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We use the exact-diagonalization results for a one-dimensional finite-size boson Hubbard-like Hamiltonians
to initialize the renormalization-group equations in the vicinity of the superfluid-insulator transition and dem-
onstrate that this provides a rather accurate method of extrapolation of the finite-size results to larger system
sizes, and in particular, pinpointing the critical parameters of the Hamiltonians. With our approach we repro-
duce with the accuracy;2.5% the known analytical result for the transition point in the half-filled system of
hard-core bosons, obtain with a controllable accuracy the critical ratio (t/U)c50.30460.002 for the boson
Hubbard model, and find out that, in contrast to the general belief, the reduced Hamiltonian~with the constraint
that the site occupation numbers be less than 3) is far from being a good approximation to the full model.

In recent years the literature on superfluid-insulator tran-
sitions in one-dimensional~1D! systems~at T50) was en-
larged by exact numerical studies of finite-size Hubbard-like
models based either on the quantum Monte Carlo approach1,2

or on the diagonalization technique.3–5 All these studies suf-
fer one and the same generic shortcoming: dealing with the
essentially finite-size systems, they are rather inaccurate in
description of the transition region in the macroscopical
limit, even if some extrapolation procedure is used. For one
thing, the critical ratio of the hopping amplitude,t, to the
on-site repulsion,U, in the boson Hubbard model with the
filling factor n51 was reported to be (t/U)c50.215 in Ref.
1 while the result of Ref. 4 is (t/U)c50.275. The cause of
this shortcoming is quite clear from the universal macro-
scopic theory of 1D superfluid-insulator transitions6–8: in 1D
the finite-size effects vanish logarithmically slow with in-
creasing the size of the system. Hence, generally speaking,
one would need an exponentially large cluster to observe
macroscopical critical behavior. However, there is a way of
overcoming this difficulty. Indeed, from the macroscopic
theory it follows that the mesoscopic behavior of the system
in the transition region is universal, only the particular values
of the relevant parameters being unknown. Hence there
arises an idea to observe this mesoscopic behavior numeri-
cally, fixing thus the unknown parameters, then to take ad-
vantage of the macroscopic theory to extrapolate the results
on larger systems, and in particular on the infinite one to
obtain the critical parameters of the Hamiltonian. In this pa-
per we show how this can be done practically.

For definiteness, we consider the superfluid–Mott-
insulator transition in a commensurate system. We realize,
however, that our approach is applicable to the superfluid–
Bose-glass transition in 1D disordered system as well.

The renormalization group equations for 1D superfluid in
a commensurate potential read8

dK/dl5w2, dw/dl5~22p2/K !w. ~1!

HereK5v/pLs , v is the sound velocity,Ls is the super-
fluid stiffness;l5 lnL, L being a characteristic scale of dis-
tance which we will interpret as the size of the system;p is
the denominator of the filling factor expressed as an irreduc-
ible fraction. While the value ofK(l), being related toLs
and v is directly available from the exact-diagonalization
spectra~see, e.g., Ref. 5!, the value ofw(l) can be obtained
only by some recalculation. Instead of this recalculation one
may take advantage of the integral of Eqs.~1!:

QS 2K~l1!

p2
,
2K~l2!

p2
,cD54~l22l1!,

Q~a,b,c!5E
a

b dx

x2 lnx2c
. ~2!

The constantc arises as a result of integrating out the vari-
ablew and is related to the particular form and parameters of
the microscopic Hamiltonian. As is seen, its value is fixed
once one knows the value ofK at two different system sizes.
To make sure that a system really obeys the universal rela-
tions ~1! one may just check that the value ofc is indepen-
dent of the choice ofl1 andl2 @up to some small finite-size
corrections to Eqs.~1!#. Then, given the value ofc and
K(l1) (l1 being the largestl available numerically! one
can obtain from~2! the value ofK at anyl2 . Corresponding
mesoscopic value of the superfluid stiffness is
Ls(l2)5v/pK(l2), the value ofv being irrenormalizable.

