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Correlation energy and its temperature dependence
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The correlation energy due to the ring diagrams of an electron gas is evaluated analytically at
low temperatures. We emphasize an important correction term that was neglected in the previous
calculation. This correction comes from the difference between the frequency summation and the
corresponding integral of the zero-temperature limit. The correction contains a t lnt term, which
cancels out the t lnt term in the exchange energy, and a large contribution to the t term. The
coefBcient of t in the exchange-correlation energy is thus obtained exactly in the standard random-
phase approximation.

I. INTRODUCTION

The correlation energy of an electron gas is one of the
most fundamental quantities in electron theory of metals.
The general exchange-correlation energy is given by a
coupling constant integration,

p)&pn

~(n, p) &(n, p),
de
rl

Zl'l(p) = — ) O~'l(p+ q)
'q)i'Vtl

e(q) = 1 —vq&o(q)

(2)

where g~ol(p) = [ip —(ep —ts)] ~ is the unperturbed
Green s function, and e(q) is the RPA dielectric function,
where RPA is the random-phase approximation. The
RPA polarization Pp(q) is given by

where g is the temperature Green's function with the
self-energy Z: Q(p) = (ip„—[e~ —p, + K(p)]) ~, and rt

is the coupling constant. Here p is the chemical poten-
tial, e& ——5 p /2m, and P = 1/kgyT Equation (1.) is an
exact expression. In practice, it is necessary to make a
suitable approximation to g and Z in order to evaluate
0 . The exchange-only scheme using the exchange self-
energy E and the corresponding Green's function gl i

in Eq. (1) was studied in detail at nonzero temperatures
by the present authors. Here we wish to consider the
temperature dependence of the correlation energy. The
method we employ is to include the first-order exchange
and the sum of a ring-diagram contribution to consider
the screened exchange efFects. The screened exchange
self-energy is given by replacing the bare Coulomb inter-
action by the screened one in the usual exchange self-
energy:

P.(q) = .).."(p)."(p+q)

2 ) - n~ —~p+q
V A/71 + 8'P —Gp+qP

By using Zl„~ and /~a~ in Eq. (1) we obtain the exchange-
correlation energy

1n„. = —)
P, iPn

1 ) in[1 —vqP()(q)].
q, i@~

For reasons that will be clarified in Appendix A, we
divide 0„, into the exchange energy 0 and the ring-
diagram contribution to correlation energy 0„:

1
Ag — ) vqPQ (q) ) v qpnpn+~q

q iQ PV

10, = ) (in[1 —vqPo(q)] + vqPo(q)).
q, iq„

The temperature dependence of the exchange energy
was studied. previously, ' and now we evaluate the ring-
diagram contribution O„at low temperatures. The latter
will be called the RPA correlation energy.

The RPA correlation energy has previously been eval-
uated (i) analytically at low temperatures, and (ii) nu-
merically at all temperatures. The aim of this paper is
to investigate the small-T region again, because the pre-
vious calculation by Isihara and Kojima7 (to be referred
to as IK) neglected an important correction term. They
calculated the ring diagrams by replacing the frequency
summation by the corresponding frequency integral while

0163-1829/96/53(3)/1215(10)/$06. 00 53 1215 1996 The American Physical Society



1216 SUKLYUN HONG AND G. D. MAHAN 53

expanding the integrand by the Sommerfeld expansion.
Their results were given in a series in r„which is de-
termined by n = 4vr(r, a~) /3, where n is the number
density, and a~ is the Bohr radius. We show that to ob-
tain the exact small-T behavior one should note that the
frequency summation also gives a T dependence.

In Sec. II, the calculations of the RPA correlation en-
ergy are given at both T=O and T g 0. In Sec. III,
the zero-temperature piece is compared with the previ-
ous calculations, and the temperature corrections are ob-
tained and compared with those by IK. The coefFicients
of t of the correlation energy and its derivatives are con-
sidered, where t will be defined below. In the Appendices,
the comment on the RPA correlation energy [Eq. (8)] and
another formula using the structure factor S(q) is given,
and the detailed calculations related to Secs. II and III
are given.

