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We previously proposed a two-orbital cooperative adaptation of the vibronic Piepho-Krausz-Schatz model,
for modeling the solid-state properties of biferrocenium mixed-valence salts. The resulting molecular ferro-
electric model, treated in mean-field approach, leads to remarkable double-reetrance at low temperature, fol-
lowing the sequence ferro-para-ferro-para-electric with increasing temperatures. Here we investigate some
aspects of the phase diagram of the system: we unambiguously assess the metastable character of the second-
reentrant state and we study the hysteresis loops associated with the first-order transitions which result from
orbital crossovers in the model.@S0163-1829~96!03918-5#

I. INTRODUCTION

Bistable molecular systems1–3 are fascinating because
they offer original potentialities for information storage4 at
the molecular level. Molecular bistability requires a thermal
equilibrium ~or quasiequilibrium! between two molecular
states exhibiting physical properties~for example optical ab-
sorption, spin state . . .! different enough to provide a clear-
cut characterization. Molecular bistability can be associated
with an electron transfer somewhere in the molecule, in case
of electronic or vibronic lability.5

The most studied examples of bistable systems are linked
with spin conversion,6–8 resulting from an intraionic transfer
triggered by temperature, pressure, light, or ligand
photo-isomerization.9,10 Here we deal with materials involv-
ing an intramolecular electronic transfer: mixed-valence mo-
lecular complexes~see Refs. 11, 12 for basic properties!, and
we describe their possible molecular bistability.

Most of observations relevant to molecular bistability
have been obtained in the solid state, in presence of intermo-
lecular interactions leading to cooperative phenomena: for
example the low-temperature electron trapping in biferroce-
nium mixed-valence salts~Refs. 13 and 14!. The mixed-
valence molecular solid actually forms a coupled bistable
network exhibiting an order disorder phase transition which
may be ferro-paraelectric~it is worth nothing, for compari-
son, that spin transitions are not order disorder!. The mixed-
valence network can be modeled, in the Born-Oppenheimer
approach, through discrete approximations: the Ising model
(S51/2) ~Refs. 15 and 16! or the Blume-Emery-Griffiths
@BEG, S51 ~Ref. 17!# Hamiltonian.18 Here we treat the vi-
bronic Hamiltonian of the mixed-valence network,beyond
the adiabatic approximation, thus following the dynamic ap-
proach proposed by Piepho, Krausz, and Schatz~PKS! for
the isolated molecule.19,20We first adapted the PKS model to
the biferrocenium molecule21 and then developed a coopera-
tive PKS model,22,23 which is able to reproduce the second-
order localized-delocalized transitions of some biferroce-
nium derivatives.

However, the biferrocenium cation possesses a quaside-
generate highest occupied molecular orbital~HOMO! in-
volving two orbitals with extremely different properties: a

‘‘good localizer’’ (dxy) and a ‘‘bad localizer’’ (dx22y2), with
transfer integrals in the ratio 1:50.21 Such a pecularity led us
to investigate atwo-orbital cooperative PKS model.24,25 In
the two-orbital model, the thermodynamic competition oc-
curing between vibronic states based on the good and bad
localizer orbitals, led to predictions of a remarkable variety
of behaviors: second- and first-order para-ferroelectric tran-
sitions, double reentrance, and double transitions. The two-
orbital model enabled us to reproduce the first-order transi-
tion displayed by biferrocenium tri-iodide.

The double reentrance which consists of a ferro-para-
ferro-paraelectric sequence on increasing temperature, has
been previously predicted by other models:~i! the ferro-
electric dipolar model of Tsukerblatt and co-workers,26,27 ~ii !
the BEG model using Monte Carlo Metropolis algorithm,28

and ~iii ! the Bethe and the cluster-variational method.29 But
so far the stability of the second-reentrant phase has not been
determined. The first aim of the present work is to examine
this reentrant phase using our cooperative two-orbital vi-
bronic model.

The second aim is to determine the hysteresis loops asso-
ciated with the first-order transitions; we also systematically
identify the stable and unstable character of the coexisting
phases, in the scope of future application to information stor-
age. The present report is organized as follows: Section I
contains the physical grounds of the model; Section II pro-
vides the vibronic model and computations; Section III con-
tains the results and discussion. In the Appendix the vibronic
matrix elements and four-level discrete model are shown.