In the superfluid phase the constantc is always less than
unity, the valuec51 corresponding to the transition point
whereK(l→`)5p2/2.6–8Thus to obtain the critical param-
eters of the Hamiltonian one should find such their combina-
tion that satisfies Eq.~2! with c51. We must note here that,
besides the true critical point, Eq.~2! has another~nonphysi-
cal! solution lying well inside the insulating region. It may
be shown, however, that this solution occurs only at
K(l1),K(l2).p2/2 and hence can be easily distinguished
from the physical one.
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Now we turn to our numerical results. We studied by
Lanczos diagonalization method a few boson Hubbard mod-
els describing by the Hamiltonians of the form~either with
or without a constraint on the maximum possible site occu-
pation number!

H5(
i51

Na H 2t~eiu/Naai
1ai111 H.c.!1

U

2
ni~ni21!

1Vnini11J . ~3!

Here ai is the annihilation operator on the sitei ;
ni5ai

1ai . We use periodic boundary conditions and intro-
duce the gauge phaseu, which is convenient for calculation
of Ls by definition:

Ls5 lim
u→0

2Na@E0~u!2E0~0!#/u2, ~4!

whereE0(u) is the ground-state energy at the gauge phase
u. This way of calculatingLs is more accurate than that
based on the supercurrent level evaluation5 because of the
splitting of the latter. With Eq.~4! and the sound velocity
obtained from the one-phonon energyE ph(m)
5(2p/Na)vm one obtainsK5v/pLs and can take advan-
tage of Eq.~2!. The most convenient choice of the momen-
tum is m51, E ph(1)5E12E0 , whereE1 and E0 are the
lowest levels in the sectors of the unit and zero momenta,
respectively. Note that for calculatingLs and v one needs
only the lowest eigenvalues of the matrices, provided the
numerical procedure makes use of the translational symme-
try of the Hamiltonian.

First, we test our procedure on the exactly solvable model
of hard-core bosons with the filling factorn51/2. This
model is described by the Hamiltonian~3! with U→` ~or
the constraint that the site occupation numbers be less than
2!. This model, which at the particular filling factorn51/2 is
equivalent to the Heisenberg spin-1/2 chain, is known to un-
dergo the superfluid-insulator transition atV/t52.9 Our aim
is to reproduce this result within our approach. In Table I we
present the numerical data.Na

(1) andNa
(2) are the two system

sizes@l15 lnNa
(1) andl25 lnNa

(2)#, (V/t)c is the value of the
ratio V/t at which Eq.~2! with c51 is satisfied at given
Na
(1) and Na

(2) . We takeNa
(1) as close toNa

(2) as possible
@Na

(1)5Na
(2)22# to minimize finite-size errors. Our data al-

low us to set the limits on the true macroscopic value of
(V/t)c . Indeed, as follows from Table I, (V/t)c as a function
of x51/Na

(2) has a steadily decreasing derivative asx ap-
proaches zero. Consequently, the limiting value of (V/t)c
should necessarily lie between two points, one being the
value corresponding to the minimalx5x* , and the other

being the result of the extrapolation by the straight line pass-
ing through the points corresponding tox* and the previous
one. This yields

~V/t !c51.9960.05 ~hard-core bosons!. ~5!

So we have reproduced the exact result with the accuracy of
2.5%. Consider now the full boson model which is described
by the Hamiltonian~3! without any constraint. Since in this
case the nearest-neighbor interaction does not introduce any
qualitative difference, and bearing in mind comparison with
the above-mentioned results of the other authors, we leave in
the Hamiltonian only the on-site interaction. From the data
presented in Table II we conclude that at the filling factor
n51 the transition occurs at

~ t/U !c50.30460.002 ~ full boson model!. ~6!

Note that while the maximum available system size now is
two times smaller than in the case of the hard-core bosons,
the relative accuracy~better than 1%! is higher.

Recently the strong-coupling expansion for Bose Hubbard
model was presented.10 The critical value oft/U for the Mott
transition in 1D pure system with one particle per site~ex-
tracted from the Kosterlitz-Thouless extrapolation of the
third-order results for the dielectric gap! is found to be
0.265. Although this value is noticeably greater than the non-
extrapolated result (t/U)c50.215 reported earlier11 it still
differs from ours. The difference may be attributed to the fact
that the curves being extrapolated in Ref. 10 are essentially
approximate. In this connection note that the lower branch of
the phase boundary~Fig. 1 of Ref. 10!, if shifted a bit down,
will fit the quantum Monte Carlo results better and will move
(t/U)c towards our value Eq.~6!.