II. CALCULATIONS

Eq. (8), (i) by expressing the logarithm in a power series,
and applying the Mellin transformation to the power se-
ries, (ii) by applying the Sommerfeld expansion to the

(o) (1)RPA polarization and expressing Po and Po to the
order of (q/k~), and after that, (iii) by changing the fre-
quency summation to the frequency integral by assum-
ing its temperature correction to be small. Thus they
obtained their results to the order of T in a series in r, .

Here we will evaluate Eq. (15) directly without expand-

ing Po and Po, and furthermore, evaluate another(o) (i)

temperature correction coming when the frequency sum-
mation is changed into the frequency integral. The latter
is the main aim of this paper. To get the correction term
we let

1~(q): ) '(q 'q )

chal I(q, cu)
i(q, iq„) =

271 tg~ —M

Letting

i(q, iq ) = in[1 —v&Po(q, iq )] + v&Po(q, iq ),

we consider the following decompositions by the Som-
mer feld expansion

Po(q, iq„) = Pal l(q, iq„) + t Pol 1(q, iq„),
i(q, iq„) = if l(q, iq„) + t il'1(q, iq„),

(10)

(11)

where t is the normalized temperature to the Fermi en-
ergy p, = h k&/2m,

t = k~T/p (12)

Then we obtain i( ) and i( ) in terms of Po and Po

if l(q, iq„) = in[1 —v~Po ] + v~Po

2 (o) (i)
(1) V PO Poi (q, iq„) =

1 —vqPO
(14)

where the detailed forms of Po and Po are given in
Appendix B. There, i~ is used instead of i q . Note
that since Po(q, iq ) is a symmetric function of frequency,
we have if 1(q, —iq ) = if 1(q, iq ) and if 1(q, —iq )
i f'1 (q, iq„).

If we just change the frequency summation into the
frequency integration, we obtain

where I(q, cu) is the spectral function of i(q, iq ),

I(q, cd) = 23iret(q& M) &

i,.„(q,~) = i(q, iq„) ~,,
Here we have the summation

h P . , which isiq~ iq
equal to —[n~(w) + 1/2], where n~(w) is the Bose func-
tion 1/[e~ —1]. Then

dQ) 1 ~ 1I q, u)—
27C p 'Lq~ —&

iq
OO

I(q, ~) [nz (cu) + 1/2]

d&

27
I(q, ~)n& (~)

d(d
I(q, (u) [2n~(ur) + 1], (20)

l(d
I(q, (u) —) 27t

I(q, ~)n~(cu).

where the third and fourth lines were obtained by using
the relation I(q, —w) = —I(q, w), ~o which can be con-
firmed at T=O by doing direct calculations using the re-
lation s2 (q, —a) = —s2 (q, cu), where s2 (q, a) is the imagi-
nary part of the RPA retarded dielectric function at T=O.
Thus we obtain for n„= 2 g X(q)

n. =-) [i (q, ice) + t i (q, iur)],
27

where the second term is the temperature correction.
This correlation energy O„was calculated by IK. How-
ever, when changing the frequency summation into the
integration, there is another important temperature cor-
rection term, which they neglected and will be considered
below. They calculated Eq. (15) in a little difFerent form:
Equation (8) was their starting point. They evaluated

i(q, iq„) = deed 2&I(q, M)

2vr (iq„)2 —(u ~ ' (22)

and thus

This result can be also obtained by using the relation
I(q, —w) = —I(q, u) before doing the frequency summa-
tion. Using this relation, we have
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1 1
2&I(q, hJ) —)

iqn

dc'
I(q, ur ) [2ngy (~) + 1], (23)

I(q ) I(o1(q ) + t~I(~1(q

we replace I(q, w) by I( 1(q, w) to the order of T in the
second term in Eq. (21). In summary, we obtain at zero
temperature

d(d. pi( 1(q, i(u),2' (25)

where we used
& P, (, ~, , ——

z [2n~(w) + 1]. This
is the same as Eq. (20).

