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Molecular dynamics with quantum forces: Vibrational spectra of localized systems
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We present molecular-dynamics simulations with quantum forces for localized systems using a real-space
method. We illustrate calculations for the vibrational modes of small molecules and clusters. Unlike other
real-space methods using adaptive grids, this procedure does not require any Pulay corrections for the forces,
nor does it suffer from the complication of redefining a grid after each time step of the molecular-dynamics
simulation. Our method is based on combining higher order finite difference methodalwittitio pseudo-
potentials. We also introduce an iterative diagonalization scheme based on preconditioned Krylov techniques.
Compared toplane-wavesupercell methodsthis method is more efficient and simpler to implement. Ex-
amples are presented for the @@olecule and a silicon cluster, Si

I. INTRODUCTION Here we illustrate a real-space method for performing
“quantum” molecular-dynamics on localized systems. In

One of the outstanding achievements in computationaparticular, we concentrate on demonstrating the efficiency of
physics in the past decade has been the developmeath of this method for some localized systems such as the, CO
initio methods for determining the structural properties ofmolecule and a cluster of silicon. With respect to the O
condensed-matter systemJhis development has led to a molecule, it has been questioned whether simple Euclidean
number of innovative approaches, e.g., the development akal-space grids can be efficient for such systemge will
“quantum’” molecular dynamics and the applicationfot-  demonstrate that regular grids possess some significant ad-
principlesmethods to realistic systems such as liquids, clusvantages over adaptive grids and that &n be handled in
ters, amorphous solids, and glaséér the most part, this a simple and direct fashion. We also consider a small silicon
work has been based on traditional solid-state methodsluster for which the vibrational modes have been calculated
which combine pseudopotentials, plane waves, and supercddly real-space methods via a determination of the dynamical
geometries for localized systerhdlVhile these approaches matrix® This will allow us to compare “static” and “dy-
have achieved much success, the drawbacks ofpthee- namical” calculations for the vibrational modes.
wave-supercellapproach are notable. A plane-wave basis is There are several advantages in using Euclidean grids.
required to replicate not only the electronic states of the loFor example, no complications arise in determining the in-
calized system of interest, but also “vacuum” regions im- teratomic forces as would be the case for adaptive grids, e.g.,
posed by the supercell geometry. The vacuum region mustulay forces. Moreover, the grids do not have to be updated
be large to avoid “cell-cell” interactions, but replicating the as the simulation proceeds. This can be a cumbersome pro-
vacuum in the supercell for a localized system can be almostess as, in principle, the grids should be reconfigured for
as costly as replicating the system itself. An additional com-each molecular-dynamics simulation time stepmight be
plication that arises with the use of plane waves concerns thargued that adaptive grids are a better representation for lo-
use of fast Fourier transforn{&FT) for handling the convo- calized systems as the “basis” can be adjusted to regions
lutions. While FFT'’s are a great advantage in expediting thevhere the wave functions are highly localized and where
calculation, these transforms present computational commuhey are not. However, this adjustment is nontrivial. Often,
nication obstacles when one attempts to implement them ofictitious elastic terms are used to accelerate the optimization
parallel computer architectures. of the mesh near the nuclei, or ion cdré/hile adaptive grid

A number of approaches have been proposed to circunmethods may be appropriate for some systems, e.g., first row
vent or mitigate the deficiencies of the plane-wave—supercellements, or transition metals, we would argue an adaptive
method. For example, Euclidean grids, adaptive grids, mulmesh complicates the procedure enormously.
tigrids, wavelets, and other “real-space” methods have re- Another advantage of Euclidean grids concerns the nature
cently been proposétiThese methods are still in an embry- of the resulting eigenvalue problem. The resulting matrix is
onic state when compared to the traditional approach o$parse and regularly structured. Owing to these attributes,
plane waves, but they promise a new direction and have beesimple operations with the matrix, such as matrix-by-vector
quite successful for a number of prototypical systems. products can be done efficiently on vector processors as well
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as in multiprocessing environments. In fact, the contributiortentia|sVion‘l(r) are generated. We have made the assump-
to the matrix which is due to the Laplacian does not evenjon that the ion core is spherically symmetfighich is a
need to be stored. Whenever a matrix-vector-product is ingood approximation for the systems of interest here
voked, the corresponding finite difference operation can b@Vion,l(r)=Vion,|(f)—Vion,|oc(f) is the difference between
performed directly on the mesh points. The coefficients ofthe | component of the ionic pseudopotential and the local

the finite difference approximation are the same for eachonic potential. The energy from the electron-ion interaction,
point. The nonlocal components of the pseudopotential dg__. can be obtained by using E(B) as

