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There exists strong experimental evidence for the dimensional crossover from two to three dimensions as
La22xSrxCuO4 compounds are overdoped. In this paper we describe the dimensional crossover of the layered
correlated metal in the gauge theory framework. In particular, we obtain the anomalous exponent 3/2 for the
temperature dependence of resistivity observed in overdoped La22xSrxCuO4 .

I. INTRODUCTION

The normal state properties of high-Tc compounds are
anomalous. In particular, at optimal doping, in-plane resis-
tivity rab decreases linearly with temperature,

1 while out-of-
plane resistivityrc increases with temperature. The differ-
ence between in-plane and out-of-plane transport reflects the
layered structure of the cuprates and indicates the hopping
character of the interlayer transport. It is generally believed
that cuprates evolve into Fermi liquids as doping increases.

However, systematic studies2–5 of transport properties of
overdoped La22xSrxCuO4 have shown a deviation from the
Fermi liquid as well as from the optimally doped com-
pounds. The temperature dependence of resistivity was
found to beTa with an exponent close to 1.5.2 Also, in the
overdoped regime (x>0.25), both in-plane and out-of-plane
resistivity exhibit similar, although anisotropic, temperature
dependence:rc /rab , which is on the order of 50–100, is
almost independent of temperature and is not far from the
value predicted by the band structure calculation, which is
roughly 25.2,6 This anisotropy of the overdoped
La22xSrxCuO4 is to be compared with the anisotropy at op-
timal dopingx'0.15, which is on the order of 500–1000
nearTc . The above experimental data force us to conclude
that there exists a dimensional crossover from a two dimen-
sional anomalous (strange) metalat optimal doping to a
three dimensional anisotropicanomalous metalin the over-
doped case.

The dimensional crossover takes place as the doping var-
ies. In fact, it is also a crossover in temperature. To address
the problem of crossover we introduce a temperature scale
Td(x), which depends on doping. At sufficiently low tem-
peratures,T,Td(x), unless the superconducting transition
intervenes, any layered material is essentially three dimen-
sional. This means, in particular, that only one transport time
t tr

21 determines the temperature dependence of in- and out-
of-plane resistivity, and hence the ratiorc /rab is indepen-
dent of temperature. The nearly temperature independent an-
isotropy ratio rab /rc implies a common scattering
mechanism for in-plane and out-of-plane charge transport. In

this case, scattering and resistivity generally increase with
temperature. We designate this type of transport ascoherent.

At high temperatures,T.Td(x), all the relaxation times
are shorter than the interlayer hopping time; thus the out-of-
plane conductivity is determined by one particle tunneling.
When the out-of-plane transport is due to one particle
tunneling, we face the question of whether an electron is a
quasiparticle or not. If it is, the out-of-plane conductivity is
proportional to the one particle relaxation timet and de-
creases as temperature increases. In this case, there is no
difference betweent tr andt and the ratiorc /rab is indepen-
dent of temperature.

If an electron is not a quasiparticle due to strong interac-
tion, ~i.e., its Green function does not possess a pole!, a new
decay timetc to true quasiparticles becomes relevant. We
call tc the coherence time. If the interlayer hopping time is
longer than the coherence time, the electron decays into qua-
siparticles during the hopping. We refer to this type of trans-
port asincoherent. A feature of this incoherent transport is
that rising temperature increases the out-of-plane mobility
and decreases the resistivity. This incoherent transport,
which has no analogue in Fermi liquids is considered in this
paper.7

Eventually, the temperature scaleTd(x) which determines
the dimensional crossover of La22xSrxCuO4 strongly de-
pends on the dopingx;(0.1520.35). The experimental data
of La22xSrxCuO4 suggest that the overdoped
La22xSrxCuO4 most likely lies in the low-temperature coher-
ent regime, T,Td(x), while the optimally doped
La22xSrxCuO4 lies in the high-temperature two dimensional
regime,T.Td(x). We consider the overdoped cuprates as
an intermediate metallic state which interpolates between the
two dimensionalanomalous strange metal8 and the conven-
tional three dimensional metal.

We propose that three dimensional anisotropic gauge
theory may be a suitable model to describe the charge trans-
port experiments in both the overdoped and the optimally
doped cuprates in a unified way.

Among theories for the anomalous normal states of cu-
prates near optimal doping, the two dimensional~2D! gauge
theory8–10 highly emphasizes the retarded scattering by the
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chirality fluctuations provided by infinitely strong on-site re-
pulsion. In particular it givesT-linear in-plane resistivity. In
this paper, we generalize the 2D gauge theory to 3D gauge
theory in order to describe the charge transport in the coher-
ent three dimensional regime and the crossover between co-
herent and incoherent regimes.