Note that the first term in Eq. (21) is the same as two
terms in Eq. (15) and its second term is a new correction
term, which will be shown to be O(T ) below. Consider-
ing the decomposition

is integrated over q, it gives a t lnt depen-
~=~/p

dence in addition to a t dependence.
Consider the RPA retarded dielectric function

eRp~(q, w) = e„t(q, w) at T=O. The retarded func-
tion is obtained by taking the analytical continuation
iq + w+ib. From the definition

eRpA(q &) = 1 —'UqPo, „t(q &)(p)

= e, (q, ~) + iez(q, ~),

where Po „,(q, cu) = Po (q, iq„)~;~„~ +,g, and eq and ez(o) (p)

are the real and imaginary parts of eRp~(q, cu), respec-
tively, then I( ) is given by

I( ~ = —2Gi(, I = —29[in(eq + iez) +. 1 —eg —icy], (32)

where the detailed forms of E1 and E2 are given in Ap-
pendix B. Exchanging the orders of differentiation and

gr(o)
taking the imaginary part, we obtain for "&

n(') = n" +n"r r, 1 r, 2&

i('1(q, i~),2'

(26)

(27)

fI(~) )- I( 1(q, (u)n~((u).
27t

(28)

which was evaluated previously using another formula
containing the structure factor S(q). The comment on
the relation between Eq. (25), i.e. , the T=O limit of
Eq. (8), and the formula containing S(q) is given in Ap-
pendix A. The temperature corrections to the order of
T are given by

dI(') —2
E2 + E2

1 2

dE'1 2
ez + [e~(1 —e~) —e~] (33)

dM d&

~r(o)In the above expression of "d, we see that terms having

, n being a positive integer, contribute to higher orders
than T when cu is replaced by cu = x/P. So, to the
order of T, we may put 0 instead of x/P in the limit of
P -+ oo. In this limit we see that the main contribution

~r(')comes from "& ———2 &" " in the limit of P ~ oo

with ~ = x/P.
~r(o)If we would just take the P ~ oo limit in

~=+/p
we would And that it is independent of x, and would
obtain

In obtaining Eqs. (25) and (27) from Eq. (15), we used
the fact that i( ~(q, ice) and i( 1(q, ia) are even functions
of frequency.

Now we show that B„z also gives P (i.e. , t ) depen-
dence. Let

n„",1 = —) A(q)

1
=p, ).

q
2Tt dM /p p

A(q) = I('1(q, ~)n~ (~).2' (29)
—2 GE'2 1 —E'1

p. ):„„
q m=p

dx—1n/1 —e */,2'

By partial integration, we obtain (34)

dial dI 1
i

p
271' dM p- d~ dI(')

p 27t dec)
/ p

1n/1 —e */.

Thus we find P dependence, if "& is of
u) =x/p

O(P ), n being zero or a positive integer. Note that
the integrand ln ~l —e *~ in Eq. (30) has a dominant
contribution around x 0, so we may consider only the
small-x region. Roughly speaking, since I( 1(q, —w)—I(ol(q, e), we can set I( 1(q, e) g(q)w for the small-

& region, and then "& g(q). Thus A(q) P g(q).
However, a detailed calculation will show that when

2
where eq ——eq(q, cu = 0). Using f dx ln ~1 —e

and the relation (B14) of &" in Appendix B, we
would obtain

„(1),2k~e' '" dq1 —F1
r)2

q E'1
(35)

The q —+ 0 limit gives (1 —eq)/eq ~ —1. Thus the inte-
gral in the above expression becomes divergent for q ~ 0.
This is an undesirable and wrong result. This happened

(0)
because we considered the x-independent

~=a/p=p
by using the relation (B14) for &" . To avoid this
divergence, we turn to the expression (B15): That is,
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GG'2

(u=x/P

2e m
0(2k' —q) 0(—Y' —x/P),q3

as before, we will take the limit P ~ oo of
~=a/P

except for the most dominant term containing the ex-
pression (B15)

dx—in ~1
—e *~[ln(xt/4) + J]

27r

vek~ 2
2 4

t
27r 0

ve'k4
t lnt+. t

~

J —2ln2 ——C
~24m q

~' )
ve'k~4~ [t' In t + t'(J —2.53347)],

247r
(42)

(1) —2 dx
i ) ds2 1 —sy

0„2 = ln 1 —e
p 27r d(d Fy0 q 4P:Z /P

2 ve ky2 4
= —t

27r2

dx
ln /1 —e

27r

dq 1 —G»

rnx q E'1
FP

Considering the q ~ 0 limit, we obtain for the q integra-
tion

2kF d—(—1) = in(xt/4).q
rnx q

(38)

Extracting only the term containing t lnt, we obtain

2ve k~2 4

27r2

dx ve2k4 7r2—ln 1 —e ~1 tn= — t lnt. —
27r 47r3 6

where Y = eq + qv~, and the theta functions restrict the
integral range over q to k &

& q & 2k~. ThenkFP

where we used C = I 2 ln ~1 —e
~

lnx = 1.88703.
Note that the temperature correction when the frequency
summation is changed into the frequency integral is not
small. This procedure to obtain the temperature depen-
dence can be used in other problems containing the fre-
quency summations.