II. THE PHYSICAL BASIS OF THE MODEL

Structural data30,31 concerning molecular salts containing
symmetrical mixed-valence units show that electron trapping
is associated with an asymmetric distortion of the molecular
unit, the so called ‘‘breathing-mode,’’Q2 , which is the out-
of-phase combination of the symmetrical stretching modes of
the moieties,~the in-phase combinationQ1 which is not
involved in the one-orbital PKS model,19 will be referred to
in the further discussion!. The experimental observation of a
breathing distortion provided evidence for a vibronic cou-
pling between the electronic states (A*B andAB* , accord-
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ing to the moiety the electron is trapped in! and the molecu-
lar distortion as suggested by Hush.12

In the PKS model, the energies ofA*B, AB* states are
shifted by6lQ2 , wherel is the vibronic coupling param-
eter; the electron transfer betweenA andB is ensured by a
transfer integralJ, which is the tunneling matrix element
betweenA*B andAB* ; the stability of the system is pro-
vided by the elastic energy of an harmonic oscillator, the
frequency of which is that of the stretching mode of un-
coupled moities, i.e., that of the breathing mode.

These three ingredients~vibronic energy, elastic energy,
transfer integral! lead to all possible behaviors of the isolated
mixed-valence unit. This is easily visualized using static con-
figurational diagrams~adiabatic energies versus distortion
parameterQ2 such as in Fig. 1!, in the shape of a single or
double well, respectively, corresponding to delocalized or
localized states.

The dynamic, nonadiabatic approach provides the value
of the transfer rate between the two wells~i.e., the electron
transfer rate!, which is essential for understanding the experi-
mental data according to the measuring frequencies. Com-
puted data for the biferrocenium cation can be found in Ref.
21. They show, in agreement with theMössbauerdata on
diethyl biferrocenium triiodide,22,23 that the transfer rates are
rather high (.108 s21). We consider here the case where all
relaxation rates between vibronic states, are high with re-
spect to the experimental measuring times, and accordingly
we calculate all quantities in terms of thermal average val-
ues. In this dynamic view, the electron trapping exclusively
results from an asymmetric potential, which disymmetrizes
the configurational diagram, and merely corresponds to the
energy differenceE(AB* )2E(A*B)52Wd .

In the solid state, such asymmetric potentials are due to
the dipolar electric fields created by electron trapping in the
neighboring units; in a first approach, they depend linearly
on the distortion of these neighboring units. We thus intro-
duced cooperativity, in a mean-field approach, through the
self-consistent asymmetric potential:

Wd5h^Q2&,

where h is the intermolecular coupling parameter and
^Q2& the order parameter of the problem.

Here it is worth mentioning that the existence of a non-
zero transfer integral can inhibit, at zero temperature, the
onset of dipolar ordering: a ‘‘quantum paraelectric
phase’’32,33 ~such as predicted by the transverse Ising
model34,35! is deduced for small values of the cooperativity
parameter.36

The second point to be considered is the quasidegeneracy
of the HOMO of the moieties. The ‘‘two-orbital model’’
involves four electronic states instead of two in the previous
one-orbital PKS model. We show in Fig. 1~b! a schematic
configurational diagram adapted to the case of the biferroce-
nium cation, based on the coexistence of a double-well and a
single-well orbital, uncoupled to each other because of mo-
lecular symmetry~a common mirror plane for both moi-
eties!. The localizing properties of the two orbitals are easily
differentiated by applying an external potential@Fig. 1~c!#:
the single~double! well is a bad~good! localizer.

The thermodynamic competition between the two orbitals
~actually between vibronic states based on the two orbitals!

is the cornerstone of the present work. It is mainly governed
by the energy gap between the two orbitals of the isolated
moiety: d5E(dxy)2E(dx22y2), written here for ferrocene
moieties;d is a low-symmetry ligand-field term, mainly de-
pending on the substituents on the moieties, but also on the
counter anions and on packing of the system in the solid
state.

The double reentrance phenomenon can be obtained with
a constant value of the ligand field~in a narrow range of
value, see Sec. IV A!. The effect of the thermodynamic com-
petition is easily illustrated in the following case, corre-
sponding to curve~4! in Fig. 2: the ground vibronic state is a

FIG. 1. ~a! Distortion modesQ1 ,Q2 of the biferrocenium cat-
ion; ~b! Simplified configurational diagrams restricted to the lowest
state of each orbital; horizontal lines depict the vibronic states;d0 is
the ligand-field parameter;~c! Effect of an assymmetric potential.
Molecule in the ferroelectric state~ordered!.
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bad localizer; the cooperativity parameter is small enough to
result in a low-temperature quantum paraelectric phase; low-
lying good-localizer excited states can be populated at mod-
erate temperature. This results in an ordered phase between
two critical temperatures; the low-temperature phase is ‘‘re-
entrant.’’ The ordering of the system is due to the excited
states, similarly to magnetic systems with a singlet ground
state.

