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An exact solution for helical magnetic vortex structure in a type-II superconductor strip subjected to a
magnetic field parallel to a transport current is obtained. A field-dependent characteristic current of flux-line
instability with respect to helical distortions is found to be comparable to experimental values of the critical
current of dissipation onset in thin films. A resistive picture following from the above results includes a regime
of magnetic moment and voltage oscillations that may be controlled by the current, field, and sample dimen-
sions.

I. INTRODUCTION

Both type-I and type-II superconductors~SC’s! subjected
to a magnetic field parallel to a transport current are known
to demonstrate rather specific resistive behavior.1,2 The most
unusual features of the latter are a nonmonotonous field de-
pendence of the critical current observed eventually,1,3 onset
of a considerable magnetic moment in a small~or even zero!
magnetic field at a current close to the critical one,4,5 and
regular5,6 or stochastic7 oscillations of the magnetic moment
and voltage in certain regions of fields and currents.

The nature of the resistivity in a parallel field remains still
controversial. Some authors discussed the possibility of a
nonconventional ‘‘Lorentz-independent’’ mechanism of en-
ergy dissipation;8 others suggested unusual ‘‘current-
carrying’’ magnetic vortices to explain the observed
phenomena.9 However, the major part of the above-
mentioned experimental features has found long ago a quite
plausible qualitative explanation in terms of helical magnetic
vortices, arising naturally due to superimposing of the exter-
nal field and current self-field.1,10,11

A key factor of the resistive and magnetic behavior of a
SC in a parallel field is the helical instability of the linear
flux line ~FL!, considered for a single vortex by Clem10 and
for a flux-line lattice~FLL! by Brandt.11 The origin of this
instability is in the~Lorentz! driving forces exerted on the
FL elements by the transport current that makes the left-
handed spiral grow, while the right-handed ones are damped.
If the Lorentz force~proportional to the current! is large
enough, the random left-handed distortions of the linear vor-
tex are enhanced and the vortex then leaves the sample, con-
tributing to the voltage. In a certain region of fields and
currents the entry of right-handed spirals followed by the exit
of left-handed spirals may form a cycle behavior with mag-
netic moment and voltage oscillations.10,12

Since inside a bulk SC the density of the transport current
is exponentially small, the critical current of instability
turned out to be exponentially large:j in> j Lexp(R/2l),10

whereR is the characteristic transverse size of SC’s, which is
much larger than the London penetration depthl, and j L is
the London value of the critical current.1,13Thus, for the bulk
SC, the effect of single flux line instability is not actual
~contrary to the FLL instability11!, though, in low-

dimensional samples with one or two dimensions less than
l, i.e., in thin filaments or films, the critical current of insta-
bility acquires a physical meaning and the phenomenon of
instability itself may dominantly affect the resistive picture
in a field parallel to the current. But in the cases of samples
of small dimensions, the effect of the surface on the vortices
becomes crucial and should be accounted for. This was not
done in Refs. 10,11, which considered bulk samples. Re-
cently, an exact solution for the helical vortex problem in a
SC cylinder of arbitrary radius was obtained in the London
approximation.12 The critical current of helical instability in
thin filaments was found to be comparable to the critical
currents of dissipation onset observed on such samples.

In this paper the phenomenon of spiral instability is con-
sidered in the case of thin SC films that is of much more
practical interest. In the London approximation, an exact so-
lution for the helical vortex structure inside a plate of arbi-
trary thickness is found. The Gibbs free energy is calculated
for the system loaded with a transport current in parallel to
the current magnetic field. The critical current of left-handed
spiral instability turns out to be a quite observable value for
a wide thin film that is reasonable since the transport current
in the latter case is not exponentially small in any region,
contrary to the bulk case.

