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There exists strong experimental evidence for the dimensional crossover from two to three dimensions as
La,_,Sr,CuQ, compounds are overdoped. In this paper we describe the dimensional crossover of the layered
correlated metal in the gauge theory framework. In particular, we obtain the anomalous exponent 3/2 for the
temperature dependence of resistivity observed in overdopgd 8§8CuG, .

[. INTRODUCTION this case, scattering and resistivity generally increase with
temperature. We designate this type of transpodadeerent
The normal state properties of high- compounds are At high temperatures]>T4(x), all the relaxation times
anomalous. In particular, at optimal doping, in-plane resis-are shorter than the interlayer hopping time; thus the out-of-
tivity p,, decreases linearly with temperatdnehile out-of-  plane conductivity is determined by one particle tunneling.
plane resistivityp, increases with temperature. The differ- When the out-of-plane transport is due to one particle
ence between in-plane and out-of-plane transport reflects tHenneling, we face the question of whether an electron is a
layered structure of the cuprates and indicates the hoppirgUasiparticle or not. If it is, the out-of-plane conductivity is
character of the interlayer transport. It is generally believed’roportional to the one particle relaxation timeand de-

that cuprates evolve into Fermi liquids as doping increasesCr€ases as temperature increases. In this case, there is no

However, systematic studf&s of transport properties of difference betweem, and and the ratigp./p,p, is indepen-

overdoped La ,Sr,CuQ, have shown a deviation from the dent of temperature. N .
LY , If an electron is not a quasiparticle due to strong interac-
Fermi liquid as well as from the optimally doped com-

pounds. The temperature dependence of resistivity Wa'%on, (i.e., its Green function does not possess a palaew
' . . ecay timer; to true quasiparticles becomes relevant. We
found to beT® with an exponent close to 1%Also, in the y e 9 P

. ) call 7. the coherence time. If the interlayer hopping time is
overdoped regimexz 0.25), both in-plane and out-of-plane longer than the coherence time, the electron decays into qua-

resistivity exhibit similar_, aIt_hough anisotropic, temperatyresipartides during the hopping. We refer to this type of trans-
dependencep/pap, Which is on the order of 50-100, iS port asincoherent A feature of this incoherent transport is
almost independent of temperature and is not far from thenat rising temperature increases the out-of-plane mobility
value predicted by the band structure calculation, which isand decreases the resistivity. This incoherent transport,
roughly 257° This anisotropy of the overdoped which has no analogue in Fermi liquids is considered in this
Lay,_SKCuQ, is to be compared with the anisotropy at op- paper’
timal dopingx~0.15, which is on the order of 500-1000  Eventually, the temperature scdlg(x) which determines
nearT.. The above experimental data force us to concludehe dimensional crossover of 4aSr,CuQ, strongly de-
that there exists a dimensional crossover from a two dimenpends on the doping~ (0.15—0.35). The experimental data
sional anomalous (strange) metalt optimal doping to a of La,_,Sr,CuOQ, suggest that the overdoped
three dimensional anisotropanomalous metaih the over-  La,_,Sr,CuQ, most likely lies in the low-temperature coher-
doped case. ent regime, T<T4(x), while the optimally doped
The dimensional crossover takes place as the doping var-a,_,Sr,CuQ, lies in the high-temperature two dimensional
ies. In fact, it is also a crossover in temperature. To addresggime, T>T4(x). We consider the overdoped cuprates as
the problem of crossover we introduce a temperature scalgn intermediate metallic state which interpolates between the
Tq4(x), which depends on doping. At sufficiently low tem- two dimensionaknomalous strange mefaénd the conven-
peratures,T<<Ty(x), unless the superconducting transition tional three dimensional metal.
intervenes, any layered material is essentially three dimen- We propose that three dimensional anisotropic gauge
sional. This means, in particular, that only one transport timeheory may be a suitable model to describe the charge trans-
Tgl determines the temperature dependence of in- and ouport experiments in both the overdoped and the optimally
of-plane resistivity, and hence the raiiQ/p,;, is indepen- doped cuprates in a unified way.
dent of temperature. The nearly temperature independent an- Among theories for the anomalous normal states of cu-
isotropy ratio p,,/p. implies a common scattering prates near optimal doping, the two dimensiof2)) gauge
mechanism for in-plane and out-of-plane charge transport. Itheory’~° highly emphasizes the retarded scattering by the
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chirality fluctuations provided by infinitely strong on-site re-

pulsion. In particular it give§ -linear in-plane resistivity. In HZsz dzr{Z fZ(f)
this paper, we generalize the 2D gauge theory to 3D gauge “
theory in order to describe the charge transport in the coher-

ent three dimensional regime and the crossover between co- +b'(r)
herent and incoherent regimes.

