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Transverse-random-field mixed Ising model with arbitrary spins
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The transverse-random-field mixed Ising model consisting of arbitrary spin values has been studied by
combining the pair model approximation with discretized path-integral representation. The phase diagrams of
systems with mixed sping:=1/2,S=1; 0=1/2,S=3/2, ando =1, S=2 are plotted. Not only the discontinuity
at T=0 K is found between the trimodal and bimodal distributions of transverse fields, which is similar to the
single-spin counterpart, but also the tricritical behavior is observed in these phase diagrams when both trans-
verse fields are trimodal distributed, which is different from the single-spin one. The appearance of tricritical
point is independent of the coordination number and spin values.

I. INTRODUCTION reveals coexistence of disorder with quantum effect in
TRMIM. These two effects operate in different manner when
In last decades, there has been an interesting number #fe temperature decreases. Furthermore, since the mixed-spin
works dealing with critical behavior of quantum spin system.system has less translational symmetry than the single-spin
The transverse Ising model is the simplest quantum syste@ounterpart, the competition between these two effects may
and has been introduced to explain the phase transition @¢esult in many new phenomena in the TRMIM which cannot
hydrogen-bonded ferroelectrics such as #D, (Ref. 1)  be observed in the single-spin transverse random-field Ising
and other systemisn the order-disorder phenomenon with model or in the transverse mixed Ising model. The aim of
tunneling effects. The quantum effect is represented by addhis work is to study the phase diagram of the TRMIM when
ing a term(transverse field partn the Hamiltonian, which is  both of the transverse fields are trimodal distributed.
noncommutative with the interaction part. As the transverse The pair model approximatidhis one of the usual meth-
field is taken as fixed values, the transverse Ising model hagds to deal with the mixed-spin Ising model. Under pair
a finite-temperature phase transition which can be deprességodel approximation, the Hamiltonian of a nearest-neighbor
to zero temperature at a critical value of the transverse ield two-site cluster which is arbitrarily picked up is represented
As the transverse field is randomly distributed, the phas@s that of the whole system, where the interaction between
diagram of single-spin transverse-random-field Ising modethese two nearest-neighbor sites is included exactly and the
has been studiéd and a finite discontinuity in the phase interaction from other sites is approximately considered by
diagram was found aT=0 K, between the trimodal and mean field. On the other hand, since the transverse-random-
bimodal distributions of the transverse field. Subsequentlyfield mixed Ising model is a quantum spin system, it is dif-
Yokote pointed out that the directional randomness of theficult to diagnolize the Hamiltonian directly due to its non-
transverse field did not change the critical behavior. commutativity. Fortunately the discretized path-integral
On the other hand, much attention has been directed to thepresentatiott?? (DPIR) enables us to analytically obtain
two-sublattice mixed-spin systems over the years. Théhe formula of the partition function, the magnetization and
mixed-spin Ising model consisting of spin-1/2 and sBin- SO on. Therefore, in this paper we combine these two ap-
with a crystal-field interaction has been studied extensivelyproaches to deal with TRMIM and to show the magnetiza-
by a variety of techniques, namely the exatgnd approxi- tion and the equation of the second-order phase transition
mated methods'3as well as the high-temperature series ex-analytically, and then numerically solve the second-order
pansion method The tricritical point is predicted in the phase transition equation to plot the phase diagram.
systems ofS=1 or 2 with a coordination number larger
thanz=3.121®However, the tricritical behavior does not ex- Il. THEORY
ist in the system with5=23/2.1° These results indicate that o _ . .
the existence of tricritical behavior in the mixed-spin Ising The Hamiltonian of transverse-random-field mixed Ising
model with a crystal-field interaction is dependent on theModel(TRMIM) is given by
spin valueS as well as the coordination number.
The transverse mixed Ising model has been studied by _ rea Ax_ X
effective-field theory (EFT),Y’ mean-field approxima- H= .EJ JoiS Z Fior 2 LS @
tion (MFA),*® and real-space renormalization-group approxi-
mation (RSRGA.'® These approaches showed that the tranThis model describes the mixed-spin system consisting of
sition temperature falls to zero at a certain transverse fieldwo sublatticesA and B, which are arranged alternately. In
But, to our knowledge, no investigation has been made ofhe underlying lattice the sites @f sublattice are occupied
transverse-random-field mixed Ising mod€RMIM). As a by spinso; of magnitudeo, while those of the alternatd
matter of fact, the random distribution of transverse fieldsublattice are occupied by spi& of magnitudeS. The o,

