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Dilute and dense systems of random copolymers in the equilibrium state
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Dilute and dense systems of macromolecules with quenched compositional disorder along the chain and the
short-range interaction between monomers are studied by numerical Monte (®&E)osimulations. The
equilibrium structural properties of such systems are characterized by the mean-square end-to-end distance and
the static structure factor of the polymer chains. Both temperature and density determine the strotture
lapse, swelling, or screening reginé description of this behavior is given using generalized scaling argu-
ments and proven by the numerical MC simulations.

[. INTRODUCTION weak stochastic interactiagyA, or short chains and a col-

Various concepts of statistical mechanics of random sysl—apse regimeR—~N"" for a strong stochastic interaction

tems, such as those of a spin gfass of neural network$ POAO'M. It should be g?gnarked that a long-range stochastic
are used to describe the complex structural conformation gpteraction[v(r) =vor®~*] leads to a general collapse tran-

biological macromolecules. In the first case, the strength angton for all dlmenS|o_nsi<qc—4. .
the sign of the interaction between pairs of monomers are However, these briefly discussed results hold for isolated

chosen at randorhi.e., we haveN(N—1)/2 different inter- Chains only. Therefore, the equilibrium behavior of dense

acting pairs whose interaction is statistically distributed. Inf"md se_m|d|lut_e systems of such stoc_hastlc qopolymer_ chains
an interesting question, which will be discussed in the

the second example the properties of neural networks arg ” . ) .
used, where the interaction results from a learning procesg,resent paper by using numerical Monte Carlo simulations
using the information from known structurés. and generalized scaling arguments.

In the present paper we investigate a model in which the
interaction of each pair of monomers is well defined by a Il. MODEL
bilinear function of the characteristic values of both mono-
mers(usually called chargésaind a unique potentiar® The
randomness is determined by the quenched disorder of t
monomeric charge sequenchs}.® Therefore, the interac-
tion potential is given by the general expression

The present work is devoted to a study of the equilibrium
roperties of random copolymer melts or semidilute solvents
ith a stochastic chargelike short-range monomer interaction

(1). A numerical investigation of a dense system of such
stochastic copolymers and a check of the predicted scaling
behavior are possible by extending the well-known fluctuat-
Uij(ri—rp)=w(ri—r))+b(ri—rp[ai+a;]+v(ri—rjga;, ing bond modef>*

(1) In this lattice Monte Carlo simulation each effective

monomer occupies all eight corners of a unit cell of the

with ¢; being the charge of the monomier The first term  simple cubic lattice and the bond lengiladl length are mea-
contains nonstochastic interactioi®r example the ex- sured in units of the lattice spacingetween consecutive
cluded volume interactionwhich in most cases is of short- monomers vary between 2 ar\@ [determined by the lat-
range orderw(r)=wyd(r). The influence of the second tice structure;/8 is excluded, in order to maintain entangle-
term is discussed in Ref. 9. In the case of invariance againghent restrictiongsee Ref. 14. The allowed bond lengths
a charge inversiom;— —q;, b=0 follows immediately. In  guarantee that the self-avoiding conditiG@ach lattice site
the present paper we restrict ourself to this case; i.e., wean be taken at most once and therefore each monomer has a
discuss the influences of the potentialsandv only. hard core behavigris satisfied and that chains cannot inter-

A single chain with a short-range stochastic interactionsect in the course of their random motiémodeled by sto-

v(r—r')=—vgd(r—r’) and vanishing excluded volume ef- chastic jumps of effective monomers to neighboring unit
fect (wo=0) shows a collapse regime for long chains and acells). As has been discussed elsewhéré® each effective
strong monomer interactiomoA, (with (giq;)=2445;;), bond of the model is thought to represent a group of succes-
whereas a swollen regime with a swelling exponentsive chemical bonds along the backbone of a real polymer
v=1+ €%/8, e=d,—d was predictetf for short chains and a chain, and hence it is physically reasonable for flexible poly-
weak interactiorv oA (and with an upper critical dimension mers that the length of such effective bonds may fluctuate.
d.=2) (see also the numerical results of Rej. ®n the The systems considered have a volume L3, L=48,
other hand, the presence of a nonvanishing excluded volunfédled with ng, chains of stochastic charge sequen¢gs
interactionwy#0 leads to a usual swelling regime for a (chain length N=50, random distribution of charges
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(iq;)=A,4;; , the total system is neutral; note that ten con- ll. NUMERICAL RESULTS

figurations run in parallel to improve the statistic¥he re-

pulsive potentialU;;, which acts between each monomer ] o o
pair, is defined by the step function After reaching the equilibrium distribution of the polymer

