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Anharmonic calculations of crystals having the diamond structure; silicon, germanium, diamond, and alpha-
tin are reported. The principal channels of decay of the optical phonon are determined for each material. In
particular the zone-center phonon lifetime is computed with the exception of alpha-tin. A reasonable agreement
between theory and experiment is obtained considering the simplicity of the harmonic and anharmonic models
employed in the present calculation. The linewidth of the optical phonon at a temperature of 10 K is found to
be 1.19 cm21 for silicon, 0.53 cm21 for germanium, and 0.84 cm21 for diamond the experimental values being
1.24, 0.75, and 1.68 cm21, respectively.@S0163-1829~96!06718-5#

I. INTRODUCTION

Anharmonic processes have been studied extensively by
inelastic light scattering in crystals with the diamond
structure.1–4 Very recently results have been reported on the
anharmonic effects in silicon and germanium alloys and
heterostructures.5,6 Raman analysis has been performed over
a wide range of temperatures in the cases of silicon and
germanium. The effect of temperature is to decrease the Ra-
man shift and to increase the linewidth of the optical phonon.
The temperature dependence of the optical mode has been
used to probe the temperature profile of conventionally
heated and laser-heated silicon.

Theoretically several types of models have been used to
describe the temperature dependence of the Raman mode.
These models have been applied in most of the cases to
silicon. In particular, Cowley7,8 has investigated the cases of
silicon, diamond, and germanium. An essential ingredient for
the theoretical models developed are the Fourier-transformed
anharmonic coefficients that enter into the expressions of the
damping constant and the frequency shift of the optical
phonon.9 However these computations are rather complex
and were in the past frequently simplified by approximating
the anharmonic coefficients by simpler expressions.1 For a
long time the principal theoretical calculation was that of
Cowley.7,8 This calculation was later improved by Haro
et al.9 A few years ago a realisticab initio calculation of the
contribution to the inverse lifetime and frequency shift of
phonons in silicon was performed by Narasimhan and
Vanderbilt.10 At the same time a molecular-dynamics study
of anharmonic effects in silicon was done by Wang, Chan,
and Ho.11 Both calculations give good agreement with ex-
periment. Recently Koval and Migoni12 did a consistent an-
harmonic shell-model calculation for the Raman mode in
silicon. These authors claim that polarizability effects are
essential to give a good description of the experimental re-
sults. In the present work we give a description of the anhar-
monic properties of C, Si, Ge, anda-Sn using simple har-
monic and anharmonic models.9,13 The possible channels of

decay are identified for each material. Furthermore the cor-
responding linewidths are computed for Si, Ge, and C. Due
to the lack of experimental data regarding the third-order
elastic constants we were unable to compute these quantities
for a-Sn. Considering the simplicity of the models used our
calculations compare quite reasonably with the experimental
results.

A. Anharmonicity in crystals; central potentials

Let us restrict our analysis to central potentials and only
consider the cubic term in the vibrational Hamiltonian:14,15
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We are interested in this work in the particular case of the
disintegration of the optical phonon at the zone center~Ra-
man mode!, into two phonons~cubic process!. The zone-
center phonon has a zero wave vector; the conservation laws
of momentum and energy give in this case

v~q8, j 8!1v~q9, j 9!5v~0, j !,

q81q950⇒q952q8, ~1.5!

the corresponding Fourier-transformed anharmonic coeffi-
cients are given by9
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the linewidth and frequency shift of the zone-center optical phonon are given by
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These two expressions are related by the Kramers-Kronig
transformation.

II. HARMONIC MODEL

In order to compute the eigenfrequencies and eigenvec-
tors appearing in the previous expressions one needs to use a
harmonic model. Wanser and Wallis have studied thermal
expansion of silicon using a harmonic model which includes
first- through fourth-neighbor central interactions, angle
bending interactions, and nonlocal dipole interactions. These
interactions can be characterized by 11 parameters.9,13,16

These authors have developed a simpler version of the model

with only four parameters which can be determined from
experimental values. This simpler model gives a satisfactory
description of the acoustical branches of the phonon-
dispersion curves. As it will be shown later the principal
channels of decay of the Raman mode involve acoustical
branches.