We also note that diverse models capture other scattering
mechanisms for the peculiar out-of-plane transport of
cuprates.11–18,30

The main results of this paper can be summarized as fol-
lows. In the low-temperature regime,T,Td(x), the charge
transport is coherent and three dimensional, and three dimen-
sional anisotropic gauge theory is employed to describe the
coherent charge transport. The resistivities are found to be

rab}rc}T
3/2. ~1.1!

The anomalous exponent 3/2 of resistivities in the three di-
mensional regime has been experimentally observed in over-
doped La22xSrxCuO4.

2,3

In the high-temperature regime,T.Td(x), the charge
transport is incoherent and two dimensional. This regime can
be described by two dimensional gauge theory with an inter-
layer hopping term. The resistivities behave as

rab}T, rc}
1

AT
. ~1.2!

Ironically, gauge theory suggests a different physical
mechanism which also givesrab}T

3/2 ~but incoherentrc) in
the two dimensional regime. Athigh temperature the scatter-
ing by the chirality fluctuations becomes inelastic. The in-
elasticity changes the linear temperature dependence of the
resistivity toT3/2.

The remainder of the paper is organized in the following
way. In Sec. II, we introduce gauge theories for the incoher-
ent and coherent regimes and derive the formulas necessary
for the calculation of resistivities. In Sec. III, we calculate
resistivities in the coherent regime and the dimensional
crossover and experimental data are discussed. In Sec. IV,
the out-of-plane conductivity in the two dimensional regime
is calculated. In Sec. V, we discuss the inelastic scattering
mechanism. We conclude this paper in Sec. VI.

II. THE GAUGE MODELS OF NORMAL STATES

Strong on-site Coulomb repulsion forbids double occupa-
tions and imposes the constraint(acn,a

† (r )cn,a(r )<1 (r are
coordinates on a layer andn labels the layers!. The gauge
field is a tool to deal with this constraint. The constraint can
be implemented by representing an electronic operator
cn,a(r ) by the product of a fictitious spinonf a,n(r ) and a
holon bn

†(r ) that keeps track of vacant sites:
(a f a,n

† (r ) f a,n(r )1bn
†(r )bn(r )51. One of them is a ferm-

ion, while the other is a boson. An accepted phenomenologi-
cal model for each layer that captures the vector character of
the interaction has the form8–10,19–22

H2D5E d2r F(
a

f a
†~r !S 2a02mF2

1

2mF
i ~¹2 ia!2D f a~r !

1b†~r !S 2a02mB2
1

2mB
i ~¹2 ia!2D b~r !G . ~2.1!

A small interaction between layers can be represented by
adding an interlayer hopping term,

H'5t'(
n
E d2r @cn,a~r !cn11,a

† ~r !1 H.c#. ~2.2!

We neglect the interlayer magnetic exchange in
La22xSrxCuO4 since it is smaller than the intralayer magne-
tism by a factor of 1025 @see, e.g.,~Ref. 23!#. We use the
modelH5H2D1H' to describe the incoherent out-of-plane
transport in the optimally doped two dimensional regime,
i.e., at T.Td(x), where the interlayer hoppingt' is the
smallest energy scale.

At T,Td(x), to which regime we believe the overdoped
La22xSrxCuO4 belongs, the system is assumed to be three
dimensional and we employ a different model which is an
anisotropic generalization of the two dimensional gauge
theory ~2.1!:

H3D5E d3r F f a
†~r !S ~2 i¹2a!2

2mF
i 1

~2 i ]z2az!
2

2mF
'

2mF2a0D f a~r !1b†~r !S ~2 i¹2a!2

2mB
i 1

~2 i ]z2az!
2

2mB
'

2mB2a0Db~r !G . ~2.3!

In layered materials the interplane massesmB
' andmF

' are
much larger than the in-plane massesmB

i andmF
i .

A few comments are in order before we turn to the per-
turbative calculation of resistivities. The microscopic basis
of the 2D model~2.1! is weak; nevertheless the model has
attractive universal features. This model has been derived by
different authors10,21 from different physical assumptions. In
Ref. 21 a strong short range magnetic exchange was essen-
tial, whereas in Ref. 10 no magnetic exchange was assumed
at all. In Ref. 21mF

i andmB
i are determined by the magnetic

exchangeJ and the hopping amplitudet, respectively. In
Ref. 10, bothmF

i andmB
i are determined by the hopping. In

both cases, the model~2.1! captures the physics of scattering
by chirality fluctuations, namely, by magnetic polarization
produced by mobile dopants. In considering the effects of
nonlocal retarded processes due to chirality fluctuation on
the normal state transport, it is reasonable to treat spinon
massmF

i and holon massmB
i as phenomenological param-

eters. It is even more so for the 3D model~2.3!. The 3D
model ~2.3! is suggested by transport properties of over-
doped La22xSrxCuO4.

2–5 We have failed, however, in justi-
fying this model in a quantitatively microscopic way for the
range of parameters known for La22xSrxCuO4.