We a!so note that diverse models capture other scattering s small interaction between layers can be represented by
mechanisms for the peculiar out-of-plane transport of

cupratedi-18:30 adding an interlayer hopping term,
The main results of this paper can be summarized as fol-
lows. In the low-temperature regim&<T4(x), the charge HE=t, > f d?r[Cna(r)Chi14()+ Hel. (2.2
transport is coherent and three dimensional, and three dimen- ;
sional anisotropic gauge theory is employed to describe th&/e neglect the interlayer magnetic exchange in
coherent charge transport. The resistivities are found to belLa,_,Sr,CuQ, since it is smaller than the intralayer magne-
tism by a factor of 10° [see, e.g.(Ref. 23]. We use the
32 modelH =H,p+ H* to describe the incoherent out-of-plane
Pap™pc* T7% (1.9 transport in the optimally doped two dimensional regime,
i.e., at T>Ty(x), where the interlayer hopping, is the
The anomalous exponent 3/2 of resistivities in the three dismallest energy scale.
mensional regime has been experimentally observed in over- At T<Ty(X), to which regime we believe the overdoped
doped La_,Sr,Cu0Q,.?3 La,_,Sr,CuQ, belongs, the system is assumed to be three
In the high-temperature regimd,>T4(x), the charge dimensional and we employ a different model which is an
transport is incoherent and two dimensional. This regime caghisotropic generalization of the two dimensional gauge
be described by two dimensional gauge theory with an intertheory (2.1):

layer hopping term. The resistivities behave as
YEropPIng b [(ZiV=a2  (—ig—ay)?
H3D=Jd3r fl(r) +

fa(r)

1 .
_ao_MF_m(V_la)z
F

. 2.9

1
_ao_ﬂs_m(v_ia)z)b(r)

. 2mi 2m;
Pab* T, pcx—=. (1.2) + (_iv_a)z (_iaz_ az)z
T =30 Tal) +1(N)| —5 o 2m
Ironically, gauge theory suggests a different physical — g — 3o b(r)}. (2.3
mechanism which also givgs,,= T*? (but incoherenp,) in

the two dimensional regime. Atigh temperature the scatter-
ing by the chirality fluctuations becomes inelastic. The in-
elasticity changes the linear temperature dependence of tHe

resistivity toT*% turbative calculation of resistivities. The microscopic basis
The remainder of the paper is organized in the followin ; )
pap g gof the 2D model(2.1) is weak; nevertheless the model has

way. In Sec. Il, we introduce gauge theories for the incoher-t " . | foat Thi del has b derived b
ent and coherent regimes and derive the formulas necessag#raC IVe universa; features. This model nas been derived by

21 ; ; :
for the calculation of resistivities. In Sec. lll, we calculate ffergrln au;hor%o hfrotm different phytglcal aﬁsumptmns. In
resistivities in the coherent regime and the dimensionaFel' h as rqngRsfo:rLorange magPe Ic er>]<c ange was esser:j—
crossover and experimental data are discussed. In Sec. yal, whereas in Ret. no magnetic exchange was assume

the out-of-plane conductivity in the two dimensional regimeat all. In Ref. 21m; andm”B_ are determined by the magnetic
is calculated. In Sec. V, we discuss the inelastic scatterinnghange‘J a”‘”j the hﬁ)pplng amplitude respectively. In
mechanism. We conclude this paper in Sec. VI. ef. 10, bothm andmy are determined by the hopping. In
both cases, the mod&.1) captures the physics of scattering
by chirality fluctuations, namely, by magnetic polarization
Il. THE GAUGE MODELS OF NORMAL STATES produced by mobile dopants. In considering the effects of
nonlocal retarded processes due to chirality fluctuation on
Strong on-site Coulomb repulsion forbids double occupathe normal state transport, it is reasonable to treat spinon
tions and imposes the constralitc; ,(r)cy(r)<1 (r are  massml and holon massnl, as phenomenological param-
coordinates on a layer amd labels the layess The gauge eters. It is even more so for the 3D modél3). The 3D
field is a tool to deal with this constraint. The constraint canmodel (2.3 is suggested by transport properties of over-
be implemented by representing an electronic operatofioped La_,Sr,CuQ,.2~> We have failed, however, in justi-
Cno(r) by the product of a fictitious spinof, ,(r) and a  fying this model in a quantitatively microscopic way for the
holon bﬁ(r) that keeps track of vacant sites: range of parameters known for a.Sr,CuQ,.
3o f L (N an(r)+bl(r)by(r)=1. One of them is a ferm- Another comment is that, although the two mod@sl),
ion, while the other is a boson. An accepted phenomenologi2.2), and(2.3) are different, they equivalently describe the
cal model for each layer that captures the vector character afimensional crossover of the in-plane transport. They are
the interaction has the foffnt®19-22 essentially different, however, as far as the out-of-plane

