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The low-energy behavior of the isotropict-J ladder system is investigated using exact diagonalization
techniques, specifically finding the Drude weight, the charge velocity, and the compressibility. By applying the
ideas of Luttinger-liquid theory, we determine the correlation exponentKr which defines the behavior of the
long-range correlations in the system. The boundary to phase separation is determined and a phase diagram is
presented. At low electron density, a Tomonaga-Luttinger-like phase is stabilized while at higher electron
densities a gapped phase with power law pairing correlations is stabilized: A large region of this gapped phase
is found to exhibit dominant superconducting correlations.

I. INTRODUCTION

Over the last few years, the behavior of strongly corre-
lated electrons confined to coupled chains has received wide-
spread attention; the reasons for this are numerous. First, the
behavior of electrons in one dimension, undert-J or
Hubbard-type interactions, is now relatively well understood
and described generally by the term Luttinger liquid~LL !.
The coupling of two such Luttinger liquids as in the ladder
geometry provides an interesting first step towards the chal-
lenge of describing the behavior in two-dimensional systems.
A second reason for interest in these systems lies in the un-
usual nature of the ground state in the undoped system,
namely, spin liquid behavior with a finite gap in the spin
excitation spectrum;1 this behavior is in contrast to the gap-
less behavior of a single chain. The evolution of the spin-
gapped state on doping has obvious relevance to gapped su-
perconducting behavior. In addition, compounds such as
~VO2)P2O7 ~Ref. 2! and SrCu2O3 ~Ref. 3! are believed to
be well described by a lattice of coupled chains. Very re-
cently, experiments on La12xSrxCuO2.5 ~Ref. 4! have pro-
vided insight into the doping of coupled chain systems.
While there is considerable literature on many aspects of the
t-J ladder behavior, a complete picture is still far from being
realized: Our aim in this paper is to clarify some of the
behavior of thet-J ladder system by drawing on some of the
ideas used in describing the strictly one-dimensional systems
~i.e., LL theory!. In conjunction with results from several
other techniques, we will then present a speculative phase
diagram.

The t-J Hamiltonian on the 23L ladder is defined as
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where most notations are standard.b ~51,2! labels the two
legs of the ladder~oriented along thex axis! while j is a rung

index (j51, . . . ,L). We shall concentrate on the isotropic
case where the intraladder~along x) couplingsJ and t are
equal to the interladder~alongy) couplingsJ8 and t8.

At half filling the Hamiltonian reduces to the Heisenberg
model and the behavior is generally relatively well
understood.1 A simple interpretation is given by considering
the strong coupling limit (J50) in which the ground state
consists of a singlet on each rung with a spin gap (;J8)
which corresponds to forming a triplet on one of the rungs.
With the introduction of intrachain couplingJ, the triplets
can propagate and form a coherent band, thereby reducing
the spin-gap. In the isotropic case, the spin gap remains
(;0.5J).

The evolution of this spin-gapped state on doping is per-
haps one of the most interesting aspects of the ladder
behavior.5 Recent work on this hole-doped phase8,9,16 has
indicated a finite spin gap, a single gapless charge mode,
hole pairing, and possible dominant superconducting corre-
lations. In this paper we shall discuss some independent re-
sults which provide a more complete description of not only
this gapped phase but the whole region of parameter space.
A possible phase diagram for the isotropict-J ladder as a
function of J/t and doping has been proposed recently8 and
we use these ideas in our analysis: Away from half filling the
spin-gapped phase is stabilized up toJ/t;2.1 where the sys-
tem phase separates.10 As the system is doped further, a
phase with a single gapless spin and a single gapless charge
mode is found and, as we shall explain, this behavior is like
that of the one-dimensional Tomonaga–Luttinger-liquid sys-
tem. As in the gapped phase, phase separation occurs for
largeJ/t. At very small electron densities, an electron-paired
phase exists. Note that although in thet-J ladder there are
four possible zero-momentum gapless modes~two spin and
two charge!, throughout the phase diagram only one gapless
charge mode and either zero or one gapless spin mode are
observed; this then allows an almost identical treatment to
the strictly one-dimensional case.