Another comment is that, although the two models~2.1!,
~2.2!, and ~2.3! are different, they equivalently describe the
dimensional crossover of the in-plane transport. They are
essentially different, however, as far as the out-of-plane
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transport is concerned: while both models give the same re-
sult for rc in the 3D regime, i.e., atT,Td , they give differ-
entrc atT.Td . The reason for this discrepancy atT.Td is
that the 3D model~2.3! neglects fluctuations of the ampli-
tude of effective intra- and interlayer electronic hopping but
stresses the fluctuations of their phases. This is a correct
approximation at lowT. In contrast, the 2D model~2.1! and
~2.2! neglects the variations of in-plane hopping amplitude,
but takes into account the fluctuations of the interlayer am-
plitude which become important at high temperature.

At a temperature range where the effects of Bose conden-
sation are irrelevant, the chirality fluctuations are small and
can be treated perturbatively. The tendency to condense is
suppressed by the gauge interaction and strong on-site repul-
sion: the holons are hard core bosons. These effects are be-
yond the perturbation theory and have remained obscure. As
a result we do not know the low-temperature bound of the
perturbation theory. Of course the upper estimate of the
bound is given by the mean field value of the Bose conden-
sation temperatureT0;x/mB . For cupratesT0 is too high
~around 1500 K!. The Bose condensation effects make a per-
turbative treatment questionable atT<T0 unless the interac-
tions decreases the characteristic temperature scaleT0 sub-
stantially, and thus drag down the perturbation theory to
much lower temperature.8,22 It is also likely that Bose con-
densation is completely destroyed due to the retardedness of
the gauge interaction and hard core nature of holons. A re-
cent quantum Monte Carlo study also supports the latter
point of view.24

In three dimensional gauge theory the gauge field fluctua-
tion is less effective than 2D gauge field fluctuation in sup-
pressing Bose condensation. Nevertheless, the retardedness
of gauge interaction and the hard-core nature of holons are
also valid in the three dimensional case, hence we expect
Bose condensation is sufficiently suppressed, or even can be
destroyed completely as in the 2D case, to permit the pertur-
bative treatment of 3D gauge theory. We do not address this
problem further in this paper.

The strategy of the perturbative calculation of the trans-
port in gauge theory is well known.8–10,19,21Let us assign
electric charge to, say, the fermions. Then one may find the
spinon and holon currents produced by an external electro-
magnetic fieldAn

ext and the gauge field:

j m
F5Pmn

F ~an1An
ext!, j m

B5Pmn
B an ,

wherePmn
F,B(k,v) is a fermionic~bosonic! polarization op-

erator. An infinite on-site repulsion, implemented by the
gauge field, causes the spinon current to be opposite to the
holon current, j m

F52 j m
B . This allowes us to find electro-

magnetic current as a response to the external electro-
magnetic field,j m5 j m

F5Pmn
physAn

ext. The physical conductiv-

ity smn5v21Pmn
phys(k50,v) is given by the combination

rule21

@Pmn
phys~k,v!#215@Pmn

F ~k,v!#211@Pmn
B ~k,v!#21.

At low temperature the fermionic contribution is smaller
than the bosonic one.8,10,19This is, roughly, due to the tem-
perature dependence of the number of bosons at a given

chemical potential. As a result, at low temperature,
T,Td(x), the conductivity is determined by the bosonic
transport relaxation time:

sab'
xe2

mB
i t tr , sc'

xe2

mB
' t tr . ~2.4!

To describe the incoherent out-of-plane transport in the
two dimensional regimeT.Td(x), we adopt a different ap-
proach. In this case the interlayer tunneling is a perturbation
of the 2D model~2.1! and ~2.2!. In the lowest order oft'

2

the Kubo formula gives

sc
~0!52 e2t'

2 E
2`

` de

2p

d2p

~2p!2 S 2
]nF~e!

]e D
3F2

1

p
ImGR~e,p!G2, ~2.5!

whereGR(x2y) is the retarded Green function of two di-
mensional electrons in a layer.

In a Fermi liquid, where the one particle Green function is
characterized by a relaxation timet, Eq. ~2.5! gives
sc
(0);e2t'

2mt; thusrc is proportional torab . rc appears to
be metallic and coherent even thought' is the lowest energy
scale.

The situation is very different in the gauge theory as well
as in any other theory where the electron is not a quasipar-
ticle, i.e., the electron Green function does not possess a
quasiparticle pole. In the gauge theory framework the elec-
tron decays into a ‘‘spinon’’ and a ‘‘holon’’ and does not
constitute stable excitations. Spinons and holons themselves
are coupled by the gauge field and are not true quasiparticles,
either. However, atT.T0 , the gauge coupling is weak, so
that in the first approximation the electron Green function is
simply a product of noninteracting fermion and boson Green
functions. The short range decay of the boson Green function
in a layer destroys the coherence between electrons on dif-
ferent layers. The calculation ofsc

(0) using Eq.~2.5! is pre-
sented in Sec. IV. We also note that similar calculations of
the out-of-plane conductivity have been attempted in Refs.
18 and 20. Their results do not agree with each other
(rc}1/T in Ref. 18, rc}AT in Ref. 20! and are also differ-
ent from ours (rc}1/AT).

