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Anharmonic calculations of the optical-phonon lifetime for crystals with the diamond structure
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Anharmonic calculations of crystals having the diamond structure; silicon, germanium, diamond, and alpha-
tin are reported. The principal channels of decay of the optical phonon are determined for each material. In
particular the zone-center phonon lifetime is computed with the exception of alpha-tin. A reasonable agreement
between theory and experiment is obtained considering the simplicity of the harmonic and anharmonic models
employed in the present calculation. The linewidth of the optical phonon at a temperature of 10 K is found to
be 1.19 cm* for silicon, 0.53 cmi* for germanium, and 0.84 ¢ for diamond the experimental values being
1.24, 0.75, and 1.68 cnl, respectively[S0163-18206)06718-5

[. INTRODUCTION decay are identified for each material. Furthermore the cor-
responding linewidths are computed for Si, Ge, and C. Due
Anharmonic processes have been studied extensively dp the lack of experimental data regarding the third-order
inelastic light scattering in crystals with the diamond €lastic constants we were unable to compute these quantities
structure!™ Very recently results have been reported on thefor a-Sn. Considering the simplicity of the models used our
anharmonic effects in silicon and germanium alloys andcalculations compare quite reasonably with the experimental
heterostructure3® Raman analysis has been performed overesults.
a wide range of temperatures in the cases of silicon and
germanium. The effect of temperature is to decrease the Ra- A. Anharmonicity in crystals; central potentials
man shift and to increase the linewidth of the optical phonon.
The temperature dependence of the optical mode has be%
used to probe the temperature profile of conventionally
heated and laser-heated silicon. 1
Theoretically several types of models have been used to <D3C=1—2 > > > Bapy (1|l K UL (k| ")
describe the temperature dependence of the Raman mode. L 17 " aBy
These models have been applied in most of the cases to o o
silicon. In particular, Cowle-ﬁlgrr)lgs investigated the cases of Xuﬂ(lk“ K )UV(IK“ <), @D
silicon, diamond, and germanium. An essential ingredient fokyhere
the theoretical models developed are the Fourier-transformed
anharmonic coefficients that enter into the expressions of the
damping constant and the frequency shift of the optical®ag,(I|l’«")=
phonon’ However these computations are rather complex
and were in the past frequently simplified by approximating

Let us restrict our analysis to central potentials and only
Bnsider the cubic term in the vibrational Hamiltoni4r?
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the anharmonic coefficients by simpler expressibf®r a + 2 ¢,'(Kf(r) r2

long time the principal theoretical calculation was that of

Cowley® This calculation was later improved by Haro " 1,

et al® A few years ago a realistiab initio calculation of the X| B (D=7 ¢KK'(r)H Rl )
r= k|l k!

contribution to the inverse lifetime and frequency shift of
phonons in silicon was performed by Narasimhan and (1.2
Vanderbilt!® At the same time a molecular-dynamics study .
of anharmonic effects in silicon was done by Wang, Chan)’vIth
and Ho'! Both calculations give good agreement with ex-
periment. Recently Koval and Migd#idid a consistent an- | — > x.8, andR(Ix|l’k")=R(Ix)—R(l'k") (1.3
harmonic shell-model calculation for the Raman mode in "«

silicon. These authors claim that polarizability effects are

essential to give a good description of the experimental re@nd

sults. In the present work we give a description of the anhar- ) 3

monic properties of C, Si, Ge, an#Sn using simple har- ,,,._de¢(r) — d%¢(r) = dé(r) 14
monic and anharmonic modétd® The possible channels of ¢(N=—g ¢"(N=—gqz— ¢"(N=—gz 14
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TABLE I. Values of the parameters used in the harmonic model described in the text.

WRA wTAX b a M o p%
) (s dynfcmesd)  (dyncm  (dyn/cm  (dyn/cm) (esy
C 251x10% 1.52x10"* —3.39x10% 4.44x10%0  2.12x10° 4.23x10" 6.87x10°%°
Si 9.8x108  2.8x10% —2.28x10% 3.67x10" 3.077x10° 7.179x10°® 3.05x10 %°
Ge 5.7310% 1.50x10% —2.53x10% 3.26x10" 1.86x10° 6.36x10° 2.23x1071°

Sn  3.7%10% 7.54x10%2 —9.93x10** 5.706x10" 5.706x10° 3.914x10° 3.23x10°*°

We are interested in this work in the particular case of the o(q',j")+w(q",j")=w(0,j),

disintegration of the optical phonon at the zone cef(Ra- - " ,

man modg into two phonons(cubic process The zone- q'+q"=0=q"=-q’, (1.9
center phonon has a zero wave vector; the conservation lawse corresponding Fourier-transformed anharmonic coeffi-
of momentum and energy give in this case cients are given b%