In Sec. II we discuss briefly the Luttinger-liquid theory
used to describe strictly one-dimensional systems and also
the possible application of this theory to coupled chains, in
Sec. III we present our numerical calculations, and finally in
Sec. IV we apply the Luttinger-liquid theory to our results
and present a phase diagram for the system.
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II. LUTTINGER-LIQUID BEHAVIOR:
TOMONAGA-LUTTINGER

AND LUTHER-EMERY PHASES

In dealing with strictly one-dimensional interacting ferm-
ion systems, one can in general make use of conformal field
theory11 and bosonization12 which allow a determination of
the decay exponents of the various correlation functions to
be determined from the low-energy behavior of the model.
The general idea is that one-dimensional interacting fermion
systems can be mapped onto the Fermi-gas model and the
corresponding ‘‘g-ology’’ weak coupling theory.13 This
Fermi-gas model scales to two different regimes, namely, the
Tomonaga-Luttinger~TL! fixed point and the Luther-Emery
~LE! line which are relevant for repulsive (g1.0) and at-
tractive (g1,0) backscattering matrix elements, respec-
tively; as we shall explain, the important difference between
these two universality classes lies in the spin degrees of free-
dom. The low-lying excitations of the Fermi-gas model are
collective spin or charge density oscillations, which propa-
gate with different velocities, giving rise to spin-charge sepa-
ration and power law behavior of the correlation functions.
In the TL phase, both a gapless spin and a gapless charge
mode are exhibited; in contrast, while exhibiting a gapless
charge mode, the LE phase has a gap to all spin excitations.

Conformal field theory relates the properties of a finite
system~such as the compressibility and the Drude weight!
with the correlation exponents; one coefficient (Kr) deter-
mines the exponents of all the power law decays~and simi-
larly the singularity of the momentum distribution function
close tokf). Hence if a particular model scales to the TL~or
LE! universality class, one can infer the dominant correla-
tions from the low-energy behavior of the system which can
be deduced from much smaller system sizes than would be
required to calculate the correlation lengths directly.

The relationships between the correlation exponent (Kr)
and the low-energy behavior of the model are given below
for a system of sizeN and lengthL ~we have chosen to give
general equations such thatN5L for a chain,N52L for the
ladder geometry!. First, the ratio of the charge velocityur to
the coefficientKr is proportional to the variation of the
ground state energyE0 with particle densityn, i.e., the in-
verse compressibility

p

2

ur

Kr
5

1

n2k
5
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]n2
. ~2!

The coefficientKr is also related to the Drude weights0;
this Drude weight is the weight of the zero-frequency~dc!
peak in the conductivitysv and may be obtained by consid-
ering the curvature of the ground state energy level as a
function of threaded flux,F,

s052urKr5
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]F2 . ~3!

We can also determine the charge velocity by considering
the dispersion of the energy spectrum

ur5~E1r2E0!/~2p/L !, ~4!

whereE1r is the lowest-lying charge mode to the ground
state (E0) with neighboringk value.

These equations provide us with three independent condi-
tions onKr andur which can be used to check the consis-
tency of the Luttinger-liquid relations. Also a calculation of
the parameterKr is relatively straightforward and this pa-
rameter then determines the exponent coefficients of all the
correlation functions.

As explained previously, the essential difference between
the TL and LE fixed points lies in the spin degrees of free-
dom: The LE region is gapped while the TL region is gap-
less. For the one-dimensional case (t850! the correlation
exponents of the two different cases are summarized in Table
I ~taken from Ref. 6!. We have omitted the logarithmic cor-
rections and these are detailed in Ref. 14. We emphasise that
for LL systems, the correlation functions show either power
law or exponential decay, with interaction-dependent powers
determined by one coefficientKr . Also we see that for
Kr,1 ~spin or charge! density waves~SDW, CDW! at 2kf
are enhanced and diverge, whereas forKr.1 pairing fluc-
tuations dominate.