II. SPIRAL VORTEX STRUCTURE
INSIDE A SUPERCONDUCTING PLATE

Let us consider the SC plate filling the spaceuzu<d
loaded with a transport current flowing in the positivey di-
rection ~Fig. 1! and subjected to a magnetic fieldH applied
in the same direction. To study the stability of a linear mag-
netic FL lying along they axis (x5z50) with respect to
helical distortions let us consider a helical vortex of arbitrary
pitch length 2pL lying on an imaginary cylinder of arbitrary
radiusr,d so that atr→0 it transforms to the above linear
vortex. A full magnetic field in the systemH f5HM1h con-
sists of the Meissner solution

HM5H
coshz/l

coshd/l
, ~1!
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satisfying the boundary conditionHM5H at the plate sur-
facesz56d and the fieldh of the vortex helix itself. The
latter may be described inside the plate by the London equa-
tion with a special right-hand side,12

l2curlcurlh1h5F, ~2!

where

F5F0

el
elew

d~r2r !d~y2Lw! ~3!

is presented in cylindrical coordinates r
5Ax21z2,w5arctanz/x andy. ew is the unit azimuthal vec-
tor in xz plane,el the unit vector tangential to helical core of
the vortex, andF0 is the unit flux quantum. Equation~2!
should be supplemented by the Maxwell equations

curlh50, uzu>d,

divh50, ~4!

the first of which is valid outside the SC plate while the
second one holds in the whole space. The resulting fieldh
must be continual on the boundariesz56d and vanish at
infinity, x(z)→`.

Taking into account the periodicity of the problem along
they axis the solution of Eq.~2! may be presented in Fourier
amplitudes as follows:

hi~x,y,z!5
1

2p(
k
exp~ iky/L !E dq hk

i ~q,z!expiqx.

~5!

Then, inside the plate (uzu<d) one finds for amplitudes

hk
i 5C1

i expQz1C2
i exp~2Qz!2

F0u~z2r !

4pQl2 @ I2
i ~p/2!expQz2I1

i ~p/2!exp~2Qz!#

2
F0u~r2uzu!
4pQl2 @ I2

i ~T!expQz2I1
i ~T!exp~2Qz!#, ~6!

where

I6
i ~T!5E

2p2T

T

dt f i~ t !exp~2 ikt2 iqr cost6Qr sint ! ~7!

and Q25l221q21k2/L2,fx52(r /L)sint, fy51, fz5(r /L)cost, T5arcsinz/r. Outside the plate one finds forz>d
(z<2d)

hk
i ~q,z!5hk

i ~q,6d!expp~d7z!, ~8!

wherep25q21k2/L2.
The unknown constantsC6

i andhk
i (q,6d) may be easily found from the boundary conditions and Eqs.~4!:

C6
i 5

F0

4pQl2 @ I2
i ~p/2!expQz2I1

i ~p/2!exp~2Qz!#1g6
i 2

F0r

4pl2L

@Q cosh2Qd1p sinh2Qd#I1
z ~p/2!1QI2

z ~p/2!

@~Q21p2!sinh2Qd12Qp cosh2Qd#sinh2Qd
f6
i ,

~9!

where g6
z 5(F0r /4pQl2L)I6

z (p/2)/sinh2Qd, g6
x 5g6

y

50, f6
x 56 iq/p, f6

y 56 ik/pL, f6
z 5p/Q. The val-

ues of the integralsI6
i (p/2) may be found analytically14 and

are equal to

I6
y 5 i2k

2

p SQ6q sgnk

AQ22q2
D uku

I uku~rAQ22q2!, ~10!

I6
x 56

1

L

]

]Q
I6
y ,

I6
z 5

i

L

]

]q
I6
y .

FIG. 1. Helical magnetic vortex lying on an imaginary cylinder
inside a current-carrying superconducting plate in a external mag-
netic fieldH parallel to the currentI .
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Equations~6!–~10! define completely the magnetic field
induced inside the plate and outside due to the presence of a
helical vortex.

The latter transforms to a linear FL~Ref. 15! when
r→0. Really, in this case the set of equations for the coef-
ficients has only a trivial solutionC6

i 5h6
i 50 for all kÞ0.

For k50, C6
x 5C6

z 5h6
i 50 too, but

C6
y 56

F0

4Ql2

exp~6Qd!

coshQd
, ~11!

which coincides with the solution of Shmidt.15

Let us note that the vortex field~6! is not equal to zero on
the surfacez56d as in the case of a linear vortex~11!, but
the difference vanishes whenL→` or r→0.

To analyze the stability of a linear FL with respect to
spiral pertubations one should consider the dependence of
the energy of a helical vortex against its radiusr , which will
be done in the next section.

