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Dilute and dense systems of macromolecules with quenched compositional disorder along the chain and the
short-range interaction between monomers are studied by numerical Monte Carlo~MC! simulations. The
equilibrium structural properties of such systems are characterized by the mean-square end-to-end distance and
the static structure factor of the polymer chains. Both temperature and density determine the structure~col-
lapse, swelling, or screening regime!. A description of this behavior is given using generalized scaling argu-
ments and proven by the numerical MC simulations.

I. INTRODUCTION

Various concepts of statistical mechanics of random sys-
tems, such as those of a spin glass1 or of neural networks,2

are used to describe the complex structural conformation of
biological macromolecules. In the first case, the strength and
the sign of the interaction between pairs of monomers are
chosen at random;3,4 i.e., we haveN(N21)/2 different inter-
acting pairs whose interaction is statistically distributed. In
the second example the properties of neural networks are
used, where the interaction results from a learning process,
using the information from known structures.2

In the present paper we investigate a model in which the
interaction of each pair of monomers is well defined by a
bilinear function of the characteristic values of both mono-
mers~usually called charges! and a unique potential.5–8 The
randomness is determined by the quenched disorder of the
monomeric charge sequences$qi%.

9 Therefore, the interac-
tion potential is given by the general expression

Ui j ~r i2r j !5w~r i2r j !1b~r i2r j !@qi1qj #1v~r i2r j !qiqj ,

~1!

with qi being the charge of the monomeri . The first term
contains nonstochastic interactions~for example the ex-
cluded volume interaction!, which in most cases is of short-
range order,w(r )5w0d(r ). The influence of the second
term is discussed in Ref. 9. In the case of invariance against
a charge inversionqi→2qi , b50 follows immediately. In
the present paper we restrict ourself to this case; i.e., we
discuss the influences of the potentialsw andv only.

A single chain with a short-range stochastic interaction
v(r2r 8)52v0d(r2r 8) and vanishing excluded volume ef-
fect (w050) shows a collapse regime for long chains and a
strong monomer interactionv0D0 ~with ^qiqj&5D0d i j ),
whereas a swollen regime with a swelling exponent
n511e2/8, e5dc2d was predicted10 for short chains and a
weak interactionv0D0 ~and with an upper critical dimension
dc52) ~see also the numerical results of Ref. 6!. On the
other hand, the presence of a nonvanishing excluded volume
interactionw0Þ0 leads to a usual swelling regime for a

weak stochastic interactionv0D0 or short chains and a col-
lapse regimeR;N1/d for a strong stochastic interaction
v0D0 .

11 It should be remarked that a long-range stochastic
interaction@v(r )5v0r

22d# leads to a general collapse tran-
sition for all dimensionsd,dc54.12

However, these briefly discussed results hold for isolated
chains only. Therefore, the equilibrium behavior of dense
and semidilute systems of such stochastic copolymer chains
is an interesting question, which will be discussed in the
present paper by using numerical Monte Carlo simulations
and generalized scaling arguments.

II. MODEL

The present work is devoted to a study of the equilibrium
properties of random copolymer melts or semidilute solvents
with a stochastic chargelike short-range monomer interaction
~1!. A numerical investigation of a dense system of such
stochastic copolymers and a check of the predicted scaling
behavior are possible by extending the well-known fluctuat-
ing bond model.13,14

In this lattice Monte Carlo simulation each effective
monomer occupies all eight corners of a unit cell of the
simple cubic lattice and the bond lengths~all length are mea-
sured in units of the lattice spacing! between consecutive
monomers vary between 2 andA10 @determined by the lat-
tice structure;A8 is excluded, in order to maintain entangle-
ment restrictions~see Ref. 14!#. The allowed bond lengths
guarantee that the self-avoiding condition~each lattice site
can be taken at most once and therefore each monomer has a
hard core behavior! is satisfied and that chains cannot inter-
sect in the course of their random motion~modeled by sto-
chastic jumps of effective monomers to neighboring unit
cells!. As has been discussed elsewhere,13–15 each effective
bond of the model is thought to represent a group of succes-
sive chemical bonds along the backbone of a real polymer
chain, and hence it is physically reasonable for flexible poly-
mers that the length of such effective bonds may fluctuate.