not cause major difficulties. The related contributions to the

product of a matrix by a vector consists of an irregular com- occ
putation which is similar to the product of a small sparse Eei=2 f (1) Vion(F) (1)
matrix by a vector. n
Il. INTERATOMIC FORCES => f p(F)Vionod F2)d°r
a
Within the local density approximation, the total ground- 1
state energy is given by + > (G312, (5)
anim (AVip)
Eio=Tlp]+Ee-i(Ra:[p]) T Enad ]+ Exd p] +Ei-i(Ra),
(1) where

where the atomic positions are given By, andp(r) is the

charge densityT[ p] is the kinetic energykE._i(Ra,[p]) is ﬁ,lmzj AV, (1 )Uim(r o) ¥n(r)d3r. (6)
the electron-ion potential energi,.{p] is the Hartree or

Coulomb potential energy,Ex]p] is the exchange- tng (1) are the eigenwave functions of a one-electron

correlation energy, anl;_;(R,) is the ion-ion potential en-  gepiinger equation, and the sum aris over the occupied
ergy. We have implicity assumed the Born-Oppenheimer aPsiates. Combining Eq&2) and(5), one can get an expression
proximation in writing Eq.(1). E, is a functional of the ¢, the force

electron densityp(r), for the electronic ground state.
The force on an atom is the first-order derivative of total

a
energy with respect to its coordinate, and is given by apply- pe= (f)wdar +2> L G2 9Gh,im
. « a p are AV2 n,Im are
ing the Hellmann-Feynmdhtheorem. The total forcer <, la atm (AVin, la
on an atom located & , in the « direction is given by JE.
I—1
- . 7
e  O9Ee—i JEi_; IRy @
=- - 2

a (23 a "
IRy IRy The force from the electronic contribution comprises two

Ei—i(Ra)! the interionic core energy, is S|mp|y the point_ parts. The first term at the right-hand side of m is the

charge—point-charge interaction under the “frozen core” ap-contribution from the local ionic potential, and the second

proximation. term is from the nonlocal potential. It is possible to ac-
If we consider a pseudopotential representation of the ionc€larate convergence of these forces by using the procedure

core, Vion, the potential term corresponds to a nonlocal op-of Chan, Bohnen, and H6.

erator, i.e., the potential depends on the angular momentum Once the eigenvalues and vectors of the system are deter-

of the wave function upon which it operates. In general, themined, the interatomic quantum forces can be trivially evalu-

pseudopotential can be decomposed into a part which is loc&ted. The forces can then be utilized in performing molecular

and a part which is nonlocal. In real space, this formalismdynamics with quantum forces.

may be cast into the following forrh:™13

Ill. REAL-SPACE METHODS FOR SOLVING

Vion( r):E Vion |oc(| ra|) THE SCHRODINGER EQUATION
— ,
1 In previous work, we have outlined a real-space method
S AV (T Uim( Ta)) for solving a one-electron Schiimger equation. Here we
anim (AVip) ' overview the main features of the method and introduce
, , some modifications to it which greatly enhance the compu-
X(AVion, (T2 Uim(ra)], (3 tational efficiency of the procedure.
where(AV2 ) is a normalization factor, Unlike the traditional approach in which the wave func-

tions are expressed with a basis, e.g., plane waves, we em-
ploy a finite difference approach. A key aspect of our work is
(AV|am>:f Uim(F2) AV ion 1 () Uim(r2)d°r, (4)  the availability ofhigher-order finite difference expansions
for the kinetic energy operator, i.e., expansions of the La-
and r,= r— R,, U, are the atomic pseudopotential wave placian. A uniform grid is imposed on our system, using
functions of angular and azimuthal momentum quantunmesh points that are described in a finite domain by
numbers (,m) from which thel-dependent ionic pseudopo- (X;,y;,z). We approximates? i/ Ix? at (x; Yz by
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2 N trary order inh.®
= > Cu(xi+nhy;,z)+0(h2N*2), (8 With the kinetic energy operator expanded as in ),
B one can set up a one-electron Salinger equation over the
whereh is the grid spacing anhl is a positive integer. This grid. We have assumed a uniform grid over the three dimen-
approximation is accurate ©(h2N*2) upon the assumption sions. This is not a necessary assumption, but in most cases

that ¢y can be approximated by a power serieshinAlgo- it is the most efficient and convenient. We approximate
rithms are available to compute the coefficie@{sfor arbi-  #(x;,y;,z) on the grid by solving the secular equation:
2 N N N

~am| g 2y Codnat Ny 20+ 3 Coha(x Y Fnch 20t 2 Cogtin(X Yzt ngh)

