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We present molecular-dynamics simulations with quantum forces for localized systems using a real-space
method. We illustrate calculations for the vibrational modes of small molecules and clusters. Unlike other
real-space methods using adaptive grids, this procedure does not require any Pulay corrections for the forces,
nor does it suffer from the complication of redefining a grid after each time step of the molecular-dynamics
simulation. Our method is based on combining higher order finite difference methods withab initio pseudo-
potentials. We also introduce an iterative diagonalization scheme based on preconditioned Krylov techniques.
Compared toplane-wave–supercell methods, this method is more efficient and simpler to implement. Ex-
amples are presented for the CO2 molecule and a silicon cluster, Si4 .

I. INTRODUCTION

One of the outstanding achievements in computational
physics in the past decade has been the development ofab
initio methods for determining the structural properties of
condensed-matter systems.1 This development has led to a
number of innovative approaches, e.g., the development of
‘‘quantum’’ molecular dynamics and the application offirst-
principlesmethods to realistic systems such as liquids, clus-
ters, amorphous solids, and glasses.2 For the most part, this
work has been based on traditional solid-state methods
which combine pseudopotentials, plane waves, and supercell
geometries for localized systems.3 While these approaches
have achieved much success, the drawbacks of theplane-
wave–supercellapproach are notable. A plane-wave basis is
required to replicate not only the electronic states of the lo-
calized system of interest, but also ‘‘vacuum’’ regions im-
posed by the supercell geometry. The vacuum region must
be large to avoid ‘‘cell-cell’’ interactions, but replicating the
vacuum in the supercell for a localized system can be almost
as costly as replicating the system itself. An additional com-
plication that arises with the use of plane waves concerns the
use of fast Fourier transforms~FFT! for handling the convo-
lutions. While FFT’s are a great advantage in expediting the
calculation, these transforms present computational commu-
nication obstacles when one attempts to implement them on
parallel computer architectures.

A number of approaches have been proposed to circum-
vent or mitigate the deficiencies of the plane-wave–supercell
method. For example, Euclidean grids, adaptive grids, mul-
tigrids, wavelets, and other ‘‘real-space’’ methods have re-
cently been proposed.4 These methods are still in an embry-
onic state when compared to the traditional approach of
plane waves, but they promise a new direction and have been
quite successful for a number of prototypical systems.

Here we illustrate a real-space method for performing
‘‘quantum’’ molecular-dynamics on localized systems. In
particular, we concentrate on demonstrating the efficiency of
this method for some localized systems such as the CO2

molecule and a cluster of silicon. With respect to the CO2

molecule, it has been questioned whether simple Euclidean
real-space grids can be efficient for such systems.5 We will
demonstrate that regular grids possess some significant ad-
vantages over adaptive grids and that CO2 can be handled in
a simple and direct fashion. We also consider a small silicon
cluster for which the vibrational modes have been calculated
by real-space methods via a determination of the dynamical
matrix.6 This will allow us to compare ‘‘static’’ and ‘‘dy-
namical’’ calculations for the vibrational modes.

There are several advantages in using Euclidean grids.
For example, no complications arise in determining the in-
teratomic forces as would be the case for adaptive grids, e.g.,
Pulay forces.7 Moreover, the grids do not have to be updated
as the simulation proceeds. This can be a cumbersome pro-
cess as, in principle, the grids should be reconfigured for
each molecular-dynamics simulation time step.8 It might be
argued that adaptive grids are a better representation for lo-
calized systems as the ‘‘basis’’ can be adjusted to regions
where the wave functions are highly localized and where
they are not. However, this adjustment is nontrivial. Often,
fictitious elastic terms are used to accelerate the optimization
of the mesh near the nuclei, or ion core.9 While adaptive grid
methods may be appropriate for some systems, e.g., first row
elements, or transition metals, we would argue an adaptive
mesh complicates the procedure enormously.