III. ANISOTROPIC COHERENT TRANSPORT

In this section we calculate the transport time based on
anisotropic 3D gauge theory~2.3!. The calculation of the
conductivity of the system interacting via gauge forces is
peculiar. To obtain the conductivity one must sum up the
leading corrections to the vertex and Green function of the
polarization operator. However, they are connected by the
Ward identity. This connection implements the gauge invari-
ance of interaction. Moreover, in two dimensions the correc-
tions to the Green function and to the vertex diverge, al-
though taken all together they give a finite result. Naively it
looks as if there exists a difference between transport relax-
ation time and the one particle relaxation time determined by
the decay of the one particle Green function. In fact, in our
model, those relaxation times are identical if one chooses a

53 11 819COHERENT VERSUS INCOHERENT TRANSPORT IN LAYERED . . .



proper gauge invariant definition of the one particle relax-
ation time, namely, as the decay of the gauge invariant Green
functionGinv(x)5^b(x)exp(i*0

xaidx
i)b†(0)&, calculated on the

mass shell. Then the tail factor exp(i*0
xaidx

i) takes care of the
vertex corrections. For small and smooth gauge fields, the
gauge invariant Green function does not depend on the path
of the tail.

The first step of the computation of conductivity in the 3D
gauge theory~2.3! is to determine the propagators of the
gauge fields. Since the gauge field is a Lagrangian multiplier,
its dynamics emerges entirely from the polarization produced
by bosons and fermions. Perturbatively, it is given by fermi-
onc and bosonic loops:

Pmn~k,v!5Pmn
F ~k,v!1Pmn

B ~k,v!. ~3.1!

The propagators of the gauge fields in the transverse gauge
are the inverse of the polarization operator:

^Am~k,v!An~2k,2v!&5Dmn~k,v!5~Pmn!21~k,v!.
~3.2!

The scalar component of the gauge field is short ranged due
to Debye screening, while the unscreened transverse part of
the vector potential produces anomalously strong scattering.
As in the 2D case, the fermionic contribution is the larger
one, so that only the transverse components ofPmn

F (k,v) are
needed. Owing to the uniaxial symmetry, the matricesDi j
andP i j ( i , j5x,y,z) can be parametrized by two elements
(D i ,D') and (P i ,P'), respectively,

Dxx5 k̂y
2D i1 k̂z

2D' , Dyy5 k̂x
2D i1 k̂z

2D' ,

Dzz5~ k̂x
21 k̂y

2!D' , Dxy52 k̂xk̂yD i ,

Dxz52 k̂xk̂zD' , Dyz52 k̂yk̂zD' , ~3.3!

where

D i~v,k!5
P'k

21P'kz
22P ikz

2

P'~P iki
21P'kz

2!
, D'~v,k!5P'

21 ,

~3.4!

k̂5k/uku is a unit wave vector alongk, andki
2 is an in-plane

momentum. We assume that the condition (mF
'd)21kz

!vFki holds for typical momentum transferkz;(mB
'T)1/2,

ki;(mB
i T)1/2, whered is the interlayer distance. Then

P i
R~v,k!5k2S x i2 i

pF
pd

v

ki
3D ,

P'
R~v,k!5k2Fx'2 i S mF

i

2dpFmF
'D 2 pFpd

v

ki
3G , ~3.5!

where x i}1/mF
i and x'}1/mF

' are the components of the
diamagnetic susceptibilities, andpF and vF are the Fermi
momentum and velocity of the two dimensional Fermi sur-
face. The imaginary parts of the fermion loop are given by
the Landau damping:

ImP i j
R~v,k!522pvE d3p

~2p!3
v i~p1k!v j~p!

3S 2
]nF~jp!

]jp
D d~v1jp2jp1k!

'22pmF
i vE du

2p

dpz
2p

vFivF jd~jpF1k!,

~3.6!

where v i(p)5]ep /]pi , jp5ep2m f , vF5v(pF) is the
Fermi velocity, u is the angle betweenvF and k,
pF[mF

i vF, and the integration overpz is limited by the in-
verse interlayer distancep/d. Using (mF

'd)21kz!vFki we
find thatvF is almost perpendicular toki . Under these con-
ditions the Landau damping is similar to the 2D one. At low
v,vFki we have

ImPyy
R ~v,k!52

pF
pd

v

ki
,

ImPzz
R ~v,k!52S mF

i

2dpFmF
'D 2 pFpd

v

ki
. ~3.7!