While in strictly one-dimensional systems there is a single
gapless charge mode, the theory could equally well be ap-
plied in a case where more than one gapless mode existed if
the excitations were decoupled in the low-energy regime. In
such a case, each degree of freedom would have an associ-
ated operator algebra, i.e., an associatedKr .

Specifically considering the problem of coupled chains,
we note that at present little is known and there is much
interest in how to connect the quasi-one-dimensional results
to the strictly one-dimensional case. A recent calculation by
Schulz15 has considered the coupling of two Luttinger liquids
by a small interchain hopping using a bosonization tech-
nique. Interestingly, in the presence of both forward and
backward scattering terms, the calculation predicts a gap in
all the magnetic excitations and a gapless charge mode~as
observed for the hole-doped region of thet-J ladder!. This
gapped phase, however, exhibits somewhat different correla-
tions to the strictly one-dimensional LE phase described
above. First, the CDWp and SDWp correlations decay ex-

TABLE I. Correlation exponents for the Tomonaga-Luttinger
and Luther-Emery cases witht850. SS and TS indicate singlet and
triplet superconductivity~pairing! correlations, respectively.

Correlation TL LE

2kf SDW 11Kr exponential
2kf CDW 11Kr Kr

SS 111/Kr 1/Kr

TS 111/Kr exponential
4kf CDW 4Kr 4Kr

TABLE II. Correlation exponents for the spin gapped and gap-
less phases in the ladder geometry (t85t). Thep indicates that the
correlations along the two chains are out of phase.

Correlation Gapless Gapped spin

2kf SDWp 112Kr exponential
2kf CDWp 112Kr exponential
SCd 111/2Kr 1/2Kr

4kf CDW 8Kr 2Kr
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ponentially along the chains~we use the notation of Schulz
where 0 orp indicate the oscillations are in or out of phase
between the two chains, respectively, i.e., ‘‘bonding’’ or
‘‘antibonding’’!. A divergent density-density response, de-
caying as;cos@2(kf

01kf
p)r#r22Kr, exists in analogy with the

4kf oscillations of a single chain (kf
0 and kf

p refer to the
Fermi points of the bonding and antibonding quasiparticle
branches, respectively!; the definition ofKr is the same as
that used previously for the strictly one-dimensional case.
The superconducting correlations~cross chain pairing! decay
as r21/2Kr and exhibit ad-like character. Hence for this
gapped phase, we would expect dominant superconducting
correlations forKr.1/2. In agreement with these findings,
different approaches by Troyeret al.,16 Nagaosa,17 and
Balents and Fisher18 predict similar behavior in the spin-
gapped region, i.e., Luther-Emery-like in the sense that there
exist two order parameters~analogous to the on-site pairing
and 2kf CDW in the LE class! whose exponents obey a
reciprocal relation: These correspond to the pair field corre-
lations and to a four-fermion operator^nB(r )nB(0)&, where
nB is the density of ‘‘bosonic’’ hole pairs bound on a rung
@analogous to the 4kf oscillations of a single chain~i.e.,
2kf

012kf
p)#. In Table II we summarize the correlation expo-

nents predicted for the case wheret5t8, i.e., the ladder ge-
ometry. Note that in electing to retain the previous definition
of Kr , the exponents of the gapless ‘‘TL’’ phase are rescaled
(Kr°2Kr).

In the following section we give details of calculations
using these ideas to characterize the behavior of thet-J lad-
der, finding the parameterKr and hence the dominant corre-
lation functions. We consider various electron densities and
various ratios ofJ/t to build up a speculative phase diagram.

