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The transverse-random-field mixed Ising model consisting of arbitrary spin values has been studied by
combining the pair model approximation with discretized path-integral representation. The phase diagrams of
systems with mixed spins:s51/2,S51; s51/2,S53/2, ands51,S52 are plotted. Not only the discontinuity
at T50 K is found between the trimodal and bimodal distributions of transverse fields, which is similar to the
single-spin counterpart, but also the tricritical behavior is observed in these phase diagrams when both trans-
verse fields are trimodal distributed, which is different from the single-spin one. The appearance of tricritical
point is independent of the coordination number and spin values.

I. INTRODUCTION

In last decades, there has been an interesting number of
works dealing with critical behavior of quantum spin system.
The transverse Ising model is the simplest quantum system
and has been introduced to explain the phase transition of
hydrogen-bonded ferroelectrics such as KH2PO4 ~Ref. 1!
and other systems2 in the order-disorder phenomenon with
tunneling effects. The quantum effect is represented by add-
ing a term~transverse field part! in the Hamiltonian, which is
noncommutative with the interaction part. As the transverse
field is taken as fixed values, the transverse Ising model has
a finite-temperature phase transition which can be depressed
to zero temperature at a critical value of the transverse field.3

As the transverse field is randomly distributed, the phase
diagram of single-spin transverse-random-field Ising model
has been studied4,5 and a finite discontinuity in the phase
diagram was found atT50 K, between the trimodal and
bimodal distributions of the transverse field. Subsequently,
Yokota6 pointed out that the directional randomness of the
transverse field did not change the critical behavior.

On the other hand, much attention has been directed to the
two-sublattice mixed-spin systems over the years. The
mixed-spin Ising model consisting of spin-1/2 and spin-S
with a crystal-field interaction has been studied extensively
by a variety of techniques, namely the exact,7,8 and approxi-
mated methods9–13as well as the high-temperature series ex-
pansion method.14 The tricritical point is predicted in the
systems ofS51 or 2 with a coordination numberz larger
thanz53.12,15However, the tricritical behavior does not ex-
ist in the system withS53/2.16 These results indicate that
the existence of tricritical behavior in the mixed-spin Ising
model with a crystal-field interaction is dependent on the
spin valueS as well as the coordination number.

The transverse mixed Ising model has been studied by
effective-field theory ~EFT!,17 mean-field approxima-
tion ~MFA!,18 and real-space renormalization-group approxi-
mation ~RSRGA!.19 These approaches showed that the tran-
sition temperature falls to zero at a certain transverse field.
But, to our knowledge, no investigation has been made of
transverse-random-field mixed Ising model~TRMIM !. As a
matter of fact, the random distribution of transverse field

reveals coexistence of disorder with quantum effect in
TRMIM. These two effects operate in different manner when
the temperature decreases. Furthermore, since the mixed-spin
system has less translational symmetry than the single-spin
counterpart, the competition between these two effects may
result in many new phenomena in the TRMIM which cannot
be observed in the single-spin transverse random-field Ising
model or in the transverse mixed Ising model. The aim of
this work is to study the phase diagram of the TRMIM when
both of the transverse fields are trimodal distributed.

The pair model approximation20 is one of the usual meth-
ods to deal with the mixed-spin Ising model. Under pair
model approximation, the Hamiltonian of a nearest-neighbor
two-site cluster which is arbitrarily picked up is represented
as that of the whole system, where the interaction between
these two nearest-neighbor sites is included exactly and the
interaction from other sites is approximately considered by
mean field. On the other hand, since the transverse-random-
field mixed Ising model is a quantum spin system, it is dif-
ficult to diagnolize the Hamiltonian directly due to its non-
commutativity. Fortunately the discretized path-integral
representation21,22 ~DPIR! enables us to analytically obtain
the formula of the partition function, the magnetization and
so on. Therefore, in this paper we combine these two ap-
proaches to deal with TRMIM and to show the magnetiza-
tion and the equation of the second-order phase transition
analytically, and then numerically solve the second-order
phase transition equation to plot the phase diagram.