On the other hand, the first-order transitions are due to
orbital crossovers resulting from a thermodynamic competi-
tion speeded up by a temperature-dependent ligand field of
adequate sign. The latter can originate from a cooperative
distortion, according to a totally symmetric mode such as
Q1 , already introduced by Prassides and Schatz in a multi-
mode model.37

In a mean-field approach, such a two-mode vibronic
model should involve two order parameters such as^Q2&
and^Q1&; by symmetry they can be, respectively, identified
to the ^s& and ^s2& order parameters of the biquadratic
S53/2 Blume-Sivardie`re Hamiltonian.38,39

Due to the huge dimension of the vibronic matrices asso-
ciated with a two-mode two-orbital model, we have trans-
formed the problem into a one-order parameter~i.e., one-
mode! problem, by taking a ligand-field contribution
proportional to the order parameter ^Q2&,
d5d01a^uQ2u&. The absolute value has been taken in or-
der to respect the crystal-field invariance upon interchange of
the molecular moities, i.e., the symmetry ofQ1 . The model
finally includes two intermolecular coupling parameters,h
~cooperative localization parameter! and a ~cooperative
ligand-field parameter!, but only one order parameter^Q2&
associated with the electronic localization.

III. VIBRONIC MODEL AND COMPUTATION

The two-orbital cooperative vibronic Hamiltonian already
presented in Refs. 24, 25 is reexpressed here in shorter form,
using matrix operatorssz,sx,sc:

ŝz5S 21 0 0 0

0 1 0 0

0 0 21 0

0 0 0 1

D , ŝx5S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D ,
ŝc5S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D
in the electronic basiscA

1 ,cB
1 ,cA

2 ,cB
2 , where the subscripts

A, B denote the molecular sites where the electron can be
trapped, and superscripts 1,2 refer to the possible two orbit-
als.

The vibronic Hamiltonian, describing the system of
coupled molecules, is written as

Ĥ5(
i

S P̂i
2

2M
1
1

2
KQ̂i

2D 1(
i
l Q̂i ŝ i

z1(
i
Jŝ i

x1(
i

d0ŝ i
c

1(
^ i , j &

hŝ i
zQ̂j1(

^ i , j &
aŝ i

cuQ̂j u

whereQ̂i is the nuclear operator associated with the asym-
metric distortion modeQ2 of moleculei.

In this Hamiltonian, intra- and intermolecular terms are
easily recognized:

~i! harmonic oscillators of massM and stiffnessK;
~ii ! intramolecular vibronic coupling:l Q̂i ŝ i

z , favoring
electronic localization;

~iii ! transfer integral:Jŝ i
x , acting as a transverse field,

favoring electronic delocalization;
~iv! intramolecular ligand fieldd0ŝ i

c , which basically
monitors the competition between orbitals;

~v! hŝ i
zQ̂j is an intermolecular vibronic coupling term,

between the electronic state of moleculei and the vibrational
state of moleculej ; it breaks the symmetry between the two

FIG. 2. Thermal dependence of the order pa-
rameter for several values of the ligand-field pa-
rameterd0 , labeled from 1 to 5 according to sec-
tions ~I!–~V! of the text~in Sec. IV A!.
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molecular sites; it acts as an electric field (;Wd in the genu-
ine PKS model! created by the electron trapping in the mol-
ecule j .

~vi! the last term is a cooperative crystal field which adds
to the ligand-field termd0 and reinforces the competition
between the two orbitals.

It must be recalled that we deal here with a particular case
~molecular mirror symmetry!, which leaves uncoupled the
subspaces associated with the two orbitals.24 We found it
possible to treat the present Hamiltonian in the mean-field
approach only. The summations over the distortion operators
of the z neighbors are then replaced by mean-field param-
eters. The mean-field Hamiltonian is written as

Ĥ05
P̂2

2M
1
1

2
KQ̂21Jŝx1~ l Q̂1h^Q̂&0!ŝ

z

1~d01a^uQ̂u&0!ŝc,

whereh anda stand forzh i j andza i j . The matrix elements
are given in the Appendix.