The parameters area, m, s and p15z1e. These corre-
spond to purely central forces, first-~a5b! and second-
~m5n! neighbor interactions, angle bending~s!, and diago-
nal nonlocal dipoles (p1 ;p250).9,16 The parameters are re-
lated to the Raman frequency and the second-order elastic
constants by

TABLE I. Values of the parameters used in the harmonic model described in the text.

vRA
~s21!

vTAX
~s21!

b
dyn/~cm esu2!

a
~dyn/cm!

m
~dyn/cm!

s
~dyn/cm!

p1
2

~esu!

C 2.5131014 1.5231014 23.3931022 4.443104 2.123104 4.233104 6.87310220

Si 9.831013 2.831013 22.2831022 3.673104 3.0773103 7.1793103 3.05310220

Ge 5.7331013 1.5031013 22.5331023 3.263104 1.863103 6.363103 2.23310219

Sn 3.7731013 7.5431012 29.9331021 5.7063104 5.7063102 3.9143103 3.23310219

TABLE II. Experimental values for second- and third-order elastic constantsF1-(r 1) is computed using
Eq. ~3.1!.

a
~Å!

C11
~dyn/cm2!

C12
~dyn/cm2!

C111
~dyn/cm2!

C112
~dyn/cm2!

C123
~dyn/cm2!

F1-(r 1)
~dyn/cm2!

C 3.5631028 10.7631012 1.2531012 262.631012 222.631012 1.1231012 236.031013

Si 5.431028 1.6631012 0.6431012 28.2531012 24.5131012 20.6431012 26.4131013

Ge 5.6531028 1.2931012 0.4831012 28.131012 25.031012 22.3631012 25.5531013

Sn 6.4931028 0.69031012 0.29331012
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wherea is the conventional cube edge andb is a constant as
described in Ref. 16. The values of the parameters can be
determined using the experimental values of the second-
order elastic constants and the frequencies17 and are given in
Tables I and II.

III. ANHARMONIC MODEL

One important advantage of the harmonic model em-
ployed previously is that it can be extended in a straightfor-

FIG. 1. Phonon-dispersion curves for~a! sili-
con, ~b! germanium,~c! diamond,~d! alpha-tin
using the harmonic model described in the text.
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ward fashion to include cubic anharmonic terms.9 We restrict
our attention to nearest-neighbor central interactions. With
nearest-neighbor central interactions we have only one pa-
rameter to determine namelyf1-(r 1) ~where r 1 is the first
nearest-neighbor distance! given by9

f1-~r 1!5S 4

A3D @C11116C11212C12313C1116C12#. ~3.1!

The second- and third-order elastic constants for Si, Ge, and
C have been measured,17 these are given in Table II in this
table are also given the corresponding values off1-(r 1). The
first and second derivatives of the potential are given by
f18(r 1)50 andf19(r 1)53a, respectively.16 Note that in the
case ofa-Sn only the second-order elastic constants have
been measured.

IV. NUMERICAL CALCULATIONS

A. Phonon-dispersion curves

Using the harmonic model described previously we have
computed the phonon-dispersion relations for Si, Ge, C, and
a-Sn. The results are shown in Figs. 1~a!–1~d!. The solid
lines correspond to the present calculations and the plain
circles are the experimental results.18–21In general the agree-
ment is correct with the exception of the@111# direction
where some difference occurs.16

B. Channels of decay

In order to study the possible channels of decay of the
zone-center optical phonon we have selected theq points for
which the frequency sum of any two phonon branches gives
the Raman frequency

v j 1
1v j 2

5vRA61%vRA ~4.1!

for J151,6 andJ2516. This was done by generating a cubic
mesh of 770 points inside the 1/48th sector of the Brillouin
zone. Theq points satisfying relation~4.1! will represent the
possible channels of decay for the zone-center optic mode.
The fact of choosing 1% of the Raman frequency is closely
related to the width of the Gaussian used to represent thed
function appearing in expression~1.7!. The width of this
Gaussian is practically 1% of the Raman frequency. In actual
practice this width must have a finite value that is sufficiently
large to give a reasonable number ofq points a nontrivial
weight and yet sufficiently small that the function is sharply
peaked. When these conditions are fulfilled, the calculated

FIG. 2. 1/48th irreducible sector of the first Brillouin zone for~a! silicon, ~b! germanium,~c! diamond,~d! alpha-tin. The cubes represent
the possible channels of decay of the optical phonon.