[ Vion(Xi ,Yj 12k) ¥ Vu(Xi ,Yj 12 + Ve Xi Y2 1n(Xi 1Y 120 = Eqtbn(Xi 1Y, 2 - (9)

Vion is the nonlocal ionic pseudopotential as in the previoussis. The integraG |, [Eq. (6)] involving #,(x,y,z) is per-
section,V}, is the Hartree potential, and ,V is the local- formed over the grid. We have
density expression for the exchange and correlation poten-
tial. Two parameters used in setting up the matrix are the
grid spacingh, and the ordeN. f Uim(X,Y,2)AV|(X,y,2) ¢n(X,y,2)dx dy dz
Several issues must be addressed when solving®g.
The first concerns the procedure by which the self-consistent
field is constructed. The exchange-correlation potential, =2 u,(x i Z)AVI(Xi Y], Z) (XY, z)h3. (1D)
V¢, is constructed trivially once the charge density has been ik
obtained over the grid. However, the Hartree potential is
nontrivial and requires the solution of the Poisson equation: Equation(9) is a matrix eigenvalue problem. The size
M of the matrixA resulting from this eigenvalue problem is
) equal to the number of grid points. For these isolated systems
VVy(r)=4mp(r). (10 the matrix is real, symmetric, and sparse. The degree of spar-
sity of the matrix depends on the orddrto which the ki-
The Hartree potential can be determined in several wayd)etic energy is expanded. From HE), the kinetic energy
e.g., by a direct summation over the grid, or by setting up 4erm contributes at most 3{2+1) nonzero elements for
matrix equation and solving with direct or iterative methods.€ach row. We must add to these a number of terms coming
For small systems, the simplest and easiest approach is feom the nonlocal pseudopotential. These nonlocal contribu-
perform the direct summation over all the grid points. How-tions depend on the number and nature of the atomic species
ever, once the grid size exceedd.0* grid points, it is more  present, and the location in space. The other potentials do not
efficient andaccurateto use either FFT transforms or itera- contribute new nonzero elements but modify the main diag-
tive methods. In our work, we use a preconditioned conjuonal of the matrix.
gate gradient method to solve EG.0). The boundary con- Several efficient techniques developed in the literature
ditions required for a solution of E410) are determined by can be used to solve sparse eigenvalue problems such as the
a multipole expansion of the pseudocharge density outside ¢Me above; see for example Ref. 18. Two popular such pro-
a given spherical region. Typically, monopole, dipole, andcedures are the accelerated subspace iteration and the Lanc-
quadrupole terms are sufficient to yield an accurate solutiorz0s algorithm. Both methods consist of projecting the origi-
The savings obtained by this procedure can be dramatigal problem into a small subspace in which standard
when compared to a direct summation. For example, in théechniques can be used. For example, in the simplest version
case of the CQ molecule, approximately 96 000 grid points of the subspace iteration algorithm, an initial basis
were used. A direction summation solution féf, required  Xo=[Xo.X1, - . . Xm] is chosen and the matri,=A*X is
roughly two orders of magnitude more computational timeformed for a certain powek. Then, a Ritz procedure is
than did the conjugate gradient solution. We use an Anderapplied toA with this matrix. This means tha, is orthonor-
son mixing scheme to expedite the convergence of the selfnalized into a matrixy, and the eigenvalues; and eigen-
consistent field” vectors ¢; of the smallmxm projected matrixY;AY, are
Another issue concerns the nonlocality of the ioniccomputed by a standard method such as the QR algotthm.
pseudopotential. Usually, one component is taken as the I6Fhe eigenvaluea,; are then used as approximations to the
cal component. Here we takég,.=Vs, whereV, is thes  eigenvalues oA and the vector¥¢; are used as approxi-
component. We may ignore contributions to the potentiaimations to the eigenvectors 8f The procedure is repeated
higher thanl =1 for the elements of interest hetee., car-  with X replaced by the set of approximate eigenvectors until
bon, oxygen, and silicon This choice has been verified by convergence is reached. In realistic implementations of this
direct comparisons with calculations using a plane-wave baprocedure, it is common to use a Chebyshev polynomial
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Cu(A) instead of the powerAX to obtain the next basiX, = molecules and clusters. Vibrational modes present strong
from X. The Lanczos algorithm also utilizes a Ritz proce-challenges to angb initio theory. The modes can be subtly
dure. However, the basis used consists of the successiwaterrelated and the energy of a cluster must be known to
powersAkvo,k=1, ... m wherev, is an initial vector. In  high precision for an accurate determination of the inter-
this case, the dimensiam increases at each step. atomic interactions.
Both the Lanczos and subspace iteration procedures can
and should be “preconditioned” to improve convergence o )
rates'® Preconditioning consists of enhancing a given vector A. Vibrational modes in CO,
introduced in the new basis by a process which amplifies the Traditionally, first row elements such as carbon or oxygen
desired eigenvector components and dampens the othetsave been viewed as some of the most difficult elements for
The most common way to achieve this is to perform a shiftpseudopotential methods. Since ptates occur in the ion
and-invert procedure. In this strategy, the problem solved igore for these elements, the resulting pseudopotential is
. highly nonlocal: thes and p states sense very different po-
(A=al) " "u=6u. tentials. Moreover, their valence states are quite localized
. . . ) relative to those in the second row elements such as silicon
The eigenvectors of the shifted and inverted matrix are th%r sulfur. For this reason, molecular systems such ag &@
same as those k. Its eigenvalues which are transformed e ysed as test cases for new numerical methods. Studies
from those ofA via a simple rational transformation have ¢y this molecular system have recently been performed us-
typically a much better separation around the valueThis 4 plane-wave and real-spaeadaptive grids. The results
results in much better convergence rates. In typical shift-andsf these studies were very promising in terms of treating this
mver% procedures the matrixAt-ol) is factored (using  gystem. However, this work cast some doubt on the utility
LDL " factorizatior) every time the shiftr is changed. This 44 efficacy of finite difference methods based on Euclidean
factorization step may be prohibitively expensive for largegigs. |n particular, Gygi and Galli were not able to replicate
matrices. As a result, the preferred alternative is to use g, energy versus bond length of the C@r a symmetric
preconditioned LﬁPczos-type procedure to construct a sulsyetch with finite difference methods when compared to a
space based o ~*A whereM is some preconditioner. The ea|-space adaptive grid methdd@hey attributed this prob-
resulting basis is then used for a Ritz propphon_, similarly t0jem to inaccurate solution obtained when using a “coarse”
what was described above. The preconditiokeiis an ap-  gclidean grid.
proximation to (A—_ ol). In fact the_precondmoneM can In setting up a grid for the C@molecule, several grid
vary at each step, i.e., for each basis vector to be determlnegpacings were examined. Previous Workith h=0.4 a.u.(1
This permits the use of preconditioners that depend on spe;, — o529 A led to reasonable results for,C O,, and
cific eigenvalues, as better appro.X|mat|ons of the;e elgenvato; however, it was noted for CO that this grid spacing was
ues are extracted from the algorithm. In the Davidson algopohably insufficient for a fully converged solutiéhHere
rithm the matrixM is taken to be simphD —o; in which e testech=0.3 a.u. anch=0.25 a.u., the latter value was
D is the diagonal ofA, ando; is the most current approxi- ysed in all our calculations as it appeared to produce a well
mation of the eigenvalue which is being targeted. converged result. Equating=(h)2 to a plane-wave cutoff