II. THEORY

The Hamiltonian of transverse-random-field mixed Ising
model ~TRMIM ! is given by

H52(
i , j

Jŝ i
zŜj

z2(
i

G i ŝ i
x2(

j
G j Ŝj

x . ~1!

This model describes the mixed-spin system consisting of
two sublatticesA andB, which are arranged alternately. In
the underlying lattice the sites ofA sublattice are occupied
by spinsŝ i of magnitudes, while those of the alternateB
sublattice are occupied by spinsŜj of magnitudeS. The ŝ i
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takes the 2s11 values:2s, 2(s21), . . . , (s21), s
and theŜj the 2S11 values:2S, 2(S21), . . . , (S21),
S, where s and S have one of the usual integer or odd
half-integer values. The first summation in Eq.~1! involves
all pairs of nearest-neighbor sites in the lattice. The second
and third summations involve all sites ofA andB, respec-
tively. The quantities,J, G i , andG j , measured in unit of
KBT with KB the Boltzmann constant andT the temperature,
are, respectively, an interaction constant and the transverse
fields on theA andB sublattices.

The transverse fields are randomly distributed according
to following trimodal distributions:

P1~G i !5p1d~G i !1
1

2
~12p1!@d~G i1G1!1d~G i2G1!#,

~2!

P2~G j !5p2d~G j !1
1

2
~12p2!@d~G j1G2!1d~G j2G2!#,

~3!

where the parametersp1 and p2 are probabilities of spins
ŝ i and Ŝj not exposed to the transverse fields and
0<p1 ,p2<1. G1 andG2 represents the uniform transverse
fields onA andB sublattices.p1~or p2)Þ 0 means that the
transverse fieldG1~or G2) is trimodal distributed, while
p1~or p2)50 means thatG1~or G2) is bimodal distributed.

Within the pair model approximation, the Hamiltonian~1!
may be rewritten as

Hp52Jŝ i
zŜj

z2G i ŝ i
x2G j Ŝj

x2Aŝ i
z2BŜj

z , ~4!

with

A5J~z21!m2 , B5J~z21!m1 , ~5!

wherez is the coordination number,m1 andm2 are the av-
erage magnetizations of spin-s and spin-S, respectively.

Due to the noncommutative operators in the Hamiltonian
Hp , it is very difficult to derive the eigenvalues of it. In
order to solve this problem, we shall reformulate the Hamil-
tonian under the discretized path-integral representation
~DPIR! to obtain the spin-pair partition function. In DPIR,
the quantized~2S11!-states spin on each site will be trans-
ferred intoP-component vectorU(U (1), U (2), . . . , U (P))
and eventually to letP go to infinity. Each component
U (t)5S, (S21), . . . ,2(S21), 2S and the net effect is to
represent the quantum uncertainty by creating many copies,
or replicas of the original variables. By means of the DPIR,
the pair Hamiltonian can be broken up into two reference
parts involving only the single-site term, and an interaction
part. The corresponding free energy can be expressed in
terms of the free energy of the reference parts and a cumu-
lant expansion. By taking the first cumulant term, the expres-
sion of the partition function of the spin pair reads as

lnQp5 lnQs
11 lnQS

11
J

b

]

]A
@ lnQs

1 #
]

]B
@ lnQS

1#, ~6!

whereQs
1 andQS

1 are the one-body partition functions of
spin-s and spin-S, respectively,

Qs
15exp@2bHs

1 #, ~7!

QS
15exp@2bHS

1#, ~8!

with

Hs
152G i ŝ i

x2Aŝ i
z , ~9!

HS
152G j Ŝj

x2BŜj
z . ~10!

The average values of spin-s and spin-Smay be given as

^sz&5
1

b

]

]A
~ lnQp!, ~11!

^Sz&5
1

b

]

]B
~ lnQp!. ~12!

Since the transverse fields are randomly distributed ac-
cording to trimodal random distributions, the average mag-
netizations of spin-s and spin-S should be obtained by av-
eraging over the probability distributions of the transverse
fields, thus

m15E E dG idG j^s
z&P1~G i !P2~G j !, ~13!

m25E E dG idG j^S
z&P1~G i !P2~G j !. ~14!