0163-1829/96/53.8)/121426)/$10.00 53 12 142 © 1996 The American Physical Society



53 TRANSVERSE-RANDOM-FIELD MIXED ISING MODH. . .. 12 143
takes the Zr+1 values:—o, —(o—1), , (0—1), o Qi=exd — BHLl, (8)
and theS the 25+1 values:—S, —(S— 1) , (S—1),

S, Wherecr and S have one of the usual mteger or odd With

half-integer values. The first summation in Ed) involves

1 ~ ~
all pairs of nearest-neighbor sites in the lattice. The second H,=-Tio{—Ao7, 9
and third summations involve all sites &f and B, respec- . .
tively. The quantitiesJ, I';, andT’;, measured in unit of Hé=—Fijx—B§Z. (10

KgT with Kg the Boltzmann constant aridthe temperature,
are, respectively, an interaction constant and the transverse The average values of spinand spinS may be given as
fields on theA andB sublattices.
The transverse fields are randomly distributed according N
to following trimodal distributions: (0)= ,E ﬂ(anp)v (1D

1
Pi(ly)=p.6(I)+ E(l_ p)[o(Ti+T)+6(Fi—T'1)],

Sy ) (12)

1 Since the transverse fields are randomly distributed ac-
Po(T'))=p (') + E(l—pz)[é(l“j+l“2)+ ol—Ty], cording to trimodal random distributions, the average mag-
3) netizations of spirr and spinS should be obtained by av-
eraging over the probability distributions of the transverse
where the parameters, and p, are probabilities of spins fields, thus
o, and S; not exposed to the transverse fields and
0=<p;,pp,<1.T'; andTI', represents the uniform transverse
fields onA andB sublatticesp;(or p,)# 0 means that the ml:f f dridL{a?) Py () Po(T)), (13
transverse fieldl';(or T',) is trimodal distributed, while
p1(or p,) =0 means that’;(or I',) is bimodal distributed.
Within the pair model approximation, the Hamiltoniéi mzzf fdridrj<sz>Pl(Fi)P2(rj)- (14)
may be rewritten as
 egea ~x 2 Az ot In the vicinity of the transition temperature, the magneti-
Hp=—Joi§-Tio{— TS/~ Aci—BS, “) zationsm,; andm, tend to zero, we may expand the right-
with hand side of Eq913) and (14) with respect tom; and m,

and retain only terms linear tm; andm,,
A=J(z—1)m,, B=J(z—1)m,, (5

wherez is the coordination numbem,; andm, are the av-
erage magnetizations of spinand spinS, respectively.
Due to the noncommutative operators in the Hamiltonian my=aA+b,B, (16)
H,, it is very difficult to derive the eigenvalues of it. In
order to solve this problem, we shall reformulate the Hamil-
tonian under the discretized path-integral representation

m1:a1A+ blB, (15)

wherea,, a,, by, andb, are functions op,, p,, I';, and
F2 and their expressions depend on the values of spamd

(DPIR) to obtain the spin-pair partition function. In DPIR, spin<S,
the quantized2S+1)-states spin on each site will be trans- /2 , ,
ferred into P-component vectot (UM, U®), .. UP) a.= ELJF(l_ )E"'U exploly)/Ty (17)
L e . 1 p12 /+1 pl S e /F ) ’
and eventually to letP go to infinity. Each component o o &Xpo' Ty
uU=s (S-1), ...,—(S—1), —Sand the net effect is to ,2 , ,
represent the quantum uncertainty by creating many copies, | _ 2,0 . )20"0- explo’l')/T'y
or replicas of the original variables. By means of the DPIR, 1= Py PS5 exd(o Ty
the pair Hamiltonian can be broken up into two reference
parts involving only th_e single-site term, and an interaction_ 3¢ S'2 ES,S’ exp(S'T,)/T,
part. The corresponding free energy can be expressed in X| P25 7 T(1—p2) 7 , (19
2S'+1 SgexpS'Ty)
terms of the free energy of the reference parts and a cumu-
lant expansion. By taking the first cumulant term, the expres- _b 19
sion of the partition function of the spin pair reads as a2= Dy, (19
Ja - 345’2 1 S¢S expS'T,)IT, -

