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We use the exact-diagonalization results for a one-dimensional finite-size boson Hubbard-like Hamiltonians
to initialize the renormalization-group equations in the vicinity of the superfluid-insulator transition and dem-
onstrate that this provides a rather accurate method of extrapolation of the finite-size results to larger system
sizes, and in particular, pinpointing the critical parameters of the Hamiltonians. With our approach we repro-
duce with the accuracy-2.5% the known analytical result for the transition point in the half-filled system of
hard-core bosons, obtain with a controllable accuracy the critical ratid) {=0.304=0.002 for the boson
Hubbard model, and find out that, in contrast to the general belief, the reduced Hamiliwitiathe constraint
that the site occupation numbers be less than 3) is far from being a good approximation to the full model.

In recent years the literature on superfluid-insulator tranHere K=v/7Ag, v is the sound velocityA; is the super-
sitions in one-dimensiondflD) systems(at T=0) was en- fluid stiffness;A =InL, L being a characteristic scale of dis-
larged by exact numerical studies of finite-size Hubbard-liketance which we will interpret as the size of the systgnis
models based either on the quantum Monte Carlo apptdach the denominator of the filling factor expressed as an irreduc-
or on the diagonalization technigéie’ All these studies suf- ible fraction. While the value oK(\), being related to\ g
fer one and the same generic shortcoming: dealing with thend v is directly available from the exact-diagonalization
essentially finite-size systems, they are rather inaccurate ispectra(see, e.g., Ref.)5the value ofw(\) can be obtained
description of the transition region in the macroscopicalonly by some recalculation. Instead of this recalculation one
limit, even if some extrapolation procedure is used. For onégnay take advantage of the integral of E¢B:
thing, the critical ratio of the hopping amplitudg, to the
on-site repulsionl, in the boson Hubbard model with the 2K(Ap) 2K(Ap) —A(ha—
filling factor »=1 was reported to bet{U).=0.215 in Ref. p> ' p? €| =42~ M),
1 while the result of Ref. 4 ist(U),=0.275. The cause of
this shortcoming is quite clear from the universal macro- b dx
scopic theory of 1D superfluid-insulator transitibrsin 1D Q(a,b,c)= L X—Inx—c¢"
the finite-size effects vanish logarithmically slow with in-

Creasing the size of the System_ Hence, genera”y Speakina—,he constant arises as a result of integrating out the vari-
one would need an exponentia”y |arge cluster to Observéblew and is related to the partiCUlar form and parameters of
macroscopical critical behavior. However, there is a way ofthe microscopic Hamiltonian. As is seen, its value is fixed
overcoming this difficulty. Indeed, from the macroscopic ©nce one knows the value &f at two different system sizes.
theory it follows that the mesoscopic behavior of the systeml © make sure that a system really obeys the universal rela-
in the transition region is universal, only the particular valuestions (1) one may just check that the value ofis indepen-

of the relevant parameters being unknown. Hence thergent of the choice ok; and; [up to some small finite-size
arises an idea to observe this mesoscopic behavior numegorrections to Egs(1)]. Then, given the value o€ and
cally, fixing thus the unknown parameters, then to take adk(A1) (A being the largesh available numerically one
vantage of the macroscopic theory to extrapolate the resul@an obtain fron(2) the value oK at any\,. Corresponding

on larger systems, and in particular on the infinite one tanesoscopic value of the superfluid stiffness is
obtain the critical parameters of the Hamiltonian. In this pa-As(Ap) =v/7K(\;), the value ofv being irrenormalizable.
per we show how this can be done practically. In the superfluid phase the constanis always less than

For definiteness, we consider the superfluid—Mott-unity, the valuec=1 corresponding to the transition point
insulator transition in a commensurate system. We realizevhereK (A — ) =p?/2.5-8 Thus to obtain the critical param-
however, that our approach is applicable to the superfluid-eters of the Hamiltonian one should find such their combina-

@

Bose-glass transition in 1D disordered system as well. tion that satisfies Eq2) with c=1. We must note here that,
The renormalization group equations for 1D superfluid inbesides the true critical point, ER) has anothetnonphysi-
a commensurate potential réad cal) solution lying well inside the insulating region. It may
be shown, however, that this solution occurs only at
dK/dh=w?, dw/dx=(2—p?/K)w. ) K(\1),K(\,)>p?/2 and hence can be easily distinguished

from the physical one.
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TABLE |. Hard-core bosons with the filling factar=1/2. TABLE Il. Full boson model with the filling factow=1.
NP/ND (VI1), NN (t/U),
24/22 1.937 12/11 0.3059
22/20 1.927 11/10 0.3062
20/18 1.914 10/9 0.3068
18/16 1.898 9/8 0.3078