Another advantage of Euclidean grids concerns the nature
of the resulting eigenvalue problem. The resulting matrix is
sparse and regularly structured. Owing to these attributes,
simple operations with the matrix, such as matrix-by-vector
products can be done efficiently on vector processors as well
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as in multiprocessing environments. In fact, the contribution
to the matrix which is due to the Laplacian does not even
need to be stored. Whenever a matrix-vector-product is in-
voked, the corresponding finite difference operation can be
performed directly on the mesh points. The coefficients of
the finite difference approximation are the same for each
point. The nonlocal components of the pseudopotential do
not cause major difficulties. The related contributions to the
product of a matrix by a vector consists of an irregular com-
putation which is similar to the product of a small sparse
matrix by a vector.

II. INTERATOMIC FORCES

Within the local density approximation, the total ground-
state energy is given by

Etot5T@r#1Ee2 i~Ra ,@r#!1E hart@r#1Exc@r#1Ei2 i~Ra!,
~1!

where the atomic positions are given byR a andr(r ) is the
charge density.T@r# is the kinetic energy,Ee2 i(Ra ,@r#) is
the electron-ion potential energy,Ehart@r# is the Hartree or
Coulomb potential energy,Exc@r# is the exchange-
correlation energy, andEi2 i(Ra) is the ion-ion potential en-
ergy. We have implicity assumed the Born-Oppenheimer ap-
proximation in writing Eq.~1!. Etot is a functional of the
electron density,r~r !, for the electronic ground state.

The force on an atom is the first-order derivative of total
energy with respect to its coordinate, and is given by apply-
ing the Hellmann-Feynman10 theorem. The total force,Fa

a ,
on an atom located atR a in thea direction is given by

Fa
a52

]Ee2 i

]Ra
a 2

]Ei2 i

]Ra
a . ~2!

Ei2 i(Ra), the interionic core energy, is simply the point-
charge–point-charge interaction under the ‘‘frozen core’’ ap-
proximation.

If we consider a pseudopotential representation of the ion-
core,Vion , the potential term corresponds to a nonlocal op-
erator, i.e., the potential depends on the angular momentum
of the wave function upon which it operates. In general, the
pseudopotential can be decomposed into a part which is local
and a part which is nonlocal. In real space, this formalism
may be cast into the following form:11–13

Vion~ r !5(
a

Vion,loc~ u rau!

1 (
a,n,lm

1

^DVlm
a &

uDVion,l~r a!ulm~ ra!&

3^DVion,l~r a8!ulm~ra8!u, ~3!

where^DVlm
a & is a normalization factor,

^DVlm
a &5E ulm~ra!DV ion,l~r a!ulm~ra!d

3r , ~4!

and ra5 r2 Ra , ulm are the atomic pseudopotential wave
functions of angular and azimuthal momentum quantum
numbers (l ,m) from which thel -dependent ionic pseudopo-

tentialsVion,l(r ) are generated. We have made the assump-
tion that the ion core is spherically symmetric~which is a
good approximation for the systems of interest here!.
DV ion,l(r )5Vion,l(r )2Vion,loc(r ) is the difference between
the l component of the ionic pseudopotential and the local
ionic potential. The energy from the electron-ion interaction,
Ee2 i can be obtained by using Eq.~3! as

Ee2 i5(
n

occ E cn~r !Vion~r !cn~r !d
3r

5(
a
E r~r !Vion,loc~r a!d

3r

1 (
a,n,lm

1

^DVlm
a &

@Gnlm
a #2, ~5!

where

Gn,lm
a 5E DVl~r a!ulm~ra!cn~r !d

3r . ~6!

The cn(r ) are the eigenwave functions of a one-electron
Schrödinger equation, and the sum onn is over the occupied
states. Combining Eqs.~2! and~5!, one can get an expression
for the force,

Fa
a5E r~rW !

]Vion,loc~r a!

]r a
a d3r12(

n,lm

1

^DVlm
a &

Gn,lm
a

]Gn,lm
a

]r a
a

2
]Ei2 i

]Ra
a . ~7!

