Such a
behavior is not apparent in Fig. 9~b! due to the lack of data
close enough toQ.

At a50 where the model becomes the single-layer
Heisenberg model, our result can be compared with other
methods: spin wave theory, series expansions, and the
single-mode approximation.33–35Our result for the spectrum
is roughly proportional to those of other methods over the
entire Brillouin zone. The maximal value is around 2.65Ji at
X or L5(p/2,p/2). Series expansions predict the maximum
is about 2.35Ji at theL point34 and the single-mode approxi-
mation based on the expansions around the Ising limit esti-
mates the maximum about 2.5Ji atL point.35 Both results are
close to our result. The most remarkable difference from the
other methods is the spin wave velocity. The renormalization
factor Zc is 1.9960.03 ata50 which is 1.69 times larger
than the best estimated value, around 1.1860.02.36 This dif-
ference indicates that multimagnon contribution toS1(k) is
not negligible. However, since this method gives a qualita-
tively correct behavior, we believe it gives qualitatively cor-
rect spectrum ata.0 also. Finally, we remark that the non-
monotonic behavior of the spin wave velocity with
increasing interlayer coupling can be understood from that of
the coefficient (a1) of the structure factor shown in Fig. 7,
since the spin wave velocity is inversely proportional to
a1 .

In conclusion, we have investigated the bilayer Heisen-
berg model using the Schwinger-boson Gutzwiller-projection
method. We find that there is an order-disorder transition
with increasing interlayer coupling. The critical point is
ac53.5160.05. The excitation spectrum can be calculated
for a wide range of coupling and we find that the spin exci-
tation always has a finite gap for the disordered phase and
the minimum of the spectrum is located at theM point. Our
model corresponds to the half-filled case for high-Tc cu-
prates. Althoughac in this case is quite large, it is possible
that hole doping reduces the value extremely. Then it will be
possible that our disordered state continuously changes into
the spin gap state. A similar treatment for a hole doped
model, thet-t8-J model, is our next problem.

ACKNOWLEDGMENTS

The authors thank M. Ogata for useful comments on the
results of our Monte Carlo simulations.

1M. Takigawa, A. P. Reyes, P. C. Hammel, J. D. Thompson, R. H.
Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. B42, 243 ~1991!.

2J. M. Tranquada, P. M. Gehring, G. Shirane, S. Shamoto, and M.
Sato, Phys. Rev. B46, 5561~1992!.

3K. Yamada, Y. Endoh, C. H. Lee, S. Wakimoto, M. Arai, K.
Ubukata, M. Fujita, S. Hosoya, and S. M. Bennington, J. Phys.
Soc. Jpn.64, 2742~1995!.

4B. L. Altshuler and L. B. Ioffe, Solid State Commun.82, 253
~1992!.

5B. L. Altshuler, L. B. Ioffe, A. I. Larkin, and A. J. Millis, JETP
Lett. 59, 65 ~1994!.

6M. Ubbens and P. A. Lee, Phys. Rev. B50, 438 ~1994!.
7A. J. Millis and H. Monien, Phys. Rev. Lett.70, 2810~1993!.
8A. J. Millis and H. Monien, Phys. Rev. B50, 16 606~1994!.
9A. Sokol and D. Pines, Phys. Rev. Lett.71, 2813~1993!.
10A. W. Sandvik, A. V. Chubukov, and S. Sachdev, Phys. Rev. B

51, 16 483~1995!.
11A. V. Chubukov and D. K. Morr, Phys. Rev. B52, 3521~1995!.

53 12 213BILAYER HEISENBERG MODEL STUDIED BY THE . . .



12T. Matsuda and K. Hida, J. Phys. Soc. Jpn.59, 2223~1990!.
13K. Hida, J. Phys. Soc. Jpn.59, 2230~1990!.
14A. W. Sandvik and D. J. Scalapino, Phys. Rev. Lett.72, 2777

~1994!.
15K. Hida, J. Phys. Soc. Jpn.61, 1013~1992!.
16D. P. Arovas and A. Auerbach, Phys. Rev. Lett.61, 316 ~1988!.
17A. Auerbach and D. P. Arovas, Phys. Rev. B38, 617 ~1988!.
18P. W. Anderson, Mater. Res. Bull.8, 153 ~1973!.
19P. W. Anderson, Science235, 1196~1987!.
20S. Liang, B. Douc¸ot, and P. W. Anderson, Phys. Rev. Lett.61,

365 ~1988!.
21Y. C. Chen and K. Xiu, Phys. Lett. A181, 373 ~1993!.
22T. Miyazaki, D. Yoshioka, and M. Ogata, Phys. Rev. B51, 2966

~1995!.
23H. A. Bethe, Z. Phys.71, 205 ~1931!.
24D. Yoshioka, J. Phys. Soc. Jpn.58, 32 ~1989!.

25D. Yoshioka, J. Phys. Soc. Jpn.58, 3733~1989!.
26R. P. Feynman, Phys. Rev.94, 262 ~1954!.
27R. P. Feynman and M. Cohen, Phys. Rev.102, 1189~1956!.
28R. R. P. Singh and D. A. Huse, Phys. Rev. B40, 7247~1989!.
29N. Trivedi and D. M. Ceperley, Phys. Rev. B40, 2737~1989!.
30D. A. Huse, Phys. Rev. B37, 2380~1988!.
31Schwinger-boson mean-field theory and the modified spin wave

theory are essentially the same. In the present system, the latter
has given a smaller critical value because the possibility of the
first-order phase transition is considered.

32In terms ofap this transition occurs atap52.5760.02.
33J. Igarashi and A. Watabe, Phys. Rev. B43, 13 456~1991!; 44,

5057 ~1991!.
34R. R. P. Singh and M. P. Gelfand~unpublished!.
35R. R. P. Singh, Phys. Rev. B47, 12 337~1993!.
36E. Manousakis, Rev. Mod. Phys.63, 1 ~1991!.

12 214 53T. MIYAZAKI, I. NAKAMURA, AND D. YOSHIOKA