The resolution of the problem by minimizing the free en-
ergy cannot be obtained analytically, since it implies a non-
diagonal 28328 vibronic matrix. Alternatively, we obtained
the self-consistent formulation of the problem by calculating
the average value of the distortion operator,^Q̂&0 in the
eigenbasis of the mean-field HamiltonianĤ0 ~with which are
associated the density operatorr̂0 and the partition function
Z0):

^Q̂&05tr~ r̂0Q̂!.

The free energy per molecule is given by

F<2kBT ln~Z0!1^Ĥ2Ĥ0&0 .

The second contribution of the free energy is the mean-field
correction; it is easily written in terms of the thermal aver-
ages ^ŝz&0 ,^ŝ

c&0 , whose expressions, in turn, are deter-
mined from the eigenfunction coefficients:

^Ĥ2Ĥ0&052
1

2
~h^ŝz&01a^ŝc&0!^Q̂&0 .

Computations are performed on a basis of dimension
4~electronic!37~vibrational!. The truncature to the lowest
seven vibrational states enables covering the pertinent energy
range of the problem~see Ref. 21!.

IV. RESULTS AND DISCUSSION

The present investigation is organized into three parts:
~i! double reentrance;~ii ! first-order ferro-para transitions;

~ii ! double transitions.
Double reentrance can be obtained with a constant ligand-

field parameter; we also briefly consider a variable ligand
field: the study is carried out as a function ofd0 .

On the contrary, first-order and double transitions result
from an orbital crossover which requires a thermal competi-
tion enhanced by a cooperative ligand field (aÞ0): the cor-
responding studies are carried out as a function ofd0 and
a. The parameter values we use here are those determined
for the biferrocenium cation,13 and are listed in Table I.

We mainly focused on a cooperative localization param-
eter valueh50.42 eV/Å, common for both orbitals, which is
just below the threshold value needed for the bad localizer to
yield an ordered phase~see Table I!. In such a case, the
thermodynamic competition implies a low-temperature dis-
ordered phase~QMP! and, as a function of temperature, a
paraelectric~PE! or a ferroelectric~FE! phase.

In addition, we considered a larger value of the coopera-
tive localization parameter providing a thermodynamic com-
petition between two ordered states, characterized by size-
ably different values of the saturation distortion.

In Ref. 24 we presented stable or metastable solutions of
the problem~as they emerged from the iterative resolution of
self-consistent equation!. Here we determine all the solu-
tions, and we calculate their free-energy values. This enables

FIG. 3. Expanded view of curve 2, of Fig. 2. The stable, meta-
stable, unstable characters of the states are denoted~s!, ~m!, ~i!
respectively.

TABLE I. Computed parameters relative to the well-isolated orbitals~after Refs. 21, 23!, hc is the
threshold value for the onset of low-temperature ordering.TOD

(1),(2) are calculated withh50.42, 0.75~eV/Å!,
respectively.

HOMO l ~eV/Å! J(cm21) hc ~eV/Å! ^Q2&sat ~Å! TOD
(1),(2) ~K!

dxy 1.79 10 !0.01 0.06 280, 480
dx22y2 1.68 500 0.44 0.04 –,260
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us to determine thermal hysteresis loops. We stress their
open/closed character, since a closed character of the loop is
needed for reversible information storage.

For clarity, the phase diagrams representing the transition
temperatures versus static fieldd0 or cooperative ligand-field
parametera are systematically reported. Due to the variety
of the thermal behaviors, the equilibrium transition tempera-
tures may be order-disorder, disorder-order, order-order~on
increasing temperatures!, and will be reported asTOD,
TDO, TOO, respectively.

A. Double reentrance

We follow here the thermodynamic competition, as func-
tion of a constant ligand fieldd0 , between the QMP and the
ordered phase.

We show in Fig. 2 the successive order-parameter/
temperature diagrams for different values ofd0 . The thermal
behavior of the system is closely related to the stable, meta-
stable or unstable character of the various solutions. The
prominent feature of the diagram is the crossing of two
branches, for a critical value of the ligand fieldd*511.08
meV here.

On decreasingd0 from large positive values, the system
displays five typical situations, corresponding to the five dif-
ferent curves of Fig. 2:

~i! d0@d* , the good localizer orbital is involved alone.
The order-parameter / temperature diagram displays a single
nontrivial branch, corresponding to a FE stable state. The
FE/PE order-disorder transition is of second order. The sys-
tem behaves as a simple mean-field Ising system~actually,
an Ising model with a negligible transverse field!. For mod-
erate values ofd0 , the thermal population of the low-energy
bad-localizer orbital induces a sizable distortion of the low-
temperature part of curve~1!.