The force from the electronic contribution comprises two
parts. The first term at the right-hand side of Eq.~7! is the
contribution from the local ionic potential, and the second
term is from the nonlocal potential. It is possible to ac-
celarate convergence of these forces by using the procedure
of Chan, Bohnen, and Ho.14

Once the eigenvalues and vectors of the system are deter-
mined, the interatomic quantum forces can be trivially evalu-
ated. The forces can then be utilized in performing molecular
dynamics with quantum forces.

III. REAL-SPACE METHODS FOR SOLVING
THE SCHRÖDINGER EQUATION

In previous work, we have outlined a real-space method
for solving a one-electron Schro¨dinger equation. Here we
overview the main features of the method and introduce
some modifications to it which greatly enhance the compu-
tational efficiency of the procedure.

Unlike the traditional approach in which the wave func-
tions are expressed with a basis, e.g., plane waves, we em-
ploy a finite difference approach. A key aspect of our work is
the availability ofhigher-order finite difference expansions
for the kinetic energy operator, i.e., expansions of the La-
placian. A uniform grid is imposed on our system, using
mesh points that are described in a finite domain by
(xi ,yj ,zk). We approximate]2c/]x2 at (xi ,yj ,zk) by
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]2c

]x2
5 (

n52N

N

Cnc~xi1nh,yj ,zk!1O~h2N12!, ~8!

whereh is the grid spacing andN is a positive integer. This
approximation is accurate toO(h2N12) upon the assumption
that c can be approximated by a power series inh. Algo-
rithms are available to compute the coefficientsCn for arbi-

trary order inh.16

With the kinetic energy operator expanded as in Eq.~8!,
one can set up a one-electron Schro¨dinger equation over the
grid. We have assumed a uniform grid over the three dimen-
sions. This is not a necessary assumption, but in most cases
it is the most efficient and convenient. We approximate
c(xi ,yj ,zk) on the grid by solving the secular equation:

2
\2

2m F (
n152N

N

Cn1
cn~xi1n1h,yj ,zk!1 (

n252N

N

Cn2
cn~xi ,yj1n2h,zk!1 (

n352N

N

Cn3
cn~xi ,yj ,zk1n3h!G

1@Vion~xi ,yj ,zk!1VH~xi ,yj ,zk!1Vxc~xi ,yj ,zk!#cn~xi ,yj ,zk!5Encn~xi ,yj ,zk!. ~9!

Vion is the nonlocal ionic pseudopotential as in the previous
section,VH is the Hartree potential, and Vxc is the local-
density expression for the exchange and correlation poten-
tial. Two parameters used in setting up the matrix are the
grid spacingh, and the orderN.

Several issues must be addressed when solving Eq.~9!.
The first concerns the procedure by which the self-consistent
field is constructed. The exchange-correlation potential,
Vxc , is constructed trivially once the charge density has been
obtained over the grid. However, the Hartree potential is
nontrivial and requires the solution of the Poisson equation:

¹2VH~r !54pr~r !. ~10!

The Hartree potential can be determined in several ways,
e.g., by a direct summation over the grid, or by setting up a
matrix equation and solving with direct or iterative methods.
For small systems, the simplest and easiest approach is to
perform the direct summation over all the grid points. How-
ever, once the grid size exceeds;104 grid points, it is more
efficient andaccurateto use either FFT transforms or itera-
tive methods. In our work, we use a preconditioned conju-
gate gradient method to solve Eq.~10!. The boundary con-
ditions required for a solution of Eq.~10! are determined by
a multipole expansion of the pseudocharge density outside of
a given spherical region. Typically, monopole, dipole, and
quadrupole terms are sufficient to yield an accurate solution.
The savings obtained by this procedure can be dramatic
when compared to a direct summation. For example, in the
case of the CO2 molecule, approximately 96 000 grid points
were used. A direction summation solution forVH required
roughly two orders of magnitude more computational time
than did the conjugate gradient solution. We use an Ander-
son mixing scheme to expedite the convergence of the self-
consistent field.17

Another issue concerns the nonlocality of the ionic
pseudopotential. Usually, one component is taken as the lo-
cal component. Here we takeVloc5Vs , whereVs is the s
component. We may ignore contributions to the potential
higher thanl51 for the elements of interest here~i.e., car-
bon, oxygen, and silicon!. This choice has been verified by
direct comparisons with calculations using a plane-wave ba-

sis. The integralGn,lm
a @Eq. ~6!# involving cn(x,y,z) is per-

formed over the grid. We have

E ulm~x,y,z!DVl~x,y,z!cn~x,y,z!dx dy dz

5(
i jk

ulm~xi ,yj ,zk!DVl~xi ,yj ,zk!cn~xi ,yj ,zk!h
3. ~11!

