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We study dissipation in an otherwise perfect photonic crystal. A perturbational calculation (for
small dissipation) leads to formulas for the imaginary part of the eigenfrequency (if the wavevector
is real) and for the imaginary part of the wave vector (if the frequency is real) We. also calculate the
density of states (DOS) in the vicinity of a band edge u of a complete photonic band. gap. There
is a smoothing e6ect, namely, the density of states becomes finite inside the gap. In this region
the DOS is inversely proportional to (w —u, ) ~ (three-dimensional periodicity) or to (u —u, )
(two-dimensional periodicity). We also present a semiquantitative argument which suggests that,
inside the band gap, the importance of finite crystal size is considerably less than that of absorption.

I. INTRODUCTION

In the past few years the theory of propagation of elec-
tromagnetic (EM) waves in periodic dielectric structures
has been intensively developed. Three-dimensional (3D)
and two-dimensional (2D) periodic structures possess-
ing a photonic band gap have been predicted theoreti-
cally and fabricated experimentally. Different methods
borrowed from the theory of electronic band structure
were used to calculate the photonic band structure with
high accuracy. These methods include the plane-wave
expansion, the Korringa-Kohn-Rostoker method, and
the k. p method. They are relevant for calculation of
the EM spectra of ideal photonic crystals, i.e., ideally
periodic, infinite, and nondissipative structures. How-
ever the experiment d.eals with finite-size slabs fabricated
&om low-loss dielectrics. The measurable quantity is the
transmission coefBcient which drops drastically in the &e-
quency region corresponding to the gap.

Different methods allowing one to calculate directly
the transmission coefBcient of a slab with scat terers
have been proposed. One of them —the finite element
method introduced by Pendry and McKinnon —has the
ad.vantage that it is also applicable for the absorbing pho-
tonic crystals. The inHuence of absorption on the trans-
mission coeKcient of 2D periodic array of cylinders was
studied by Sigalas et al. It was shown that finite ab-
sorption as well as finite size of a sample give rise to
pseudogaps rather than strictly forbidden band gaps.

In this paper we analyze the inHuence of weak dissipa-
tion on the damping of photonic eigenmodes and on the
density of photonic states (DOS). The DOS determines
the transport properties of a periodic structure as well as
the rate of the spontaneous emission of an excited atom
embedded in it.

The paper is planned as follows. In Sec. II we calcu-
late the temporal damping of the eigenmodes (i.e. , the
imaginary part of eigenfrequency) in the linear approxi-
mation. In Sec. III we obtain the functional connection
between the temporal and spatial decrements of the same

mode. In Sec. IV we calculate the DOS in an absorbing
photonic crystal. It is shown that dissipation smooths
the singularities of the DOS at the band edge and gives
rise to the finite DOS inside the gap. We also calculate
the asymptotic behavior of the DOS inside the gap for
2D and 3D periodic photonic crystals. Finally in Sec. V
we estimate the inHuence of the finite crystal size for a
1D superlat tice.

II. EIGENVALUE PROBLEM
IN PERIODIC MEDIA

WITH WEAK DISSIPATION

We consider propagation of EM waves in dissipative
periodic media. The medium can be discribed by the
position-dependent complex dielectric constant

e(r) = e (r) + ie (r), e ) 0 (la)

or by the reciprocal dielectric constant

rl(r) = = ri'(r) —irl" (r), rl" ) 0 .
e(r)

(1b)

The periodic functions e'(r), e"(r), rl'(r), and g"(r) can
be expanded. in Fourier series,

e'(r) = ) (Ge) exp(iG r),
G

e"(r) = ) e"(G) exp(iG r);
C

(2a)

rl'(r) = ) rl'(G) exp(iG r),

g"(r) = ) g"(G) exp(iG . r),
C

(2b)

where G are the reciprocal-lattice vectors. The Fourier
coeKcients
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e'(G) = e'(r) exp( —G . r)dr,
v& v

e"(r) exp( —iG . r)dr;
v& v.