From a practical viewpoint, an important observation is,yoyd yield a corresponding plane-wave cutoff of 157 Ry. A
that the diagonalization algorithms use the coefficient matr%lane-wave calculation for such a cutoff would be prohibi-

A only to perform matrix-by-vector products. The sparse mayjyely expensive whereas in the finite difference approach,

trix A (é%n be stored in one of several sparse formatghe problem is easily tractable. The GQnolecule was
available® which avoid storing the zero elements. Perform—maced in a spherical domain of R=7.1 a.u. Wave func-

ing matrix-vector products with these formats is inexpensiveions outside of this region are constrained to vanish. This
However, because of the special structure of the matrix, unfiguration results in 96 105 grid points. It is possible to
better alternative is to perform these matrix vector product§,ce other boundary conditions. For example, for an axially
in “stencil” or “operator” form'zo, Indeed, as is clear from gy mmetric molecule like C@, i.e., a linear molecule, a cy-
Eq. (9) the matnx—by—yector kInetI.C operations can easily bejinqrical boundary might be more appropriate and require
performed by accessing the desired components of the cufa,er grid points.
rent vectowl and forming a small linear combination using |, Fig. 1, we display the energy of the G@ersus bond
the coefficients C,. Only the constant coefficients |gngth for a symmetric stretch. The equlibrium bond length
Cn,i=1,23n=-N,N need to be known. Similarly, the was found to be 2.185 a.u. This is in excellent agreement
nonlocal operations are accomplished by performing vectorwith other procedures as indicated in Table I. Moreover, our
by-vector operations. This strategy saves storage and leads@alculation shows no evidence of a “double hump” as in the
an efficient implementation on most high-performance vecwork of Gygi and Gall There are some technical differ-
tor and parallel computers. ences between our work and theirs. Namely, the pseudopo-
tential, grid spacing, and finite difference order were differ-
ent in the two calculations. Our pseudopotential was
determined by the Troullier-Martins methdt!® The work
of Gygi and Galli used a Bachelet-Hamann-Soaiu
Our goal in this section is to illustrate the feasibility of potential®* We usedN=6 to determine the finite difference
using a real-space method to perform molecular-dynamicerder, they used=2. They used a grid spacing bf=0.21
(MD) simulations to calculate vibrational modes in smalla.u., whereas we usdt=0.25 a.u. From our experience, a

