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Helical instability of a magnetic flux line in a current-carrying superconducting film
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An exact solution for helical magnetic vortex structure in a type-ll superconductor strip subjected to a
magnetic field parallel to a transport current is obtained. A field-dependent characteristic current of flux-line
instability with respect to helical distortions is found to be comparable to experimental values of the critical
current of dissipation onset in thin films. A resistive picture following from the above results includes a regime
of magnetic moment and voltage oscillations that may be controlled by the current, field, and sample dimen-
sions.

[. INTRODUCTION dimensional samples with one or two dimensions less than
\, i.e., in thin filaments or films, the critical current of insta-
Both type-I and type-Il superconductaiSC’s) subjected  bility acquires a physical meaning and the phenomenon of
to a magnetic field parallel to a transport current are knowrinstability itself may dominantly affect the resistive picture
to demonstrate rather specific resistive behabfoFhe most  in a field parallel to the current. But in the cases of samples
unusual features of the latter are a nonmonotonous field d&f small dimensions, the effect of the surface on the vortices
pendence of the critical current observed eventuallgnset  becomes crucial and should be accounted for. This was not
of a considerable magnetic moment in a snfatleven Zer)) done in Refs. 10,11, which considered bulk samples. Re-
magnetic field at a current close to the critical 6feand  cently, an exact solution for the helical vortex problem in a
regulaP® or stochasti€ oscillations of the magnetic moment SC cylinder of arbitrary radius was obtained in the London
and voltage in certain regions of fields and currents. approximation'® The critical current of helical instability in
The nature of the resistivity in a parallel field remains still thin filaments was found to be comparable to the critical
controversial. Some authors discussed the possibility of gurrents of dissipation onset observed on such samples.
nonconventional “Lorentz-independent” mechanism of en- In this paper the phenomenon of spiral instability is con-
ergy dissipatiolf: others suggested unusual “current- sidered in the case of thin SC films that is of much more
carrying” magnetic vortices to explain the observed practical interest. In the London approximation, an exact so-
phenomend. However, the major part of the above- lution for the helical vortex structure inside a plate of arbi-
mentioned experimental features has found long ago a quitéary thickness is found. The Gibbs free energy is calculated
plausible qualitative explanation in terms of helical magneticfor the system loaded with a transport current in parallel to
vortices, arising naturally due to superimposing of the exterthe current magnetic field. The critical current of left-handed
nal field and current self-fiely°-11 spiral instability turns out to be a quite observable value for
A key factor of the resistive and magnetic behavior of aa wide thin film that is reasonable since the transport current
SC in a parallel field is the helical instability of the linear in the latter case is not exponentially small in any region,
flux line (FL), considered for a single vortex by Cléhand  contrary to the bulk case.
for a flux-line lattice(FLL) by Brandt!! The origin of this
instability is in the(Lorent? driving forces exerted on the
FL elements by the transport current that makes the left- Il. SPIRAL VORTEX STRUCTURE
handed spiral grow, while the right-handed ones are damped. INSIDE A SUPERCONDUCTING PLATE
If the Lorentz force(proportional to the curreptis large . -
enough, the random I%ft—%anded distortions of the Iinegr vor. L€t us consider the SC plate filling the spaj@=d

tex are enhanced and the vortex then leaves the sample, Cdﬂgd_ed W?th a transport_ current flowing in _the_ posit'we_di-
tributing to the voltage. In a certain region of fields and"€ction(Fig. 1 and subjected to a magnetic fiettl applied

currents the entry of right-handed spirals followed by the exi.