Note that there is another term giving t dependence,
which comes from the temperature dependence of the

2
chemical potential p, : p = y, (1 —

zest

). Letting K&
2m@ and k& ——2m@, , we have K~ = k~(1 —

s t ). If we
decompose

Pel l (q, is; Kp) = Po (q, iv); kp) + t PII I (q, ia; kp),
(43)

where Pe (q, iw; K~) is the same as Eq. (B2) with the—(0) .replacement of k~ by K~, so Pe is the same as Eq. (B2)—(0) .
and the form of Po 1 is given in Appendix B. Similarly,
we obtain

i~ ~(q, ice;Kp) =io (q, iw;kp) +t iI (q, iw;kp), (44)

,~ ~

1+ t'inc+ At'—~,4 '
q 6 (40)

where A = —0.877525. It is very interesting to note that
the t lnt term in the exchange energy is exactly can-
celed out by the t lnt term from the correlation energy
shown in Eq. (39). This cancellation has been expected
by the argument that if the screening eÃects are included,
the singularity from the Fermi surface becomes smoothed
out, and thus the logarithmic dependence in the exchange
energy disappears.

Now we evaluate the temperature dependence of 0„2(»)

using

We now see that this t lnt dependence gave the diver-
gence in Eq. (35) when q -+ 0. Note that the exchange
energy is given by

where ilo~(q, iw; K~) is the same as Eq. (13) with K~,
aIld

io = in[1 —v~PO ]+ v~PO
.(O)

—(0) —(0)

2
—(o)—(o)

vqPO 0 1—(o)1 —vqPO

(45)

(46)

We denote the contribution of 2» to the t corrections

by 0„3(1)

d~ .(0)
i~ (q, ice).

27r 1 (47)

g(O)
47r3 o.2

Z2dz (48)

Now we summarize the formulas for numerical calcu-
2

lations in units of KxRydberg= %2, where N is the
number of electrons. With z = q/k~ and w = w/po,

8q 1 —E'»

rnx qFP

2kF
q

qFP

2kF

rnx qFP

(») 2 3 1
0„» =t

47r3 o.2
Z dZ (49)

2kF
q +

rnx
FP

2kF

q E'1
(41)

where the second term. , which will be denoted as J, does
not contain any divergence when q ~ 0. Thus we obtain

t2g(»)
4o. 4o,

~(1) 2 3 10„3=t
27r

where

Z dZ

dz 1 —2.53347
Z E'1 Z

d~zI '(z, ~), (51)
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vratsk~ (9m /4) il 6.029 (52)

n(') = t' ln t + (C, , + C„,+ C, ,)t'. (53)

Here we will denote the coeKcients of t2 in
Eqs. (49)—(51) as C„ i, C„2, and C„s, respectively. Then

the temperature correction 0„ is written as

0.00
II

-0.10
bQ

C0
~ W

O
V

-0 20— '/
/I
)I
ji
I

-0.30

Present result
C Q RPA [S(q)]

IK1
IK2

III. RESULTS AND DISCUSSION
-0.40

0.0 2.0 4.0 6.0

ln =„=
2 4

(Ci(() —aii(2) ln A + O(e )

~2
[C2(() + a2i lnA+ O(e )] + . 3,12g2

(54)

For comparison, we summarize the results by IK in
their notations: With PQ = —ln =„

FIG. 1. Plot of Eqs. (48) and (A14) as a function of r„
along with those by IK. The dashed line represents our re-
sult using Eq. (48), and the line with circles is obtained by
Eq. (A14), while the results by IK are given by dotted and
dot-dashed lines. Our result is exactly the same as those using
the formula containing S(q).