IV. MOLECULAR-DYNAMICS SIMULATIONS
USING QUANTUM FORCES
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FIG. 1. Total energy of CQ molecule versus the C-O separa-  fiG. 2. MD simulation for the C@ molecule. The kinetic en-
tion. The energy zero point is chosen at the equilibrium bondergy(KE) and binding energyBE) are shown as a function of the
length. The energy versus volume points are fit to a cubic polynogimylation time. The total energiKE +BE) is also shown with the
mial. zero taken as the time average of the total energy. The time step

. . . At is 0.85 fs.
coarse grid results in an energy versus bond length which has S

a larger curvature than a fine grid, but the general shape is K which d | . . #
otherwise unchanged. The Gygi and Galli result appears t8’|°r w 'Ch use r? P ane-wa_ve—adaptlve grid me We.
be the result of the nature of the pseudopotential the S0 use the met od of maximum entropy to extract vibra-

employedl as opposed to an inherent deficiency of the Eu_|onal frequencie_é.lSO poles were used in the fitting pro-
clidean gric? cess. The resulting power spectrum of the vibrations of the

To determine the vibrational modes of the molecule, weC©O2 Mmolecule are given in Fig. 3. The vibrational spectrum
perform an MD simulation with quantum forces. To initiate Of the CO, molecule consists of two infrared-active modes

the MD simulation, we proceed as in previous worwe  (7us o), and a Ramaw, doublet split by a Fermi reso-
displaced the atomic positions of the G@nolecule away Nnance. Them, corresponds to a bending mode and &g
from the equilibrium geometry in an asymmetric manner.mode corresponds to an asymmetric stretch. Fhecorre-
The largest displacement was0.1 a.u. The time step in our Sponds to a symmetric stretch. As noted in previous Wik,
simulation was taken to be 0.85 fs or about 35 a.u. We alis a challenge for anyab initio method to reproduce the
lowed an equilibration time of 60 time steps followed by 140splitting of the 05 mode. In Fig. 3, ther; mode is much
time steps for the simulation during which the kinetic en-weaker than the other mode, perhaps because of our initial
ergy, binding energy, or Kohn-Sham energy, and trajectoriesonditions, but the doublet in question is clearly present. The
of the particles were saved. In Fig. 2, the kinetic energysplitting of this mode has also been observed with adaptive
(KE), binding energy(BE), and the total energy are plotted grid method&® and represents a success of the local-density
over the simulation time. The total energy during the simu-approximation. In Table |, we compare our calculated values
lation shows some variation from “discretization errors.” with experiment and to the adaptive grid work.
This is to be expected since the introduction of a grid can We can also use our method to compute the atomization
break symmetry. However, we view this issue as tractable agnergy of the CQ molecule, i.e., the energy to dissociate the
the rms error in energy conservation is less thari meV/  molecule into its constituent atoms. We find a value of at-
atom. More importanty, there is no significant drift over the omization of~19.8 eV/m.u. as compared to a value of 16.7
simulation time. Any drift present is less than1 meV/atom  eV/m.u. from experimer®t! Our estimate is consistent with
over the simulation run. local-density theory in that the calculated atomization energy
Using the time dependence of the kinetic energy, it isexceeds the experimental value by abeut0-20%. This
possible to calculate the vibrational spectra as in previousverestimate is also reassuring in that it suggests our grid

TABLE I. Equilibrium C-O bond length and vibrational frequencies in £€lculated using a real-space
finite difference pseudopotential method. These results are compared to adaptive grid methods and experi-
ment. The bond length is in a.u. and the vibrational frequencies in'cm

C-0O bond length T oy o
Adaptive grid plane wavefRef. 5 648 (1368,1428 2353
Adaptive grid real spacéRef. 8§ 2.198 648 1336 2374
Real-space Euclidean grid 2.185 663 (1379, 1456 2355

Experiment(Ref. 23 2.192 673 (1286,1388 2349
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ever, recent experiments on the vibrational spectra of clusters
o can provide us with very important information about their
physical properties. Recently, Raman experiments have been
performed on clusters which have been deposited on inert
substrate$® Since different structural configurations of a
given cluster can possess different vibrational spectra, it is
T possible to compare the vibrational modes calculated for a
particular structure with experiment. If the agreement be-
tween experiment and theory is good, this is a necessary
condition for the theoretically predicted structure.