III. NUMERICAL CALCULATIONS

Since we require information concerning the low-energy
properties of the model, the dominant technique we have
employed is that of exact diagonalization of finite systems,
specifically 235 and 2310 double chain rings. Exact diago-
nalization techniques are particularly well adapted to the in-
vestigation of low-energy modes since implementation of
various quantum numbers is straightforward; the various ex-
citation modes can be obtained by calculating the ground
state energy in each symmetry sector. The low-energy modes
of the system are characterized first by their spin: Singlet and
triplet excitations correspond to charge and spin modes, re-
spectively. It is also useful to consider the parity of the states
under a reflection in the symmetry axis of the ladder along
the direction of the chains: Even (Rx51) or odd
(Rx521) excitations corresponding to bonding (B) or an-
tibonding (A) modes, respectively (0 andp as used by
Schulz15!. Finally the dispersion relation of each mode is
determined by the momentumkx52pn/L.

In order to ensure that the antiferromagnetic correlations
are not frustrated when one goes around each chain, we have
chosen the electron number to be always a multiple of 4; our
results then concern electron densities 0.4 and 0.8 for both
system sizes and in addition 0.2 and 0.6 for the larger system
size. The absolute ground state is given by the boundary
conditions that form a closed shell in the noninteracting
Fermi sea~obtained by turning off the interactionJ) and

these are used in the calculations ofur and k, specifically
antiperiodic boundary conditions forn,0.5 and periodic
boundary conditions forn.0.5.

A. Drude weight and anomalous flux quantization

The first calculation we present concerns the Drude
weight, defined by Eq.~3!. The numerical technique involves
threading the double chain ring with a fluxF and studying
the functional form of the ground state energy with respect to
the threaded flux, namely,E0(F). In generalE0(F) consists
of a series of parabolas, corresponding to the curves of the
individual many-body statesEn(F): This envelope exhibits
a periodicity of 1, where we have chosen to measure the flux
in units of the flux quantumF05hc/e. Note that the func-
tion E0(F) also gives a quantitative value of the superfluid
densityDs , which is in general different froms0 .

19 The
Drude weight corresponds to curvature of a single ground-
state many-body energy level while the superfluid density
corresponds to the curvature of the envelope of the indi-
vidual many-body states as a function of flux. However,
since the flux (fc) at which another many-body energy level
crosses the zero-flux ground state energy level varies as
fc;(hc/e)L12d ~where d is the dimension!,19 in one di-
mensionfc is independent ofL; there is only a finite number
of energy level crossings in the thermodynamic limit and
s0 andDs are equal~up to a factor of 2p).

In addition to the Drude weight and the superfluid density,
the functionE0(F) also yields information regarding the
phenomenon of anomalous flux quantization; this has been
explained in a previous publication,9 and so we mention it
only briefly here. While in general the ground state envelope
E0(F) exhibits a periodicity of 1, Byers and Yang20 have
shown that in the thermodynamic limitE0(F) exhibits local
minima at quantized values of flux, the separation of which
is 1/n wheren is the sum of the charges in the basic group.
Hence, for a paired superconducting state we would expect
minima inE0(F) at intervals of 1/2. These minima are re-
lated to the existence of supercurrents which are trapped in
metastable states corresponding to the flux minima and are
thus unable to decay away.21 It should be mentioned that this
anomalous flux quantization~AFQ! is an indication of pair-
ing and is not in itself sufficient to imply a superconducting
state.

Numerically the application of a flux through the double-
chain ring is achieved by modifying the kinetic term of the
Hamiltonian such that

cj ,b;s
† cj11,b;s°cj ,b;s

† cj11,b;se
i2pF/L, ~5!

whereF is the flux through the ring measured in units of
F0 . Hence the application of a flux is numerically equiva-
lent to a change in the boundary conditions of the problem,
F50 representing periodic andF51/2 representing antipe-
riodic boundary conditions. In the thermodynamic limit,s0
must be independent of the phase introduced at the ring
boundary22 and therefore we consider the whole of the enve-
lope E0(F) as a function of flux~in general consisting of
several parabolas!.