Equation ~9! is a matrix eigenvalue problem. The size
M of the matrixA resulting from this eigenvalue problem is
equal to the number of grid points. For these isolated systems
the matrix is real, symmetric, and sparse. The degree of spar-
sity of the matrix depends on the orderN to which the ki-
netic energy is expanded. From Eq.~9!, the kinetic energy
term contributes at most 3(2N11) nonzero elements for
each row. We must add to these a number of terms coming
from the nonlocal pseudopotential. These nonlocal contribu-
tions depend on the number and nature of the atomic species
present, and the location in space. The other potentials do not
contribute new nonzero elements but modify the main diag-
onal of the matrix.

Several efficient techniques developed in the literature
can be used to solve sparse eigenvalue problems such as the
one above; see for example Ref. 18. Two popular such pro-
cedures are the accelerated subspace iteration and the Lanc-
zos algorithm. Both methods consist of projecting the origi-
nal problem into a small subspace in which standard
techniques can be used. For example, in the simplest version
of the subspace iteration algorithm, an initial basis
X05@x0 ,x1 , . . . ,xm# is chosen and the matrixXk5AkX0 is
formed for a certain powerk. Then, a Ritz procedure is
applied toA with this matrix. This means thatXk is orthonor-
malized into a matrixYk and the eigenvaluesl i and eigen-
vectorsf i of the smallm3m projected matrixYk

TAYk are
computed by a standard method such as the QR algorithm.18

The eigenvaluesl i are then used as approximations to the
eigenvalues ofA and the vectorsYkf i are used as approxi-
mations to the eigenvectors ofA. The procedure is repeated
with X replaced by the set of approximate eigenvectors until
convergence is reached. In realistic implementations of this
procedure, it is common to use a Chebyshev polynomial
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Ck(A) instead of the powersAk to obtain the next basisXk
from X. The Lanczos algorithm also utilizes a Ritz proce-
dure. However, the basis used consists of the successive
powersAkv0 ,k51, . . . ,m wherev0 is an initial vector. In
this case, the dimensionm increases at each step.

Both the Lanczos and subspace iteration procedures can
and should be ‘‘preconditioned’’ to improve convergence
rates.19 Preconditioning consists of enhancing a given vector
introduced in the new basis by a process which amplifies the
desired eigenvector components and dampens the others.
The most common way to achieve this is to perform a shift-
and-invert procedure. In this strategy, the problem solved is

~A2sI !21u5uu.

The eigenvectors of the shifted and inverted matrix are the
same as those ofA. Its eigenvalues which are transformed
from those ofA via a simple rational transformation have
typically a much better separation around the values. This
results in much better convergence rates. In typical shift-and-
invert procedures the matrix (A2sI ) is factored ~using
LDLT factorization! every time the shifts is changed. This
factorization step may be prohibitively expensive for large
matrices. As a result, the preferred alternative is to use a
preconditioned Lanczos-type procedure to construct a sub-
space based onM21A whereM is some preconditioner. The
resulting basis is then used for a Ritz projection, similarly to
what was described above. The preconditionerM is an ap-
proximation to (A2sI ). In fact the preconditionerM can
vary at each step, i.e., for each basis vector to be determined.
This permits the use of preconditioners that depend on spe-
cific eigenvalues, as better approximations of these eigenval-
ues are extracted from the algorithm. In the Davidson algo-
rithm the matrixM is taken to be simplyD2s i in which
D is the diagonal ofA, ands i is the most current approxi-
mation of the eigenvalue which is being targeted.