{n the same direction. To study the stability of a linear mag-
of left-handed spirals may form a cycle behavior with mag-Netic FL lying along they axis (x=z=0) with respect to
netic moment and voltage oscillatiotfs'?

helical distortions let us consider a helical vortex of arbitrary
Since inside a bulk SC the density of the transport currenPitch length 2rL lying on an imaginary cylinder of arbitrary

is exponentially small, the critical current of instability r@diusr<d so that ar—0 it transforms to the above linear

turned out to be exponentially largg; =], exp®/2\),% vortex. A full magnetic field in the systetd;=H,,+h con-

whereR is the characteristic transverse size of SC's, which iSiStS Of the Meissner solution

much larger than the London penetration depthandj, is

the London value of the critical curreht® Thus, for the bulk

SC, the effect of single flux line instability is not actual H :HCOSM)‘ &
(contrary to the FLL instabili}¥), though, in low- M~ " coshd/\
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where

D=Dy - 5(p—1)8(y~Le) )
8e,
is presented in cylindrical coordinates p
=x?*+ 2%, p=arctar/x andy. e, is the unit azimuthal vec-
tor in xz plane,g the unit vector tangential to helical core of
the vortex, and®, is the unit flux quantum. Equatiof®)
should be supplemented by the Maxwell equations

curh=0, |z|=d,

divh=0, (4)

the first of which is valid outside the SC plate while the
second one holds in the whole space. The resulting field
FIG. 1. Helical magnetic vortex lying on an imaginary cylinder Must be continual on the boundaries =d and vanish at

inside a current-carrying superconducting plate in a external madnf'n'ty’ X(2) — .

netic fieldH parallel to the current. Taking into account the periodicity of the problem along
they axis the solution of Eq.2) may be presented in Fourier

satisfying the boundary conditioH,=H at the plate sur- amplitudes as follows:

facesz=+d and the fieldh of the vortex helix itself. The '

I_atter may be de_scri_bed inside t_he plate by the London equa- hi(x,y,z)= —2 ekay/L)f dq h(d,z)expgx.

tion with a special right-hand sid?g,

5
Ncurlcurh+h=®, (20  Then, inside the plate|£|<d) one finds for amplitudes
|
i i CDO ( )
=C,expQz+C_exp—Qz)— 4—Q)\2[| (w/2)exmz—l+(7r/2)exp( Q2]
B UUC I — 1 (T)exp( — 6
47ON2 [IZ(T)exRQz— 1 (T)exp(—Q2)], (6)
where

. T

I'i(T)=f dt ¢;(t)exp—ikt—igr cog+Qr sint) (7
—m7—T

and Q*=\"2+q%+K?/L? ¢y=—(r/L)sint, ¢,=1, ¢,=(r/L)cod, T=arcsirdr. Outside the plate one finds far=d
(z=—d)
hi(d,2)=hi(q, = d)expp(dF2), ®)
wherep?=q?+k?/L2. _ _
The unknown constants'. andh,(q,*=d) may be easily found from the boundary conditions and E4js.
®or  [Q coshXd+ p sinh2Qd]1% (7/2)+QI% (77/2)
Q)\Z[I (m/2)expQz 1" (ml2)exp ~ Q2)1+ g ~ 757 [(Q%+ p?)sinh2Qd+ 2Qp coshXd]sinh2Qd

(9)

where g% = (Dor/4mQA2L) 1A (77/2)/sinhZQd, gi=g" . 19,
=0, fX==iq/p, fL==ik/pL, =p/Q. The val- |::J—“[@|z!
ues of the integrals. (7/2) may be found analyticall} and

are equal to

1+<

. 2[Q=q sgrk Ik —— +_'_ o
-\ g ) e, a0 =gl
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Equations(6)—(10) define completely the magnetic field ing for the self-energy of the vortex, the work done by the
induced inside the plate and outside due to the presence ofsamurce of the transport curreht AW, , and the work done
helical vortex. by the source of external magnetic fiely,,

The latter transforms to a linear F[Ref. 15 when
r—0. Really, in this case the set of equations for the coef-
ficients has only a trivial solutio€', =h'. =0 for all k+0.
Fork=0, C1=C%=h' =0 too, but

G=F—AW,—AW,. (12)

The self-energy of the system may be calculated using
y @y exp(=Qd) the usual definitioh'® and reduced to the forrtfor the de-

ci:r4Q)\2 costod (12) tails see the Appendjx

which coincides with the solution of Shmit.