20„=—(1 —ln 2) ln r, —Di (()7r2

t2
+—[(1 —ln 4) lnr, + D2(()], (55)

2 2
where g = t,, and they used 2m = 1, and A

They used the parameter ( as cutofF in integration over
q, and let ( = 1, 2, and so obtained Ci(l) = 0.27325,
Ci(2) = 0.53873, C2(l) = 0.07169, C2(2) = 0.49229,
aii(2) = s (1 —ln2), and a2i ——

4 (1 —ln4). In units of
N x Rydberg, their results are given by

Eqs. (49)—(51) are shown as the dotted, dot-dashed, and
dashed lines, respectively. Their sum C„=C„q + C„2+
C„3 is also shown as the solid line. These coefhcients
were evaluated numerically. Note that two other results
(dot-dashed and dashed lines) are much larger, compared
with the dotted line, which was shown as a dashed line in
Fig. 2. Especially, it is interesting to note that the result
represented by the dot-dashed line, which IK assumed to
be small, is quite big.

We consider the coefficient CE (r, ) of t in the
exchange-correlation energy 0,:

where —,(1 —ln2) = 0.0622, and

6 2
Di(() = ——Ci(() + —(1 —ln 2) ln(4n/r, ), (56)

n„. = n(o) [1 + C (..)t' + ], (58)

(59)

4
D2(() = —C2(() + (1 —ln 4) ln(4n/r, ). (57)

where 0„ is given by Eq. (48). Considering the exchange
energy Eq. (40) in units of KxRydberg

Our results are compared with those by IK. They con-
sidered two cases depending on the values of (. The re-
sults corresponding to ( = 1, 2 are denoted as "IK1" and
"IK2", respectively, in Figs. 1 and 2.

In Fig. 1, we plot the results obtained by Eq. (48)
(dashed line), and Eq. (A14) (line with circles), along
with those by IK (dotted and dot-dashed lines). Equa-
tion (48) is the T=O limit of Eq. (8). The data of circles
come from Ref. 11. Our result using Eq. (48) is exactly
the same as using Eq. (A14), the formula containing the
structure factor S(q). Note that the comment on these
two formulas [Eqs. (8) and (A14)] is given in Appendix A.
The result "IK2" (dot-dashed) is closer to our result than
is "IK1" (dotted).

The coefficient C„ i of t2 in 0„i [Eq. (49)] is compared
with results of IK (dotted and dot-dashed lines) in Fig. 2.
Only this coefBcient can be compared since they calcu-
lated only the coeKcient for temperature corrections.

The temperature corrections given by Eqs. (49)—(51)
are given in Fig. 3. There, the coefFicients of t in

O. = — t'lnt — (1+At' ),4o. 2+2o. (60)

0.20

0.15

0.10

0.05
C4

Present result C„,
IK1
IK2

0.00
0.0 2.0

I

4.0 6.0

FIG. 2. Plot of the coefficient C,i of t in Eq. (49), as a
function of r„along with the corresponding result by IK.
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4.0 K(o) + K(o) (65)

0
~ ~

0.0
C

v5 -40—
Q

C, ,

C„
C f,3

C,

The exchange pieces were previously obtained:

V.(') = —e'@ /~, (66)

(67)

Using these values as the normalization factors, we obtain
for the coeKcients

-8.0
0.0 2.0 4.0 6.0

FIG. 3. Plot of the coefficients of t in 0( ) [Eqs.
(49)—(51)]. The dotted, dot-dashed, and dashed lines cor-
respond to C„z, C„,2, and C„3, respectively. The solid line
represents the sum t „ofthree coeKcients.

C~(r ) =

Cg (r, ) =

V(i) /V (o)

, + V()/V()
K(i) /K(o)

I + K."/K."'
(68)

(69)

where V„,K„are coefFicients of t in V„, K„, respec-(1) (1) 2

tively:

A+ C„/O.
I + n(')/n." (61)

then we obtain 0( = —2, = —'„.Thus C@(r,) is
given by V„= dE„

dn
d2E„
dA

V(0) + V(1)t2 (70)

(71)

V„, = "' = V„(, )[1 + Cv (r, )t + ],

V(o) —V(0) + V(o)
2

K„.=,"' = K('.)[I+C~(r.)t'+ . .],dn2

(62)

(63)

1.0

The coefficient CE(r, ) is shown in Fig. 4 as a function
of r„along with two ratios, 0„ /0 and C„/0 . As(o) (o) (o)

r, ~ 0, 0 becomes dominant, the two ratios will go to
zero, and thus C~(r, ) will approach A = —0.877525.