~ii ! 11.08 meV5d*,d0,d (1)511.30 meV. The diagram
~Fig. 2, curves 2! displays, at low temperature, a third solu-
tion. These curves are better visualized on a larger scale in
Fig. 3. The third solution is unstable, and its limiting tem-

perature, denotedT1, can be described as the upper tempera-
ture of an open hysteresis loop.

The QMP phase state, involving the bad localizer orbital,
is stable at zero temperature ford0,d (2)511.25 meV. This
actually is the case reported in Fig. 3, where an equilibrium
temperatureTeq appears. It is worth noting that the QMP
state cannot be reached by thermal continuity~i.e., by vary-
ing temperature alone!, because of the open character of the
hysteresis loop. This situation ceases ford05d* .

~iii ! For 10.50 meV5d (3),d0,d*511.08 meV, the dia-
gram is drastically modified~Fig. 2 curves 3, shown on a
larger scale in Fig. 4!. The reentrant QMP phase, mainly due
to the bad localizer orbital, is stable and can be reached by

FIG. 4. Expanded view of curve 3 of Fig. 2. Note the metastable
character of the low-temperature FE phase~‘‘second reentrant’’!.

FIG. 5. Schematic phase diagram of the system. Second-order
and first-order branches meet at a tricritical pointP.

FIG. 6. Diagram of the metastable phases: Hatched area: meta-
stable FE / stable QMP, starred (*) area: stable FE/metastable
QMP. The arrows schematize a pathway for trapping the metastable
FE state.

12 010 53K. BOUKHEDDADEN AND F. VARRET



thermal continuity. The low-temperature FE phase, here de-
noted ‘‘second reentrant,’’ is metastable. We indicate that
such a metastable character is also obtained when using, al-
ternatively, an elastic intermolecular coupling term (hQ̂iQ̂j
as presented in Ref. 40!.

~iv! For 4.3 meV5d (4),d0,d (3)510.50 meV, the dia-
gram comprises a single branch~Fig. 2 curve 4!. When the
limiting two transitions of the FE phase are both second
order, it is observed that the ground vibronic state, at all
temperatures, is based on the bad localizer orbital. Then the
FE state originates from excited states, based on the good
localizer orbital. As already noticed in Ref. 25, the eventual
first-order character of the low-temperature transition is as-
sociated with a simultaneous crossover of the vibronic
ground state. The reentrant QMP state, obviously, is reach-
able by thermal continuity.

~v! For d0,0.006 meV, the diagram only contains the
trivial, PE state~curve 5!. The vibronic states based on the
good localizer orbital are too high in energy to have any
influence.

We show in Fig. 5 the computed variation of the equilib-
rium temperatures as a function of the ligand-field parameter
d0 . This actually is theequilibrium phase diagram of the
system.

Using the data of the hysteresis loops, we have drawn in
Fig. 6, the diagram of the metastable phases. The particular
shape of the FE metastable phase~hatched area! is respon-
sible for the second reentrance.

From the point of view of information storage, the second
reentrant state cannot be reached by a purely thermal ad-
dressing. According to the phase diagram reported in Fig. 6,
more complex pathways are needed, involving a variation of
the ligand-field term. This might be achieved using an ap-
plied stress or an external pressure. A possible pathway is
schematized in Fig. 6: the system is cooled down under
stress, and the metastable FE state is trapped when stresses
are released.

Using the larger value of the intermolecular coupling pa-
rameter (h50.75 eV/Å!, similar phenomena are obtained;
they now involve strongly and weakly polarized states, for
which typical plots are reported in Fig. 7.

B. First-order ferro-paraelectric transitions

In this subsection, we consider a thermodynamic compe-
tition enhanced by a cooperative ligand field (aÞ0) of ad-
equate sign and magnitude, so as to yield a good-to-bad lo-
calizer orbital crossover, from an ordered to a disordered
state. It is convenient to establish the relationships between
a, d0 , h, which are needed for obtaining such a crossover.
As a first approach, by only considering the lowest two vi-
bronic states of each orbital, a four-state scheme, analogous
to the Blume-Sivardie`re Hamiltonian, is obtained. This is
shown in Fig. 8, which makes clear two requirements:

FIG. 7. Thermal dependence of
the order parameter, in the case of
a large intermolecular coupling
parameter:h50.75 eV/Å, d05
~a! 8.5 meV,~b! 8.0 meV.