where Q}, and Qé are the one-body partition functions of where S’ takes (2S+1) values: —S, —(S—1), ...,
spino and spinS, respectively, (S—1), S, and¢’ takes (&r+1) values:—o, —(oc—1),
1 1 , (0—1), o. Then the second-order phase transition line
Qz=exd — BH, ], (7)  is determined by the following equation:
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FIG. 2. The change dfgT./J of systemo=1/2 andS=1 with
z=4 with the transverse field';/J in the case ofl';=1I", for
p1=p»=0.0,0.1, 0.2, 0.3, 0.5, and 0.7. The solid circles refer to the
tricritical points (TCP).
3 As p,=p,=0.0, the transition temperature decreases rapidly
';2 with increasing the transverse field and the transition tem-

perature reaches zero Bt /J=2.65. This behavior is in
good agreement with that of transverse mixed Ising
model!’~1° In particular, the value of the temperature at
I'1/J=0.0is 1.52, which may be comparable with the EFT
result’ 1.30, the RSRGA resdft 1.37, and the MFA resulft
1.63. The value of critical transverse field is 2.65, which is
comparable with the EFT restft2.12 and the MFA resuft
(b) I4/J 2.83. These results illustrate that the pair model approxima-
tion with the DPIR is suitable to study the TRMIM and is

FIG. 1. Reduced transition temperatukgT,./J of system  Superior to the mean-field approximation. Whenis larger
o=1/2 andS=1 with z=4 as a function of the transverse field than zero, the transition temperature falls with increasing
I';/J in the case of';=T, and for(a) p;=0.0 with p,=0.0, 0.3, transverse field but cannot reach zero no matter how large

0.5, and 0.7{b) p,=0.0 with p;=0.0, 0.3, 0.5, and 0.7. the transverse fields are. The incrementpgfleads to the
shift of the transition temperature at the same transverse
field.

1 L L
a;Xb,—|ay— ———=|X| b;— —):0_ When I', is bimodal (,=0.00 and I'; is bimodal
(z=1)BJ (z=1)BJ @ (p;=0.0) or trimodal (p;#0.0) distributed, the phase dia-

gram is potted in Fig. (b). Similarly the temperature reaches
zero only when the transverse fidld is bimodal distributed.
The temperatures gf,= 0.0 andp,=0.3,0.5,0.7 in Fig. (b)
are lower than corresponding to those pf=0.0 and

Here we are only interested in the critical behavior of thep,=0.3,0.5,0.7 in Fig. (8 at the same transverse field.
transverse-random-field mixed Ising mod@RMIM) with From Figs. 1a) and 1b), one may conclude that the critical
transverse fields trimodal distributed, which may be studiedehavior of TRMIM with bimodal distributions of the trans-
by solving Eq.(21) numerically. We take the following sys- verse fields is the same as that of transverse mixed lIsing
tems as samples to show the common feature of the TRMIMmodel, where the temperature monotonously falls to zero at
o=1/2,S=1 with z=4; 0=1/2,S=3/2 withz=3 and 4, and critical transverse field. But the trimodal distribution of one
o=1, S=2 with z=4. The values of transverse fielllsand  of transverse field leads to the transition temperature to be
I'; are assumed to be equal in these systems for simplicityjonzero, that is, disappearance of the critical transverse field.
I''=T5,, butp; may be the same as or different frqua. Next we study the phase diagram with bgih and p,