Assuming that the gauge field is in equilibrium, the relax-
ation time of bosons scattered by the gauge field in the sec-
ond order of the gauge field is8,10

t tr
21~p!;E d3k

~2p!3
E
0

`dv

p
Im^@vp3 k̂•B~v,k!#

3@vp3 k̂•B~v,k!#&@11nB~v!#

3@11nB~jp1k!#d~jp2jp1k2v!upu22

~3.8!

where jp5ep2mB . The ‘‘magnetic field’’ B5¹3A is a
chirality:

^@vp3 k̂•B~v,k!#@vp3 k̂•B~v,k!#&5uku2vp
i vp

j Di j ~v,k!.
~3.9!

The factork2 in the above expression comes from the tail
and guarantees the convergence of the scattering by soft
chirality fluctuations.

The perturbation theory is valid only at high temperature
where the effects of Bose condensation are negligible. There-
fore the factornB(jp1k) is less than unity and can be ne-
glected. For the scattering of fermions, Eq.~3.8! remains the
same, except that the factor 11nB(jp1k) is replaced by
12nF(jp1k). According to Sec. II, the transport relaxation
time of bosons~2.4! dominates over the fermionic one and
determines conductivities.

At low temperature, the scattering is elastic. This means
that the gauge fluctuations are damped if the frequency
v*;xg21(ki)

3 @seeP i(k,v) in ~3.5!, g5pF /(pd)] ex-
ceeds temperature. This happens atT,Tin[(g/x)2(mB

i )23

~the opposite, inelastic case is discussed in Sec. V!. The out-
of-plane component of the gauge field is damped at even
higher frequency, (mB

'/mB
i )v*. Therefore one may take into
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account only thestatic chirality fluctuations. In static ap-
proximation Eq.~3.8! takes the form

t tr
21~p!;TE d3k

~2p!3
uku2

upu2 vp
i vp

j Di j ~0,k!d~jp2jp1k!.

~3.10!

To obtain the conductivity, the momentum dependent
transport timet tr

21(p) has to be averaged over the momen-
tump with the Boltzmann distribution. The sole effect of the
averaging is to replace momentum by its thermal value,
pi
2;mB

i T, v i
2;T/mB

i , so thatpi
2!p'

2 , v i
2@v'

2 . Due to the
above anisotropykz

2@ki
2 holds and under this condition Eq.

~3.9! simplifies to

uku2vp
i vp

j Di j ~0,k!'
v i
2

x iki
21x'kz

2 S kz21 x i

x'

ki
2D ~3.11!

where we kept only the term proportional tov i
2 , neglecting

terms proportional tov'
2 . The next step is the integration

over the angle betweenvi andki , which gives (v iki)
21. The

last integrations overki and kz and the thermal averaging
overp yield t tr

215t i
211t'

21 , wheret i
21 andt'

21 are given
by:

t i
21;

TAmB
'T

x imB
i , ~3.12!

t'
21;

TAmB
'T

x'mB
' , ~3.13!

rab}rc}T
3/2. ~3.14!

The essential difference of the above result from the two
dimensional one is an extra factorAT, which originates from
the 3D density of states. We acknowledge that theT3/2 de-
pendence of the resistivity in the context of gauge theory was
mentioned in Ref. 9.

There is a simple way to understand Eqs.~3.12! and
~3.13!: t' and t i contain the static chirality fluctuations
^Bx

2(k)&;^By
2(k)&'T/x' and ^Bz

2(k)&'T/x i , the pro-
jected areas onto thexy andyz planes of the contour com-
posed of the path of a boson in unit time,
Syz;(mB

i mB
')21/2 and Sxy;(mB

i )21, and the density of
states in the parallel and transverse directions, (mB

i T)1/2 and
(mB

'T)1/2. Considering the products of three factors,t'
21 and

t i
21 can be attained, respectively.
As discussed in the Introduction, the anisotropic gauge

theory~2.3! is assumed to be valid at temperatures below the
dimensional crossover temperature. However, the 3D theory
can give an upper limit for the crossover temperatureTd

' .
The interlayer relaxation ratet'

21 increases with the aniso-
tropy. When it reaches the interlayer hopping amplitude
t' , the kinetic equation and, as a consequence, Eqs.~3.12!
and~3.13!, are no longer valid. Accordingly, the out-of-plane
conductivity reverses its temperature behavior. It is likely
that atT5Td

' the out-of-plane wavelength 1/p';(mB
'T)21

reaches the interlayer distanced. Then the condition

t'
21;t' gives a temperature scale of the crossover,
T d

'5t'mB
'dx' . If the value ofmB

' can be identified with
(t'd

2)21, Td
';x' /d.

On the contrary,t i
21 varies smoothly through dimen-

sional crossover and Eq.~3.12! is still valid for in-plane
transport. The only difference is that the integration over
pz has to be cut off by the inverse interlayer distance, 1/d.
Therefore, atT.(2mB

'd2)21,

t i
21;

T

x imB
i
1

d
. ~3.15!

This is the well-knownT-linear in-plane resistivity in the
two-dimensional limit. Note that in this limitx id5x (2D).