Finally, the exchange-correlation potential V„, and the
"interaction function" K, are considered, which appears
in the calculation of response functions. Here we wish
to find the coefficients Cv(r, ), C~(r, ) of t2 in V„, and
K„„respectively: With the exchange-correlation energy
per volume E„,= 0„,/v, we obtain

where E„=[0„+C„t2]/v is the correlation part of E„,.
In Appendix B, the detailed forms of V„, V„, K„(0) (1) (O)

and K„are given. The behavior of Cv. (r, ) and Clc(r, )
(1)

is shown in Figs. 5 and 6, respectively.
In conclusion, we calculated the RPA correlation en-

ergy at both T=O and T g 0. The zero-temperature re-
sult was compared. with the previous ones. For nonzero
temperatures, we found that a temperature correction
[Eq. (50)], which was assumed small by IK, is actually
large. It has a t lnt correction and also a very large
coefFicient of t, compared with the coefficient IK cal-
culated. The t lnt correction in the RPA correlation
energy was found to cancel out the corresponding term
in the exchange energy. From the calculation of corre-
lation energy, we evaluated the exact coefFicient of t in
the exchange-correlation energy, and also obtained the
coeKcients of t in V„, and K, .

0.8

0.0

-1.0
0.4

0.2—

-2.0
0.0

-3.0
0.0 2.0 4.0 6.0

-0.2
0.0

I

2.0 4.0 6.0

FIG. 4. Plot of the coefficient C@(r,) of t in the ex-
change-correlation energy O„as a function of r, . The solid
line represents C~(r, ), while the dotted and dashed lines rep-
resent II„ /fI and C„/0, respectively.(o) (o) (o)

FIG. 5. Plot of the coefficient Cv(r, ) of t in V„, as a
function of r, . The solid line represents Cv(r, ), while the
dotted and dashed lines represent V /V and V /V
respectively.
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1.0

0.0

p).
&qn

(A5)

du H(q, kv) —1 ) dku 2uH(q, cu)

2m iq„—kd P, -, 2m (iq„)' —~'
iq

H(q, (u) [2n~((u) + 1]

OO

H(q, ~),

-2.0 where the last line was obtained when T ~ 0. Then the
exchange-correlation energy is at T=O

-3.0
0.0 2.0 4.0 6.0

FIG. 6. Plot of the coefBcient CJc(r, ) of t in K as a
function of r, . The solid line represents Clc(r, ), while the
dotted and dashed lines represent K„ /K and K„ /Ke
resp ective1y.

10, =—
2

1

2 &q, ret (ql ~)

1
drI ) nv~S„(q),

8'g—) H(q, u))
77 Q 2x

d'g ) i deck

g Q 7l

(A6)
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1
S(q) =—

AVq

1S.(q) =—
S'ret (ql kV)

1

S'vy, ret (q& ~)

(A7)

(A8)

where at T=0 sret(q, ~) = cRpA(q, ~). In Rydberg units,
the exchange-correlation energy per particle E, is

where in the last line we used the definition of the struc-
ture factor

APPENDIX A: NOTE ON THE
EXCHAN GE-CORRELATION ENERG Y

The exchange-correlation energy is given by

(o )'"
E~xe = —

~

—
~

d77
mre ( 4 ) p 2k''

We define

dqS„(q) . (A9)

10„,= ) in[1 —v~Pp(q, zq„)]
'0 rQ

'
Pg 1 ). qv~Pp(q, iq„)

iri 2p - 1 —gv~Pp(q, iq„)

then

1

2k@
dqS(q), (A10)

4 /9mb"
Z„.= —

~

—
~

dqq*(~r. ),
mr, (4) (A11)

which should be compared with a similar expression

——):
rj 2P . - e„(q, iq„)

q, iqn

where z„(q, iq„) = 1 —rlv~Pp(q, iq„). Letting

(A1) drip (rlr, ),

dq[S(q) —1]

(9 ) ljs

mr, (4) p

1

2k@

(A12)

(A13)

then

h(q, iq„) = 1

s„(q, iq„)
H(q, ~) = —28h„t(q, ~),

(A2)

(A3)

(A14)
0.9163 4 (9m i

d~~(n .)mr. E4)
Note that [S(q) —1] in Eq. (A13) comes from the con-
sideration of the average value of p(q) p( —q), p(q) being
the density operator,

877 1—„,p ).
q)&qn

d(u H(q, (u)

27t 1g~ —4)

Since H(k, —w) = —H(k, w), we have

(A4)
(p(q) p( —q))' = ~P'4=p+ S(q) —1]. (»5)

The prime on the bracket means one is to omit the parti-
cle interacting with itself. This explains why this differs
by —1 from the similar average (p(q) p( —q)).
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) &"'(p)&'"(» + q).
p ip

(A16)

Here we give two ways of calculating 0: (i) Evaluate
the &equency summation over iq„before doing the sum-
mation over ip, and (ii) do the frequency summations
in reverse order.