First we consider the TRMIM ofr=1/2 andS=1 with  being nonzero values. In Fig. 2, the change of transition tem-
z=4. Figure 1a) shows the reduced critical temperature as aperature with I'y is potted with p;=p,=0.0,
function of I';/J in the case ofp;=0.0 with p,=0.0, 0.3, 0.1,0.2,0.3,0.5, and 0.7. The situationmf=p,=0.0 has
0.5, and 0.7, respectively. In this case the transverse field dfeen discussed in Fig. 1. Asp;+p, is small
o=1/2 is bimodal distributed and the transverse field of(p;=p,=0.1, 0.3, the temperature continuously decreases
S=1 is bimodal £,=0.0) or trimodal (p,#0.0) distributed.  with increasingl’; but cannot reach zero. Whem +p, is

Ill. CALCULATION AND DISCUSSION
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FIG. 3. KgT./J of systemo=1/2 and S=3/2 with z=4 vs FIG. 5. KgTc/J of systemo =1 andS=2 with z=4 vsI', /J in

I';/J in the case of ;=T and forp;=p,=0.0 (dot-dashed ling the case ofl'y=I'; and for p,=p,=0.0 (dot-dashed ling for

for p,=0.0 with p,=0.3, 0.5, 0.7solid lineg and forp,=0.0 with ~ P1=0-0 with p,=0.2, 0.4, 0.6(solid ling) and for p,=0.0 with

large enough §;=p,=0.3, 0.5, and 0.7 the temperature field Ising model. The phase diagram of this case shows the
falls initially but then terminates at a finite value. This be- discontinuity which has been discussed in Refs. 4—6. As both
havior is called tricritical behavior and the terminal point is of the transverse fields are trimodal distributed, the effect of
named as tricritical poinfTCP, the solid circles in figuje  quantum fluctuation is relatively weakened. At small value

The temperature of the tricritical point is around of p;+p,, the quantum effect still dominates, and the disor-

KgT./J=1.20. However the transverse field of tricritical der from the random distribution only leads to the nonzero

point becomes larger with increasing the valugpeft-p,. temperature. With increasing the valuemf+p,, the disor-

As we know, the transverse field gives rise to a possibleler effect may match and eventually overpass the quantum
spin-flip transition and hence induces the quantum fluctuaeffect. In addition, the mixed-spin system has less transla-
tion. Nevertheless, the trimodal distribution of the transversdional symmetry than the single-spin one. These two effects
field reflects a form of disorder which coexists with the in TRMIM result in the appearance of the tricritical point.
guantum effect in TRMIM. They behave in a different man- With further increasing, andp,, the transverse field has to
ner as the temperature is depressed. The case that one of #he increased to compete the disorder effect.
transverse field is bimodal distributed and the other is trimo- In mixed-spin Ising model with crystal field, the phase
dal distributed in TRMIM is similar to that of trimodal dis- diagram of systenr=1/2 andS=3/2 is different from that
tribution of transverse field in single-spin transverse-randomef systemo=1/2 andS=1, where the tricritical point does

pi1=p2, [1=I2
0=1/2, $=3/2
z=4

03 04

3 0.2 3
@ 015NN\ 5
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/J T1/J
FIG. 4. KgT./J of systemo=1/2 and S=3/2 with z=4 vs FIG. 6. KgT./J of systemo=1 andS=2 with z=4 vsT';/J in

I'y/J in the case of',=T", for p,=p,=0.0, 0.1, 0.15, 0.2, 0.3, and the case of';=1", for p,=p,=0.0, 0.05, 0.1, 0.15, 0.3, and 0.4.
0.4. The solid circles refer to the tricritical poinfECP). The solid circles refer to the tricritical point§CP).
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The phase diagram of systems with odd half-integer spin
value have been studied and the tricritical behavior is shown

=pg, [1=T ; X . X X
o'p.—_1-1 /ng’ s1=3/22 in above figures. How is the phase diagram of system with
02 04 06 07 z=3 both integer spins mixed? Figures 5 and 6 show the phase

diagrams of systemr=1 andS=2. In Fig. 5, where one of
the transverse field is bimodal distributed, the phase diagram
exhibits the discontinuity alf=0K as those of systems
0=1/2,S=1ando=1/2,S=3/2. In Fig. 6, where both trans-
verse fields are trimodal distribute@(,p,# 0.0, the tric-
ritical point shows up whem,=p, is larger than 0.1. The
tricritical points of curves 0.3 and 0.5 are not drawn in the
figure but may be observed as the transverse field is large
enough, which are indicated with dotted lines.