Let us note that the vortex fiel®) is not equal to zero on
the surfacez= +d as in the case of a linear vort¢x1), but
the difference vanishes whén—o or r—0.

To analyze the stability of a linear FL with respect to .
spiral pertubations one should consider the dependence %fhere the part dependent on the boundary conditions equals
the energy of a helical vortex against its radiysvhich will
be done in the next section.

1
F=—f dV h-®=F,+AF, (13)
8

Il. GIBBS FREE ENERGY OF THE VORTEX SPIRAL

To consider the process of helical instability nucleationwhere o= *. The part conditioned by the source function
one should use the Gibbs free energy of the system accoun®) only and independent of boundary conditions equals

2 2
AF=—2 a(m) f d7'+j dr(1+ —ZCOSZT)COSf[ZQI‘ sinr sint_]exd 2ik7_ +2iqr cosr,sinr_]. (15
K

The expression for the free energy3d) with the above wherely(x) is the modified Bessel function of zeroth ordér.
AF andF, is valid for a plate of any thickness. For a thick It is seen to have a proper limit at-0.2°
one the current of instability will naturally be exponentially  The current source contribution per one flight of the spi-
large as well as in the case of a bulk cylind®t?The most  ral, calculated in the spirit of Clem’s wor is simply the
interesting is the case of a thin film of thickneks\. Letus  work done by the Lorentz driving fordg=[j- ®]/c exerted
suppose also that the nucleating spiral is twisted softly, i.e.upon the FL elemerd| wherej is the local density of trans-
L>d,\. For the study of a helical distortion nucleation the port current. Taking into account that the angle betwjesmd
expansion of energy in small up tor? is sufficient. Then & remains equal to the pitch angiewhile integration along
one finds for the self-energy of helical vortex inside a thinthe FL anddl sina=pd¢ one finds for this work per unit

film (see the Appendix length
Dy 13 d 2 N 12 r? 1 fr F” jPo 1(r)®g
= — — — — AW ,=——] d dp—= , 19
am| Mt e e (49 T2at )Py e T 2ater 19

wherel(r) is the current flowing through the cross section
wr? of the imaginary cylinder on which the helix lies.
We considered so far a plate of infinite width. Now we
shall turn to applying our results to the most interesting case
AW L f avh.He 2y (17)  ofathin film (d<X) of finite width (x| <W) which recently
™27l 4n 4 attracted considerable attenttéri® because of its practical
significance and model properties. In such a film the trans-

where integration is over one flight of the helix along the port current density does not dependzand its distribution
axis and®,(r) is the flux flowing through the vortex in a gyer the film is given b)]/.6’19

positivey direction. This contribution is in favor of entry of
the vortex directed along the external field. The fii(r) I

The magnetic field contribution per unit length along the
y axis in the simple strip geometry can be easily evaluated as

may be calculated using E¢) and equals j(x)= A (20)
o _
Dy(r)=do 1 lo(r/N) (18) wherel is the transport current applied. Then for the current
y 0 coshi/n |’ contribution to the energgper unit length one gets
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The essential point is that for the magnetic field contribution

in energy of a wide film YV>d,\) one can still use expres-
sions(17), (18) derived for a film infinite in thex direction.
Really, the vortex lying parallel to a thin film surface is
strongly coupled to its images in ttee= =d planes but un-

dergoes an exponentially weak effect of finite edges,

x= =W, contrary to the vortex perpendicular to a film which
undergoes a long-range effect of film edg&$he negligible
correction to the value of the flux, E¢8), following from a

finite width W is as small as eXp-Wy/(m/d)?+ (2/\)?] .
Upon susbstitution of Eq€16), (17), (21) into Eq. (12)

one can obtain the Gibbs free energy of the small radius

spiral,
o= 2o iy et S
“laan) | 202 TN T 22
Hb,[ d®2  r? [ Por? -
4w |2\2  4N?| 2mcdWL (22)

Following the notation of Ref. 10, we introduce the force

exerted upon the unit length of the FL
f=—0G/or=rK(r,y), wherey=\/L . In what follows we

as
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FIG. 2. Sketch of a diagram of a resistive state of superconduc-
tor in a magnetic field parallel to transport current presented in
coordinates of current and field. In the dashed region the oscillation
regime of dissipation is possibléiscussed in the textWhen rais-
ing the magnetic field at a fixed value of the currdngl*, the
oscillation of the magnetic moment and voltage should take place
between points 1 and 2.