In the vicinity of the transition temperature, the magneti-
zationsm1 andm2 tend to zero, we may expand the right-
hand side of Eqs.~13! and ~14! with respect tom1 andm2
and retain only terms linear tom1 andm2 ,

m15a1A1b1B, ~15!

m25a2A1b2B, ~16!

wherea1 , a2 , b1 , andb2 are functions ofp1 , p2 , G1 , and
G2 and their expressions depend on the values of spin-s and
spin-S,

a15p1
(s8s82

2s811
1~12p1!

(s8s8exp~s8G1!/G1

(s8exp~s8G1!
, ~17!

b15bJFp1 (s8s82

2s811
1~12p1!

(s8s8exp~s8G1!/G1

(s8exp~s8G1!
G

3Fp2 (S8S82

2S811
1~12p2!

(S8S8exp~S8G2!/G2

(S8exp~S8G2!
G , ~18!

a25b1 , ~19!

b25p2
(S8S82

2S811
1~12p2!

(S8S8exp~S8G2!/G2

(S8exp~S8G2!
, ~20!

where S8 takes ~2S11! values: 2S, 2(S21), . . . ,
(S21), S, ands8 takes (2s11) values:2s, 2(s21),
. . . , (s21), s. Then the second-order phase transition line
is determined by the following equation:
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a13b22S a22 1

~z21!bJD3S b12 1

~z21!bJD50.

~21!

III. CALCULATION AND DISCUSSION

Here we are only interested in the critical behavior of the
transverse-random-field mixed Ising model~TRMIM ! with
transverse fields trimodal distributed, which may be studied
by solving Eq.~21! numerically. We take the following sys-
tems as samples to show the common feature of the TRMIM:
s51/2,S51 with z54; s51/2,S53/2 with z53 and 4, and
s51, S52 with z54. The values of transverse fieldsG i and
G j are assumed to be equal in these systems for simplicity,
G15G2 , but p1 may be the same as or different fromp2 .

First we consider the TRMIM ofs51/2 andS51 with
z54. Figure 1~a! shows the reduced critical temperature as a
function of G1 /J in the case ofp150.0 with p250.0, 0.3,
0.5, and 0.7, respectively. In this case the transverse field of
s51/2 is bimodal distributed and the transverse field of
S51 is bimodal (p250.0! or trimodal (p2Þ0.0! distributed.

As p15p250.0, the transition temperature decreases rapidly
with increasing the transverse field and the transition tem-
perature reaches zero atG1 /J52.65. This behavior is in
good agreement with that of transverse mixed Ising
model.17–19 In particular, the value of the temperature at
G1 /J50.0 is 1.52, which may be comparable with the EFT
result17 1.30, the RSRGA result19 1.37, and the MFA result18

1.63. The value of critical transverse field is 2.65, which is
comparable with the EFT result17 2.12 and the MFA result18

2.83. These results illustrate that the pair model approxima-
tion with the DPIR is suitable to study the TRMIM and is
superior to the mean-field approximation. Whenp2 is larger
than zero, the transition temperature falls with increasing
transverse field but cannot reach zero no matter how large
the transverse fields are. The increment ofp2 leads to the
shift of the transition temperature at the same transverse
field.

When G2 is bimodal (p250.0! and G1 is bimodal
(p150.0! or trimodal (p1Þ0.0! distributed, the phase dia-
gram is potted in Fig. 1~b!. Similarly the temperature reaches
zero only when the transverse fieldG1 is bimodal distributed.
The temperatures ofp250.0 andp150.3,0.5,0.7 in Fig. 1~b!
are lower than corresponding to those ofp150.0 and
p250.3,0.5,0.7 in Fig. 1~a! at the same transverse field.
From Figs. 1~a! and 1~b!, one may conclude that the critical
behavior of TRMIM with bimodal distributions of the trans-
verse fields is the same as that of transverse mixed Ising
model, where the temperature monotonously falls to zero at
critical transverse field. But the trimodal distribution of one
of transverse field leads to the transition temperature to be
nonzero, that is, disappearance of the critical transverse field.