TABLE III. Combinations of branches involved in the possible
channels of decay for the optical phonon. The corresponding per-
centage ofq points is given.

j 1 j 2 Silicon Germanium Diamond Alpha-tin

1 1 40.5
1 2 19.8
1 3 47.1 28 10.8
1 4 2.9 66.7
2 2 14.4
2 3 42.3 59 7.2
2 4 12.5
3 3 7.7 13 7.2 19.8
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damping constant is sensibly independent of the width of the
Gaussian.9 In Figs. 2~a!–2~d! we show the selectedq points
in the 1/48th irreducible sector of the Brillouin zone for C,
Si, Ge, anda-Sn. One observes marked differences between
them. In particular the only case where one findsq points
near theG point is silicon. These points involve optical and
acoustical combinations as possible channels of decay. In the
cases of Si and Ge the pattern of points though similar is
shifted one respect to the other. There is also a difference
regarding the number ofq points satisfying relation~4.1!
depending on the material. These numbers are 111, 98, 100,
and 96 for C, Si, Ge, anda-Sn, respectively. Using the same
notation as Narasimhan and Vanderbilt10 we have listed the
different combination branches that represent possible chan-

nels of decay for the four materials studied in Table III. The
branches are numbered in order of increasing energy;~1,2,3!
correspond to acoustical branches and~4,5,6! to optical
branches. For silicon the great majority of the possible chan-
nels involve pairs of acoustical branches, however one finds
a small contribution of acoustical-optical pairs. In contrast to
the results obtained in Ref. 10 no contribution of the type
~2,2! were found in the present case. For germanium the
situation is similar than for silicon. In the case of diamond all
the possible acoustical combinations are present. Finally for
alpha-tin one finds an important contribution of acoustical-
optical branches. This can be explained by the significant
depletion of the acoustical branches near theX point as seen
in Fig. 1~d!.

FIG. 3. Full widths at half maximum for~a! silicon, ~b! germanium,~c! diamond. The full circles represent experimental values and the
open circles the present calculations.
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C. Linewidth of the optical phonon

With the anharmonic model presented before, the Fourier-
transformed anharmonic coefficients were computed. The
sum over wave vectors was evaluated using the 770q points
cubic mesh as described in detail in Ref. 9. In Figs. 3~a!–3~c!
the linewidth of the optical phonon is shown for the cases of
silicon germanium and diamond. At low temperatures the
agreement between theory and experiment is reasonable. For
silicon and germanium the full width at half maximum
~FWHM! are 1.19 and 0.53 cm21, the corresponding experi-
mental values3 are 1.24 and 0.75 cm21, respectively. As al-
ready discussed by other authors3,22 the need to include
higher-order anharmonic terms is evident above tempera-
tures of the order of 500 K. In particular it has been shown
that quartic terms have a significative contribution to the
linewidth however they seem to have a less significative ef-
fect on the Raman shift.22 For the case of diamond we have
found a FWHM of 0.84 cm21 at 10 K as compared to 1.68
cm21 given by the experiment.23

V. CONCLUSIONS

In this work we have determined the different channels of
decay of the Raman mode for silicon, germanium, diamond,
and alpha-tin. The corresponding linewidths were computed
for silicon, germanium, and diamond. Considering the sim-
plicity of the harmonic and anharmonic models employed in
the present calculation the agreement between theory and
experiment is good. Very recently Debernardi, Baroni, and
Molinari have performed a first-principles calculation of an-
harmonic decay of phonons in diamond structure crystals,
the agreement between theoretical results and experimental
data is excellent.24
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