(3a)

is comparable to its real part, the dissipation is rather
strong and EM waves do not propagate. Usually in this
case EM waves decay within a short distance (a few lat-
tice periods). But for the case of weak dissipation, i.e. ,

(8)
1 e'(r)

rt'(G) = exp( —iG . r),
1 e"(r)

I ()I' (3b)

obey the following property (for brevity we give the for-
mulas only for e):

e'(-G) = "'(G) "'(-G) = e"*(-) (4)

The integration in Eqs. (3a) and (3b) runs over the vol-
ume of the unit cell V.

In periodic structures the space distribution of any
components of the EM field [E(r), D(r), or H(r)] fol-
lows the Bloch theorem. For instance, for the magnetic
field H the expansion over Bloch states takes the form

H(r) = exp(ik . r) ) h(G) exp(iG . r),

) [g'(G —G') —i'"(G —G')][(k+ G) . (k+ G')b;,

where k is the quasiwave (Bloch) vector and the depen-
dence of h on k is suppressed. For fixed k a discrete
sequence of eigenfrequencies io (k) (n = 1, 2, ...) gives
rise to bands (labeled by the integer n) when k changes
continuously inside the Brillouin zone.

The dispersion relation u = u (k) for the EM waves in
a periodic medium is obtained as a solution of the eigen-
value problem. This problem can be formulated for the
Fourier components of either the electric, the magnetic,
or the displacement field. It was shown that those three
eigenvalue problems lead to the same dispersion relation
io = ur„(k). Here we prefer to consider the eigenvalue
problem for the Fourier component h(G) of the magnetic
field. The eigenvalue equation is

the typical decay length is much greater than the lattice
period. Of course, inequality (8) can be valid only if e" ((
e'. The latter allows one to use the standard perturbation
theory to calculate the deformation of the EM spectrum,
using the Hermitian eigenvalue problem (6) with e" = 0
as a zero-order approximation. It is clear &om general
considerations that for frequencies outside the gap, e" g
0 should lead to absorption in the photonic crystal. It
was shown that at high &equencies the transmissivity
of an absorbing photonic crystal decreases drastically in
comparison with the perfect crystal. This means that
the conditions for the perturbation theory to be valid
are more stringent at high &equencies.

For the frequencies inside the gap there is an oppo-
site effect of weak dissipation on the optical properties of
photonic crystals. Here dissipation gives rise to a finite
density of states (DOS) inside the gap and, hence, finite
transmissivity of light. The corresponding DOS, which
is the subject of the present paper, is small, so instead
of a true gap there is a pseudogap in the spectrum of an
absorbing photonic crystal.

We start from the calculation of the imaginary part
of &equency u„". The unperturbed Hamiltonian 'R~ ~ is
given by the matrix

'R, (G, G') = rI'(G —G')[(k+ G) . (k+ G')8;~
—(k;+ G', )(k, + G, )], (9)

and the perturbation 'R~ ~ by the anti-Hermitian matrix

~„"(G,G') = -'~"(G- G')[(k+ G) (k+ G')b',
—(k;+G';)(k +G.)]. (10)

We assume that the bands near a given Bloch vector k are
not degenerate. Therefore the linear correction LA„ to
the eigenvalue A„= io2/c2 is simply the diagonal matrix
element of Q~ ~, namely

—(k+ G');(k+ G),]h, (C') = h;(G),
z, g = z, y, z. (6) ) 'R, (G, G')h; "l(G)h" (G') .

In Eq. (6) and further we use the Einstein summation
convention for the vector component indices.

In a lossless medium (e" = g" = 0) the eigenvalue
problem (6) is Hermitian and the eigenvalues u /c are
real. But in a dissipative medium the matrix which oper-
ates on the eigenvectors h~(G') in Eq. (6) is not Hermi-
tian, therefore the eigenvalues ~2/c2 are complex, which
leads to the decay of eigenmodes.