In layered materials the interplane masses and mg are
uch larger than the in-plane masssrﬂé and m”F.
A few comments are in order before we turn to the per-
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transport is concerned: while both models give the same rechemical potential. As a result, at low temperature,
sult for p; in the 3D regime, i.e., af<Ty, they give differ- T<Ty(x), the conductivity is determined by the bosonic

entp. atT>T,. The reason for this discrepancyTat-T4is  transport relaxation time:
that the 3D model2.3) neglects fluctuations of the ampli-

tude of effective intra- and interlayer electronic hopping but _ xe? _ g 2.4
stresses the fluctuations of their phases. This is a correct Tab EHB'T“’ Te mg T :

approximation at lowl. In contrast, the 2D modéR.1) and
(2.2) neglects the variations of in-plane hopping amplitude, To describe the incoherent out-of-plane transport in the
but takes into account the fluctuations of the interlayer amiwo dimensional regim@>T4(x), we adopt a different ap-
plitude which become important at high temperature. proach. In this case the interlayer tunneling is a perturbation
At a temperature range where the effects of Bose condersf the 2D model(2.1) and (2.2). In the lowest order of?
sation are irrelevant, the chirality fluctuations are small andhe Kubo formula gives
can be treated perturbatively. The tendency to condense is
suppressed by the gauge interaction and strong on-site repul- ) 0o [* de d?p INg(€)
sion: the holons are hard core bosons. These effects are be- og =2e7t] ffxﬂ 2m2\ T se
yond the perturbation theory and have remained obscure. As
a result we do not know the low-temperature bound of the
perturbation theory. Of course the upper estimate of the X
bound is given by the mean field value of the Bose conden-
sation temperatur@,~x/mg. For cupratesT, is too high  where GR(x—vy) is the retarded Green function of two di-
(around 1500 K The Bose condensation effects make a perimensional electrons in a layer.
turbative treatment questionableTa& T, unless the interac- In a Fermi liquid, where the one particle Green function is
tions decreases the characteristic temperature gakub-  characterized by a relaxation time, Eq. (2.5 gives
stantially, and thus drag down the perturbation theory tQT(C°)~e2tfmT; thus p. is proportional top,,. p. appears to
much lower temperatuf®? It is also likely that Bose con- pe metallic and coherent even thoughis the lowest energy
densation is completely destroyed due to the retardedness gtale.
the gauge interaction and hard core nature of holons. A re- The situation is very different in the gauge theory as well
cent quantum Monte Carlo study also supports the latteas in any other theory where the electron is not a quasipar-
point of view?* ticle, i.e., the electron Green function does not possess a
In three dimensional gauge theory the gauge field fluctuaguasiparticle pole. In the gauge theory framework the elec-
tion is less effective than 2D gauge field fluctuation in sup-tron decays into a “spinon” and a “holon” and does not
pressing Bose condensation. Nevertheless, the retardednegshstitute stable excitations. Spinons and holons themselves
of gauge interaction and the hard-core nature of holons argre coupled by the gauge field and are not true quasiparticles,
also valid in the three dimensional case, hence we expeefither. However, al>T,, the gauge coupling is weak, so
Bose condensation is sufficiently suppressed, or even can BRat in the first approximation the electron Green function is
destroyed completely as in the 2D case, to permit the pertuisimply a product of noninteracting fermion and boson Green
bative treatment of 3D gauge theory. We do not address thifinctions. The short range decay of the boson Green function
problem further in this paper. in a layer destroys the coherence between electrons on dif-
The strategy of the perturbative calculation of the transferent layers. The calculation of”) using Eq.(2.5) is pre-
port in gauge theory is well knowiT!*!%!Let us assign sented in Sec. IV. We also note that similar calculations of
electric charge to, say, the fermions. Then one may find thene out-of-plane conductivity have been attempted in Refs.
spinon and holon currents produced by an external electrorg and 20. Their results do not agree with each other
magnetic fieldAS and the gauge field: (pc= /T in Ref. 18, p.x T in Ref. 20 and are also differ-
ent from ours . 1/\T).