FIG. 8. Truncated representation of the vibronic energy scheme.
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~i! the good localizer orbital must become the ground
state at low temperature, in the ordered state,

~ii ! the bad localizer orbital, must become a rather well
isolated ground state, in the high-temperature disordered
state.

Analytically:
~i! at T50: E32E1.0⇒2d02J2.2(h12a)^Q&0 ,

where^Q&0 is the value atT50 K of the distortion created
by the good localizer orbital; practically it is a constant of the
problem,^Q&050.06 Å.30,31

~ii ! atT.Teq: E3!E150⇒ d0!(J22J1)/2.31.5 meV.
To summarize, first-order transitions may be obtained for

a limited range of ligand-field values:

d0
min,d0,d0

max

with

d0
min5

1

2
@J22~h12a!^Q&0#,

d0
max!

1

2
~J22J1! ~assumingJ2.J1!.

Both d0
min and d0

max are functions of the parametersa,
h, so that the phase diagram of the system is expected to be
quite intricate. We report here a few partial views of this
phase diagram.

1. Dependence upond0

We fixed the coupling parameter values:h5a50.42
eV/Å.

The investigated range of ligand-field values was250
meV<d0<150 meV. The results plotted in the Figs. 9 and
10, show that

~i! first order transitions@curves ~b!, ~c! in Fig. 9# are
obtained ford0

min.210 meV<d0<d0
max.26 meV, in agree-

ment with the preliminary analysis reported above.P asso-
ciated tod0

max in Fig. 10, is the tricritical point of the phase
diagram;

~ii ! The thermal hysteresis loops, defined by the limiting
temperatuesT2, T1, are closed for 4.3 meV<d0<d0

max;
reversible thermal addressing of information storage is pos-
sible;

~iii ! for lower d0 values, the hysteresis loops areopen;
this results from the occurence atT50 K of a QMP phase
~firstly metastable, then stable on decreasingd0). In other
terms,T2 is negative@curve ~c! in Fig. 9#.

In case ~c!, the low-temperature FE phase cannot be
reached by thermal continuity: thermal addressing of infor-
mation storage is no longer possible.

2. Dependence upona

Keeping h50.42 eV/Å, the ligand-field valued0515
meV was taken in the middle of the range studied in the

FIG. 9. Thermal variation of
the order parameter computed for
a5h50.42 eV/Å, d05(a)50
meV, ~b! 8 meV, and ~c! 25
meV. The stable, unstable, meta-
stable characters of the solutions
are labeled~s!, ~i!, ~m!, respec-
tively.

FIG. 10. Phase diagram in axes (T, d0), for a5h50.42 eV/Å.
Second-~first-! order transitions are represented by full~broken!
lines. The areas denoted(*), (**), respectively, correspond to
stable FE/metastable PE and the reverse.

12 012 53K. BOUKHEDDADEN AND F. VARRET



previous section. Fora50, at all temperatures, the ground
state is based on the good localizer orbital, a second-order
transition is obtained, but low-lying excited states based on
the bad localizer orbital will interfer, either at high or low
temperature, when the thermodynamic competition is en-
hanced bya.0 or ,0, respectively:

~i! a.0. ~Figs. 11~a! and 11~b!#. Above the threshold
value 0.8 eV/Å, the order-disorder transition is first order; at
4.5 eV/Å, it is second order again. This is due to thea
dependence ofd0

min, d0
max. The phase diagram exhibits two

tricritical points (P1 ,P2 in Fig. 12!.

~ii ! a,0 @Fig. 11~d!–11~f!#. Below the threshold value
.20.1 eV/Å, the bad localizer is the low-temperature
ground state. Reentrant phases are observed, with properties
similar to those previously studied~progressive or abrupt
bad-to-good orbital crossover!; a third tricritical point is ob-
tained (P3 in Fig. 12!.

A similar study has been performed with the larger value
of the intermolecular interaction parameter,h50.75 eV/Å.
The phase diagram, plotted in Fig. 13, exhibits two critical
points, but no longer~of course! the QMP phase. Closed or
open hysteresis loops may be obtained as well.

FIG. 11. Thermal variation of
the order parameter computed for
d0515 meV,h50.42 eV/Å, and
a56,1,0,20.085,20.1,21 eV/Å
from ~a! to ~f!, respectively.