If the imaginary part of the eigen&equency

~„(k) = (u„'(k) —i(u„"(k), a„" ) 0

Here h,. (G) is the i component of the eigenvector
~

n)
of the Hamiltonian 'R~ ~, corresponding to the eigenvalue

The set of eigenvectors
~

n) forms an orthonormal
basis in Hilbert space:

(n i
n') = ) h ~"l(G) h~" l(G) = b„„

G
(12)

Equation (11)can be substantially simplified in the im-
portant case of a binary photonic crystal made from two
difFerent materials: material a ("atoms" ) and material b

("background" ). Then the Fourier components (3a) and
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(3b) can be expressed through the structural factor (k+c) h(")(c) =o,

as follows:

E'(G) =-
v- v.

n'(G) = (n.
' —~b)+(G)

g"(G) = (q" —gb')E(G), G g 0,
(14)

one obtains that

) A,'," (G, C') h,"'(G')

(7L) (
i ( ) [p (

&I &&)

77~

+
I
k+ G I' (~b'~.' —~."~b)

r)'(0) = fg' + (1 —f)qb, g"(0) = fq" + (1 —f)gb'
To get the correction AA we insert Eq. (19) in Eq. (11)
and use the orthogonality condition (12). Finally we get

H«e g' = 1/~'
~ gb - 1/eb ~ g - ~ /~ ~ 'f)b = ~b/~b

and f is the filling fraction of the component a. In Eq.
(13) integration runs over the volume occupied by the
component a in a unit cell.

It follows from Eqs. (9), (10), (14), and (15) that there
is a simple linear relation between the matrix elements
of the operators 'R~ ~ and 'R~ ~:

A„(q" —gb")
Ifp

+(&,"&.' —&."&,') ) [
k+ G ~'[ h(") (G) ['

(2o)

f1 II
'R ')(G, G') = —i, b'R (G, G') if G g G', (16)

I~ Ib

and

~(')(G, G) = f""+"— f)""~(')(G,G) .
fn.'+ (1 —f)nb

Inserting Eq. (16) in Eq. (11) one can transform the sum
over G' to the following form:

A,,' (G', G')h, " (G')

fl If
~ 7a )b ) ~(o) (G GI)h(a) (G~)

~b

—.f".+ (' f)"b +( )(G, G)h,'"'(G) .fC+ (1 f)nl—
Now this sum can be calculated keeping in mind that
'R( )

~
n) = A

~

n). Using the transversality of the mag-
netic Geld, i.e. ,

x ) /
k+ G

/ /

h(") (C) [' (21)

According to the approximation we have used, w" (k) is a
linear function of q" and. q&'. lt is worthwhile to transform
the sum on the right-hand sides of Eq. (21). With this
in mind we multiply both sides of Eq. (6) (in which we

put q" = 0) by h,
*

(G) and sum over G (and i). Then
using Eqs. (12), (14), and (18) one obtains

This linear correction to the eigenvalue A„= ~2/c2
gives rise to the damping of the nth eigenmode. Because

I ~ ff )2 2 11

),(O) ~p (~n '~a) ~a .~n+ 2 2
—2x

2C C C

we get

LA„c2
2i cu„'2 (k)

1

2( I I
)

Qa lb (9a )b Qb 9a) I2(k)

k):ik+Gi'ih'-'(G) i' = "' '
q'(0)c'

"' ) ) F(G —c')
a age

(22)

x (k+ G) (k+ G')h'(")(G) h(" (G') —(k+ G') h'(")(G)(k+ G) . h(")(G')

We subsitute Eq. (22) in Eq. (21) with the result

II
/gal

II II I 11 I 2
nk ) ) )a)b 4 9a ) ) ~(G GI)

(u'„(k) 2g' 2q' (u'2 (k)

x (k+ G) (k+ G')h*(")(G) h(")(G') —(k+ G') . h*(")(G)(k+ G) - h(")(G')
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Here g' = g'(0) and ~g' = i1"(0) are average character-
istics of the dielectric composite, defined by Eq. (15).
Equation (23) is a general result for the temporal damp-
ing correspondig to the band tu (k). Next let us consider
two special cases.

The first term on the right-hand side of Eq. (23) gives
the dominant contribution to the damping if

f(~, k) = 0, (28)

(29)

where the function f depends on the dielectric properties
of the medium. In a nondissipative medium a propagat-
ing wave is characterized by a real frequency u, which is
a solution of Eq. (28):

In nb
—na'n I«no (24)

This inequality means that the "contrast" is very small
and the periodic medium can be considered as approx-
imately homogeneous. In this limit Eq. (23) gives the
result

~„"(k) g"
~„'(k) 2g' '

which coincides with the well-known formula
k„= k„(~,v) . (30)

In a periodic medium Eq. (29) corresponds to the
band structure with allowed frequency zones separated
by gaps. For every given direction of propagation v = k/
k Eq. (29) can be solved with respect to the length k of
the wave vector. If ~ is inside an allowed band with band
index n this solution is real and gives a point k = (v, k„)
lying inside the Brillouin zone:

2e' 2n'
(26)

A set of points (v, k„) form an isofrequency surface

k = k„((u),

(k + G) . h~" ~ (G') = 0 (27)

even for G' g G. However, for the E mode this term
does not vanish and contributes to the damping.