2

: (2.9

ll GR
- Im (e,p)

=@, + AT, jR=T15a,,
EB . _— . L lll. ANISOTROPIC COHERENT TRANSPORT
wherell ), ’(k,w) is a fermionic(bosonig polarization op-
erator. An infinite on-site repulsion, implemented by the In this section we calculate the transport time based on
gauge field, causes the spinon current to be opposite to thanisotropic 3D gauge theor2.3). The calculation of the
holon current,jZ:—jE. This allowes us to find electro- conductivity of the system interacting via gauge forces is
magnetic current as a response to the external electrgeculiar. To obtain the conductivity one must sum up the
magnetic fie|d-jM:j,FL:HmySA§Xt- The physical conductiv- Iea}dmg t(_:orrectlon? to |t_r|1e vertextﬁnd Green funcilog tc);f ttrrl]e
: _ —1rrphysy o I olarization operator. However, they are connecte e
ity 01’“_“) szys(k—o,w) Is given by the combination \F;Vard identity.QI'his connection imple?/nents the gauge in)\//ari—
rule? . \ \ . .
ance of interaction. Moreover, in two dimensions the correc-
ohy AP . B . tions to the Green function and to the vertex diverge, al-
[0k, @) ] = (11, (K, )]+ [T, (K@) ] though taken all together they give a finite result. Naively it
looks as if there exists a difference between transport relax-
At low temperature the fermionic contribution is smaller ation time and the one particle relaxation time determined by
than the bosonic onfe!®*°This is, roughly, due to the tem- the decay of the one particle Green function. In fact, in our
perature dependence of the number of bosons at a givemodel, those relaxation times are identical if one chooses a



11820 H. C. LEE AND P. B. WIEGMANN 53

proper gauge invariant definition of the one particle relax- d®p

ation time, namely, as the decay of the gauge invariant Green  ImIIf}(w,k)=— Zﬂwf (ZT)svi(p+ K)vj(p)
function G, (x) = (b(x) exp([§adxX)b’(0)), calculated on the

mass shell. Then the tail factor exffa,dx) takes care of the ane(&p)
vertex corrections. For small and smooth gauge fields, the o (9—§p
gauge invariant Green function does not depend on the path
of the tail.

The first step of the computation of conductivity in the 3D
gauge theory(2.3) is to determine the propagators of the
gauge fields. Since the gauge field is a Lagrangian multiplier, (3.6
its dynamics emerges entirely from the polarization producegyhere v,(p)= deplop, €y=€p—ps, Ve=V(pg) is the
by bosons and fermions. Perturbatively, it is given by fermi-Fermi velocity, # is the angle betweerve and k,

)5(w+§p_§p+k)

H de dp,
~-2mmeo | o EUFiUFja(gpFJrk)v

onc and bosonic loops: pe=mlvr, and the integration oveg, is limited by the in-
F B verse interlayer distance/d. Using (mﬁd)‘lkz<kaH we
I,k @) =11, (k,0) +11,,(k,0). 3D find thatve is almost perpendicular tio. Under these con-

The propagators of the gauge fields in the transverse gaug%“ons the Landau damping is similar to the 2D one. At low

; - <vgk) we have
are the inverse of the polarization operator: FoI

_ _ - Pr o
(AL (K,@)A,(—K,—©))=D,(k,w)=(IT,,) 1(k,a)gé.2) IMITR (w,k)=— W—z K

The scalar component of the gauge field is short ranged due

to Debye screening, while the unscreened transverse part of IMITR,w,k)= —(
the vector potential produces anomalously strong scattering.

As in the 2D case, the fermionic contribution is the larger
one, so that only the transverse componemﬂfp;(k,w) are
needed. Owing to the uniaxial symmetry, the matrifgs
andIlj; (i,j=x,y,z) can be parametrized by two elements
(Dy,D,) and (I,I1,), respectively,

I 2
me Pr @
2dme|L:) Ek_II 59

Assuming that the gauge field is in equilibrium, the relax-
ation time of bosons scattered by the gauge field in the sec-
ond order of the gauge field&°

3 Bk [=do .
~y ~y 5 s T (p)NJWJQ ?Im<[vp><kB(w,k)]
Dxx:kyD\\+kzDL , Dyy: kXD“+ k:D, ,

X [VpXK-B(@,K) ][ 1+ ng(w)]

D,=(k2+k3)D,, D,,=—kk,Dy,
2= (GHIGIDL, - D= koD X[ 1+ Ng(£p21)18(Ey— Epric— )| p| 2

y

Dy,=—kkD,, Dy,=—kk,D,, (3.3 (3.8
where where £,=€,— ug. The “magnetic field” B=V XA is a
chirality:
IT, K2+ 11, k2 —TT)K2 . . . -
- =TI, VX K- B(w,K) J[VpXKk-B(w,k)])=k|?vwlDii(w,k).
D”(w,k) HL(H”kﬁ—FHlkg) , Di(w,k)=II", <[ p (w,K)][ P (w )]> | | UplUp Ij(w (‘?39)