The systems considered have a volumeV5L3, L548,
filled with nch chains of stochastic charge sequences$qi%
~chain length N550, random distribution of charges
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^qiqj&5D0d i j , the total system is neutral; note that ten con-
figurations run in parallel to improve the statistics.! The re-
pulsive potentialUi j , which acts between each monomer
pair, is defined by the step function

Ui j5@w01v0qiqj #Q~R2ur i2r j u!, ~2!

with Q(x)50 for x<0 andQ(x)51 for x.0. The cutoff
radiusR (5 unit lengths! corresponds to the first neighbor
peak in the static structure factorS(k). This energy is con-
sidered in the transition probabilityW5exp(2DU/kT), DU
being the energy change associated with an elementary mo-
tion, as standard in the framework of the Metropolis
algorithm.16,17 Because the excluded volume interaction is
controlled by the hard core character of the monomers, we
can neglect the contributionw0 . Furthermore, the athermal
hard core interaction allows the introduction of a reduced
temperaturet;T/(v0D0). In other words, there exists only
one relevant energy parameter, e.g., the temperatureT,
scaled by the interaction strengthv0D0 .

It is well known from a series of publications that the
fluctuating bond model works well also for dense systems at
low temperatures. For example, numerical simulations of the
glass transition20,21of ~uncharged! polymers show no serious
ergodicity problems or other unusual behavior.

Therefore, the complete thermodynamic system is con-
trolled by two relevant parameters, the temperatureT and the
monomer densityr ~a third parameter is the chain length
N, whose influence is not analyzed in the present investiga-
tions!. We expect a strong temperature dependence of the
equilibrium structure for dilute polymer solvents~swelling
regime in the high-temperature limit and collapse regime in
the low-temperature regime! determined by the strength
v0D0 /T. On the other hand one can observe a strong screen-
ing effect22 in dense systems; i.e., the difference between the
equilibrium structures for different temperatures should de-
crease with increasing density.

III. NUMERICAL RESULTS

A. Static structure factor

After reaching the equilibrium distribution of the polymer
system, the values discussed below are measured as a time
average over approximately 102 configurations~time sepa-
rated by approximately 105 elementary steps per monomer!
in ten ensembles~i.e., the total number of configurations
used was;103). Note that the time interval between two
successive configurations is sufficiently long to scan a rea-
sonable part of the phase space also in dense systems. The
mean-square displacement of the center of mass of the chains
during the whole simulation is approximately 1/3 of the ra-
dius of gyration in the most unfavorable case. Thus, the ac-
curacy of the numerical simulations is determined by a nu-
merical error of approximately 3%.

The static structure factor of the whole system is defined
by

S~k!5(
i , j

^exp$k~r i2r j !%&, ~3!

whereas the static structure factor of a polymer chain is given
by

S~k!5
1

nch
(
chains

(
i , jPchain

^exp$k~r i2r j !%& ~4!

(nch is the total number of chains of the system!. Note that
the computation of the static structure factor using~3! leads
to unwanted Bragg reflections of the underlying lattice struc-
ture. Therefore, we use for the discussion the static structure
factor of the polymer chains~ 4!, in which such effects van-
ish as result of the incoherent averaging procedure.

The simulation shows significant differences of the static
structure factors for different temperatures in the case of
strongly diluted systems; see Fig. 1. Note that the wave num-
ber k is scaled in units of 2p/L (L548). Here, the plot
lnS(k) versus lnk for the high-temperature solution shows a
characteristic slopen'1.2 for 3<k<8, which is character-

FIG. 1. Static structure factorS(k) of a di-
luted polymer system (r50.018) for different
temperatures@T51000~solid line!, T550 ~dash-
double-dotted line!, T525 ~dash-dotted line!,
T55 ~dotted line!, T51 ~dashed line!#.
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istic for a swelling regime. On the other hand, the structure
factor for low temperature behaves like the one of a system
of more compact objects.

However, in the case of high density, no significant dif-
ferences between the static structure factors for different
temperatures can be observed; see Fig. 2. This behavior in-
dicates an increasing screening effect with increasing den-
sity.

B. End-to-end distances

A second possibility for the numerical characterization of
the equilibrium state is the determination of the mean square
end-to-end distancêR2& of the polymer chains. Figure 3
shows^R2& for different temperatures and densities. As ex-
pected, the dilute systems shows a strong temperature depen-
dence~swelling for the high-temperature limit, collapse for
the low-temperature regime!. This difference decreases with
increasing densities and vanishes almost for the highest pos-
sible density.