system, the values discussed below are measured as a time
average over approximately A@onfigurations(time sepa-
U =[Wo+000:a: 1O (R=1|r —r|), 2 rated by approximately POelementary steps per monomer
i =[Wotvoaig JOR=Iri=rj) @ in ten ensemblesi.e., the total number of configurations
used was~10%. Note that the time interval between two
with ®(x)=0 for x<0 and®(x)=1 for x>0. The cutoff successive configurations is sufficiently long to scan a rea-
radiusR (5 unit lengths corresponds to the first neighbor Sonable part of the phase space also in dense systems. The
peak in the static structure facts(k). This energy is con- mean-square displacement of the center of mass of the chains
sidered in the transition probability/=exp(—AU/KT), AU during the whole simulation is approximately 1/3 of the ra-

being the energy change associated with an elementary mglus Of gyration in the most unfavorable case. Thus, the ac-
tion as standard in the framework of the Metropoliscuracy of the numerical simulations is determined by a nu-

L 1617 : .~~~ merical error of approximately 3%.
algorithm. Because the excluded volume interaction is The static structure factor of the whole system is defined
controlled by the hard core character of the monomers, wi

B
can neglect the contributiowy. Furthermore, the athermal y
hard core interaction allows the introduction of a reduced

A. Static structure factor

temperaturer~T/(voAg). In other words, there exists only S(k)=z (explk(ri—rj}), 3)
one relevant energy parameter, e.g., the temperafire bl
scaled by the interaction strengiA, whereas the static structure factor of a polymer chain is given

It is well known from a series of publications that the py,
fluctuating bond model works well also for dense systems at
low temperatures. For example, numerical simulations of the 1
glass transitiof??* of (unchargedipolymers show no serious S(k)= o > 2 (explk(ri—rph (4)
ergodicity problems or other unusual behavior. ch chainst.] < chain

Therefore, the complete thermodynamic system is congn,, is the total number of chains of the systerNote that
trolled by two relevant parameters, the temperaiuesnd the  the computation of the static structure factor usiBleads
monomer density (a third parameter is the chain length to unwanted Bragg reflections of the underlying lattice struc-
N, whose influence is not analyzed in the present investigature. Therefore, we use for the discussion the static structure
tions). We expect a strong temperature dependence of thiactor of the polymer chaing4), in which such effects van-
equilibrium structure for dilute polymer solvenf{swelling ish as result of the incoherent averaging procedure.
regime in the high-temperature limit and collapse regime in The simulation shows significant differences of the static
the low-temperature regimedetermined by the strength structure factors for different temperatures in the case of
voAo/T. On the other hand one can observe a strong screesstrongly diluted systems; see Fig. 1. Note that the wave num-
ing effect? in dense systems; i.e., the difference between théer k is scaled in units of 2/L (L=48). Here, the plot
equilibrium structures for different temperatures should deinSK) versus Ik for the high-temperature solution shows a
crease with increasing density. characteristic slope~1.2 for 3<k=<8, which is character-
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FIG. 2. Static structure fact@®(k) of a dense

g polymer system §=0.375) for different tem-
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istic for a swelling regime. On the other hand, the structure IV. SCALING HYPOTHESIS

factor for low temperature behaves like the one of a system

of more compact objects. for the quantitative description of the equilibrium structure
However, in the case of high density, no significant dif- q pu quirtibt
f polymer melts and solutions of stochastic copolymers.

ferences between the static structure factors for differenlgCalin theorv or scaling arguments can be defined in physi-
temperatures can be observed; see Fig. 2. This behavior in- 9 y Jarg phy

dicates an increasing screening effect with increasing den: ! or geometrlca! f[ermjég but also simply post_ulated ”_‘ath'
sity. ematu;ally or emp_mcally‘. Th.e latter gpprogch is u;gd in the
following discussion. Experience with various critical phe-
nomena(including the theory of equilibrium properties of
polymer chainshas indicated that most functiogg¢x,y) of

o ) o two variables approach the scaling hypothesis
A second possibility for the numerical characterization of

the equilibrium state is the determination of the mean square

end-to-end distancéR?) of the polymer chains. Figure 3 g(x,y)=x'G
shows(R?) for different temperatures and densities. As ex-

pected, the dilute systems shows a strong temperature depah-x andy approach zero or infinity G, scaling function;
dence(swelling for the high-temperature limit, collapse for y/x*, scaling ratio;\, u, critical exponents Note that this

the low-temperature regimeThis difference decreases with equation is only a reasonable assumption, not a mathematical
increasing densities and vanishes almost for the highest poe+ physical theorem. But equations of this structure are used