FIG. 12. Phase diagram in axes (T, a) for d0515 meV.

FIG. 13. Phase diagram in axes (T, a) for d0515 meV and
h50.75 eV/Å. Note the open character of the hysteresis loop for
a,0.2 eV/Å.
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C. Double transitions

Double transitions~order-order1 order-disorder transi-
tions, on increasing temperature! result from the thermal
competition between ordered states corresponding to the two
orbitals. To start with, we focus on good-to-bad localizer
orbital crossovers. We easily found such double transitions
in a particular case, whereh1 , h2 have been tuned so as to
provide an identical order-disorder temperature for both or-
bitals:h150.76 eV/Å,h250.4 eV/Å,TOD

(1)5TOD
(2)5270 K.

Such crossovers are shown in Figs. 14~a! and 14~b! ob-
tained witha53 eV/Å, d052100,2120 meV, respectively.

The phase diagram as a function ofd0 , for a53 eV/Å, is
shown in Fig. 15. The ending pointS of the three branches
corresponds to the collapse of the hysteresis loop; this occurs
at temperatures lower than the order-disorder temperature
(TOD!: the order-disorder and order-order transitions are dis-
connected. For smallera values, the order-order temperature
shifts towards the order-disorder temperature; the ending
point Smoves towards the tricritical pointP of Fig. 10.

In principle, similar crossovers may be expected as well
from bad-to-good localizer orbital. As a matter of fact, we
did not find them; this may be just a matter of numerical
values, since we succeeded when we used a similar model
with interaction written in elastic formhQ̂iQ̂j .

Smooth effects, due to the thermal population of excited
levels, can be also obtained, leading to s-shaped distortions
of the low-temperature part of thêQ2(T)& curve;

24 good-
to-bad and bad-to-good progressive crossovers have been ob-
tained as well.

V. DISCUSSION

It clearly appears that the phase diagram of the system,
with respect to the whole parameter set of the problem, is
extremely complicated; it is not discussed here. We focus

here on thethermal bistabilityassociated with the abrupt
transitions—with hysteresis—due to the orbital crossovers.

Such a bistability fulfills all criteria of the ‘‘molecular
bistability’’ previously defined by Kahn and Launay.1 Of
major interest are the optical properties, which strongly dif-
fer from one state to the other, and should allow optical
reading of information. An unanswered question is the relax-
ation rate between these states~a preliminary investigation is
briefly reported in Ref. 41!. In terms of the applicability of
mixed-valence solids to information, storage, an interesting
problem arises from the presence of open thermal hysteresis
loops, which prevents information from being thermally ad-
dressed. We shall investigate in a future work, the alternative
way of electric addressing, taking advantage of the double

FIG. 14. Thermal variation of
the order parameter, computed for
a53 eV/Å, h (1)50.76 eV/Å,
h (2)50.42 eV/Å, and
d05(a!2100 meV, (b!2120
meV.

FIG. 15. Phase diagram in axes (T, d0), associated with Fig. 14.
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bistability ~quantum mechanical and thermal! of the system.
It is worth noting that the presence of open hysteresis loops
has not been reported so far in the case of the spin-transition
solids, although it should occur by combining low transition
temperature and large cooperativity.

We briefly discuss the applicability of the present results
to a wider class of materials. Basically, the existence of bi-
stability needs a combination of the following features:

~i! Electric polarizability; here mixed-valence systems
provide a large polarizability; induced electric dipole mo-
ments are large~electron chargex metal-metal distance!;
ionocovalent solids including heavy atoms should certainly
possess an interesting polarizability and, as a matter of fact,
some of them exhibit a ferro-paraelectric transition;

~ii ! An ambiguous response of the system to external per-
turbations; in the present case, this is due to the quasidegen-
eracy of the HOMO of the moities; more generally, for mo-
lecular solids, it may originate from a quasi-Jahn-Teller
instability associated with a centrosymmetric distortion
mode~which does not create electric polarization!; for iono-
covalent solids, the problem might be put in terms of non-
linear polarizability, by analogy to optical bistability;9,10 as a
matter of fact a textbook example of reentrant PE phase is
Seignette’s salt.

~iii ! Cooperativity, for both electric polarization~through
dipole fields! and molecular bistability; in molecular solids,
we put the latter in terms of a cooperative crystal field; more
generally speaking, mechanisms leading to solid-state transi-
tions ~metal-insulator, Peierls instability . . .! are possibly
relevant.