IV. SCALING HYPOTHESIS

Now we will predict and check some scaling arguments
for the quantitative description of the equilibrium structure
of polymer melts and solutions of stochastic copolymers.
Scaling theory or scaling arguments can be defined in physi-
cal or geometrical terms,18 but also simply postulated math-
ematically or empirically.19 The latter approach is used in the
following discussion. Experience with various critical phe-
nomena~including the theory of equilibrium properties of
polymer chains! has indicated that most functionsg(x,y) of
two variables approach the scaling hypothesis

g~x,y!.xlGS yxmD ~5!

if x and y approach zero or infinity (G, scaling function;
y/xm, scaling ratio;l, m, critical exponents!. Note that this
equation is only a reasonable assumption, not a mathematical
or physical theorem. But equations of this structure are used
in many cases as a first approach to complex systems.

FIG. 2. Static structure factorS(k) of a dense
polymer system (r50.375) for different tem-
peratures@T51000 ~solid line!, T550 ~dash-
double-dotted line!, T525 ~dash-dotted line!,
T55, ~dotted line!, T51 ~dashed line!#.

FIG. 3. Mean-square end-to-end distance of
the stochastic copolymer chains for different den-
sities @r50.018 ~solid square!, r50.069 ~open
square!, r50.119 ~solid triangle!, r50.170
~open inverted triangle!, r50.221 ~solid dia-
mond!, r50.271 ~open square!, r50.322 ~solid
circle!, r50.375~open triangle!# as a function of
the inverse temperature.
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We assume that such an empirical scaling hypothesis
leads to a first simple representation of the equilibrium struc-
ture of random copolymer systems. The basic idea, which we
will use in the present investigation, is the blob picture, in-
troduced by de Gennes.22 We give a brief discussion of this
concept and generalize the scaling arguments used to the
case of stochastic copolymers.

A. Geometrical scaling function

We start our investigation from a polymer system without
a stochastic monomer interaction~which corresponds to the
high-temperature limit of our model!. A blob is a volume,
which is mainly occupied by monomers of one chain. If the
chain length isN, each chain consists ofm blobs ofn mono-
mers, i.e.,N5mn. Therefore, the monomers of each blob
behave approximately as a free chain of lengthn and diam-
eterj, which are connected by the relation

j2;n2n ~6!

with the swelling exponentn. In addition, we have the con-
dition that all blobs of the system occupy the whole volume
of the system, i.e.,r5nj2d (d, spatial dimension;r, aver-
aged monomer density!. Thus, one obtainsn;rb and
j;rnb @with b5(12nd)21#. Both relations determine the
diameter and monomer number, respectively, of a blob as a
function of the monomer densityr. Note that these relations
are valid only in the case that a chain~diameter R,
R'A^R2&) occupies a volume large as compared toN/r.
Otherwise, we have no effective overlap between different
chains and thereforej5R andn5N. Thus, we can introduce
a characteristic density

rc5
N

Rd , ~7!

with

n;rb and j;rbn for r@rc ,

n5N and j5R for r!rc . ~8!

Furthermore,R can be determined as the averaged end-to-
end distance of a random walk ofm blobs with a diameter
j,

R2;mj2;
N

n
j2. ~9!

A unification of both limiting cases~8! by using the scaling
functionC leads to

n5NCS r

rc
D , ~10!

with

C~x!5H 1 for x→0,

x2/22d for x→`.
~11!

Note that r/rc→0 yield the second limiting case of~8!,
whereas the first relation follows by using~9! and~11! in the
limit r/rc→`.

The scaling relation~10! and Eqs.~9! and ~6! form a
complete set of equations for the determination ofR, j, and
n as functions of the chain lengthN and the monomer den-
sity r. It should be remarked that~10! and the functionC,
respectively, depend only on the spatial dimension, not on
the swelling exponentn. Therefore, we can assume that the
scaling functionC is a purely geometrical~or topological!
scaling function, which is not related to a possible swelling
or collapse regime. Furthermore, the scaling ratior/rc is a
measure only for the mutual overlap of the polymer chains at
the densityr.