The dimensional crossovers of the in-plane and out-of-
plane transport stem from different mechanisms and may oc-
cur at different temperatures. Nevertheless, if one assumes
that all phenomenological parameters of the out-of-plane part
of the model are of the same order (mB

'd2)21;x' /d;t' ,
the estimate of the crossover temperature is

Td~x!;t' . ~3.16!

Let us discuss the experimental implications of above re-
sults~3.14! and~3.16!. According to the experimental data in
overdoped La22x Srx CuO4 rab is proportional toT

a, where
1,a,2.2–5 Notably in Ref. 2a was found to be very close
to 3/2 for La22x Srx CuO4 for x>0.25 and this agrees with
Eq. ~3.14!.

In Ref. 2 it was indicated that theT3/2 dependence of
rab may evolve into linearT dependence as the temperature
is lowered, which is contrary to the scenario of this paper.
However, a closer examination shows that the available data
are insufficient to support the viewpoint.25 Although the di-
mensional crossover is not very clearly defined in the data of
Ref. 2,Td (x50.35) can be estimated to be around 800 K.
Measurements of thec-axis polarized optical spectrum over
the doping range 0.1,x,0.3 ~Ref. 5! are consistent with the
resistivity data. An estimate oft' may be taken from the
optical conductiviy data. A Drude-like fitting gave
t'

21;max(va,Ta) with 1,a,2. In Ref. 5 the ratio of in-
plane and out-of-plane plasma frequencies was also mea-
sured. At dopingx50.15 andx50.3, vp,i /vp,''30 and
10, respectively. These data enable one to get an estimate of
t' using the formula:23,26

vp,'

vp,i
5A2S daD t'Ea8

,

where a53.79 Å is the lattice spacing in the layer and
d513.21 Å is the intercell distance of La22xSrxCuO4.
Ea8a5\vF andvF is the in-plane Fermi velocity.26 Accord-
ing to, Ref. 27 band structure calculations yield
vF53.13107 cm/s atx50.15 andx50.20. Combining all
of the above formulas and data we obtain a somewhat low
value,t';200 K for x50.3–0.35. In the overdoped case we
may rely on the band theory. The values of hopping ampli-
tudes quoted in Ref. 18 aret i'0.5 eV;6000 K and
t''0.05 eV;600 K. The band theory value oft' is not very
different from the value oft' obtained above from optical
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data.5 This can be expected, since the interaction in the over-
doped case is not as strong as in the case of optimal doping.

Near the optimal doping,23 t';2.4 meV528 K at
x50.16, which is also obtained from the optical measure-
ments. The superconducting transition temperature at
x50.16 is Tc(x50.16)534 K. Thus near optimal doping
the dimensional crossover can possibly be screened by the
superconducting transition since Td(x50.16);t'
,Tc(x50.16).

The estimates ofTd(x) indicate that there is room for the
three dimensional regime in overdoped La22x Srx CuO4 (x
.0.25!.

IV. INCOHERENT TRANSPORT
IN TWO DIMENSIONAL REGIME

In this section we consider the out-of-plane transport in
the two dimensinal high-temperature regimeT.Td(x),
where the interlayer hopping amplitudet' is the smallest
rate: the time of hoppingt'

21 is ~i! longer than the in-plane
relaxation time and~more importantly! ~ii ! longer than the
characteristic time of all kinds of magnetic fluctuations. This
case corresponds to the optimally doped La22xSrxCuO4.

Under the condition~i! the hopping term~2.2! can be
treated as a perturbation and under the condition~ii ! the ap-
proximation which allows us to write the hopping term~2.2!
in the form of ~2.3! is no longer valid.

It is instructive to compare thec-axis conductivity of a
Fermi liquid with that of ~2D! gauge theories. In a Fermi
liquid electrons in a layer are quasiparticles with some relax-
ation time and their retarded Green function has a pole in the
lower half plane. Then, provided that there is no interlayer
scattering, Eq.~2.5! yields

sc
~0!;e2t'

2mFt. ~4.1!

Thereforerc and rab have the same temperature depen-
dence.

The situation is different if the electron is not a quasipar-
ticle. Once the interlayer hopping is treated as a perturbation,
the electron always decays to true quasiparticles during the
interlayer tunneling, so the quantum states of the electron in
different layers are incoherent. As a result of this incoher-
ence, the out-of-plane transport is blocked and may be re-
laxed by thermal processes, which is similar to a semicon-
ducting behavior.

The above case is true of a doped Mott insulator: at suf-
ficiently high temperature electrons decay very fast~on the
time scale of 1/J or 1/t i) into spinons and holons and do not
constitute a stable excitation. At this temperature range the
gauge interaction is perturbative and the electron Green func-
tion is simply a product of fermion and boson Green func-
tions ~recall ca5 f ab

†):

Ge~x,y!52^ f ~x! f †~y!b~y!b†~x!&;GF~x,y!GB~y,x!.
~4.2!