(3.9
N The factork? in the above expression comes from the talil
k=k/[K| is a unit wave vector alonlg, andkf is an in-plane  and guarantees the convergence of the scattering by soft
momentum. We assume that the conditiomg@) 'k, chirality fluctuations.
<vek) holds for typical momentum transfég,~ (mgT) Y2, The perturbation theory is valid only at high temperature
k”~(m‘|‘3T) Y2 \whered is the interlayer distance. Then where the effects of Bose condensation are negligible. There-
fore the factorng(é,«) is less than unity and can be ne-
. PE w glected. For the scattering of fermions, K8.8) remains the
H(w,k)=k2<x||—l—dp), same, except that the factor+hg(&,+¢) is replaced by
T 1-ng(&p+k)- According to Sec. II, the transport relaxation
time of bosong2.4) dominates over the fermionic one and
determines conductivities.
(3.5 At low temperature, the scattering is elastic. This means
that the gauge fluctuations are damped if the frequency
where yj<1/m| and x, =1/m¢ are the components of the w*~xy 1K) [seell|(k,®) in (3.5, y=pg/(wd)] ex-
diamagnetic susceptibilities, amik and vy are the Fermi ceeds temperature. This happensTatT;,=(y/x)2(m) 3
momentum and velocity of the two dimensional Fermi sur-(the opposite, inelastic case is discussed in SecTke out-
face. The imaginary parts of the fermion loop are given byof-plane component of the gauge field is damped at even
the Landau damping: higher frequency,rﬁé/mﬁ,)w*. Therefore one may take into

MR (w,k)=k?

fome e
X+ 2dpemg | wd ki)’
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account only thestatic chirality fluctuations. In static ap- 7, *~t, gives a temperature scale of the crossover,

proximation Eq.(3.8) takes the form T4=t, mgdy, . If the value ofmg can be identified with
43K |k|2 (t,d®~H, TéNXL/d-
—1,0 L _ On the contrary,r”‘l varies smoothly through dimen-
7w (P) Tf (2m)° |p|2UF’UPD”(O’k)g(gp Epk)- sional crossover and Ed3.12 is still valid for in-plane

(3.10  transport. The only difference is that the integration over
p, has to be cut off by the inverse interlayer distance, 1/
To obtain the conductivity, the momentum dependentTherefore, afr>(2méd2)—1,

transport timefrtjl(p) has to be averaged over the momen-
tum p with the Boltzmann distribution. The sole effect of the ., T 1
averaging is to replace momentum by its thermal value, T~ a (3.19
2 2 i 2.2 2L 2 X|Mg
pi~mgT, vi~T/mg, so thatpj<p?, vi>v?. Due to the
above anisotropkZ>kf holds and under this condition Eq. This is the well-knownT-linear in-plane resistivity in the
(3.9 simplifies to two-dimensional limit. Note that in this limigd= y .
The dimensional crossovers of the in-plane and out-of-
5 plane transport stem from different mechanisms and may oc-
k|> (3.11 cur at different temperatures. Nevertheless, if one assumes
that all phenomenological parameters of the out-of-plane part
where we kept only the term proportional 4§, neglecting ~ of the model are of the same ordengd®) "'~y /d~t,,
terms proportional ta?. The next step is the integration the estimate of the crossover temperature is
over the angle between andk;, which gives (’HkH)_l- The
last integrations ovek| and k, and the thermal averaging Ta()~1, . (3.1
overp yield 7, '= 7 '+ 7", wherer| " and 7 * are given
by:

=N

Yl
XK+ x K

X
X1

k|20 0D (0 k)~ k2+

Let us discuss the experimental implications of above re-
sults(3.14) and(3.16). According to the experimental data in
overdoped La , Sr, CuQ, pyp, is proportional toT ¢, where

ul
7t~ T_mﬁl , (312  1<a<2?°Notably in Ref. 2« was found to be very close
X|Mg to 3/2 for La_ Sr, CuQ, for x=0.25 and this agrees with
Eq. (3.19.
TVmeT In Ref. 2 it was indicated that th&*? dependence of
rjl~ — (3.13 pap May evolve into lineail dependence as the temperature
X1 Mg is lowered, which is contrary to the scenario of this paper.
However, a closer examination shows that the available data
Pap® pcx T3, (3.14  are insufficient to support the viewpoifitAlthough the di-