From a practical viewpoint, an important observation is
that the diagonalization algorithms use the coefficient matrix
A only to perform matrix-by-vector products. The sparse ma-
trix A can be stored in one of several sparse formats
available19 which avoid storing the zero elements. Perform-
ing matrix-vector products with these formats is inexpensive.
However, because of the special structure of the matrix, a
better alternative is to perform these matrix vector products
in ‘‘stencil’’ or ‘‘operator’’ form. 20 Indeed, as is clear from
Eq. ~9! the matrix-by-vector kinetic operations can easily be
performed by accessing the desired components of the cur-
rent vectorc and forming a small linear combination using
the coefficients Cni

. Only the constant coefficients

Cni
,i51,2,3;n52N,N need to be known. Similarly, the

nonlocal operations are accomplished by performing vector-
by-vector operations. This strategy saves storage and leads to
an efficient implementation on most high-performance vec-
tor and parallel computers.

IV. MOLECULAR-DYNAMICS SIMULATIONS
USING QUANTUM FORCES

Our goal in this section is to illustrate the feasibility of
using a real-space method to perform molecular-dynamics
~MD! simulations to calculate vibrational modes in small

molecules and clusters. Vibrational modes present strong
challenges to anyab initio theory. The modes can be subtly
interrelated and the energy of a cluster must be known to
high precision for an accurate determination of the inter-
atomic interactions.

A. Vibrational modes in CO2

Traditionally, first row elements such as carbon or oxygen
have been viewed as some of the most difficult elements for
pseudopotential methods. Since nop states occur in the ion
core for these elements, the resulting pseudopotential is
highly nonlocal: thes andp states sense very different po-
tentials. Moreover, their valence states are quite localized
relative to those in the second row elements such as silicon
or sulfur. For this reason, molecular systems such as CO2 are
often used as test cases for new numerical methods. Studies
for this molecular system have recently been performed us-
ing plane-wave5 and real-space8 adaptive grids. The results
of these studies were very promising in terms of treating this
system. However, this work cast some doubt on the utility
and efficacy of finite difference methods based on Euclidean
grids. In particular, Gygi and Galli were not able to replicate
the energy versus bond length of the CO2 for a symmetric
stretch with finite difference methods when compared to a
real-space adaptive grid method.8 They attributed this prob-
lem to inaccurate solution obtained when using a ‘‘coarse’’
Euclidean grid.

In setting up a grid for the CO2 molecule, several grid
spacings were examined. Previous work11 with h50.4 a.u.~1
a.u.5 0.529 Å! led to reasonable results for C2 , O2 , and
CO; however, it was noted for CO that this grid spacing was
probably insufficient for a fully converged solution.11 Here
we testedh50.3 a.u. andh50.25 a.u., the latter value was
used in all our calculations as it appeared to produce a well
converged result. Equating (p/h)2 to a plane-wave cutoff
would yield a corresponding plane-wave cutoff of 157 Ry. A
plane-wave calculation for such a cutoff would be prohibi-
tively expensive whereas in the finite difference approach,
the problem is easily tractable. The CO2 molecule was
placed in a spherical domain of Rmax57.1 a.u. Wave func-
tions outside of this region are constrained to vanish. This
configuration results in 96 105 grid points. It is possible to
use other boundary conditions. For example, for an axially
symmetric molecule like CO2, i.e., a linear molecule, a cy-
lindrical boundary might be more appropriate and require
fewer grid points.

In Fig. 1, we display the energy of the CO2 versus bond
length for a symmetric stretch. The equlibrium bond length
was found to be 2.185 a.u. This is in excellent agreement
with other procedures as indicated in Table I. Moreover, our
calculation shows no evidence of a ‘‘double hump’’ as in the
work of Gygi and Galli.8 There are some technical differ-
ences between our work and theirs. Namely, the pseudopo-
tential, grid spacing, and finite difference order were differ-
ent in the two calculations. Our pseudopotential was
determined by the Troullier-Martins method.11,13 The work
of Gygi and Galli used a Bachelet-Hamann-Schlu¨ter
potential.21 We usedN56 to determine the finite difference
order, they usedN52. They used a grid spacing ofh50.21
a.u., whereas we usedh50.25 a.u. From our experience, a
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coarse grid results in an energy versus bond length which has
a larger curvature than a fine grid, but the general shape is
otherwise unchanged. The Gygi and Galli result appears to
be the result of the nature of the pseudopotential they
employed21 as opposed to an inherent deficiency of the Eu-
clidean grid.22