Now we will predict and check some scaling arguments

B. End-to-end distances

®)
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sible density. in many cases as a first approach to complex systems.
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We assume that such an empirical scaling hypothesis The scaling relation10) and Egs.(9) and (6) form a
leads to a first simple representation of the equilibrium struceomplete set of equations for the determinatiorRpf, and
ture of random copolymer systems. The basic idea, which wea as functions of the chain length and the monomer den-
will use in the present investigation, is the blob picture, in-sity p. It should be remarked th&10) and the function¥,
troduced by de GennééWe give a brief discussion of this respectively, depend only on the spatial dimension, not on
concept and generalize the scaling arguments used to thke swelling exponent. Therefore, we can assume that the

case of stochastic copolymers. scaling functionW is a purely geometricalor topological
scaling function, which is not related to a possible swelling
A. Geometrical scaling function or collapse regime. Furthermore, the scaling ratlp. is a

measure only for the mutual overlap of the polymer chains at

We start our investigation from a polymer system W|thoutthe densityp.

a stochastic monomer interactigwhich corresponds to the
high-temperature limit of our modelA blob is a volume,
which is mainly occupied by monomers of one chain. If the B. Temperature scaling
chain length idN, each chain consists ai blobs ofn mono-
mers, i.e.,N=mn. Therefore, the monomers of each blob
behave approximately as a free chain of lengthnd diam-
eter &, which are connected by the relation

The influence of the swelling or collapse regime, respec-
tively, on R is determined by the structure of the blobs and
therefore defined by6) only (in the case of a swelling re-
gime). Thus, we need an extension of this high-temperature

g2~n2" (6) relation (swelling regime¢ to include also the low-
_ _ N temperature regime.
with the swelling exponent. In addition, we have the con-  The averaged diamet& of a single stochastic copolymer

dition that all blobs of the system occupy the whole volumecan be described in the course of a mean-field approximation
of the system, i.ep=n& 9 (d, spatial dimensionp, aver- by the relatiof!
aged monomer densijty Thus, one obtainsn~p? and
é~p"P [with B=(1—vd)1]. Both relations determine the 5 — o 4
diameter and monomer number, respectively, of a blob as a R__ - wN _ R_
function of the monomer densify. Note that these relations N R 2
are valid only in the case that a chai@iameter R,
R~+/(R?)) occupies a volume large as comparedhitp. (R is given in units of the effective monomer lendt) and
Otherwise, we have no effective overlap between differentv and A are temperature-dependent parameters, which de-
chains and thereforé=R andn=N. Thus, we can introduce scribe the effective interaction between the monomens: a
a characteristic density measure for the excluded volume effect, anis controlled
by the ratiovgA4/T). It is simple to see that the chain shows
7) a swelling behavior for vanishing, whereas for sufficiently
largeA a collapse can be observed. However, the swelling or
with collapse regime depends also on the chain length. For fixed
parametersw and A a collapse regime follows for long
n~pP and £~ pP” for p>p., chains, whereas short chains behave like self-avoiding walks.
To determine the characteristic length(T) [with
n=N and (=R for p<p.. (8)  N<N(T), swelling regime, andN>N(T), collapse re-

Furthermore,R can be determined as the averaged end-togmle]’ we dgfine the crossoyer between both regimes by
end distance of a random walk of blobs with a diameter Re=VNc. Using (12, we obtain
gl

1+

2AN 2AN
In

RT | RI+2AN

} (12

N
Pc:@-

" 2W__ f(x)

A unification of both limiting case$8) by using the scaling ith x=N"92A and f(x) =In(1+2x)— 2x/(1+2%). The ex-
function ¥ leads to pressiong(x) = f(x)/x?> decreases monotonically with in-
creasingx. Additionally, we haveg(0)=2 andg(e«)=0.
n:qu(ﬁ), (10 Thus, forA< \/Wonly the swelling regime exists, whereas
for A>\/w a characteristic lengtN(T) follows as solution
with of (13). It should be expected that for real stochastic copoly-
mer chains the mean-field solution must be modified, but this
1 for x—0, does not change the existence of the characteristic length
‘I’(X):{Xz/z—d for Xoo (1) N,(T) and its general temperature behavioN {0
' for voAg/T—o and Ng—oo for pyAs/T—0 and
Note thatp/p.—0 yield the second limiting case dB), VoA I T<woAo/T nax, respectively.
whereas the first relation follows by usi® and(11) in the However, the existence of a characteristic length leads
limit p/pg—0co. now to a scaling hypothesis for the temperature dependence
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mer chain R is only controlled by the chain lengtN and RE=m&=—n"F g ™
the scaling ratio ofN/N,): ¢

Finally, we get the general scaling hypothesis by ugi:

N
R=N"F , 14
(Ncm) (19 N«p(ﬂ)
| | | R=1oN" w1 2| g| Pl 16
with the scaling function =lo oo No(T) (16)
1 for x—0, Note that the length, scalesk and should be chosen on the
F(x)~[ =1 (15  order of an effective segment length. This representation is
X for  x—ee. advantageous because both functidhsand F become di-

This formula describes the behavior of a single stochasti@ens'onless'
copolymer chain with sufficient accuracy; see the molecular
dynamics simulations in Ref. 11. Especially both limiting V- PISCUSSION OF THE SCALING HYPOTHESIS

cases, i.e., collapse and swelling regimes, fulfill the scaling rrom the theoretical point of view the scaling 14&6) is
hypothesig14). Only the behavior of the crossover regime is 4y assumption, which is supported by some evident scaling
more complicatedespecially the®behavior is violated in arguments. To prove this relation by the numerical results
part: R~ N is not obtained forN=Ng(T) but for presented above, we determine in a first step the scaling
N> NC(T)] and cannot Completly be described in terms Offunction \Ir(x) We expect from (16) for the h|gh-

the scaling behaviof14). Fortunately, these deviations can temperature limiff— o, i.e.,N.—, the behavior

be neglected for sufficiently small (for the present simula-

tions we have always chains or blob chains wik=50). R 1P o ioev—1/2| P
However, this temperature scaling allows a reasonable de- EZN v e F(0O)=N"¥ e
scription of the equilibrium behavior of a single stochastic
copolymer chain. and therefore
p R 2[(2v—1)
C. General scaling 7 _) = (T)
Pc N"lo

To get a general scaling hypothesis for the averaged end-
to-end distance®R, we need the following assumptions. Figure 4 shows the representation B8/l"l)*(*"~ ") versus

(i) The blob equatiori6), which holds only for the swell- the ratiox=p/p.. As expected, the functioif (x) tends to a
ing regime, must be replaced by the more general scalin%:“te value forx—0, whereas for large a power law with
relation(14), but now for the blob diametef and the length _~>(<j‘2:;:)an be observedwith 1,=3 and the usual dimen-
n, siond=3).

From the scaling functior we determine for each tem-
peratureT and densityp the values

L

). a7
Pc

n
=n"F
¢ (Ncm .
Y:—p and X=N‘I’(

(i) The geometrical scaling hypothe$K)) depends only |0NV\I,Vuz<_
on the ratiop/p.. Hence, we obtain Pc
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After rescalingX(T,p) with a temperature-dependent con- A dilute systems at low temperatures shows a collapselike
stantC(T) we obtain one common curve, which connects allbehavior of the macromolecules. This collapse results from
valuesY(T,p) with the correspondin(T,p), the large valuevyAy /T, which emphasizes the influence of
the stochastic disorder along the polymer chains. On the
Y=F(C(MX). (18) other hand, the chains of a dilute system of stochastic co-
The scaling function is shown in Fig. 5. The characteristicoolymers are represented by self-avoiding walgselling
lengthN¢(T) is defined byN.(T)~ 1/C(T). Figure 6 shows regime at high temperatures. High temperatures suppress
N¢(T) versus the inverse temperature. As discussed abov#)e chargelike interaction of the monomers and only the
the characteristic lengtitN.(T) increases with increasing athermal excluded volume effect remains. The intramolecu-
temperature. The scaling functiof(x) has the limit lar interaction of the chains disappears with increasing den-
F(0)=1 and behaves a8(x)~xY4~" for sufficiently large sity of the system in favor of the intermolecular interaction.
X; see Figure 7. Therefore, one can observe an increased screening effect of
In conclusion, the general scaling hypothesis discusseghe monomers. Consequently, the differences between equi-
above leads to a first reasonable description of the equilibtibrium states at different temperatures decrease and vanish
rium structure of dilute and dense systems of random copolyfyr dense systems. This can be observed in the temperature
mers. It should be remarked that the complete spectrum Ghyariance of the static structure factor or of the equilibrium
different possible regimeollapse, swelling, and screening gnq.tg-end distance. The structure of the chain behaves now
regimes is controlled by two different ratios of length for each temperature as a random walk, iRe= N2
scales. The temperature—depepdent characteris.tif: Iengtﬂ However, the presented empirical scaling arguments de-
Nc(T) controls the thermodynamics of the system; i.e., themand a more detailed microscopical investigation, which

ratio N/N.(T) controls the thermodynamic influence of the will be determined in a next step of our investigation on

stochastic disorder along the polymer chains in comparisogtochas,[iC conolvmer svstems
to the excluded volume effect. The second length scale — poly y '
the size of the effective volume per chain — is a measure for

the mutual overlap of the chains. Therefore, the ratio be-
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