mensional crossover is not very clearly defined in the data of

The essential difference of the above result from the twoges 2,T4 (x=0.35) can be estimated to be around 800 K.
dimensional one is an extra factgl, which originates from  peasurements of the-axis polarized optical spectrum over
the 3D density of states. We acknowledge that TH€ de-  the doping range 0x< 0.3 (Ref. 5 are consistent with the
pendence of the resistivity in the context of gauge theory wagesistivity data. An estimate df, may be taken from the
mentioned in Ref. 9. optical conductiviy data. A Drude-like fitting gave
There is a simple way to understand E@3.12 and 7 '~ max@®,T%) with 1<a<2. In Ref. 5 the ratio of in-
(3.13: 7, and 7 contain the static chirality fluctuations plane and out-of-plane plasma frequencies was also mea-
(BX(K)~(Bj(K)~T/x, and (B(k))~T/x|, the pro- gyred. At dopingx=0.15 andx=0.3, wp /@, ~30 and
jected areas onto they andyz planes of the contour com- 10, respectively. These data enable one to get an estimate of
posed of the path of a boson in wunit time, t, using the formuld®2°
Sy~ (mmg) Y2 and S, ~(mb) "%, and the density of
states in the parallel and transverse directions,T)*2 and wp.1
(mgT)*2. Considering the products of three factors. and —=

_7 : . Wp|
7|~ can be attained, respectively.

As discussed in the Introduction, the anisotropic gaugevhere a=3.79 A is the lattice spacing in the layer and
theory(2.3) is assumed to be valid at temperatures below thei=13.21 A is the intercell distance of La,SrCuQ;.
dimensional crossover temperature. However, the 3D theOI’E;a:ﬁvF anduvg is the in-plane Fermi velocit§? Accord-
can give an upper limit for the crossover temperaflife  ing to, Ref. 27 band structure calculations yield
The interlayer relaxation rate; ' increases with the aniso- y-=3.1x 10" cm/s atx=0.15 andx=0.20. Combining all
tropy. When it reaches the interlayer hopping amplitudeof the above formulas and data we obtain a somewhat low
t, , the kinetic equation and, as a consequence, E4%2  value,t, ~200 K forx=0.3-0.35. In the overdoped case we
and(3.13), are no longer valid. Accordingly, the out-of-plane may rely on the band theory. The values of hopping ampli-
conductivity reverses its temperature behavior. It is likelytudes quoted in Ref. 18 are|~0.5 eV~6000 K and
that atT=Ty the out-of-plane wavelengthd/~(mgT) !  t, ~0.05 eV~600 K. The band theory value of is not very
reaches the interlayer distanc#®. Then the condition different from the value ot, obtained above from optical

d
a

t

E_éy




11 822 H. C. LEE AND P. B. WIEGMANN 53

data® This can be expected, since the interaction in the over- The simplest way to evaluate the integfal5) in gauge
doped case is not as strong as in the case of optimal dopintheory is to rewrite it in the form of Fermi and Bose density-
Near the optimal doping® t,~2.4meV=28K at density correlation functionsr and g using the decompo-
x=0.16, which is also obtained from the optical measuresition Eq.(4.2):
ments. The superconducting transition temperature at 5
x=0.16 is T;(x=0.16)=34 K. Thus near optimal doping ; _ ig-x+tior~(t) o, o _
the dimensional crossover can possibly be screened by the WF(Iw’q)_zx: fo dre” GF (0 NGF (=X~ ),
superconducting  transition  since T4(x=0.16)~t,
<T.(x=0.16). ) B
The estimates of 4(x) indicate that there is room for the WB("”’Q):E fo drel 107G (—x,— )G (x,7).
three dimensional regime in overdoped,LaSr, CuQ, (X
>0.25. The superscripts of the Green functions denote the two layers
involved in the hopping procegsop and bottom In terms
of g and g (2.5 takes the form

dw
(0)_ 9n2:2
oo = 2et] Eq ,[277

IV. INCOHERENT TRANSPORT
IN TWO DIMENSIONAL REGIME

In this section we consider the out-of-plane transport in
the two dimensinal high-temperature reginTe>Ty(X),
where the interlayer hopping amplitude is the smallest x( _ dng(w)
rate: the time of hopping; * is (i) longer than the in-plane dw
relaxation time andmore importantly (ii) longer than the
characteristic time of all kinds of magnetic fluctuations. This
case corresponds to the optimally doped L&r,CuQy.