9 There are two common approaches for determining the

vibrational spectra of clusters. One approach is to calculate
| | | J L the dynamical matrix for the ground-state structure of the
cluster:

Power Spectrum

0 500 1000 1500 2000 2500
-1
o (cm™) 1 PE 1 9Ff
—— = (12)
FIG. 3. Power spectrum of the vibrational modes for the,CO

molecule. wherem is the mass of the Si atork, is the total energy of

) i . . ) the systemF{* is the force on atom in the directiona,
results in a well converged solution. It is possible to improvepa is the « component of coordinate for atom We can
this estima'te for the heat of .atomiz.ation by including gradi'crlallculate the dynamical matrix elements by calculating the
ent corrections, .bUt this t_ask IS OUt.S'de t_he scope of t_he PaP&r st order derivative of force versus atom displacement nu-
No value for this quantity was given in the adaptive grid merically. By solving for the eigenvalues and eigenmodes of

work 58 , : . U
. . . h | h | f -
Although our code is by no means optimized, it appearst.e dynamical matrix, one can obtain the vibrational frequen

; " . ies and modes for the cluster of inter®st.
qwte competrgve with other real-space methods. The CPL? The ground-state structures for small silicon clusters have
time for one time step or fully self-consistent field calcula- be

i : imatelv 100 s f en determined in previous work via simulated annealing
lon requires approximately S 107 ON€ Processor on . jjations' This approach is quite satisfactory for small

Cray C-90. Better performa_nce Is expected for this alg(.)”thmsilicon clusters, but for larger clusters other approaches such
on a parallel machine architecture. Our current CPU time i s genetic algorithms might prove to be more us&ul
no doubt an overestimate for the time required for such a The other approach to determine the vibrational modes is

calculation since the spherical boundary condition employe_tii0 follow the procedure used for the G@nolecule. Namely,

here has not been qptl_mlzed_. (;ylmdrlcal boundary ConOII'one can consider an arbitrary displacement of the cluster and
tions could reduce this time significantly.

perform a molecular-dynamics simulation using the calcu-
lated power spectrum of the kinet{or binding energy of
B. Vibrational modes in Si, the cluster as a function of the MD simulation time. This
One difficulty in assessing the structures of small clustersatter approach has an advantage for large clusters in that one
as predicted by theory is the lack of experimental data. Hownever has to do a mode analysis explicitly. It has the disad-

0.050
KE
0.025
B
2
8 FIG. 4. MD simulation for a Si cluster. The
E 0.000 A - kinetic energy(KE) and binding energyBE) are
shown as a function of the simulation time. The
3 total energy(KE+BE) is also shown with the
'g;) zero taken as the time average of the total energy.
S . :
-0.025 The time stepAt is 3.7 fs.
BE
-0.050 ' L L
0 100 200 300

t/7 At



53 MOLECULAR DYNAMICS WITH QUANTUM FORCES: ... 12 077

+
A By

. |
2

- - ©
a
w
) B
2 3u
£ B,, Ag By

: |
Bsu Bau
s AN
1 LN |4k |
0 100 200 300 400 500
® (em™!)
FIG. 6. Power spectrum of the vibrational modes of thg Si
cluster. The simulation time was 1.2 ps. The intensity of Bag
and (Aq,By,) peaks has been scaled by 0
Bsg l
Ag Biu tion, a “long” simulation with small initial displacements

was performed to resolve thé\{, B,,). The kinetic energy
fluctuations were adjusted to be less than 0.5 meV and the
FIG. 5. Normal modes for a Jicluster. simulation was performed ove 2 pssimulation time. The

vantage in that the simulation must be performed over a Icmipectra for this simu!at_ion is illustrated in Fig. 7. Overall the
time to extract all the modes. It may also be difficult to pectra are very S|m|Iar_, but theA§, By,) modes are
establish appropriate initial displacements so that anhafl®W resolved. In particular, one notes the splitting
monic modes are not excited at the expense of the fundameR&tween the&, By,) modes is less than 10 cm or about

tal modes. 1 meV.