Therefore, the propagating character of the fermion Green
function ^ f (x) f †(y)&;ei @ ux2yu2vF(tx2ty)# is blocked by the
localized boson Green function ^b(y)b†(x)&;T0 /
T exp(2ux2yu2mBT).

The simplest way to evaluate the integral~2.5! in gauge
theory is to rewrite it in the form of Fermi and Bose density-
density correlation functionspF andpB using the decompo-
sition Eq.~4.2!:

pF~ iv,q!5(
x
E
0

b

dteiq•x1 ivtGF
~ t !~x,t!GF

~b!~2x,2t!,

pB~ iv,q!5(
x
E
0

b

dteiq•x1 ivtGB
~ t !~2x,2t!GB

~b!~x,t!.

The superscripts of the Green functions denote the two layers
involved in the hopping process~top and bottom!. In terms
of pF andpB ~2.5! takes the form

sc
~0!5 2e2t'

2(
q
E dv

2p

3S 2
]nB~v!

]v D ImpF
R~v,q! ImpB

R~v,q!. ~4.3!

At small frequency and momentum and atT.T0 the imagi-
nary parts of the polarization operators are

ImpF
R~v,q!52mFa

2
v

vFuqu
,

ImpB
R~v,q!52

T0
T
mBa

2
v

vBuqu
,

where a is the lattice constant in a layer and
vB5(kBT/mB)

1/2 is the thermal boson velocity. TheT0 /T
factor of ImpB

R(v,q) comes from the Bose factor
nB(eq50)'exp(mB)5T0 /T. The momentum integration in
Eq. ~4.3! is logarithmic and is cut byT/vF at the lower limit
~the condition for the existence of imaginary parts of polar-
ization functions!. Due to the exponential decay of the Bose
factor @]nB(v)/]v}e2uvu/T# the frequency integral is con-
vergent at the ultraviolet limit. The main contribution to the
frequency integral comes from the infrared regionuvu<T, in
which 2]nB(v)/]v'T/v2. The T/v2 singularity is can-
celled byv2 coming from the numerator of ImpF

R ImpB
R .

Thus the frequency integral givesT2. UsingT0;x/mB and
rearranging other factors, we obtain

sc
~0!5 const.3e2t'

2xmF
2AmBT. ~4.4!

The c-axis conductivity has been estimated in Ref. 20 in a
similar framework. The result of Ref. 20 is, however, differ-
ent from ~4.4!. In terms of resistivity~4.4! reads

rc}
1

AT
, ~4.5!

which agrees with the ‘‘semiconducting’’ behavior ofrc ob-
served experimentally in optimally doped cuprates.

The dimensional crossover to the anisotropic three dimen-
sional regime is complex. In particular, the interlayer hop-
ping process~2.2! evolves into anisotropic gauge theory
~2.3! through dimensional crossover and the elucidation of
the crossover requires much more sophisticated analysis. Let
us just note that the two models~2.1!, ~2.2!, and ~2.3! are
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essentially different, so that an estimate of the crossover tem-
perature from the high-temperature side may not necessarily
coincide with the estimate from the low-temperature side. In
any case it is very likely that the crossover temperature in
optimally doped cuprates falls below the superconducting
transition temperature.

A comment is necessary at this point. In optimal
La22xSrxCuO4, nearT5 300 K the out-of-plane resistivity
stops decreasing and starts to grow with temperature. This
up-turn is attributed to the structural transformation from the
high-temperature tetragonal phase to the low-temperature
orthorhombic phase.3 Above this upturn temperature the
c-axis conductivity is still much lower than the Mott mini-
mal metallic conductivity ('102 s/cm) and cannot be con-
sidered to be metallic.

V. INELASTIC SCATTERING BY GAUGE FIELDS

Two dimensional gauge theory gives rise to linear tem-
perature dependence of the in-plane resistivity of optimally
doped La22xSrxCuO4 at low temperatures where scattering is
elastic. At sufficiently high temperatures inelastic processes
change the linear-T behavior intoT3/2. This can be under-
stood as follows. From the propagator of the gauge field
DR(v,k)5(xk22 igv/k)21 it follows that the energy trans-
fer v scales likevk5xg21k3. At finite temperature the bo-
son energy is typically of orderT. Thus the typical momen-
tum transfer in the scattering of bosons by the gauge field is
(mBT)

1/2. As a result the typical energy transfer in scattering
would bev*;x/g(mBT)

3/2. This is larger than the thermal
energy of scattered bosons, i.e.,T at T.Tin;(g/x)21/mB

3

and at this temperature thev dependence of the propagators
has to be taken into account. This inelasticity softens the
infrared singularity of scattering and thus leads to the less
singular temperature dependence of resistivity.