B. Temperature scaling

The influence of the swelling or collapse regime, respec-
tively, onR is determined by the structure of the blobs and
therefore defined by~6! only ~in the case of a swelling re-
gime!. Thus, we need an extension of this high-temperature
relation ~swelling regime! to include also the low-
temperature regime.

The averaged diameterR of a single stochastic copolymer
can be described in the course of a mean-field approximation
by the relation11

R2

N
215

w̄N2

Rd 2
Rd

2 F lnS 11
2D̄N

Rd D 2
2D̄N

Rd12D̄N
G ~12!

(R is given in units of the effective monomer lengthl 0 , and
w̄ and D̄ are temperature-dependent parameters, which de-
scribe the effective interaction between the monomers:w̄ is a
measure for the excluded volume effect, andD̄ is controlled
by the ration0D0 /T). It is simple to see that the chain shows
a swelling behavior for vanishingD̄, whereas for sufficiently
largeD̄ a collapse can be observed. However, the swelling or
collapse regime depends also on the chain length. For fixed
parametersw̄ and D̄ a collapse regime follows for long
chains, whereas short chains behave like self-avoiding walks.
To determine the characteristic lengthNc(T) @with
N,Nc(T), swelling regime, andN.Nc(T), collapse re-
gime#, we define the crossover between both regimes by
Rc5ANc. Using ~12!, we obtain

2w̄

D̄2
5
f ~x!

x2
, ~13!

with x5N12d/2D̄ and f (x)5 ln(112x)22x/(112x). The ex-
pressiong(x)5 f (x)/x2 decreases monotonically with in-
creasingx. Additionally, we haveg(0)52 and g(`)50.
Thus, for D̄,Aw̄ only the swelling regime exists, whereas
for D̄.Aw̄ a characteristic lengthNc(T) follows as solution
of ~13!. It should be expected that for real stochastic copoly-
mer chains the mean-field solution must be modified, but this
does not change the existence of the characteristic length
Nc(T) and its general temperature behavior (Nc→0
for n0D0 /T→` and Nc→` for n0D0 /T→0 and
n0D0 /T<n0D0 /T max , respectively!.

However, the existence of a characteristic length leads
now to a scaling hypothesis for the temperature dependence
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~thermodynamic behavior! of the single stochastic copoly-
mer chain (R is only controlled by the chain lengthN and
the scaling ratio ofN/Nc):

R5NnFS N

Nc~T! D , ~14!

with the scaling function

F~x!;H 1 for x→0,

x1/d2n for x→`.
~15!

This formula describes the behavior of a single stochastic
copolymer chain with sufficient accuracy; see the molecular
dynamics simulations in Ref. 11. Especially both limiting
cases, i.e., collapse and swelling regimes, fulfill the scaling
hypothesis~14!. Only the behavior of the crossover regime is
more complicated@especially theQbehavior is violated in
part: R;AN is not obtained for N5Nc(T) but for
N.Nc(T)# and cannot completly be described in terms of
the scaling behavior~14!. Fortunately, these deviations can
be neglected for sufficiently smallN ~for the present simula-
tions we have always chains or blob chains withN<50).
However, this temperature scaling allows a reasonable de-
scription of the equilibrium behavior of a single stochastic
copolymer chain.

C. General scaling

To get a general scaling hypothesis for the averaged end-
to-end distanceR, we need the following assumptions.

~i! The blob equation~6!, which holds only for the swell-
ing regime, must be replaced by the more general scaling
relation~14!, but now for the blob diameterj and the length
n,

j5nnFS n

Nc~T! D .
~ii ! The geometrical scaling hypothesis~10! depends only

on the ratior/rc . Hence, we obtain

R25mj25
N

n
n2nF2S n

Nc~T! D .
Finally, we get the general scaling hypothesis by using~10!:

R5 l 0N
nCn21/2S r

rc
DFS NCS r

rc
D

Nc~T!
D . ~16!

Note that the lengthl 0 scalesR and should be chosen on the
order of an effective segment length. This representation is
advantageous because both functionsC andF become di-
mensionless.