Choosing the parametersn50.8 andJ/t50.5, we show
in Fig. 1~a! @1~b!# all the possible spin and charge modes of
the 235 @2310# system, for all possible momenta, as a
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function of applied flux. In the case of the larger system, we
show the full spectrum forF,0.25 in order to simplify the
diagram~this work has been previously published9!. For both
system sizes the minimum energy is formed by charge~spin
zero! bonding modes; the excited modes with different quan-
tum numbers move farther from the ground state as the sys-
tem size is increased~a result we have checked by finite-size
scaling! and hence will not interfere withE0(F). The exist-
ence of minima at intervals of half a flux quantum~i.e.,
anomalous flux quantization! clearly indicates the existence
of pairing.

The envelopeL@E0(F)2E0(F50)# has been extracted
and is shown in Figs. 2~a! and 2~b! along with equivalent
plots from other regions of the phase diagram: Figure 2~a!
shows the data forJ/t51.0 and electron densities of 0.4 and
0.8, while Fig. 2~b! shows the data for an electron density of
0.8 for ratiosJ/t50.5 and 4.0. Apart from the curve with
n50.8, J/t54.0 ~which appears to scale to a flat function,
consistent with a phase-separated state!, all the data appear to

show only small finite-size effects. Anomalous flux quanti-
zation is observed for the larger electron density~for the
lower values ofJ/t), indicating pairing, and hence consistent
with a superfluid state in this region.

In order to determine the Drude weight, we simply calcu-
late the average value of the curvature of
L@E0(F)2E0(F50)# over all F; a quadratic curve was
fitted to each portion. In Fig. 3~a! we plot the Drude weight
as a function ofJ/t for electron densities 0.2, 0.4, 0.6, and
0.8 for the 2310 system and electron densities 0.4 and 0.8
for the 235 system. The curves are plotted up to a maxi-
mum in J/t which is determined by the value at which the
system phase separates~see compressibility!. In Fig. 3~b! we
plot the Drude weight as a function of electron density for
various values of the ratioJ/t.

There are several features of the resulting behavior we
should mention: Note first that finite-size effects are rela-
tively small with the 235 results close to those of the
2310 results. The Drude weight increases as the electron

FIG. 1. Energy as a function of flux~in units ofF05hc/e) for ~a! the 235 and~b! the 2310 ladders withJ/t50.5 andn50.8. We
show all possible momenta for various quantum numbers: For the charge modes, the solid lines correspond to bonding and the dotted lines
to antibonding, while for the spin modes the dashed lines correspond to bonding and the dot-dashed lines to antibonding. For the larger
system size, we give only the charge bonding and the lowest-lying spin antibonding mode in full to simplify the diagram.

FIG. 2. L@E0(F)2E0(F50)# whereL is the length of the ladder andE0(F) is the ground state energy with an applied fluxF. The
dashed lines correspond to 235, the solid lines to 2310. ~a! shows the results forn50.4 andn50.8 both withJ/t51.0, while~b! shows
J/t50.5 andJ/t54.0 both withn50.8.
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density is increased from zero, until it reaches one-quarter
filling, and then decreases with increasing electron density.
Also, as we would expect for a spin-charge-separated state,
the Drude weight is effectively independent ofJ.

B. Charge velocity

The second quantity we have calculated is the charge ve-
locity, defined by Eq.~4!. Considering the charge bonding
modes~the lowest-lying charge modes!, the energy differ-
ence between the ground state energy level and the energy
level with neighboring momentum,Dkx52p/L was calcu-
lated. As an example, we show in Fig. 4~a! the charge bond-
ing modes for the casen50.4, J/t52.0, indicating with
solid lines the specific energy levels whose energy difference
gives the charge velocity. We note that the gap~and there-
fore ur) is approximately constant as a function of flux. For
consistency with future data, however, we have calculated
the charge velocity at the particular flux which gives the
absolute ground state, i.e.,F50.5 for n,0.5 andF50 for
n.0.5; the results are shown in Fig. 4~b! as a function of
J/t for various system sizes and various electron densities
~the results forn50.6 are not included since the numerics

present some difficulty close to one-quarter filling!. Note
again that finite-size effects are relatively small.