Under the condition(i) the hopping term(2.2) can be

) Imwﬁ(w,q) ImWE(w,q). (4.3

At small frequency and momentum andTat T, the imagi-
nary parts of the polarization operators are

treated as a perturbation and under the condifiorthe ap- Im7R(w,q)= —mFa2L,
proximation which allows us to write the hopping tetth2) velq|
in the form of (2.3) is no longer valid. T °

It is instructive to compare the-axis conductivity of a Im7g(w,q)=— 0 gaZ——,
Fermi liquid with that of (2D) gauge theories. In a Fermi T veld|

liquid electrons in a layer are quasiparticles with some relaxyhere a is the lattice constant in a layer and
ation time and their retarded Green function has a pole in tth:(kBT/mB)uz is the thermal boson velocity. THe,/T
lower half plane. Then, provided that there is no mterIayerfactor of Imwg(w,q) comes from the Bose factor

scattering, Eq(2.9) yields Ng(€q=0)~exp(ug)=To/T. The momentum integration in
0 2.2 Eq. (4.3 is logarithmic and is cut bif/v¢ at the lower limit
oc ~eTIMeT. (4.1 (the condition for the existence of imaginary parts of polar-
ization function$. Due to the exponential decay of the Bose
Thereforep. and p,, have the same temperature depe”'factor[anB(w)/awoce*““VT] the frequency integral is con-
dence. _ , _vergent at the ultraviolet limit. The main contribution to the
' The S|tuat|0r_1 is different if t'he (_electron is not a quasipar-grequency integral comes from the infrared regian<T, in
ticle. Once the interlayer hopping is treatgd asa perturbatloq,vhich — ong(w)/dw~T/w?. The T/w? singularity is can-
the electron always decays to true quasiparticles during th@elled by w? coming from the numerator of “’TE Im#R
B .

interlayer tunneling, so the quantum states of the electron i . . . N
different layers are incoherent. As a result of this incoher-[:h]us the frequency integral gives'. Using To~x/mg and

ence, the out-of-plane transport is blocked and may be re~ arranging other factors, we obtain
Iaxegl by thermal processes, which is similar to a semicon- U(CO): constx eztfxmﬁ\/m_BT. (4.4)
ducting behavior.

The above case is true of a doped Mott insulator: at sufThe c-axis conductivity has been estimated in Ref. 20 in a
ficiently high temperature electrons decay very fast the  similar framework. The result of Ref. 20 is, however, differ-
time scale of 1J or 14;) into spinons and holons and do not ent from(4.4). In terms of resistivity(4.4) reads
constitute a stable excitation. At this temperature range the
gauge interaction is perturbative and the electron Green func- 1
tion is simply a product of fermion and boson Green func- Pco‘\/_f* (4.5
tions (recallc,= f ,b"):

which agrees with the “semiconducting” behavior @f ob-
Ge(x,y)=—(fOOfT(y)b(y)b' (X)) ~Gr(X,y) Gg(y,X). served experimentally in optimally doped cuprates.
4.2 The dimensional crossover to the anisotropic three dimen-
sional regime is complex. In particular, the interlayer hop-
Therefore, the propagating character of the fermion Greeping process(2.2) evolves into anisotropic gauge theory
function (f(x)fT(y))~el*Y-ve=t)] is blocked by the (2.3 through dimensional crossover and the elucidation of
localized boson Green function (b(y)b'(x))~T,/ the crossover requires much more sophisticated analysis. Let
T exp(|x—y|?mgT). us just note that the two mode(8.1), (2.2), and (2.3 are
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essentially different, so that an estimate of the crossover teny gives () ~*. The remaining momentum integration gives
perature from the high-temperature side may not necessarily T_jinear transport timer;, L-T/(xmg).21° Note that the
coincide Wlth the est!mate from the low-temperature side. '_r‘transport time is independent of Landau damping parameter
any case it is very likely that the crossover temperature i, which is not the case in the inelastic regime.
optimally doped cuprates falls below the superconducting At high temperature, T>T;,, w~w:>T and thus

) n:»

transition temperature. ng(w/T)<<1. Now the frequency integral is of the order of

A comment is necessary at this point. In optimalI - .
T o 0gA, whereA is some high-frequency cutoff. The momen-
La,_,SrCuQ,, nearT= 300K the out-of-plane resistivity 4, integral givesp*. Combining all factors and replacing

stops d(_acreaslng and starts to grow with temp'erature. Th e boson momentum by its thermal valuegT) 2 we ob-

up-turn is attributed to the structural transformation from the, _. ; o
. tain in the inelastic limit

high-temperature tetragonal phase to the low-temperature

orthorhombic phasé.Above this upturn temperature the

c-axis conductivity is still much lower than the Mott mini- . b

mal metallic conductivity €10 s/cm) and cannot be con- Tir Mgy y

sidered to be metallic.