In the three dimensional case the scattering byD'(k,v)
is almost always elastic~see Sec. III!, while the scattering by
D i(k,v) can be inelastic at high temperature. It turns out
that Tin

3D is very close toTin
2D . For the three dimensional

inelastic regime to be observed, the conditionTin
3D<Td(x)

should be satisfied.~See the discussion below on the experi-
mental estimate ofTin

2D andTin
3D .) In the three dimensional

inelastic regime we would haverab}T
3/2(mB

'T)1/2}T2, so
the anomalous exponent 3/2 cannot be explained. Instead we
will discuss the two dimensional case in detail.

In the 2D case Eq.~3.8! reads

t tr
21~p!;pE d2k

~2p!2
up3 k̂u2

mB
2 E

0

`dv

p
Im DR~v,k!

3@11nB~v!#d~jp2jp1k2v!
uku2

upu2
. ~5.1!

After angular integration it becomes

t tr
21'

1

vpmB
2g
E
0

upu
k3dkE dv

v

~vk* !21v2 @11nB~v/T!#.

~5.2!

At low temperature, T,Tin , v;vk*!T and thus
nB(v/T);T/v@1. Then the frequency integral is finite and

it gives (vk* )
21. The remaining momentum integration gives

a T-linear transport timet tr
21;T/(xmB).

8,10 Note that the
transport time is independent of Landau damping parameter
g, which is not the case in the inelastic regime.

At high temperature,T.Tin , v;vk*@T and thus
nB(v/T)!1. Now the frequency integral is of the order of
logL, whereL is some high-frequency cutoff. The momen-
tum integral givesp4. Combining all factors and replacing
the boson momentum by its thermal value (mBT)

1/2 we ob-
tain in the inelastic limit

t tr
21'

p3

mBg
}
T3/2mB

1/2

g
. ~5.3!

The value ofTin is very sensitive tomB and can hardly be
estimated from the available experimental data. The slope of
T-linear resistivity at optimal doping ('1.0mV cm/K)
givesx2D to be around 500 K. The resistivity data of over-
doped La22x Srx CuO4 suggest thatx i

3D is of the same order
asx 2D. The one loop value of the dampingg is on the order
of 1.9

The estimates ofmB which enter intoTin vary appreciably
depending on the kinds of experiments. Optical conductivity
measurements28 provide the value ofmB at high energy:
mB'2me , which is almost independent of doping. In par-
ticular, mB'(223)me is almost independent of the probe
energy scalein the overdoped range. From another side the
magnetic susceptibility data provide the value ofmB at low
energy:mB'15me near optimal doping.22,29 These esti-
mates ofmB makes the estimate ofTin range from 500 K~the
susceptibility data! to 105 K ~the optical data!. If one accepts
the lower estimate ofTin one may exploit the inelastic
mechanism in order to explain theT3/2 behavior.

In fact the optical estimate, which is close to the band
theory value, seems more realistic. This means that the in-
elastic regime is likely irrelevant for the overdoped cuprates.

VI. CONCLUSION

Anisotropic 3D gauge theory of the normal states of
doped Mott insulators is proposed in order to explain the
anomalous transport phenomena observed in overdoped cu-
prates. We argue that La22x Srx CuO4 interpolates between
a two dimensional layeredstrangemetal and a three dimen-
sional anisotropic anomalous metal for the doping range
x;0.1520.35. La22x Srx CuO4 doesnot evolve into an or-
dinary Fermi liquid in the overdoped range. The anisotropic
transport is characterized by a temperature scaleTd(x) of
dimensional crossover. At low temperature,T,Td(x), the
charge transport is coherent and three dimensional, and 3D
anisotropic gauge theory can describe the charge transport.
On the contrary, at high temperature,T.Td(x), the charge
transport is incoherent and two dimensional, and 2D gauge
theory with an interlayer hopping term describes charge
transport. The crossover of the out-of-plane transport is pe-
culiar: due to strong interaction, electrons do not constitute
an elementary excitation and decay into other particles dur-
ing interlayer tunneling. As a result, the character of the out-
of-plane transport may change from coherent to incoherent
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and that of the out-of-plane resistivity changes from metallic
to semiconductorlike.

There also is another temperature scaleTin which sepa-
rates elastic scattering from inelastic scattering as tempera-
ture increases. The detailed temperature dependence of the
resistivities is summarized in the tables below.

If Td(x)<Tin for some doping range, the following be-
havior of the resistivities is possible:

T<Td(x)<Tin Td(x)<T<Tin Td(x)<Tin<T

rab}rc}T
3/2 rab}T, rc}T

21/2 rab}T
3/2

If Td(x)>Tin ,

T<Tin<Td(x) Tin<T<Td(x) Tin<Td(x)<T

rab}rc}T
3/2 rab}rc}T

2 rab}T
3/2

This theory may provide a unified approach in under-
standing the variety of temperature behaviors of the in-plane
and out-of-plane resistivity of copper oxides in wide ranges
of doping and temperature. The results qualitatively agree
with the available experimental data.
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