IV. DISCUSSION

The value ofj 5, turns out to be comparable to a critical

consider for simplicity the case of a weak magnetic field ancyyrrent of the magnetic self-field entry against the geometri-

suggest that essentialjy<1 (in the opposite limit the result
does not change significantfy. Then one finds

N )
K(0y)= Ho—H+ 5 Hy—2Hay", (23

0
8m\?
where Hy=®o/27d?— (®o/m\?)InN/d is the characteristic

field of an order of a lower critical field for the plate,
H., is the lower critical field for the bulk material, and

cal edge barrief,=cH.,/47d close to a typical experimen-
tal value of 16 A/cm?.%8 It is important that the current of
instability is not exponentially large as in the bulk caSe.
That means that the resistive behavior of wide thin SC films
may be primarily determined by the interplay of processes of
a single vortex entry and exit in a wide range of currents and
fields.

Further conclusions are somewhat speculative and con-
cerned with the general regularities of an overcritical behav-

H,=2I/Wc is the current self-field magnitude above theior that may follow from the above results. Since the critical

center of the film x=0, z=d).
The vortices for whichK(0,y)>0 are instable. The FL

current of dissipation onsdt,(H) (of any nature, for ex-
ample, pinning mediateds normally a decreasing function

with L defined by this inequality grows as a left-handed spi-of a parallel magnetic fieldsometimes with a maximutn
ral until r~d and then transforms to a chain of tilted vortex and the critical current of helical instability;,(H), is an
pairs, which eventually leave the film through its edges. Letncreasing one, there is always a region of thd diagram
us find the conditions for this expansion to occur. Atwhere transport current is less thisiH=0) but more than
H<H, the vortex is absolutely unstable even in the absencboth | (H) andl;,(H) (dashed region in Fig.)2In this re-

of a current. AtH>H, the vortex is stable at a small current
but becomes unstable at a larger oKg0,y) reaches its
maximum aty,=(N/d)H,/H,; and first attains zero at

Hic=Hc1(d/N) V(H—Hg)/2H.;, which corresponds to the

critical current of instability
[H—Hq
2H.

The maximum current densify,,, that is achieved at the
edge of the film,|W—x|~d,'® is then of the order of
jerVW/d)(H—Hg)/2H,;. Herej ;=cH/4m\ is some or-
ders less than the London critical valje=cH/4m\ close
to the depairing currerft'® whereH, is the thermodynamic
critical field.

_CWH;; cWdH;
T2 2\

(24

in

gion a nondissipative state is unstable against the entry of a
magnetic vortex, but the latter in its turn is unstable against
the left-handed helical expansion. Therefore, a dissipation
cycle consisting of a vortex entry and subsequent exit should
be formed above some characteristic magnituttesand
H* (see Fig. 2as discussed in Ref. 12. The frequency of the
corresponding magnetic moment and voltage oscillations is
material dependent and is also controlled by the field, cur-
rent, and film width.

This cycle is not unique. First, such a scenario was con-
sidered by Clem for a pair of vorticé8lt is easy to see that
it should take place at a somewhat higher magnetic field and
should have anotheflower) frequency. It is reasonable to
expect the nonstationary regime of dissipation with a few
dominant oscillation modes in the closest over critical region
(dashed region in Fig.)2Then, with the increase of field and
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current the number of modes should grow and, perhaps, thattention to the problem of helical instability and to Professor

whole dissipation scenario may become stochastic at somd. C. Freyhardt for helpful discussions and hospitality dur-

conditions. At high fields, of course, one should addressng a research visit to the University of @ngen supported

rather the problem of FLL instabilify than the single-vortex by the Deutscher Akademischer Austauschdienst. Numerous

scenario. valuable remarks of Professor V. M. Pan, Dr. K. Heinemann,
The validity of the above picture may be easily checkedDr. W. Mexner, and Dr. J. Hoffmann are gratefully acknowl-

by means of spectral analysis of the voltage noise in paralletdged.