III. GIBBS FREE ENERGY OF THE VORTEX SPIRAL

To consider the process of helical instability nucleation
one should use the Gibbs free energy of the system account-

ing for the self-energy of the vortexF, the work done by the
source of the transport currentI , DWI , and the work done
by the source of external magnetic field,DWH ,

16

G5F2DWH2DWI . ~12!

The self-energy of the systemF may be calculated using
the usual definition2,13 and reduced to the form~for the de-
tails see the Appendix!

F5
1

8pE dV h•F5F01DF, ~13!

where the part dependent on the boundary conditions equals

F05
F0

~4p!2 (
k,i ,s

E dq Cs
i I s

i* , ~14!

wheres56. The part conditioned by the source function
~3! only and independent of boundary conditions equals

DF52(
k

2

Q S F0

2pl D 2E
0

p

dt1E
0

p

dt2S 11
r 2

l2cos2t2D cosh@2Qr sint1sint2#exp@2ikt212iqr cost1sint2#. ~15!

The expression for the free energy~13! with the above
DF andF0 is valid for a plate of any thickness. For a thick
one the current of instability will naturally be exponentially
large as well as in the case of a bulk cylinder.10,12The most
interesting is the case of a thin film of thicknessd<l. Let us
suppose also that the nucleating spiral is twisted softly, i.e.,
L@d,l. For the study of a helical distortion nucleation the
expansion of energy in smallr up to r 2 is sufficient. Then
one finds for the self-energy of helical vortex inside a thin
film ~see the Appendix!

F5F F0

4plG2F lndj 1
r 2

2L2
ln

l

j
1
r 2

l2 2
r 2

2d2G . ~16!

The magnetic field contribution per unit length along the
y axis in the simple strip geometry can be easily evaluated as

DWH5
1

2pL

1

4pE dV h•H5
HFy~r !

4p
, ~17!

where integration is over one flight of the helix along they
axis andFy(r ) is the flux flowing through the vortex in a
positivey direction. This contribution is in favor of entry of
the vortex directed along the external field. The fluxFy(r )
may be calculated using Eq.~6! and equals

Fy~r !5F0F12
I 0~r /l!

coshd/l G , ~18!

whereI 0(x) is the modified Bessel function of zeroth order.
14

It is seen to have a proper limit atr→0.15

The current source contribution per one flight of the spi-
ral, calculated in the spirit of Clem’s work,10 is simply the
work done by the Lorentz driving forcefL5@ j•F#/c exerted
upon the FL elementdl wherej is the local density of trans-
port current. Taking into account that the angle betweenj and
F remains equal to the pitch anglea while integration along
the FL anddl sina5rdw one finds for this work per unit
length

DWI5
1

2pLE0
r

dr rE
0

2p

dw
jF0

c
5
I ~r !F0

2pLc
, ~19!

where I (r ) is the current flowing through the cross section
pr 2 of the imaginary cylinder on which the helix lies.

We considered so far a plate of infinite width. Now we
shall turn to applying our results to the most interesting case
of a thin film (d,l) of finite width (uxu<W) which recently
attracted considerable attention17,18 because of its practical
significance and model properties. In such a film the trans-
port current density does not depend onz and its distribution
over the film is given by.16,19

j ~x!5
I

pdAW22x2
, ~20!

whereI is the transport current applied. Then for the current
contribution to the energy~per unit length! one gets
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DWI5
IF0r

2

2pcdWL
. ~21!

The essential point is that for the magnetic field contribution
in energy of a wide film (W@d,l) one can still use expres-
sions~17!, ~18! derived for a film infinite in thex direction.
Really, the vortex lying parallel to a thin film surface is
strongly coupled to its images in thez56d planes but un-
dergoes an exponentially weak effect of finite edges,
x56W, contrary to the vortex perpendicular to a film which
undergoes a long-range effect of film edges.19 The negligible
correction to the value of the flux, Eq.~18!, following from a
finite widthW is as small as exp@2WA(p/d)21(2/l)2# .