Next we study the phase diagram with bothp1 and p2
being nonzero values. In Fig. 2, the change of transition tem-
perature with G1 is potted with p15p250.0,
0.1, 0.2, 0.3, 0.5, and 0.7. The situation ofp15p250.0 has
been discussed in Fig. 1. Asp11p2 is small
(p15p250.1, 0.2!, the temperature continuously decreases
with increasingG1 but cannot reach zero. Whenp11p2 is

FIG. 1. Reduced transition temperatureKBTc /J of system
s51/2 andS51 with z54 as a function of the transverse field
G1 /J in the case ofG15G2 and for ~a! p150.0 with p250.0, 0.3,
0.5, and 0.7;~b! p250.0 with p150.0, 0.3, 0.5, and 0.7.

FIG. 2. The change ofKBTc /J of systems51/2 andS51 with
z54 with the transverse fieldG1 /J in the case ofG15G2 for
p15p250.0, 0.1, 0.2, 0.3, 0.5, and 0.7. The solid circles refer to the
tricritical points ~TCP!.
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large enough (p15p250.3, 0.5, and 0.7!, the temperature
falls initially but then terminates at a finite value. This be-
havior is called tricritical behavior and the terminal point is
named as tricritical point~TCP, the solid circles in figure!.
The temperature of the tricritical point is around
KBTc /J51.20. However the transverse field of tricritical
point becomes larger with increasing the value ofp11p2 .

As we know, the transverse field gives rise to a possible
spin-flip transition and hence induces the quantum fluctua-
tion. Nevertheless, the trimodal distribution of the transverse
field reflects a form of disorder which coexists with the
quantum effect in TRMIM. They behave in a different man-
ner as the temperature is depressed. The case that one of the
transverse field is bimodal distributed and the other is trimo-
dal distributed in TRMIM is similar to that of trimodal dis-
tribution of transverse field in single-spin transverse-random-

field Ising model. The phase diagram of this case shows the
discontinuity which has been discussed in Refs. 4–6. As both
of the transverse fields are trimodal distributed, the effect of
quantum fluctuation is relatively weakened. At small value
of p11p2 , the quantum effect still dominates, and the disor-
der from the random distribution only leads to the nonzero
temperature. With increasing the value ofp11p2 , the disor-
der effect may match and eventually overpass the quantum
effect. In addition, the mixed-spin system has less transla-
tional symmetry than the single-spin one. These two effects
in TRMIM result in the appearance of the tricritical point.
With further increasingp1 andp2 , the transverse field has to
be increased to compete the disorder effect.

In mixed-spin Ising model with crystal field,16 the phase
diagram of systems51/2 andS53/2 is different from that
of systems51/2 andS51, where the tricritical point does

FIG. 3. KBTc /J of systems51/2 andS53/2 with z54 vs
G1 /J in the case ofG15G2 and forp15p250.0 ~dot-dashed line!,
for p150.0 withp250.3, 0.5, 0.7~solid lines! and forp250.0 with
p150.3, 0.5, 0.7~dotted lines!.

FIG. 4. KBTc /J of systems51/2 andS53/2 with z54 vs
G1 /J in the case ofG15G2 for p15p250.0, 0.1, 0.15, 0.2, 0.3, and
0.4. The solid circles refer to the tricritical points~TCP!.

FIG. 5. KBTc /J of systems51 andS52 with z54 vsG1 /J in
the case ofG15G2 and for p15p250.0 ~dot-dashed line!, for
p150.0 with p250.2, 0.4, 0.6~solid line! and for p250.0 with
p150.2, 0.4, and 0.6~dotted lines!.