to the current magnetic field just above the critical current

curvel (H). It is interesting that a behavior very similar to APPENDIX: FREE ENERGY CALCULATION

that suggested above was found by Landau on type-l SC's

(Ref. 5 where, at fixed current, in the region of fields

H_(l1)<H<H,(I) low-frequency oscillations of the longi-

The formula(13) for the vortex free energy was shown so
far to be valid only in the case of a linear FL parallel to the

tudinal magnetic moment and voltage were obsertgeain- flat sample surfac@ since in this case the vortex field on the

pare to the region between points 1 and 2 in FigAXimilar surface equals_ zero. In this appgndix,_ we will shqw _that for-
effect was clearly observed on type-Il SC's by Walmsley andmula(13) is valid for any FL (_:onflguratlon located inside the
Timms® SC plate regardless of the field value on the surface.
In conclusion, we have performed a rigorous study of the 1he full free energy of the systért? equals
stability of a single magnetic FL inside a current-carrying SC H2+\2(curlH,)2 H.2
plate (strip) subjected to a magnetic field parallel to the cur- _gzzf dv;+f dv—f, (A1)
rent. Following from the exact solution for a helical vortex |z|<d 8m Z=d 87
structure the critical current of helical instability was evalu'wherer is the full magnetic field defined before E€}).
ated and shown to be comparable to the observed magnitud%kmg use of the vector identity
of the critical current of dissipation onset. Possible oscillat-
ing scenarios of dissipation resulting from the latter fact were divfaxX b]=b curla—a curlb,
discussed. one can present EgA1) in the form
ACKNOWLEDGMENTS T=F+A7, (A2)

The author is grateful for most stimulating discussions towhere the energy is defined by the formul&l3) and en-
Professor J. R. Clem and Dr. E. H. Brandt who drew hisergy correction

)\2 1 1 )\2
F=— i i . — 24 i
A7 yp |Z|$ddV divfhXxcurlHy 1+ yp IZIdeV h-Hy+ 87sz|>ddv h=+ 87sz|sddv div[hxcurlh].  (A3)

To deal with the above expression we need in some rela- iqxhéz Iqhé(id), ithé= Iqhé(id),
tions valid for an arbitrary FL form. In this case the problem
is no longer periodical; thereforg one shoqld substitute the ayhi=ahY(+d). (A6)
discrete wave vectoryk/L) used in the Fourier transforma- q q
tion (5) by a contitunal onej=(qy,dy) and write The latter of Eqs(A6) means the vanishing of the perpen-
42 dicular current component at the surface. The second equa-
hi(x,y,2) = J' —qzhgexp'q-s (a4)  tion of Egs.(4) is reduced to the condition
L 1 (271_) el
wheres=(x.y). gy g, (A7)
The London equatioKi2) takes a form a e gz
2 . .. .
i o Now we are in a position to consider the energy correc-
2_ i _ 2!
(Q a_zf) ho(Z)=A""P(2), |zl=d, tion expression. With an account of the explicit form of the
(A5) Meissner solutioril), the first integral in Eq(A3) is reduced
P\ to
(qz— ﬁ)hh(Z)ZO, |z|=d,
H d y y

where g?=q2+q2 and Q?=g?+\ 2. Let us suggest that Ly=gtanh[hg_o(d) +hg_o(—d)]. (A8)
the FL is located as a whole inside a plate so that
(I)'q(Z)EO outside the regiotz|<r, wherer <d. The flux of the vortex magnetic field through the surfaces