Upon susbstitution of Eqs.~16!, ~17!, ~21! into Eq. ~12!
one can obtain the Gibbs free energy of the small radius
spiral,

G5S F0

4pl D 2F lndj 1
r 2

2L2
ln

l

j
1
r 2

l2 ln
d

l
2

r 2

2d2G
2
HF0

4p F d22l2 2
r 2

4l2G2
IF0r

2

2pcdWL
. ~22!

Following the notation of Ref. 10, we introduce the force
exerted upon the unit length of the FL as
f52]G/]r5rK (r ,y), wherey5l/L . In what follows we
consider for simplicity the case of a weak magnetic field and
suggest that essentiallyy!1 ~in the opposite limit the result
does not change significantly12!. Then one finds

K~0,y!5
F0

8pl2 FHd2H1
4l

d
HIy22Hc1y

2G , ~23!

whereHd5F0/2pd22(F0 /pl2)lnl/d is the characteristic
field of an order of a lower critical field for the plate,15

Hc1 is the lower critical field for the bulk material, and
HI52I /Wc is the current self-field magnitude above the
center of the film (x50, z5d).

The vortices for whichK(0,y).0 are instable. The FL
with L defined by this inequality grows as a left-handed spi-
ral until r'd and then transforms to a chain of tilted vortex
pairs, which eventually leave the film through its edges. Let
us find the conditions for this expansion to occur. At
H,Hd the vortex is absolutely unstable even in the absence
of a current. AtH.Hd the vortex is stable at a small current
but becomes unstable at a larger one.K(0,y) reaches its
maximum at y05(l/d)HI /Hc1 and first attains zero at
HIc5Hc1(d/l)A(H2Hd)/2Hc1, which corresponds to the
critical current of instability

I in5
cWHc1

2
5
cWdHc1

2l
AH2Hd

2Hc1
. ~24!

The maximum current densityjmax that is achieved at the
edge of the film, uW2xu'd,18 is then of the order of
j c1A(W/d)(H2Hd)/2Hc1. Here j c15cHc1/4pl is some or-
ders less than the London critical valuej L5cHc/4pl close
to the depairing current,2,13 whereHc is the thermodynamic
critical field.

IV. DISCUSSION

The value ofjmax turns out to be comparable to a critical
current of the magnetic self-field entry against the geometri-
cal edge barrierj c5cHc1/4pd close to a typical experimen-
tal value of 106 A/cm2.18 It is important that the current of
instability is not exponentially large as in the bulk case.10

That means that the resistive behavior of wide thin SC films
may be primarily determined by the interplay of processes of
a single vortex entry and exit in a wide range of currents and
fields.

Further conclusions are somewhat speculative and con-
cerned with the general regularities of an overcritical behav-
ior that may follow from the above results. Since the critical
current of dissipation onsetI c(H) ~of any nature, for ex-
ample, pinning mediated! is normally a decreasing function
of a parallel magnetic field~sometimes with a maximum1!
and the critical current of helical instability,I in(H), is an
increasing one, there is always a region of theI -H diagram
where transport current is less thenI c(H50) but more than
both I c(H) and I in(H) ~dashed region in Fig. 2!. In this re-
gion a nondissipative state is unstable against the entry of a
magnetic vortex, but the latter in its turn is unstable against
the left-handed helical expansion. Therefore, a dissipation
cycle consisting of a vortex entry and subsequent exit should
be formed above some characteristic magnitudesI * and
H* ~see Fig. 2! as discussed in Ref. 12. The frequency of the
corresponding magnetic moment and voltage oscillations is
material dependent and is also controlled by the field, cur-
rent, and film width.

This cycle is not unique. First, such a scenario was con-
sidered by Clem for a pair of vortices.10 It is easy to see that
it should take place at a somewhat higher magnetic field and
should have another~lower! frequency. It is reasonable to
expect the nonstationary regime of dissipation with a few
dominant oscillation modes in the closest over critical region
~dashed region in Fig. 2!. Then, with the increase of field and

FIG. 2. Sketch of a diagram of a resistive state of superconduc-
tor in a magnetic field parallel to transport current presented in
coordinates of current and field. In the dashed region the oscillation
regime of dissipation is possible~discussed in the text!. When rais-
ing the magnetic field at a fixed value of the current,I.I * , the
oscillation of the magnetic moment and voltage should take place
between points 1 and 2.
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current the number of modes should grow and, perhaps, the
whole dissipation scenario may become stochastic at some
conditions. At high fields, of course, one should address
rather the problem of FLL instability11 than the single-vortex
scenario.