FIG. 6. KBTc /J of systems51 andS52 with z54 vsG1 /J in
the case ofG15G2 for p15p250.0, 0.05, 0.1, 0.15, 0.3, and 0.4.
The solid circles refer to the tricritical points~TCP!.
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not exist. Does the tricritical point exist in TRMIM of
s51/2 and S53/2 or not? Figure 3 showsKBTc /J vs
G1 /J in three cases:p15p250.0 ~dot-dashed line!;
p150.0, p2Þ0.0 ~solid lines!, andp250.0, p1Þ0.0 ~dotted
lines!. In this phase diagram, the trimodal distribution of one
of the transverse fields similarly leads to the discontinuity of
phase diagram atT50 K but the directional randomness~bi-
modal distribution! of both transverse fields shows the same
phase transition behavior as the fixed transverse field. The
transition temperature in the case ofp150.0 is higher than
that in the case ofp250.0. This demonstrates that the disor-
der fromS53/2 gives rise to more influence on phase tran-
sition than that froms51/2. As shown in Fig. 3 the values
of critical transverse field, the temperature at the samep1 ,
p2 and G1 are higher than those in Fig. 1 because of the
increment of spinS from 1 to 3/2.

As p1 and p2 are nonzero values, the phase diagram of
s51/2 andS53/2 is shown in Fig. 4. In this figure the
tricritical point shows up when bothp1 and p2 are larger
than 0.15. The dotted line of curve 0.4 indicates that the
transition temperature will decrease with increasingG1 and
G2 and eventually terminates at the same temperature as the
curves 0.15 and 0.3. The tricritical point of this curve
(p15p250.4! is not drawn in the figure but may be ob-
served at high transverse field. For the system consisting of
both odd half-integer spins, the tricritical point may exist but
the values ofp1 andp2 , where the tricritical point appears,
are less than those of the system ofs51/2 andS51.

The phase diagram of systems with odd half-integer spin
value have been studied and the tricritical behavior is shown
in above figures. How is the phase diagram of system with
both integer spins mixed? Figures 5 and 6 show the phase
diagrams of systems51 andS52. In Fig. 5, where one of
the transverse field is bimodal distributed, the phase diagram
exhibits the discontinuity atT50 K as those of systems
s51/2,S51 ands51/2,S53/2. In Fig. 6, where both trans-
verse fields are trimodal distributed (p1 ,p2Þ 0.0!, the tric-
ritical point shows up whenp15p2 is larger than 0.1. The
tricritical points of curves 0.3 and 0.5 are not drawn in the
figure but may be observed as the transverse field is large
enough, which are indicated with dotted lines.

From above discussed phase diagrams, we may conclude
that the tricritical point may exist in the transverse-random-
field mixed Ising model~TRMIM ! with integer spin values
or odd half-integer spin values. The values ofp1 , p2 , G1 ,
andG2 , at which the tricritical point appears, are dependent
on the spin values. The values ofp1 andp2 are lowered but
those ofG1 andG2 are raised with increasing the spin values.

On the other hand, the existence of the tricritical point in
mixed-spin Ising model with crystal field is dependent on the
coordination numberz.15 Figure 7 shows the phase diagram
of systems51/2 andS53/2 with z53. The tricritical points
are observed in the curves when the values of bothp1 and
p2 are larger than 0.2. Comparing with Fig. 2, one may see
that the critical transverse field, the temperature and the val-
ues ofp1 andp2 , G1 andG2 at which the tricritical points
appear are lowered because of reduction of interaction in
system withz53.

IV. CONCLUSION

In summary, by investigating the phase diagrams of
transverse-random-field mixed Ising model~TRMIM !:
s51/2,S51; s51/2,S53/2, ands51,S52, one may con-
clude that the bimodal distribution (p15p250! of the trans-
verse fields in TRMIM results in the same critical behavior
as the fixed transverse field in transverse mixed Ising model.
The trimodal distribution of transverse field at one of spins
(p150,p2Þ0 orp1Þ0,p250! only leads to the discontinuity
of phase diagram atT50 K, which is similar to the single-
spin transverse-random-field Ising model. When both the
transverse fields are trimodal distributed (p1Þ0,p2Þ0!, not
only the discontinuity at small value ofp11p2 but the tri-
critical behavior at large value ofp11p2 shows up in the
phase diagram. The existence of the tricritical behavior is
independent of the spin values and the coordination number.
However, the values ofp1 , p2 and transverse fields,G1 ,
G2 , at which the tricritical point appears, depend on the spin
values and the coordination number.
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