Here we have used perturbation theory for the nonde-
generate states. The spectra of photonic crystals contain
many points of degeneracy where the dispersion curves

(k) corresponding to different band numbers n are
crossing. This degeneracy is the consequence of the high
symmetry of the crystal lattice. In quantum mechan-
ics perturbations usually have lower symmetry than the
zero-order Hamiltonian, leading to repulsion of levels. In
our case the situation is difFerent, namely the perturba-
tion 'R~ ~ has the same symmetry as the nonperturbed
Hamiltonian 'R~ ~. This is so because dissipation does
not break the spatial symmetry of the lattice and there-
fore does not lead to additional splitting of the dispersion
curves. Thus the ordinary perturbation theory is valid
even at the points of degeneracy.

for the damping of EM waves in a homogeneous medium
with weak dissipation.

Now let us consider a 2D photonic crystal with cylin-
drical "atoms" arranged periodically in air (gz' ——0, g&

——

1). In a 2D periodic system modes with E and H po-
larizations are decoupled. In the E mode the electric
field is parallel to the rods, and in the H mode it is the
magnetic field that is parallel to the rods. Thus for the H
mode the second term in the square bracket of Eq. (23)
vanishes as

when v sweeps the surface of the unit sphere. Inside the
band gap, the solution (30) is complex and an EM wave
cannot propagate in the (infinite) crystal. In the presence
of dissipation the situation becomes more complicated.
Absorption (due to a nonzero imaginary part of the di-
electric constant) cause the solutions of Eq. (28) to be
complex. For instance, these solutions can be represented
in the form of Eq. (29) (temporal decay, ~ = ~' —i~"
and real k), or in the form of Eq. (31) (spatial decay,
k = k'+ ik" and real u). Note that in the presence of
absorption k" g 0 even if ~' corresponds to an allowed
&equency. Then the question arises: what kind of decay
(temporal, spatial, or mixed), that is, what kind of ex-
perimental situation do we consider? This question has
been discussed in detail in connection with excitation of
surface waves. ' In that case the answer is rather non-
trivial because of the presence of a special prism lead-
ing to the excitation of such waves. The Bloch waves in
photonic crystals are excited directly by the incident EM
wave with a fixed &equency ~. Therefore the decay has to
be considered as spatial: the amplitude decreases expo-
nentially with the distance &om the surface of incidence
of the sample. However, Eq. (23) describes temporal
decay, given by u".

In order to calculate the spatial decay, as described by
k", we use the fact that the function f in Eq. (28) is a
functional of e(r):

f(~, k) = f((u, k, [e(r)]) .

III. TWO DIFFERENT APPROACHES
IN THE PROBLEM OF WEAK DISSIPATION:

TEMPORAL AND SPATIAL DAMPING
OF WAVES

If the dissipation is weak (e" « e'), the functional (32)
can be expanded and in the linear approximation one
obtains

.bf = f ((u, k, [e'(r)] ) + z —be" (r)
be

The dispersion relation for the EM wave propagating
in any medium may be written in a general form as = f'(~, k) +i f"(~, k) = 0 . (33)
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f"((u, k)
0f'/0~ (34)

On the other hand for purely spatial decay ~" = 0 and
Eq. (33b) gives

Ok
—f"(~, k) . (35)

Eliminating f" &om Eqs. (34) and (35) and using the
identity

B~ 8f'/Bk
c)k 0f '/B~ (36)

we obtain the relation between the temporal and spatial
decay decrements in the following form:

(37)

Here v = Bur/c)k is the group velocity of the wave. For-
mula (37) is not valid at the edge of the Brillouin zone
where the group velocity vanishes.