First equation of Maxwell equationd) is then reduced to z==*=d equals zero since the vortex is located as a whole
the equalities inside the SC plate. That means that
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As follows from the second equation in EQ$A5),
g=o(=d)= ffdx dy H(x,y,2)=0. hY(z)=h%(=d)exm(d¥2) for any z=d (z<-d). Then,
) from Eq. (A9) one findsL,=0.
Then, from the second equation of E¢&6) one obtains Third integral in Eq.(A3) is reduced to
qy z
hy(=d)=F—"hg(=d)q_0—0, (A9)
Lo 1 > d?q hq(d)h q(d)+hq( d)h’ ol — d)
regardless of the indefinite value @f,/q at g,q,—0. 378 4 (2m)? 2q
Hence,L;=0. (Al1)
Second integral in EqA3) is reduced to

L,= f dz[hy o(2)+ hy o(—2)1. (A10) Let us consider th_is expression together with the last in-
4 tegral in Eq.(A3), which may be rewritten as

z=d
(A12)

1 [ d%q , . ohty o ohY
S — ' y__ 4
a 877J(2 2 {quhq _q+|thqh_q+hq 7z +hy—— 7z Z?d.

To evaluate the derivatives in EGA12) we take a derivative of EA7) in the regionr <|z|<d and use the first equation of
Egs.(A5) as follows:

ahy, ahy azhz 2he.
|qx 97 |qy (92 192 _Q (A13)

Upon substituting the derivativehélﬁz from Eq. (A13) into Eq. (A12) one finds the exact compensation of the two
contributions due to EqsA6): L;+L,=0. Finally, we get

AZ=Ly+Ly+Ls+L,=0. (A14)

Thus, the self-energy of the vortex lying completely inside a SC gtateylindert?) . 7=F; i.e., it is expressed by formula
(13) as if the vortex field on the SC surface and outside were equal to zero. Probably, this statement is valid for the SC cylinder
of a general cross section.

Now we return to the periodical problem of a vortex spiral. The self-enBrger unit length along thg axis equals

1 wL o r S -
FZHE J dyf de dz H(I)'=r2 2 dqf dT h L (d,r sinT)d' «(q,r sinT)cosT.  (A15)
T J-ml —oo J—r T okE—e J-
Upon substituting the ﬁelb\ik(q,z) from Eq. (6) into formula(A15) one finds the expression for the energy, E).

Let us note that for the study of helical distortion nucleation the expansion of energy inrsapto r? is sufficient. For
the finite but smalf <\ ,d,L (softly twisted FL) at|k|>1 all the value<C', ,I'. «r* and make a negligible contribution to the
energy, Eq(13). At k=0 1%%x«r2, Since, akk=0, C*¥* are infinitesimal at —0, they do not contribute t& either. Thus, it is
sufficient atk=0 to retain theCY. and % up to orderr?. At |k|=1 all theC'. ,I'.«r and, so all the terms in Eq14)
contribute to the same order of. Finally, to the order of?

k=1}

®, \2 (=dq ([taniQd r2 r2
Fo—(m) Joz o |1t Y
k=0
(A16)

The evaluation ofAF represents quite a problem even at smalFortunately, it may be done without direct calculation of
Eq. (15). Really, this part of the free energy is independent of the plate thiclkdhessl remains unchanged in the limit of an
infinite bulk SC atd— . The boundary-sensitive part of the energy, &6), may be easily found in this limit, and so we

obtain

G 1 r2

“\am) [T
whereA ~2=)\"2+L "2, On the other hand this limit may be reached by setRag starting from the finite cylinder of the
radiusR considered in Ref. 12. For this case the same free energy reads

tanhQd 1 L2 ) 2”
+ - - —qg°A
2Q Q sinh2Qd | p(Q cosQd+p sinhQd)

Noor?
In—+

; 2)\zlng +AF, (A17)
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p=| 2o i 1 r’ s A18
=|-— + = |In—.
47\ 2L%) ¢ (AL8)

Comparing Eq(A17) with Eq. (A18) one can easily find\F. In the case of a thin filmd<\, one then easily finds from
(A16)—(A18) the expressiornl6).
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