The procedure (i) gives the usual exchange energy

10 = --) vqnpnp+q,
p

(A17)

where we used

The expression (A12) is correct rather than (All),
which will be shown below. Consider the expression

10 = — ) vqPO(q iq )

used Eq. (8) in text, i.e. , we used the RPA polarization,
and then evaluated the frequency integral at T=O, we
have actually considered the procedure (ii) in evaluating
Eq. (A16): That is, we evaluated Eq. (48), which is the
T=O limit of Eq. (8) and is the same as Eq. (A21) at
T=O. Thus we obtained the same result as the previous
one, which was shown in Fig. 1.

APPENDIX B: DETAILED CALCULATIONS

Po(q, i~) = Pz~ l(q, iru) + t Pz~ l(q, ie), (Bl)

where

In this part, we will give detailed formulas used in
Secs. II and III, By Sommerfeld expansion the RPA po-
larization Po(q, iv)) is given by

—) g~ol(p) =n,

On the other hand, the procedure (ii) gives

1 4 2 Ap Ap+q0 V
2P p iq~ + sp —sp+qji

1
Vq Ap Ap+q Ag 8'p+q E'p

V

1 ) vqnp+q (1 np)
P

pq
1 1

p
VqAp Ap+q + AVq )

q

(A18)

(A19)

mkF m' X + Lap1+ (—XY+ ur ) ln2' 2 2kF q3 Y +(d

, (X),(Y)
tan !

— —tan (B2)!
qv» (~)

(g) kF X Y
24 X2+ ~2 + Y2+ ~2

with

X = 8'q —QVF)

Y = E'q + QvF.

(B4)
(B5)

Prom the T=O part Po of the polarization Po, we obtain
the retarded dielectric function e~p~ at T=O:

where first we did the frequency summation over ip in
Eq. (A16) to get the first line, and we used in the second
equality

& P, = —[n~(~) + li2], of which use

gives the next line since P [np —np+q] = 0.
The above expression (A19) consists of the usual ex-

change energy and the interaction energy at zero separa-
tion. The latter quantity is independent of temperature.
Thus if we use the following expression as the RPA cor-
relation energy

10„=0„,+ ) vqPO(q, iq„),
q, iq„

(A20)

with keeping the procedure (ii) in mind, we obtain the
correct Eq. (A14); that is, at T -+ 0 with Eqs. (A6)
and (A19),

1 10„=— de ) nvq [Sq (q) 1] + ) vqnp np+q,

(A21)

which at T=O is the same as Eq. (A14) in units of
NxRydberg. If we evaluate this expression of 0„, as
we have already done i.n text, we should obtain the same
result as the previous one given by Eq. (A14). Since we

where

ERpA (q, ~) = si (q, ur) + s2 (q, ~), (B6)

s i = 1 + — 1 — (X + ur ) (Y + ~) ln
1 qT2F m X+M

2kF g Y+(d
m2

(X —(u)((u —Y) ln
2kF Q Y —(d

(B7)

[8(k» —pi)(k», —pi) —8(k» —p2)(k» p2)]3

(B8)

[8(2k» —q)g(cu) + 8(q —2k»)B(~)], (B9)
Q3

where

A((u) = 2m~8( —Y —~)
(mb

k~~ —
l

—
l

((u —sq) 8(X —~)g((u + Y),

(Blo)

where pi ——(mlq)l~ sql and p2 = (m/q)lu + sql.
Note that s2(q, —u) = —s2(q, w). Using this relation,
we find that I~ol(q, —u) = —I~ol(q, u). Expanding the
theta functions in s2(q, ~), we obtain
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2

B(cu) = k~ —
l

—
l

(ur —s~) 0(X —(u)0((u —Y),

hami

2

(q)
(B11)