In the ideal crystal (e" = 0) complex solutions of Eq.
(30) can be interpreted to describe surface excitations of a
finite photonic crystal with ~ inside the gap. ' The am-
plitudes of these excitations decrease exponentially &om
the surface of photonic crystal. This decay is due to
strong Bragg reflection inside the periodic medium. Now
Bragg reflection is a reversable process which does not
lead to the heating of the sample. Unlike this, damping
of EM waves in an absorbing medium is a dissipative pro-
cess which is accompanied by an increase of the entropy.

I inearizing Eq. (33) in the small quantities u" or A,
" one

obtains the temporal decay decrement (experiment with
real k)

de
p((u) ) b[(u(k) ~]

(38)

Here de is an element of the iso&equency surface u(k) =
w in k space and N is the number of unit cells in the
crystal. For rather high &equencies the iso&equency
surface may be represented by several closed or open
sheets.

Equation (38) is applicable only for a lossless medium.
In an absorbing medium photonic states decay with the
rate given by Eq. (23). A finite dissipation shifts the
pole of the photonic Green function &om the real axis~
and the 8 function in Eq. (38) must be replaced by a
Lorentzian line shape with the width corresponding to
the damping rate ~"(k), namely

h [(u(k) —u)]
ur" (k)

vr [~'(k) —(u] + ~" (k)
(39)

expected to spread this singularity, giving rise to a finite
rate of spontaneous emission inside the gap. In the Born
approximation this smoothing eBect increases with ab-
sorption and the rate of spontaneous emission increases
proportionally to the DOS. This is true in the limit of
weak dissipation. If dissipation becomes great enough
(e" e') one needs to take into account the decreasing
of E with e" (damping of eigenmodes). However in the
Born approximation one should neglect this efl'ect, oth-
erwise the accuracy is exceeded.

In order to calculate the eÃect of weak dissipation on
the DOS we start &om the general definition, widely ap-
plicable to quasiparticles with complex dispersion law,

IV. PHOTONIC DENSXTV OF STATES

Aplications of photonic crystals are associated with the
inhibition of spontaneous emission. For emission within
the band gap the decay rate of an excited atom or the
recombination rate of electron-hole pairs can be reduced.
This, in turn, is expected to be applicable to the improve-
ment of semiconductor lasers. ' The rate of sponta-
neous emission is proportional to the density of photonic
states in the environment medium. In the Born approx-
imation the DOS is also proportional to the squared mod-
ulus of the matrix element of the operator E.p, where E
is the amplitude of zero-point fluctuation of the eigen-
mode and p is the atomic dipole moment. In the lossless
photonic crystal the density of states (DOS) vanishes in-
side the gap. But, as it has been shown, absorption
can modify the rate of spontaneous emission for &equen-
cies close to the resonances of a homogeneous dielectric
giving rise to the finite rate of spontaneous emission in
the forbidden &equency region. Then in the band-gap
structures we can expect that absorption will modify the
rate of emission for the frequencies close to the gap. In
this region the DOS [p = p(w)] changes abruptly, lead-
ing to a singularity of dp/du. Even a weak dissipation is

We substitute Eq. (39) in Eq. (38) and replace the sum-
mation ever k by integration in k space. In turn the
integration over k is converted to integration over the
iso&equency surface cu'(k) = z and integration over z.
The Jacobian of this transformation is ~V'~~'(k)~ . Fi-
nally, instead of the right-hand expression (38) for the
DOS, we get the following one:

V
P(~) —

(2 ),
dedz

(g)=. I
'(7~~'(k)

I

(u" (k)
(~ —z)' + (u"2(k) (40)

A. Three-dimensional periodicity

Assuming that the dissipation is weak, the dispersion
relation ur'(k) in Eq. (40) can be approximated by the
dispersion relation w(k) for the lossless medium. Hence-
forth we shall suppress the prime on w'(k). For frequen-
cies well inside the allowed bands the influence of damp-
ing is rather small, so Eqs. (38) and (40) give the same
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result. On the other hand, when w is near to the edge of
the gap (u ~ u, ) the DOS of an ideal 3D crystal vanishes
according to the square-root law. For example, near the
lower edge of a gap one obtains &om Eq. (38) that

p(ca/) ~ QLd~ —hI, (d & M~

p((u) = 0, (u ) cu, .