The validity of the above picture may be easily checked
by means of spectral analysis of the voltage noise in parallel
to the current magnetic field just above the critical current
curve I c(H). It is interesting that a behavior very similar to
that suggested above was found by Landau on type-I SC’s
~Ref. 5! where, at fixed currentI , in the region of fields
H2(I ),H,H1(I ) low-frequency oscillations of the longi-
tudinal magnetic moment and voltage were observed~com-
pare to the region between points 1 and 2 in Fig. 2!. A similar
effect was clearly observed on type-II SC’s by Walmsley and
Timms.6

In conclusion, we have performed a rigorous study of the
stability of a single magnetic FL inside a current-carrying SC
plate~strip! subjected to a magnetic field parallel to the cur-
rent. Following from the exact solution for a helical vortex
structure the critical current of helical instability was evalu-
ated and shown to be comparable to the observed magnitudes
of the critical current of dissipation onset. Possible oscillat-
ing scenarios of dissipation resulting from the latter fact were
discussed.
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APPENDIX: FREE ENERGY CALCULATION

The formula~13! for the vortex free energy was shown so
far to be valid only in the case of a linear FL parallel to the
flat sample surface15 since in this case the vortex field on the
surface equals zero. In this appendix, we will show that for-
mula ~13! is valid for any FL configuration located inside the
SC plate regardless of the field value on the surface.

The full free energy of the system2,13 equals

F 5E
uzu<d

dV
H f
21l2~curlH f !

2

8p
1E

uzu>d
dV

Hf
2

8p
, ~A1!

whereH f is the full magnetic field defined before Eq.~1!.
Making use of the vector identity

div@a3b#5b curla2a curlb,

one can present Eq.~A1! in the form

F 5F1DF , ~A2!

where the energyF is defined by the formula~13! and en-
ergy correction

DF 5
l2

4pEuzu<d
dV div@h3curlHM#1

1

4pEuzu>d
dV h•HM1

1

8pEuzu>d
dV h21

l2

8pEuzu<d
dV div@h3curlh#. ~A3!

To deal with the above expression we need in some rela-
tions valid for an arbitrary FL form. In this case the problem
is no longer periodical; therefore one should substitute the
discrete wave vector (q,k/L) used in the Fourier transforma-
tion ~5! by a contitunal oneq5(qx ,qy) and write

hi~x,y,z!5E d2q

~2p!2
hq
i expiq•s, ~A4!

wheres5(x,y).
The London equation~2! takes a form

SQ22
]2

]z2Dhqi ~z!5l22Fq
i ~z!, uzu<d,

~A5!

S q22 ]2

]z2Dhqi ~z!50, uzu>d,

where q25qx
21qy

2 andQ25q21l22. Let us suggest that
the FL is located as a whole inside a plate so that
Fq

i (z)[0 outside the regionuzu<r , wherer,d.
First equation of Maxwell equations~4! is then reduced to

the equalities

iqxhq
z57qhq

x~6d!, iqyhq
z57qhq

y~6d!,

qyhq
x5qxhq

y~6d!. ~A6!

The latter of Eqs.~A6! means the vanishing of the perpen-
dicular current component at the surface. The second equa-
tion of Eqs.~4! is reduced to the condition

iqxhq
x1 iqyhq

y1
]hq

z

]z
[0. ~A7!

Now we are in a position to consider the energy correc-
tion expression. With an account of the explicit form of the
Meissner solution~1!, the first integral in Eq.~A3! is reduced
to

L15
lH

4p
tanh

d

l
@hq50

y ~d!1hq50
y ~2d!#. ~A8!

The flux of the vortex magnetic field through the surfaces
z56d equals zero since the vortex is located as a whole
inside the SC plate. That means that
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hq50
z ~6d!5E E dx dy hz~x,y,z!50.

Then, from the second equation of Eqs.~A6! one obtains

hq
y~6d!57

iqy
q
hq
z~6d!q→0→0, ~A9!

regardless of the indefinite value ofqy /q at qx ,qy→0.
Hence,L150.