VI. CONCLUSION

The thermodynamic properties associated with the two-
orbital cooperative vibronic~PKS! model have been reported
in terms of a molecular bistability, involving both a coopera-
tive localization and a cooperative ligand field responsible
for orbital crossovers.

We focused on the consequences of cooperative orbital
crossovers: first-order para-ferroelectric, and ferro-
ferroelectric transitions have been characterized, and their
thermal hysteresis loops determined. We found, in some
cases, an open hysteresis loop which prevents information
storage from being thermally addressed with a reversible ef-
fect.

The open question of the stability of the second-reentrant
phase has been answered in the frame of the present vibronic
theory. Similar investigations in other models yielding
double reentrance are of interest.
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APPENDIX

Mean-field Hamiltonian matrix elements in the one-mode
two-orbital model:

^F1,n
6 uĤ0uF1,n

6 &5S n1
1

2Dhn22d02a^uQ̂u&06J1 ,

^F2,n
6 uĤ0uF2,n

6 &5S n1
1

2Dhn22d02a^uQ̂u&06J2 ,

^F1,n
6 uĤ0uF1,n11

7 &5
2l 1

A2
Ahn2

K
An11,

^F2,n
6 uĤ0uF2,n11

7 &5
2l 2

A2
Ahn2

K
An11,

^F1,n
6 uĤ0uF1,n

7 &5h1^Q̂&0 ,

^F2,n
6 uĤ0uF2,n

7 &5h2^Q̂&0 ,

whereF i ,n
6 5(1/A2)@cA

i (rW)6cB
i (rW)#xn(Q2) @~i51, 2!, with

xn(Q2) the nth eigenfunction of the harmonic oscillator
~note the electronic and vibronic nondiagonal terms#.

The spin 3/2 Hamiltonian

In parallel to the present vibronic calculations, we under-
took the thermodynamical investigation of the spin-3/2
Hamiltonian already studied by Blume.20 In the present case,
the63/2 states of the fictitious spin represent the lowest two
vibronic states of the good localizer orbital, while61/2, are
those of a bad localizer. We introduce between these states
transverse field terms representing the electron transfer, as
well as pair contributions associated with all intermolecular
terms of the vibronic Hamiltonian. With this complete form,
the spinS53/2 Hamiltonian has not been investigated so far.

The most important results of the vibronic model are pro-
vided by the presentS53/2 Hamiltonian, solved in the
mean-field approach, and are revealed to be a qualitative
truncature of the correct vibronic problem. Clearly, some of
the results associated with the case of both polarizable orbit-
als ~for instance the double transitions shown in Figs. 7 and
14! could not be reproduced by theS51 Blume-Emery-
Griffiths Hamiltonian, we used in a previous work.9

TheS53/2 Hamiltonian is written

Ĥ52(
i j

Ji j ŝ i
zŝ j

z2(
i j

Ki j F ~ ŝ i
z!22

1

3
S~S11!G~ ŝ j

z!2

2(
i

D iF ~ ŝ i
z!22

1

3
S~S11!G

1(
i

V1ŝ1,i
x 1(

i
V2ŝ2,i

x ,

where theŝz and theŝx operators are

ŝz5u3/2&^3/2u2u23/2&^23/2u

1u1/2&^1/2u2u21/2&^21/2u,

ŝ1
x5u3/2&^23/2u1u23/2&^13/2u,

ŝ2
x5u1/2&^21/2u1u21/2&^1/2u.
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J, J8, respectively, couple the6 3
2,6

1
2 states, and com-

pares to the vibronic energy termh^Q̂&; D and K are the
static ‘‘anisotropy’’ terms, respectively intra- and intermo-
lecular;V1 ,V2 are the tunneling matrix elements, associated
with the two orbitals.

The S53/2 Hamiltonian involves two order parameters
m5^ŝz&, q5^(ŝz)2&. m is associated with the symmetry
breaking ~i.e., electric polarization! of the molecules;q is
associated with the~thermal! relative populations of the
competing orbitals.

The mean-field free energy of the four-state Hamiltonian
is

Fmf5
3

4
Jm21

1

4
Kq22kBT ln~Z!.

The partition functionZ is deduced

Z52e2b~D2Kq2!coshbA9

4
J2m21V1

2

12eb~D2Kq2!coshbA1

4
J2m21V2

2.

The coupled self-consistent equations leading to the
m(T), q(T) set of the values are provided by

]Fmf

]m
50 and

]Fmf

]q
50.
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