From above discussed phase diagrams, we may conclude
that the tricritical point may exist in the transverse-random-
field mixed Ising mode(TRMIM) with integer spin values

Ty/J or odd half-integer spin values. The valuesmaf, p,, I'q,
andT’,, at which the tricritical point appears, are dependent

FIG. 7. KgT./J of systemo=1/2 andS=3/2 with z=3 vs O the spin values. The_value_s;m{_ and p, are Iowe_red but
', /J in the case of' ;=T for p;=p,=0.0, 0.1, 0.2, 0.4, 0.6, and those ofl’; andI'; are raised with increasing the spin values.
0.7. The solid circles refer to the tricritical poinf&CP). On the other hand, the existence of the tricritical point in

mixed-spin Ising model with crystal field is dependent on the
not exist. Does the tricritical point exist in TRMIM of coordination number.*® Figur_e 7 shows the_ phgse dia_lgram
o=1/2 and S=3/2 or not? Figure 3 show&gT./J Vs of systemazl/_Z andS=3/2 with z=3. The tricritical points
I,/J in three cases:p;=p,=0.0 (dot-dashed ling &€ observed in the curves Whgn th_e val_ues of imtland
p,=0.0, p,#0.0 (solid lines, andp,=0.0, p;#0.0 (dotted P2 @re Iarggr than 0.2. Companng with Fig. 2, one may see
lines). In this phase diagram, the trimodal distribution of onethat the critical transverse field, the temperature and the val-
of the transverse fields similarly leads to the discontinuity of/€S 0fP1 andp,, I'y and I’ at which the tricritical points
phase diagram &=0 K but the directional randomnegsi- appear are lowered because of reduction of interaction in
modal distributiof of both transverse fields shows the sameSyStem withz=3.
phase transition behavior as the fixed transverse field. The
transition temperature in the case @f=0.0 is higher than
that in the case gp,=0.0. This demonstrates that the disor- In summary, by investigating the phase diagrams of
der fromS=3/2 gives rise to more influence on phase tran-transverse-random-field mixed Ising modéTRMIM):
sition than that fromo=1/2. As shown in Fig. 3 the values ¢=1/2,5=1; 0=1/2,5=3/2, ando=1, S=2, one may con-
of critical transverse field, the temperature at the same  clude that the bimodal distributiorp{= p,=0) of the trans-
p, andI'; are higher than those in Fig. 1 because of theverse fields in TRMIM results in the same critical behavior
increment of spirS from 1 to 3/2. as the fixed transverse field in transverse mixed Ising model.

As p; and p, are nonzero values, the phase diagram ofThe trimodal distribution of transverse field at one of spins
o=1/2 and S=3/2 is shown in Fig. 4. In this figure the (p;=0,p,#0 orp;#0,p,=0) only leads to the discontinuity
tricritical point shows up when botp, and p, are larger of phase diagram at=0 K, which is similar to the single-
than 0.15. The dotted line of curve 0.4 indicates that thespin transverse-random-field Ising model. When both the
transition temperature will decrease with increasihgand transverse fields are trimodal distributegh ¢ 0,p,# 0), not
I';, and eventually terminates at the same temperature as tlomly the discontinuity at small value qf;+p, but the tri-
curves 0.15 and 0.3. The tricritical point of this curve critical behavior at large value qf;+p, shows up in the
(p1=p,=0.4) is not drawn in the figure but may be ob- phase diagram. The existence of the tricritical behavior is
served at high transverse field. For the system consisting dhdependent of the spin values and the coordination number.
both odd half-integer spins, the tricritical point may exist butHowever, the values op,, p, and transverse fieldd;,,
the values ofp; andp,, where the tricritical point appears, I',, at which the tricritical point appears, depend on the spin

KeTc/d

IV. CONCLUSION

are less than those of the systemoct1/2 andS=1. values and the coordination number.
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