3 3/2,,,1/2
T>“mg
oC

(5.3

The value ofT;, is very sensitive tang and can hardly be
estimated from the available experimental data. The slope of

Two dimensional gauge theory gives rise to linear tem-T-linear resistivity at optimal doping ~1.0u{} cm/K)
perature dependence of the in-plane resistivity of optimallygives x*° to be around 500 K. The resistivity data of over-
doped La_,Sr,CuQ, at low temperatures where scattering is doped La_ Sr, CuQ, suggest thaj(ﬁD is of the same order
elastic At sufficiently high temperatures inelastic processesasy 2°. The one loop value of the dampingis on the order
change the lineaf- behavior intoT¥2. This can be under- of 1.°
stood as follows. From the propagator of the gauge field The estimates aihg which enter intdT;, vary appreciably
DR(w,k) = (xk®—iyw/k) ! it follows that the energy trans- depending on the kinds of experiments. Optical conductivity
fer w scales likew,= yy~1k®. At finite temperature the bo- measurement8 provide the value ofmg at high energy:
son energy is typically of ordeF. Thus the typical momen- mg~2m,, which is almost independent of doping. In par-
tum transfer in the scattering of bosons by the gauge field isicular, mg~(2—3)m, is almost independent of the probe
(mgT)¥2. As a result the typical energy transfer in scatteringenergy scalén the overdoped rangérom another side the
would bew* ~ y/y(mgT)%2 This is larger than the thermal magnetic susceptibility data provide the valuenaf at low
energy of scattered bosons, i.@.,at T>T;,~(y/x)?1l/mg  energy: mg=~15m, near optimal doping®*® These esti-
and at this temperature the dependence of the propagators mates oimg makes the estimate df, range from 500 Kthe
has to be taken into account. This inelasticity softens theusceptibility datato 1¢° K (the optical data If one accepts
infrared singularity of scattering and thus leads to the lesthe lower estimate off;, one may exploit the inelastic
singular temperature dependence of resistivity. mechanism in order to explain tie’? behavior.

In the three dimensional case the scatteringbhy(k, ) In fact the optical estimate, which is close to the band
is almost always elastigee Sec. I, while the scattering by theory value, seems more realistic. This means that the in-
D|(k,w) can be inelastic at high temperature. It turns outelastic regime is likely irrelevant for the overdoped cuprates.
that T2 is very close toT2>. For the three dimensional
inelastic regime to be observed, the conditiBfP<T4(x)
should be satisfiedSee the discussion below on the experi-
mental estimate oTiﬁD andTﬁP.) In the three dimensional Anisotropic 3D gauge theory of the normal states of
inelastic regime we would have,,>T¥(mgT)¥%<T2, so  doped Mott insulators is proposed in order to explain the
the anomalous exponent 3/2 cannot be explained. Instead vagomalous transport phenomena observed in overdoped cu-

V. INELASTIC SCATTERING BY GAUGE FIELDS

VI. CONCLUSION

will discuss the two dimensional case in detail. prates. We argue that La, Sr, CuQ, interpolates between
In the 2D case Eq(3.9) reads a two dimensional layerestrangemetal and a three dimen-
. sional anisotropic anomalous metal for the doping range
1 d’k |pxk|? (»dw R x~0.15-0.35. Lg_, Sr, CuQ, doesnot evolve into an or-
Ty (D)NWJ 22 m Jo —1m D™(w,k) dinary Fermi liquid in the overdoped range. The anisotropic
B transport is characterized by a temperature sdale) of
k|2 dimensional crossover. At low temperatufie< T4(x), the

X[1+ nB(w)]5(§p—§p+k—w)W- (5.1  charge transport is coherent and three dimensional, and 3D
anisotropic gauge theory can describe the charge transport.
After angular integration it becomes On the contrary, at high temperatue>T4(x), the charge

transport is incoherent and two dimensional, and 2D gauge

N 1 el . 1) theory with an interlayer hopping term describes charge
T ™ WJO k ko d‘"m[lJrnB(w/T)]- transport. The crossover of the out-of-plane transport is pe-
(5.2) culiar: due to strong interaction, electrons do not constitute

an elementary excitation and decay into other particles dur-

At low temperature, T<T;,, w~wi<T and thus ing interlayer tunneling. As a result, the character of the out-
ng(w/T)~T/w>1. Then the frequency integral is finite and of-plane transport may change from coherent to incoherent
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and that of the out-of-plane resistivity changes from metallic This theory may provide a unified approach in under-
to semiconductorlike. standing the variety of temperature behaviors of the in-plane
There also is another temperature scBlewhich sepa- and out-of-plane resistivity of copper oxides in wide ranges
rates elastic scattering from inelastic scattering as temperg&f doping and temperature. The results qualitatively agree
ture increases. The detailed temperature dependence of théth the available experimental data.
resistivities is summarized in the tables below.
If T4(x)<T,, for some doping range, the following be-
havior of the resistivities is possible:
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