In the presence of dissipation the integrals in Eq. (40)
do not vanish in the region ~ ) cu, giving rise to the
propagation of EM waves in the forbidden zone and to
a finite decay rate of spontaneous emission. We use Eq.
(40) to calculate the DOS in the vicinity of the band edge
(u = w, ), assuming that only a single band contributes.
When u approaches ~„ the volume inside the isofre-
quency surface goes to zero as there is no iso&equency
surface for ~ ) u . In other words the iso&equency sur-
face converges to some point K in k space when ~ ~ u, .
We expand the dispersion relation ur(k) = ~ near this
point:

P,qAk—;Eke, bk = k —K .
1

2 u (42)

(~k) = '("- )
p,~m;m~

(43)

which is the equation of an ellipsoid, centered at the point
k = K. Then the surface element de, can be represented
through the solid angle dQ as follows:

dS, = ~ "~ (~k)dn[~ v,~~
[
v', ~

[
dn

( + )
(p )3/z (44)

Now we substitute Eq. (44) in Eq. (40) and take into
account that the surface integral

dSk

=~(k)

vanishes for z & u . Then the infinite upper limit in the
integral over z in Eq. (40) can be replaced by w . It is
worthwhile to introduce the dimensionless dispersion and
damping parameters

((u/(u, ) —1,

b =- (u" (k)/~, .

Note that 4 is positive (negative) above (below) the
lower edge of the gap. In principle 6 is given by Eq. (23)
and depends on k in a very complicated manner, requir-
ing a complete solution of the band-structure problem.
In order to make our calculations manageable and our

The linear term is absent in the expansion (42) because
the group velocity V'pw vanishes at the band edge. If
w, is the lower edge of a band gap, then p, ~ is a positive
defined matrix.

Equation (42) can be rewritten in the form

results transparent, we shall assume that b is a constant
parameter. After simple calculations we get the following
formula for the DOS:

p(~) = QF(«) . (45)

Here

V /2(u, dO

vr(2m)s (P;,m, m, )s~' (46)

is a constant determined by the topology of iso&equency
surface, and

1

Z(~, b) = b
0 (x+ A)'+ b' (47)

is the dimensionless DOS. Equations (45)—(47) are valid
only for small values of L and b as we consider a weak
dissipation (b « 1) and &equencies near to the band edge
(~A~ (& 1). However, it is just this region of parameters
that is interesting in an experiment.

The DOS Eq. (47) has difFerent asymptotic forms in-
side and outside the gap.

(a) Inside the gap (b « A, or u" « cu —~, && cu, ).
In this region the damping b can be neglected in the
denominator of Eq. (47) and one obtains that

1

E(A, b) = b
~ (x+ &)' 2v &

(48)

Thus there is a Gnite DOS inside the gap, and it is propor-
tional to the damping w"/u, and inversely proportional
to +id —(d~.

(b) Outside the gap (b (& —A or w" « w, —w « tu, ).
In this case the presence of the pole at x = ~A~ + ih gives
the following limiting contribution to the integral:

1

E'(A, b) = 7r ~xb(x —
~

A ~)dx = m Q~ A
~

.
0

(49)

Substituting Eq. (49) in Eq. (45) we get the zero-order
DOS,

p(~) = ~Qv'(~ —~.)/~. (50)

with the well-known square-root singularity. In principle
the parameter Q can be determined, for a given band-
edge, experimentally or theoretically f'rom Eq. (46).

(c) Boundary between the allowed and forbidden zones
(b, =0),

E(0, b) = b
~xdx —7I gb/2, Cd = (d~x2+ b2

Photonic band gaps are determined by transmission
rate measurments. But due to different reasons (finite
size of a sample, absorption, etc.) the transmission rate
does not drop to zero inside the gap and it is dificult to
determine the position of the band edge. Equation (51)
gives the position of the gap in the theoretically infinite
photonic crystal fabricated &om low-loss materials. The
in8uence of the 6nite size of a sample on the transmission
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of weak dissipation than the 3D one. Moreover it looks
like this conclusion is true not only for an anti-Hermitian
perturbation (dissipation), but also for arbitrary pertur-
bations. This conclusion can be confirmed by the fol-
lowing example. The principal macroscopic defect of any
crystal is its finite size. Therefore the transmission rate
(and the DOS) does not drop exactly to zero inside the
gap. This effect has been studied in Refs. 6—8. Accord-
ing to the results of these papers the transmission rate
drops much faster in a two-dimensional periodic array
than in a three-dimensional one. '