Second integral in Eq.~A3! is reduced to

L25
H

4pEd
`

dz@hq50
y ~z!1hq50

y ~2z!#. ~A10!

As follows from the second equation in Eqs.~A5!,
hq
y(z)5hq

y(6d)expq(d7z) for any z>d (z<2d). Then,
from Eq. ~A9! one findsL250.

Third integral in Eq.~A3! is reduced to

L35
1

8p (
i
E d2q

~2p!2
hq
i ~d!h2q

i ~d!1hq
i ~2d!h2q

i ~2d!

2q
.

~A11!

Let us consider this expression together with the last in-
tegral in Eq.~A3!, which may be rewritten as

L45
1

8pE d2q

~2p!2
F iqxhqxh2q

z 1 iqyhq
yh2q

z 1hq
x
]h2q

x

]z
1hq

y
]h2q

y

]z G U
z52d

z5d

. ~A12!

To evaluate the derivatives in Eq.~A12! we take a derivative of Eq.~A7! in the regionr,uzu<d and use the first equation of
Eqs.~A5! as follows:

iqx
]hq

x

]z
1 iqy

]hq
y

]z
52

]2hq
z

]z2
52Q2hq

z . ~A13!

Upon substituting the derivative]hq
y/]z from Eq. ~A13! into Eq. ~A12! one finds the exact compensation of the two

contributions due to Eqs.~A6!: L31L450. Finally, we get

DF 5L11L21L31L450. ~A14!

Thus, the self-energy of the vortex lying completely inside a SC plate~or cylinder12! F 5F; i.e., it is expressed by formula
~13! as if the vortex field on the SC surface and outside were equal to zero. Probably, this statement is valid for the SC cylinder
of a general cross section.

Now we return to the periodical problem of a vortex spiral. The self-energyF per unit length along they axis equals

F5
1

2pL(i E
2pL

pL

dyE
2`

`

dxE
2r

r

dz hiF i5r(
i

(
k52`

` E
2`

`

dqE
2p/2

p/2

dT hk
i ~q,r sinT!F2k

i ~q,r sinT!cosT. ~A15!

Upon substituting the fieldhk
i (q,z) from Eq. ~6! into formula ~A15! one finds the expression for the energy, Eq.~13!.

Let us note that for the study of helical distortion nucleation the expansion of energy in smallr up to r 2 is sufficient. For
the finite but smallr!l,d,L ~softly twisted FL! at uku.1 all the valuesC6

i ,I6
i }r k and make a negligible contribution to the

energy, Eq.~13!. At k50 I6
x,z}r 2. Since, atk50,C6

x,z are infinitesimal atr→0, they do not contribute toF either. Thus, it is
sufficient atk50 to retain theC6

y and I6
y up to orderr 2. At uku51 all theC6

i ,I6
i }r and, so all the terms in Eq.~14!

contribute to the same order ofr 2. Finally, to the order ofr 2

F05S F0

4pl D 2E
0

` dq

2p H F tanhQdQ S 11
r 2

2l2D G U
k50

1
r 2

l2 F tanhQd2Q
1

1

Q sinh2Qd S L22

p~Q coshQd1p sinhQd!
2q2l2D G U

k51
J .

~A16!

The evaluation ofDF represents quite a problem even at smallr . Fortunately, it may be done without direct calculation of
Eq. ~15!. Really, this part of the free energy is independent of the plate thicknessd and remains unchanged in the limit of an
infinite bulk SC atd→`. The boundary-sensitive part of the energy, Eq.~A16!, may be easily found in this limit, and so we
obtain

F5S F0

4pl D 2F S 11
r 2

2l2D lnl

j
1

r 2

2l2 ln
L

j G1DF, ~A17!

whereL225l221L22. On the other hand this limit may be reached by settingR→` starting from the finite cylinder of the
radiusR considered in Ref. 12. For this case the same free energy reads
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F5S F0

4pl D 2S 11
r 2

2L2D lnl

j
. ~A18!

Comparing Eq.~A17! with Eq. ~A18! one can easily findDF. In the case of a thin filmd<l, one then easily finds from
~A16!–~A18! the expression~16!.
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