To determine the vibrational modes of the molecule, we
perform an MD simulation with quantum forces. To initiate
the MD simulation, we proceed as in previous work.5 We
displaced the atomic positions of the CO2 molecule away
from the equilibrium geometry in an asymmetric manner.
The largest displacement was;0.1 a.u. The time step in our
simulation was taken to be 0.85 fs or about 35 a.u. We al-
lowed an equilibration time of 60 time steps followed by 140
time steps for the simulation during which the kinetic en-
ergy, binding energy, or Kohn-Sham energy, and trajectories
of the particles were saved. In Fig. 2, the kinetic energy
~KE!, binding energy~BE!, and the total energy are plotted
over the simulation time. The total energy during the simu-
lation shows some variation from ‘‘discretization errors.’’
This is to be expected since the introduction of a grid can
break symmetry. However, we view this issue as tractable as
the rms error in energy conservation is less than; 1 meV/
atom. More importanty, there is no significant drift over the
simulation time. Any drift present is less than; 1 meV/atom
over the simulation run.

Using the time dependence of the kinetic energy, it is
possible to calculate the vibrational spectra as in previous

work which used a plane-wave–adaptive grid method.5 We
also use the method of maximum entropy to extract vibra-
tional frequencies.5 150 poles were used in the fitting pro-
cess. The resulting power spectrum of the vibrations of the
CO2 molecule are given in Fig. 3. The vibrational spectrum
of the CO2 molecule consists of two infrared-active modes
(pu , su

1), and a Ramansg
1 doublet split by a Fermi reso-

nance. Thepu corresponds to a bending mode and thesu
1

mode corresponds to an asymmetric stretch. Thesg
1 corre-

sponds to a symmetric stretch. As noted in previous work,5 it
is a challenge for anyab initio method to reproduce the
splitting of thesg

1 mode. In Fig. 3, thesg
1 mode is much

weaker than the other mode, perhaps because of our initial
conditions, but the doublet in question is clearly present. The
splitting of this mode has also been observed with adaptive
grid methods5,8 and represents a success of the local-density
approximation. In Table I, we compare our calculated values
with experiment and to the adaptive grid work.

We can also use our method to compute the atomization
energy of the CO2 molecule, i.e., the energy to dissociate the
molecule into its constituent atoms. We find a value of at-
omization of;19.8 eV/m.u. as compared to a value of 16.7
eV/m.u. from experiment.24 Our estimate is consistent with
local-density theory in that the calculated atomization energy
exceeds the experimental value by about;10–20%. This
overestimate is also reassuring in that it suggests our grid

FIG. 1. Total energy of CO2 molecule versus the C-O separa-
tion. The energy zero point is chosen at the equilibrium bond
length. The energy versus volume points are fit to a cubic polyno-
mial.

TABLE I. Equilibrium C-O bond length and vibrational frequencies in CO2 calculated using a real-space
finite difference pseudopotential method. These results are compared to adaptive grid methods and experi-
ment. The bond length is in a.u. and the vibrational frequencies in cm21.