N i 3/2
V(0,i:0,j =" =% | 5o | (wg wgqiw_gin) Y2, D @50kl k" )€, (k]0,j)—e.x']0,j)]
1:4.) a.) 12| 2NM 0,j%aq,j [*H| a3y By | | J | J
x[eg(xla,j") —eg(x’|a,j) et RN [e (k] ~q,j") —e,(x'|—q,j")e R (1.6)

the linewidth and frequency shift of the zone-center optical phonon are given by

. 18 . . . 2
F(0J.0)=3z 2 2 V(0Jiqsi = a2 (Mt ot DIS(w w1 - wp) = Swt oyt wr)]
112

+(N=N)[ 8w+ w1~ w) — S(w— w1+ )}, .7
. 18 o . ni+n,+1 ny+n,+1 n{—n, n{—n,
—_ 0SS ) o 2 _ _
A0, @) 72 T 10 V(0.jia.j2i—a.j2)I°P o+ w;t+ o, w—wl—w2+ wtw—w, otw—o, (1.8

These two expressions are related by the Kramers-Kronigvith only four parameters which can be determined from
transformation. experimental values. This simpler model gives a satisfactory
description of the acoustical branches of the phonon-

Il. HARMONIC MODEL dispersion curves. As it will be shown later the principal

. . . channels of decay of the Raman mode involve acoustical
In order to compute the eigenfrequencies and eigenveq: . hes

tors appearing in the previous expressions one needs to use arp, t dp. = Th i
harmonic model. Wanser and Wallis have studied thermal € paramelers are, u, o andp,=z¢. 1hese corre
expansion of silicon using a harmonic model which includesSpond to. purely_ centra} forces, f|rs(a=,@) and segond-
first- through fourth-neighbor central interactions, angle("’“zv) nelghbqr Interactions, ag%ée bending), and diago-
bending interactions, and nonlocal dipole interactions. ThesB@ nonlocal dipoles;p,=0).”™ The parameters are re-
interactions can be characterized by 11 param&fgr¥ lated to the Raman frequency and the second-order elastic
These authors have developed a simpler version of the modéPnstants by

TABLE Il. Experimental values for second- and third-order elastic consthffi ;) is computed using

Eq. (3.1.
a Cn Ci, Cinz Ci Ci2s ®7(ry)
R) (dynfcnf)  (dyn/cnf)  (dyn/cnf)  (dyn/cnf) (dyn/cnf) (dyn/cn?)
C 3561078 10.76x10% 1.25x10% —62.6x10% —22.6x10% 1.12x10% —36.0x10"
Si 54x10°® 1.66x10% 0.64x102? —8.25x10'% —4.51x10? —0.64x10% —6.41x10"%
Ge 5.65<10°° 1.209x10% 0.48<10*% —8.1x10? -5.0x10% —2.36x10% —5.55x10"

Sn  6.4%10°% 0.690<102 0.293x10%
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wherea is the conventional cube edge ands a constant as
described in Ref. 16. The values of the parameters can be
determined using the experimental values of the second-
order elastic constants and the frequeridiasd are given in
Tables | and II.

. ANHARMONIC MODEL

One important advantage of the harmonic model em-
ployed previously is that it can be extended in a straightfor-
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SILICON DIAMOND

GERMANIUM

(b) X (d X

FIG. 2. 1/48th irreducible sector of the first Brillouin zone fa) silicon, (b) germanium{c) diamond,(d) alpha-tin. The cubes represent
the possible channels of decay of the optical phonon.

ward fashion to include cubic anharmonic teriWe restrict IV. NUMERICAL CALCULATIONS
our attention to nearest-neighbor central interactions. With
nearest-neighbor central interactions we have only one pa-
rameter to determine nameby,'(r;) (wherer, is the first Using the harmonic model described previously we have
nearest-neighbor distanicgiven by’ computed the phonon-dispersion relations for Si, Ge, C, and

a-Sn. The results are shown in Figdalt-1(d). The solid

lines correspond to the present calculations and the plain
[Cy11+6Cq10+ 2C105+3C11+6C,]. (3.1)  circles are the experimental results?!In general the agree-
ment is correct with the exception of tHd11] direction
n\ghere some difference occufs.