Note that in an infinite crystal dissipation always gives
rise to finite DOS inside the gap. On the other hand, in
a finite sample it can further increase the DOS in the
gap. This occurs when the transmission rate is already
big enough due to the finite size. Then dissipation leads
to the usual damping of the EM modes. This situation is
realized for the E-polarized modes propagating in a pe-
riodic array of cylinders. But for the H-polarized modes
the transmission rate for the same sample turns out to
be much smaller (than that for the E-polarized modes) if
the dissipation is absent. In this case a weak dissipation
causes additional increase of the transmission rate (and
also the DOS) inside the nominal band gap.

V. INFLUENCE OF THE FINITE
CRYSTALS SIZE

Throughout this work we have assumed that the di-
electric composite considered deviates &om perfect "crys-
tallinity" only due to dissipation of energy. It is perti-
nent to discuss a different kind of "imperfection, " namely
the finite size of the crystal, and to compare the ensuing
modifications of the band structure.

Strictly speaking, band structures and band gaps ex-
ist only for a perfect (transparent and boundless) crys-
tal. Either absorption or a finite number of unit cells

I

will give rise to finite DOS within the nominal gaps
and a smoothing of the van Hove singularities. There
are available DOS computations for two-dimensional
and three-dimensional'(b)' z photonic crystals and also
similar computations for "phononic crystals" (elastic
composites). However, these calculations were all per-
formed for infinite and nondissipative periodic structures.
We are not aware of calculations of the DOS for either
a finite or for an absorptive array. Nevertheless, we can
estimate the importance of finiteness of the crystal and
compare it to the results reported in the preceding sec-
tions.

We do this for a modulated superlattice, assuming
weak, sinusoidal modulation. In this case the band struc-
ture is given by the solutions of the Mathieu equation.
The eigenvalues are

(d~(k) = (d,
2

+ c~~k —— (58)

where c0 is the speed of light in the host (unmodulated)
medium, a is the period of the modulation, 2~G. is the
band gap (proportional to the modulation amplitude),
and (d, = vrc0/a is the xnidgap frequency. Even for two-
or three-dimensional crystals, if one considers propaga-
tion in a high-symmetry direction, in the vicinity of a
Brillouin zone boundary only two plane waves make im-
portant contributions to the diffraction process. It is well
known that, for such a simplified model, the approximate
band structure is also given by the two bands, Eq. (58).
Below we calculate the density of states px, ((d), based on
Eq. (58), for a crystal of finite length L.

For a periodic structure of length jt = Na the permit-
ted values of the Bloch vector are k„= (2vr/L)n, where
n = 0, +1, +2, ..., +N/2 (Born—Von Karman boundary
conditions). Also taking into account the absorption,
the density of states can be written down according to
Eqs. (38) and (39):

s~(~) = ~II 2 2

2xrN [(d+(k„) —(d]z + ((d") [(d (k ) —(d] + ((d")
+

in)(N/2-

1 1

((d~ + (d~ —(d) + ((d ) ((d~ —(d( —(d) + ((d )
(59)

where (dg(k ) is given by Eq. (58). The two terms in the summation give the contributions of the upper and lower
branches in Eq. (58), excluding the Brillouin zone edge. The last two terms take care of this point, k = z/a (n =
N/2). These terxns are chosen to have one-half of the weight of the terms in the sumxnation which leads to the correct
result for the DOS in the limit L + oo and (d" -+ 0 (see below). We shift the summation number n in Eq. (59) by
defining m = n ~ N/2 and also define 0 = (d —(d„where 0 is the frequency measured &om the midgap. After sixnple
algebra Eq. (59) becomes

II N/2
2

- 2

Q(d~z + (2vrc()m/L)z —0 + ((d")z

1

(n —~a)'+ (~")' (60)
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