The Starting geometry was to consider a p|anar structure A comparison of the calculated vibrational modes from
for Si, as established elsewhéfeThe grid spacing was the MD simulation and from a dynamical matrix calculation
taken to beh=0.7 a.u. Again, Spherica| boundary conditions are listed in Table Il. Overall the agreement between the two
were used WithR,5= 10.1 a.u. We have initiated the simu- Simulations and the dynamical matrix analysis is quite satis-
lation by considering a Langevin simulatfdrwith a fixed factory. As expected the simulation which runs longer is in
temperature at 300 K. After a few dozen time Stepsy thé)etter agreement with the results from the dynamical matrix.
Langevin simulation is turned off, and the simulation pro-In particular, the soft modes such as g, mode are sig-
ceeds following Newtonian dynamics with ‘“quantum”
forces. This procedure allows a stochastic element to be in-
troduced and establish initial conditions for the simulation
without bias toward a particular mode. The time step in the Bsg
MD simulation was taken to be 3.7 fs or approximately 150 A B
a.u. The simulation was allowed to proceed for 325 time 9
steps. The variation of kinetic and binding energies is given
in Fig. 4 as a function of the simulation time. Although some
fluctuations of the total energy occurs, these fluctuations are
relatively small, i.e.,~1 meV, and there is no noticeable
drift of the total energy. By taking the power spectrum of B
either the KE or BE over this simulation time, the vibrational 3u A
modes can be determined. Even for a relatively simple clus-
ter such as Sj, the analysis of the modes is nontrival. JJ ﬁ

In Fig. 5, the fundamental vibrational modes are illus-
trated. These modes can be identifed with the observed peaks : LA
in the power spectrum as illustrated in Fig. 6. The agreement
is fairly good; however, one noticeable difference occurs for o (cm™ 1)
the (Aq, B1,) mode. Namely, these modes are not resolvable
over the simulation time given. This is not an unusual cir- FIG. 7. Power spectrum of the vibrational modes of thg Si
cumstance if the MD simulation times are too short, and ifcluster for a longer simulatiofsee Fig. & The simulation time was
the initial displacements are too large so that the vibrationg ps. The intensity of theA;,B;,) peaks has been scaled by
exceed the harmonic regime. In order to remedy this situa0—3.

Power Spectrum

0 100 200 300 400 500
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TABLE II. Calculated and experimental vibrational frequencies in a &uster. See Fig. 5 for an
illustration of the normal modes. Three calulations are presented using a real-space grid. The two simulations
correspond tqa) “short” and (b) “long” simulations, see the text and Figs. 6 and 7. The frequencies are

given in cm 2.
B3u BZu Ag B3g Ag Blu

Experiment(Ref. 25 345 470

Dynamical Matrix 160 280 340 460 480 500
MD simulation (a) 110 225 350 440 495 495
MD simulation (b) 150 250 340 440 490 500
HF (Ref. 29 117 305 357 465 489 529
LCAO (Ref. 28 55 248 348 436 464 495

nificantly better for a longer simulation run. The calculated V. CONCLUSIONS
values are also compared to experiment. The calculated fre-
quencies for the tw@\; modes are surprisingly close to Ra-
man experiments on silicon clustérsThe other allowed Ra-

man line of modeB3 is expected to have a lower intensity X o
and has not been observed experimentally. culations for the vibrational modes of the G@olecule and

The calculated modeéexcept the lowest mogieare in a small cluster of silicoSi,). Unlike other real-space meth-
good accord with other theoretical calculations: a linear com2ds using adaptive grids, this procedure does not require any
bination with atomic orbitalSfLCAO) calculatiorf® and a  Pulay corrections for the forces, nor does it suffer from the
Hartree-FockHF) calculation?® The calculated frequency of complication of redefining a grid after each time step of the
the lowest mode, i.e., thB;, mode, is problematic. The molecular-dynamics simulation. Our method is based on
general agreement of the ;B mode as calculated by the combining higher-order finite difference methods wab
simulation and from the dynamical matrix is reassuring.initio pseudopotentials. We also introduced an iterative di-
Moreover, the real-space calculations agree with the HRagonalization scheme based on preconditioned Krylov tech-
value to within ~ 20—30 cnil. On the other hand, the niques. Compared tglane-wavesupercell methodsour
LCAO method yields a value which is 5070% smaller than real-space method is more efficient and simpler to imple-
either the real-space or HF calculations. The origin of thisment.
difference is not apparent. For a poorly converged basis, vi-
brational frequencies are often overestimated as opposed to
the LCAO result which underestimates the value, at least
when compared to other theoretical techniques. Setting aside
the issue of thB;, mode, the agreement between the mea- We would like to acknowledge the support for this work
sured Raman modes and theory foy, Siiggests that Raman by the National Science Foundation, and by the Minnesota
spectroscopy can provide a key test for the structures preSupercomputer Institute. One of 3.R.C) acknowledges
dicted by theory. very helpful discussions with F. Gygi.