Now we turn to our numerical results. We studied by being the result of the extrapolation by the straight line pass-
Lanczos diagonalization method a few boson Hubbard moding through the points correspondingxg and the previous
els describing by the Hamiltonians of the fori@ither with  one. This yields

or without a constraint on the maximum possible site occu-
pation number (VIt).=1.99+0.05 (hard-core bosons 5)

Na U So we have reproduced the exact result with the accuracy of
H=Y> :_t(ei MNagtay,,+ H.C)+ —ni(nj—1) 2.5%. Consider now the full boson model which is described
i=1 2 by the Hamiltonian(3) without any constraint. Since in this
case the nearest-neighbor interaction does not introduce any
+Vnini+1’- 3) qualitative differ.ence, and bearing in mind comparison with_
the above-mentioned results of the other authors, we leave in
the Hamiltonian only the on-site interaction. From the data
presented in Table Il we conclude that at the filling factor
v=1 the transition occurs at

Here a; is the annihilation operator on the sitg
ni=a;"a;. We use periodic boundary conditions and intro-
duce the gauge phagke which is convenient for calculation

of A¢ by definition: (t/U).=0.304+0.002 (full boson model. (6)
A= lim 2N, [Eq(6) —Eq(0)]/ 62, (4)  Note that while the maximum available system size now is
6—0 two times smaller than in the case of the hard-core bosons,

. i the relative accuractbetter than 1%is higher.
whereEq(0) is the ground-state energy at the gauge phase Recently the strong-coupling expansion for Bose Hubbard

6. This way of calculatin is more accurate than that "
based on t%e supercurrer?tA ISeveI evaluatibecause of the modgl_wa; presentefiThe crltlca}l value ot/ U for the MOH
transition in 1D pure system with one particle per sie-

splitting of the latter. With Eq(4) and the sound velocity tracted from the Kosterlitz-Thouless extrapolation of the

obtained from - the one-phonon -energyE (M) i order results for the dielectric gagis found to be

t; éiﬂfNéév(g; O‘Ir']ﬁeorg?sl?sc};;\ye/rzé\rft acmicc::noﬁﬁz ?r?c\)/r?lg-n-o'%s' Although this value is noticeably greater_the}n th_e non-

tum is m=.1 E (1)=E,— E,, whereE, and E, are the extrapolated resultt(U)_C=0.215 reported garhé]r it still

lowest Ievel’s inp?he secltors Oéf the unitland zeoro moment differs from ours. T.he difference may be attributed to the f‘f"Ct

respectively. Note that for calculating, andv one needs %hat the curves being extrapolated in Ref. 10 are essentially
: . s . approximate. In this connection note that the lower branch of

only the lowest eigenvalues of the matrices, provided th%he phase boundarig. 1 of Ref. 10, if shifted a bit down

numerical progedu_re makes use of the translational SYMMETill fit the guantum Monte Carlo results better and will move
try of the Hamiltonian.

First, we test our procedure on the exactly solvable modeqt/U)C towards our value E(f). .
of hard-core bosons with the filling factor=1/2. This The so-called reduced model differs from the full one by

model is described by the Hamiltonid8) with U—oo (or the constraint that the only possible site occupation numbers

the constraint that the site occupation numbers be less th are zero, one, or two. There is a belief that this constraint is
2). This model, which at the particular filling facter=1/2 is t so restrictive and the reduced model thus may be consid-

equivalent to the Heisenberg spin-1/2 chain, is known to un-eer as a good approximation to the full df€? In this
q O g spin-_J. "9 . connection our results for the reduced model turn out to be
dergo the superfluid-insulator transition\att=2." Our aim

is to reproduce this result within our approach. In Table | Werather unexpected: we have found that &).with ¢=1 has
P ) 1) (Z)pp ) no physical solution at)=0, which means that the reduced
present the numerical datid;;’ andNy™’ are the two system