C-O bond length pu sg
1 su

1

Adaptive grid plane waves~Ref. 5! 648 ~1368,1428! 2353
Adaptive grid real space~Ref. 8! 2.198 648 1336 2374
Real-space Euclidean grid 2.185 663 ~1379, 1456! 2355
Experiment~Ref. 23! 2.192 673 ~1286,1388! 2349

FIG. 2. MD simulation for the CO2 molecule. The kinetic en-
ergy ~KE! and binding energy~BE! are shown as a function of the
simulation time. The total energy~KE1BE! is also shown with the
zero taken as the time average of the total energy. The time step
Dt is 0.85 fs.
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results in a well converged solution. It is possible to improve
this estimate for the heat of atomization by including gradi-
ent corrections, but this task is outside the scope of the paper.
No value for this quantity was given in the adaptive grid
work.5,8

Although our code is by no means optimized, it appears
quite competitive with other real-space methods. The CPU
time for one time step or fully self-consistent field calcula-
tion requires approximately 100 s for one processor on a
Cray C-90. Better performance is expected for this algorithm
on a parallel machine architecture. Our current CPU time is
no doubt an overestimate for the time required for such a
calculation since the spherical boundary condition employed
here has not been optimized. Cylindrical boundary condi-
tions could reduce this time significantly.

B. Vibrational modes in Si4
One difficulty in assessing the structures of small clusters

as predicted by theory is the lack of experimental data. How-

ever, recent experiments on the vibrational spectra of clusters
can provide us with very important information about their
physical properties. Recently, Raman experiments have been
performed on clusters which have been deposited on inert
substrates.25 Since different structural configurations of a
given cluster can possess different vibrational spectra, it is
possible to compare the vibrational modes calculated for a
particular structure with experiment. If the agreement be-
tween experiment and theory is good, this is a necessary
condition for the theoretically predicted structure.

There are two common approaches for determining the
vibrational spectra of clusters. One approach is to calculate
the dynamical matrix for the ground-state structure of the
cluster:

Mia, jb52
1

m

]2E

]Ri
a]Rj

a 5
1

m

]Fi
a

]Rj
a , ~12!

wherem is the mass of the Si atom,E is the total energy of
the system,Fi

a is the force on atomi in the directiona,
Ri

a is the a component of coordinate for atomi . We can
calculate the dynamical matrix elements by calculating the
first-order derivative of force versus atom displacement nu-
merically. By solving for the eigenvalues and eigenmodes of
the dynamical matrix, one can obtain the vibrational frequen-
cies and modes for the cluster of interest.6

The ground-state structures for small silicon clusters have
been determined in previous work via simulated annealing
calculations.15 This approach is quite satisfactory for small
silicon clusters, but for larger clusters other approaches such
as genetic algorithms might prove to be more useful.26

The other approach to determine the vibrational modes is
to follow the procedure used for the CO2 molecule. Namely,
one can consider an arbitrary displacement of the cluster and
perform a molecular-dynamics simulation using the calcu-
lated power spectrum of the kinetic~or binding! energy of
the cluster as a function of the MD simulation time. This
latter approach has an advantage for large clusters in that one
never has to do a mode analysis explicitly. It has the disad-

FIG. 4. MD simulation for a Si4 cluster. The
kinetic energy~KE! and binding energy~BE! are
shown as a function of the simulation time. The
total energy~KE1BE! is also shown with the
zero taken as the time average of the total energy.
The time stepDt is 3.7 fs.

FIG. 3. Power spectrum of the vibrational modes for the CO2

molecule.
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vantage in that the simulation must be performed over a long
time to extract all the modes. It may also be difficult to
establish appropriate initial displacements so that anhar-
monic modes are not excited at the expense of the fundamen-
tal modes.

The starting geometry was to consider a planar structure
for Si4 as established elsewhere.15 The grid spacing was
taken to beh50.7 a.u. Again, spherical boundary conditions
were used withRmax5 10.1 a.u. We have initiated the simu-
lation by considering a Langevin simulation27 with a fixed
temperature at 300 K. After a few dozen time steps, the
Langevin simulation is turned off, and the simulation pro-
ceeds following Newtonian dynamics with ‘‘quantum’’
forces. This procedure allows a stochastic element to be in-
troduced and establish initial conditions for the simulation
without bias toward a particular mode. The time step in the
MD simulation was taken to be 3.7 fs or approximately 150
a.u. The simulation was allowed to proceed for 325 time
steps. The variation of kinetic and binding energies is given
in Fig. 4 as a function of the simulation time. Although some
fluctuations of the total energy occurs, these fluctuations are
relatively small, i.e.,;1 meV, and there is no noticeable
drift of the total energy. By taking the power spectrum of
either the KE or BE over this simulation time, the vibrational
modes can be determined. Even for a relatively simple clus-
ter such as Si4 , the analysis of the modes is nontrival.