V. DISCUSSION OF THE SCALING HYPOTHESIS

From the theoretical point of view the scaling law~16! is
an assumption, which is supported by some evident scaling
arguments. To prove this relation by the numerical results
presented above, we determine in a first step the scaling
function C(x). We expect from ~16! for the high-
temperature limitT→`, i.e.,Nc→`, the behavior

R

l 0
.NnCn21/2S r

rc
DF~0!5NnCn21/2S r

rc
D

and therefore

CS r

rc
D5S R

Nnl 0
D 2/~2n21!

.

Figure 4 shows the representation of (R/Nnl 0)
2/(2n21) versus

the ratiox5r/rc . As expected, the functionC(x) tends to a
finite value forx→0, whereas for largex a power law with
C;x22 can be observed~with l 053 and the usual dimen-
siond53).

From the scaling functionC we determine for each tem-
peratureT and densityr the values

Y5
R

l 0N
nCn21/2S r

rc
D and X5NCS r

rc
D . ~17!

FIG. 4. Scaling function C: plot of
(R/Nnl 0)

2/(2n21) versus the ratior/rc (n50.6).
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FIG. 5. Scaling function F: plot of
R/ l 0N

nCn21/2(r/rc) versus C(T)NC(r/rc).
The functionC(T) corresponds to the inverse
characteristic lengthNc(T);1/C(T). Each sym-
bol corresponds to a fixed temperature; i.e., all
points with the same symbol have the same scal-
ing constantC(T) @T51000 ~solid diamond!,
T550 ~open inverted triangle!, T525 ~solid tri-
angle!, T515 ~open circle!, T55 ~solid square!,
T52.5 ~solid diamond!, T51.75 ~open inverted
triangle!, T51.5 ~solid triangle!, T51.25 ~solid
circle!, T51 ~solid square!#.

FIG. 6. Characteristic lengthNc(T)51/C(T)
as a function of the inverse temperature.

FIG. 7. Scaling functionF(x) in comparison
with x1/d2n.
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After rescalingX(T,r) with a temperature-dependent con-
stantC(T) we obtain one common curve, which connects all
valuesY(T,r) with the correspondingX(T,r),

Y5F„C~T!X…. ~18!

The scaling function is shown in Fig. 5. The characteristic
lengthNc(T) is defined byNc(T);1/C(T). Figure 6 shows
Nc(T) versus the inverse temperature. As discussed above,
the characteristic lengthNc(T) increases with increasing
temperature. The scaling functionF(x) has the limit
F(0)51 and behaves asF(x);x1/d2n for sufficiently large
x; see Figure 7.

In conclusion, the general scaling hypothesis discussed
above leads to a first reasonable description of the equilib-
rium structure of dilute and dense systems of random copoly-
mers. It should be remarked that the complete spectrum of
different possible regimes~collapse, swelling, and screening
regimes! is controlled by two different ratios of length
scales. The temperature-dependent characteristic length
Nc(T) controls the thermodynamics of the system; i.e., the
ratio N/Nc(T) controls the thermodynamic influence of the
stochastic disorder along the polymer chains in comparison
to the excluded volume effect. The second length scale —
the size of the effective volume per chain — is a measure for
the mutual overlap of the chains. Therefore, the ratio be-
tween the end-to-end distanceR and this size controls the
effective geometrical overlap of different polymer chains.
This ratio can be expressed byrRd/N5r/rc . The numerical
simulations confirm the present scaling arguments for differ-
ent equilibrium regimes.

A dilute systems at low temperatures shows a collapselike
behavior of the macromolecules. This collapse results from
the large valuen0D0 /T, which emphasizes the influence of
the stochastic disorder along the polymer chains. On the
other hand, the chains of a dilute system of stochastic co-
polymers are represented by self-avoiding walks~swelling
regime! at high temperatures. High temperatures suppress
the chargelike interaction of the monomers and only the
athermal excluded volume effect remains. The intramolecu-
lar interaction of the chains disappears with increasing den-
sity of the system in favor of the intermolecular interaction.
Therefore, one can observe an increased screening effect of
the monomers. Consequently, the differences between equi-
librium states at different temperatures decrease and vanish
for dense systems. This can be observed in the temperature
invariance of the static structure factor or of the equilibrium
end-to-end distance. The structure of the chain behaves now
for each temperature as a random walk, i.e.,R;N1/2.

However, the presented empirical scaling arguments de-
mand a more detailed microscopical investigation, which
will be determined in a next step of our investigation on
stochastic copolymer systems.
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