The so-called reduced model differs from the full one by
the constraint that the only possible site occupation numbers
are zero, one, or two. There is a belief that this constraint is
not so restrictive and the reduced model thus may be consid-
ered as a good approximation to the full one.12,13 In this
connection our results for the reduced model turn out to be
rather unexpected: we have found that Eq.~2! with c51 has
no physical solution atU>0, which means that the reduced
model is in the insulating state everywhere in this region. In
particular, in the vicinity of the transition point of the full
model, (t/U)c'0.3, parameterK of the reduced model at
our maximum numerically availableNa516 is close to 0.7,
i.e., the system is well inside the insulating region. The data
for K as a function of the system size atU50 ~the most
favorable point for superfluidity atU>0, if any! are pre-
sented in Table III. We see thatK is still a bit smaller than
the critical value 0.5, but has a tendency to increase. It
should be noticed, however, that the particular behavior of
K(Na) at U50 is rather poorly fitted by the relation~2!.

TABLE I. Hard-core bosons with the filling factorn51/2.

Na
(2)/Na

(1) (V/t)c

24/22 1.937
22/20 1.927
20/18 1.914
18/16 1.898

TABLE II. Full boson model with the filling factorn51.

Na
(2)/Na

(1) (t/U)c

12/11 0.3059
11/10 0.3062
10/9 0.3068
9/8 0.3078
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Hence the extrapolation to largerNa’s is not so reliable.
Besides, from Table III it is seen that a pronounced dielec-
trization ~divergency ofK) will occur, if any, only at very
large system sizes.

It is worth mentioning the value of (t/U)'0.6 whereK at
Na516 becomes greater than 0.5. This value might be con-
sidered as the lower bound for the transition point, should
our extrapolation procedure turn out to be inapplicable to the
reduced model for this or that reason.

Physically such a behavior of the reduced model can be
understood if one takes into account that the requirement
having at most double occupancy plays a role of specific
repulsive interaction which turns out to be rather strong, in
contrast to what one could expect.

A discussion of Ref. 12 is in order here. In this reference
the Bethe-ansatz~BA! for 1D boson Hubbard model was
studied, and it was shown that despite the fact that BA is not
an exact method for this problem it yields an excellent ap-
proximation to the results obtained by quantum Monte Carlo
simulations.@The only inconsistency of BA is a divergency
of the superfluid density in a close vicinity of the critical
point.# Note also that the BA value (t/U)c51/2A3'0.289
~Ref. 12! is very close to ours. The success of BA for the full
boson Hubbard model was attributed to the small probability
to find a multiply ~i.e., more than doubly! occupied site.
Moreover, it was claimed that if this probability were zero,
BA approximation would be exact. Clearly, this particular

assertion is in a sharp disagreement with our results on the
reduced model: in this case there are no multiply occupied
sites by definition, but instead of observing a perfect corre-
spondence with the BA results of Ref. 12 we see a dramatic
change in the properties of the system.

We have also considered the model with the constraint
ni,4 at n51. In contrast to the modelni,3, we found the
critical properties of this system to be very close to these of
the full model. In particular, for the transition point we ob-
tained (t/U)c50.31360.003. The value ofK atU50 @to be
compared to the modelni,3# is '0.20.

In conclusion, we have presented a method which yields a
regular solution to the known 1D problem of logarithmically
slow convergence of the finite-size results towards the ther-
modynamic limit in the vicinity of the transition points, and
in particular allows pinpointing the critical parameters of the
Hamiltonians with a few percent accuracy. Upon a success-
ful testing of the method on the exactly solvable half-filled
hard-core boson Hubbard model we have used it to find the
critical point of the commensurate~one particle per site! bo-
son Hubbard Hamiltonian, where previously reported results
demonstrate a considerable discrepancy with each other. Our
result ~obtained with less than 1% accuracy! turns out
to be very close ~within ;3%! to the Bethe-ansatz
approximation,12 not far (;10%! from those of Refs. 4,10,
and differs noticeably (;30%! from the result of Ref. 1.

We have also observed an unexpectedly important role of
triply occupied sites in the commensurate boson Hubbard
model: a constraint prohibiting more than doubly occupied
sites changes dramatically the long-range properties of the
system and can even destroy superfluidity at any value of the
on-site repulsion.
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TABLE III. Reduced model with the filling factorn51 at
U50.

Na K

16 0.4523
15 0.4516
14 0.4505
13 0.4492
12 0.4477
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