In Fig. 5, the fundamental vibrational modes are illus-
trated. These modes can be identifed with the observed peaks
in the power spectrum as illustrated in Fig. 6. The agreement
is fairly good; however, one noticeable difference occurs for
the (Ag , B1u) mode. Namely, these modes are not resolvable
over the simulation time given. This is not an unusual cir-
cumstance if the MD simulation times are too short, and if
the initial displacements are too large so that the vibrations
exceed the harmonic regime. In order to remedy this situa-

tion, a ‘‘long’’ simulation with small initial displacements
was performed to resolve the (Ag , B1u). The kinetic energy
fluctuations were adjusted to be less than 0.5 meV and the
simulation was performed over a 2 pssimulation time. The
spectra for this simulation is illustrated in Fig. 7. Overall the
spectra are very similar, but the (Ag , B1u) modes are
now resolved. In particular, one notes the splitting
between the (Ag , B1u) modes is less than 10 cm

21 or about
1 meV.

A comparison of the calculated vibrational modes from
the MD simulation and from a dynamical matrix calculation
are listed in Table II. Overall the agreement between the two
simulations and the dynamical matrix analysis is quite satis-
factory. As expected the simulation which runs longer is in
better agreement with the results from the dynamical matrix.
In particular, the soft modes such as theB3u mode are sig-

FIG. 5. Normal modes for a Si4 cluster.

FIG. 6. Power spectrum of the vibrational modes of the Si4

cluster. The simulation time was 1.2 ps. The intensity of theB3g

and (Ag ,B1u) peaks has been scaled by 1022.

FIG. 7. Power spectrum of the vibrational modes of the Si4

cluster for a longer simulation~see Fig. 6!. The simulation time was
2 ps. The intensity of the (Ag ,B1u) peaks has been scaled by
1023.
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nificantly better for a longer simulation run. The calculated
values are also compared to experiment. The calculated fre-
quencies for the twoAg modes are surprisingly close to Ra-
man experiments on silicon clusters.25 The other allowed Ra-
man line of modeB3g is expected to have a lower intensity
and has not been observed experimentally.

The calculated modes~except the lowest mode! are in
good accord with other theoretical calculations: a linear com-
bination with atomic orbitals~LCAO! calculation28 and a
Hartree-Fock~HF! calculation.29 The calculated frequency of
the lowest mode, i.e., theB3u mode, is problematic. The
general agreement of the B3u mode as calculated by the
simulation and from the dynamical matrix is reassuring.
Moreover, the real-space calculations agree with the HF
value to within; 20–30 cm21. On the other hand, the
LCAO method yields a value which is 50270% smaller than
either the real-space or HF calculations. The origin of this
difference is not apparent. For a poorly converged basis, vi-
brational frequencies are often overestimated as opposed to
the LCAO result which underestimates the value, at least
when compared to other theoretical techniques. Setting aside
the issue of theB3u mode, the agreement between the mea-
sured Raman modes and theory for Si4 suggests that Raman
spectroscopy can provide a key test for the structures pre-
dicted by theory.

V. CONCLUSIONS

We have illustrated in this paper a real-space method
which can be used to compute the vibrational modes of mol-
ecules and atomic clusters. In particular, we illustrated cal-
culations for the vibrational modes of the CO2 molecule and
a small cluster of silicon~Si4). Unlike other real-space meth-
ods using adaptive grids, this procedure does not require any
Pulay corrections for the forces, nor does it suffer from the
complication of redefining a grid after each time step of the
molecular-dynamics simulation. Our method is based on
combining higher-order finite difference methods withab
initio pseudopotentials. We also introduced an iterative di-
agonalization scheme based on preconditioned Krylov tech-
niques. Compared toplane-wave–supercell methods, our
real-space method is more efficient and simpler to imple-
ment.
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