. ) o an) : moo!el is in_ the insglgt@ng state every\_/v_here in this region. In
sizes[A;=InNy” and o =InNg"], (V/t)¢ is the value of the  particular, in the vicinity of the transition point of the full
ratio V/t at which Eq.(2) with c=1 is satisfied at given mogel, t/U).~0.3, parameteK of the reduced model at
NS and N§?. We takeN$ as close toN{? as possible  our maximum numerically available,= 16 is close to 0.7,
[N{H=N{? - 2] to minimize finite-size errors. Our data al- i.e., the system is well inside the insulating region. The data
low us to set the limits on the true macroscopic value offor K as a function of the system size dt=0 (the most
(VIt).. Indeed, as follows from Table I\Mt). as a function favorable point for superfluidity atJ=0, if any) are pre-

of x=1/N§f) has a steadily decreasing derivativexagp-  sented in Table Ill. We see th&t is still a bit smaller than
proaches zero. Consequently, the limiting value Wftj,  the critical value 0.5, but has a tendency to increase. It
should necessarily lie between two points, one being thehould be noticed, however, that the particular behavior of
value corresponding to the minimak=x, , and the other K(N,) at U=0 is rather poorly fitted by the relatio®).
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TABLE IIl. Reduced model with the filling facton=1 at  assertion is in a sharp disagreement with our results on the

U=0. reduced model: in this case there are no multiply occupied
sites by definition, but instead of observing a perfect corre-
Na K spondence with the BA results of Ref. 12 we see a dramatic

16 0.4523 change in the properties of the system.

We have also considered the model with the constraint

15 0.4516 n;<4 atv=1. In contrast to the modei; <3, we found the
1‘31 8'2282 critical properties of this system to be very close to these of

the full model. In particular, for the transition point we ob-
12 0.4477 tained ¢/U).=0.313+0.003. The value ok atU=0 [to be
compared to the model, < 3] is ~0.20.

In conclusion, we have presented a method which yields a
regular solution to the known 1D problem of logarithmically
slow convergence of the finite-size results towards the ther-
modynamic limit in the vicinity of the transition points, and
It is worth mentioning the value ot{U)~ 0.6 whereK at ||[|1 pa_rliicu_lar allq\t/\r/]s pifnpointing tt:[le critical palzameters of the
_ . ; amiltonians with a few percent accuracy. Upon a success-
Na=16 becomes greater than 0.5. This value might be Con_ul testing of the method on the exactly solvable half-filled

sidered as the lower bound for the transition point, Shou'iward—core boson Hubbard model we have used it to find the
our extrapolation procedure turn out to be inapplicable to the ".. . . .
critical point of the commensuratene particle per sibebo-

reduced model for this or that reason. S .
gon Hubbard Hamiltonian, where previously reported results

Physically such a behavior of the reduced model can b : ) :
understood if one takes into account that the requiremenqemonsnate a considerable discrepancy with each other. Our

having at most double occupancy plays a role of specifiéesult (obtained with less than 1% accuraciums out

PN )
repulsive interaction which turns out to be rather strong, in© be Very nlczlose (]:N'thmlof f’) tohthe ?eéh? ar;si';z
contrast to what one could expect. approximation,” not far (~10% from those of Refs. 4,10,

A discussion of Ref. 12 is in order here. In this referencend differs noticeably £ 30%) from the result of Ref. 1.

the Bethe-ansatBA) for 1D boson Hubbard model was . We have.also pbse_rved an unexpectedly important role of
studied, and it was shown that despite the fact that BA is no}fiPly occupied sites in the commensurate boson Hubbard

an exact method for this problem it yields an excellent ap_model: a constraint prohibiting more than doubly occupied

proximation to the results obtained by quantum Monte CarloSites changes dramatically the Iong-r_ar_lge properties of the
simulations[The only inconsistency of BA is a divergency system and can even destroy superfluidity at any value of the

of the superfluid density in a close vicinity of the critical ON"Sité repulsion.

point.] Note also that the BA valuet,(U)c=1/2\/§~O.289 The authors are grateful to A.l. Podlivaev for the assis-
(Ref. 12 is very close to ours. The success of BA for the full tance in performing the numerical calculations. This work
boson Hubbard model was attributed to the small probabilitywas supported by Russian Foundation for Basic Research
to find a multiply (i.e., more than doub)yoccupied site. (Grants No. 94-02-05755a and No. 95-02-0619RV.S.
Moreover, it was claimed that if this probability were zero, also acknowledges support from Grant No. INTAS-93-2834
BA approximation would be exact. Clearly, this particular [of the European Community

Hence the extrapolation to largét,’s is not so reliable.
Besides, from Table Il it is seen that a pronounced dielec
trization (divergency ofK) will occur, if any, only at very
large system sizes.
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