Po ——Po (q, ice; k~) = — k~Q(k~),2' 2

—(0) .then Po &
is given by

(B19)

DifFerentiating A(cu), B(~) with respect to u, we obtain

dA(cu) = 2m'( —Y —u) —2m~b( —Y —~)
G(d

2
—(o)t Po~=—m ( dQ——kit

l Q(kp) + k~2~' ( 6 dkF

t R(kp), (B20)

—2
l

—
l

((u —s~)0(X —~)0((u + Y')fm)
«)

2

+ k~ —
l

—
I ( —s~) 0(X —~)b(~+Y)(m) 2

Eq)
(B12)

leo
yp 0 q3

8(2k~ —q) [2mB( —Y)]

dB(~) f'm )= —2
l

—
l

(~ —s,)e(X —~)0(~ —Y), (B13)de ( q)
where we neglected several b functions that are zero.
Also, two other b functions in

& cancel each other.
Then when w is replaced by z/P and the P ~ oo limit
is taken, all the quantities in

& and
& except

2mB( —Y —u) vanish. So in the P ~ oo limit, with
ld=z p,

where

ky X2+ ~2B= 1+ ln
q Y +(d

Cc) (d+ Y2+ ~2

m . X Y+—,(—XY+ cu') —, , +, . (B21)X2+ ~2 Y2+ u)2

(0)

(q, i~) = In[a( (q, i(u)]+ —v~PO( ) +—
5 5 de)(q, iu))'

(B22)

l (q, i(u) = In[a( )(q, i(u)]+ —v~Pe( )
0

7 v~Po
(o)

10 s( )(q, i(u)

1 vqPo
(o)

10 e(e) (q, i~) 2 (B23)

Finally, we give the detailed forms of some quantities
that were used in the calculation of C~(r, ) and C~(r, )
in Sec. III. With s( ) (q, iw) = 1 —v&PO (q, ku), define

2C 7D
8(2k'. —q).3 (B14) Then with z = q/k~ and w = ~/po,

Instead of using the above expression, we used a little
diferent expression to obtain the exact temperature de-
pendence in text,

OO OO

V (&&) /V (o) z'dz d~ j(') (z, i~),8' 0,' 0 0
(B24)

26 I
0(2k'. —q)8( —Y —z/P),

q3
(B15)

OO OO

K )/K( = — z dz d(dl( )(zl i(u).
4mo.

(B25)

si (q, ~ = 0) = 1 + — 1 — XY ln —,(B16)
2 q kpq

s2 (q, (u = 0) = 0, (B17)

where ei(q, w = 0) was denoted as si in text. Thus we
obtain

which gives
& p ( q ( 2k~ as the integral range overkFp

q. Note that the third term in
& gives the range

0 ( q ( P&, which reduces to null range when P ~ oo.kgp&
For si(q, ~), s'2(q, cu), with ur = z/P, we obtain in the
limit P —+ oo

.(i) . 2 (q 'old)j (q, i(u) =—
(i)

l( )(q, iw) = j( )(q, iu)—
q) 2M

we have

l 2 —.1z dz dug( ) (z, xu),
8mn o o

1 2 1

4vro; 0

~

~z dz dul( )(z, zu).
0

v„", /v.(') =

IC„(',) /li (') =—

For temperature correction parts, if we define

(B26)

(B27)

(B2s)

(B29)

(p

dE'2= —2
d4)

yp

(1 —si) (B1s)

in the limit of P ~ oo with ur = z/P, but with

of Eq. (B15). The expression (B1S) was used in Eq. (37).—(0)Next we consider Po y a correction term due to the
temperature deviation in the chemical potential. Letting

2
(i)/ (0) 7l z ]

24 Z E~0 1
(B30)

Here if replacing i(i) (q, i~) [Eq. (14)] by ii (q, i~)
[Eq. (46)], we obtain V(s)/V( and K„s/K corre-

sponding to 0„3.Also, we obtain
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—1(]) (0) '7t 8Z Gy

12 Z E'0 1
(B31)

Thus we obtain the coeKcients V„,K„oft in V„, K„,

respectively:

/(&)//(o) [/(&) + /(&) + y(&)]/~(0)

K( )/K( ) = [K, + K„+K, ]/K( ).
(B32)

(B33)
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