We have illustrated in this paper a real-space method
which can be used to compute the vibrational modes of mol-
ecules and atomic clusters. In particular, we illustrated cal-

ACKNOWLEDGMENTS

1Quantum Theory of Real Materialsdited by J.R. Chelikowsky
and S.G. LouigKluwer, Dordrecht, 1996

2R. Car and M. Parrinello, Phys. Rev. Lefi5, 2471 (1985; 60,
204 (1988; R.M. Wentzcovitch and J.L. Martins, Solid State
Commun. 78, 831 (1991); D.M. Bylander and L. Kleinman,
Phys. Rev. B45, 9663 (1992; T.A. Arias, M.C. Payne, and
J.D. Joannopouloshid. 45, 1538(1992; N. Binggeli, J.L. Mar-
tins, and J.R. Chelikowsky, Phys. Rev. Léi8, 2956 (1992);
J.R. Chelikowsky, N. Troullier, and N. Binggeli, Phys. Ré®,
114 (1994.

3JR. Chelikowsky and M.L. Cohen, HHandbook on Semiconduc-
tors, edited by P.T. Landsber(Elsevier, Amsterdam, 1992
Vol. 1, Chap. 3, p. 59.

4E.L. Briggs, D.J. Sullivan, and J. Bernholc, Phys. Rev5B
R5471 (1999; F. Gygi, ibid. 48, 11692 (1993; 51, 11 190
(1999; F. Gygi and G. Gallijbid. 52, R2229(1995; S. Wei and
M.Y. Chou, Phys. Rev. Lettito be publisheg D.R. Hamann,
Phys. Rev. B51, 7337(1995; K. Cho, T.A. Arias, J.D. Joan-

nopoulos, and P.K. Lam, Phys. Rev. Lefi, 1808(1994; T.
Hoshi, M. Arai, and T. Fujiwara, Phys. Rev. B2, R5459
(1999; G. Zumbach, N.A. Modine, and E. Kaxirasinpub-
lished; A.P. Seitsonen, M.J. Puska, and R.M. Nieminen, Phys.
Rev.51, 14 057(1995.

SF. Gygi and G. Galli, Phys. Rev. B2, R2229(1995.

6X. Jing, N. Troullier, J.R. Chelikowsky, K. Wu, and Y. Saad,
Solid State CommurB6, 231 (1995.

’P. Pulay, Mol. Phys17, 197 (1969.

8F. Gygi, Phys. Rev. B51, 11 190(1995.

9F. Gygi, Phys. Rev. B8, 11 692(1993.

0R.P. Feynman, Phys. Re§6, 340 (1939.

113.R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Phys. Rev.
B 50, 11 355(1994.

12|, Kleinman and D.M. Bylander, Phys. Rev. Le#8 1425
(1982.

13N. Troullier and J.L. Martins, Phys. Rev. &3, 1993(1997).



53 MOLECULAR DYNAMICS WITH QUANTUM FORCES: ... 12079

14C.T. Chan, K.P. Bohnen, and K.M. Ho, Phys. Rev4B 4771  22F. Gygi (private communication

(1993. 23) R. Thomas, B.J. DelLeeuw, A. Vacek, T.D. Crawford, Y.
15%. Jing, N. Troullier, D. Dean, J.R. Chelikowsky, N. Binggeli, K. Yamaguchi, and H.F. Schaefer i, J. Chem. Ph98, 403
Wu, and Y. Saad, Phys. Rev. 1), 12 234(1994). (1993.
8B, Fornberg and D. Sloan, iActa Numerica 1994edited by A.  ?*L. Pauling,Nature of the Chemical Bond@rd ed.(Cornell Uni-
Iserles (Cambridge University Press, Cambridge, 109gp. versity Press, Ithaca, 1960
203-267. 25E.C. Honea, A. Ogura, C.A. Murray, Krishnan Raghavacharl,
17D.G. Anderson, J. Assoc. Comp. Mad®, 547 (19695. W.O. Sprenger, M.F. Jarrold, and W.L. Brown, Natdrendon
18B.N. Parlett and Y. Saad, Lin. Alg. App88/89 575 (1987). 366, 42 (1993.
19y, saad, Numerical Methods for Large Eigenvalue Problems 2°D.M. Deaven and K.M. Ho, Phys. Rev. Le#t5, 288(1995.
(Halstead, New York, 1992 27N. Binggeli, J.L. Martins, and J.R. Chelikowsky, Phys. Rev. Lett.

203.M. Ortegalntroduction to Parallel and Vector Solutions of Lin- 68, 2956(1992.
ear SystemgManchester University Press, Manchester, En-28R. Fournier, S.B. Sinnott, and A.E. DePristo, J. Chem. Pays.
gland, 1992 4149(1992.

21G. Bachelet, D.R. Hamann, M. Sckén, Phys. Rev. B26, 4199  2°C.M. Rohlfing and K. Raghavachari, J. Chem. Phg8. 2114
(1982. (1992.