A. Phonon-dispersion curves

¢//I( ) ( 4
r)=|—
YT B
The second- and third-order elastic constants for Si, Ge, a

C have been measuréfithese are given in Table Il in this
table are also given the corresponding valuegfr,). The B. Channels of decay

first and second derivatives of the potential are given by |n order to study the possible channels of decay of the
$1(r1)=0 and¢/(r,) = 3a, respectively® Note that in the  zone-center optical phonon we have selectedjtpeints for
case ofa-Sn only the second-order elastic constants havevhich the frequency sum of any two phonon branches gives
been measured. the Raman frequency

TABLE lll. Combinations of branches involved in the possible
channels of decay for the optical phonon. The corresponding per-
centage ofy points is given.

wjl-i—wjz:wRAi l%wRA (41)

for J;,=1,6 andJ,=16. This was done by generating a cubic
i, Silicon Germanium Diamond  Alpha-tin Mesh of 770 points inside the 1/48th sector of the Brillouin
zone. They points satisfying relatiod.1) will represent the

—
i

1 1 40.5 possible channels of decay for the zone-center optic mode.
1 2 19.8 The fact of choosing 1% of the Raman frequency is closely
1 3 47.1 28 10.8 related to the width of the Gaussian used to representthe
1 4 2.9 66.7 function appearing in expressioil.7). The width of this

2 2 14.4 Gaussian is practically 1% of the Raman frequency. In actual
2 3 42.3 59 7.2 practice this width must have a finite value that is sufficiently
2 4 125 large to give a reasonable number @fpoints a nontrivial

3 3 7.7 13 7.2 19.8 weight and yet sufficiently small that the function is sharply

peaked. When these conditions are fulfilled, the calculated
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damping constant is sensibly independent of the width of theels of decay for the four materials studied in Table Ill. The
Gaussiar. In Figs. 2a)—2(d) we show the selecteql points  branches are numbered in order of increasing endigg;3

in the 1/48th irreducible sector of the Brillouin zone for C, correspond to acoustical branches ai#j5,6 to optical

Si, Ge, anda-Sn. One observes marked differences betweetranches. For silicon the great majority of the possible chan-
them. In particular the only case where one fimgpoints  nels involve pairs of acoustical branches, however one finds
near thel’ point is silicon. These points involve optical and a small contribution of acoustical-optical pairs. In contrast to
acoustical combinations as possible channels of decay. In thibe results obtained in Ref. 10 no contribution of the type
cases of Si and Ge the pattern of points though similar i€2,2) were found in the present case. For germanium the
shifted one respect to the other. There is also a differencsituation is similar than for silicon. In the case of diamond all
regarding the number aff points satisfying relation4.l)  the possible acoustical combinations are present. Finally for
depending on the material. These numbers are 111, 98, 108lpha-tin one finds an important contribution of acoustical-
and 96 for C, Si, Ge, and-Sn, respectively. Using the same optical branches. This can be explained by the significant
notation as Narasimhan and Vanderfilve have listed the depletion of the acoustical branches nearXhgoint as seen
different combination branches that represent possible chain Fig. 1(d).
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FIG. 3. Full widths at half maximum fofa) silicon, (b) germanium(c) diamond. The full circles represent experimental values and the
open circles the present calculations.
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C. Linewidth of the optical phonon

HARO-PONIATOWSKI, ESCAMILLA-REYES, AND WANSER

V. CONCLUSIONS

With the anharmonic model presented before, the Fourier- |n this work we have determined the different channels of
transformed anharmonic coefficients were computed. Th@ecay of the Raman mode for silicon, germanium, diamond,

sum over wave vectors was evaluated using theg0ints
cubic mesh as described in detail in Ref. 9. In Figs)-33(c)

and alpha-tin. The corresponding linewidths were computed
for silicon, germanium, and diamond. Considering the sim-

the linewidth of the optical phonon is shown for the cases ofjicity of the harmonic and anharmonic models employed in
silicon germanium and diamond. At low temperatures thehe present calculation the agreement between theory and
agreement between theory and experiment is reasonable. F&kperiment is good. Very recently Debernardi, Baroni, and

silicon and germanium the full width at half maximum
(FWHM) are 1.19 and 0.53 cit, the corresponding experi-
mental valueSare 1.24 and 0.75 cri, respectively. As al-
ready discussed by other autht?%the need to include

Molinari have performed a first-principles calculation of an-
harmonic decay of phonons in diamond structure crystals,
the agreement between theoretical results and experimental
data is excellent!

higher-order anharmonic terms is evident above tempera-

tures of the order of 500 K. In particular it has been shown
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that quartic terms have a significative contribution to the

linewidth however they seem to have a less significative ef-
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cm ! given by the experimerit
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