C. Compressibility

The next quantity we calculate is that of the compressibil-
ity, defined by Eq.~2!. The finite-size equivalent is given by

1

n2k
.

1

2L FE0~n1Dn!1E0~n2Dn!22E0~n!

~Dn!2 G , ~6!

whereE0(n) is the ground state energy of the finite system
of ladder lengthL with an electron densityn. As for the
calculation of the charge velocity, the boundary conditions
have been chosen to give the absolute ground state.Dn rep-
resents the finite change in electron density, 0.2 and 0.4 for
the 2310 and 235 systems, respectively. In Fig. 5 we show
the results of the calculation of 1/n2k for electron densities
corresponding to 0.2, 0.4, 0.6, and 0.8 for the 2310 ladder
and we also plot the result of the 235 system for an electron
density of 0.4.

In addition to the determination of the specific values of
the inverse compressibility, the boundary to phase separation
may also be determined from these results. It is well known

FIG. 3. The Drude weights0 ~a! as a function of ratioJ/t for various electron densities and system sizes, and~b! as a function of electron
density for variousJ/t. The solid lines are a guide to the eye.

FIG. 4. ~a! Energy of the charge bonding modes as a function of flux for the 2310 system withn50.4, J/t52.0. The solid lines indicate
the ground state and the excited states used to calculate the charge velocity.~b! The charge velocityur as a function of ratioJ/t for various
electron densities and system sizes. The dotted lines are a guide to the eye.
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that at sufficiently large values ofJ/t, a system will undergo
a separation into two phases, a hole-rich and an electron rich
phase. This effect arises principally to minimize the number
of broken antiferromagnetic bonds in the system. Phase sepa-
ration occurs when the compressibility diverges~i.e., a ‘‘liq-
uid’’ to a ‘‘solid’’ phase! and hence the inverse compress-
ibility vanishes. While there remain some small finite-size
effects, the general form of the phase separation line is
readily observed from Fig. 5. As electron density is in-
creased, the value ofJ/t at which phase separation occurs
decreases~although electron densities of 0.6 and 0.8 both
indicate phase separation close toJ/t ; 2.1!. These results
agree well with those of Tsunetsuguet al.10 who used a simi-
lar technique but varied both system size and electron den-
sity simultaneously. The phase separation curve can be ex-
trapolated to all electron densities and will be shown in the
predicted phase diagram, Fig. 8.

IV. LUTTINGER-LIQUID PARAMETERS FOR THE
LADDER

In order to explore the validity of the Luttinger-liquid
relations in our problem, we consider the ratios0 /pn

2kur
2

which equals unity for a Luttinger liquid. The results of the
numerical calculation of this quantity are shown in Fig. 6 for
various electron densities.

At low electron densities~i.e., for the casesn50.2 and
n50.4), previous work has suggested that a TL phase is
stabilized and the results of this ratio show good agreement
with the predicted value of unity; for the case ofn50.4 an
increase in system size shows the ratio scaling towards unity.
For the hole-doped spin-gapped region (n50.8), where the
behavior is less well understood, the system phase separates
at a much lower value ofJ/t and hence the curve drops to
zero atJ/t;2.1. Before this phase separation, the data are
not inconsistent with the LE-like behavior which may be

FIG. 5. 1/n2k as a function of ratioJ/t for
various electron densities and system sizes. The
dotted lines are a guide to the eye.

FIG. 6. The ratiopn2kur
2/s0 as a function of

J/t for various electron densities and system
sizes. The dotted lines are a guide to the eye.

11 726 53C. A. HAYWARD AND D. POILBLANC



described by Eqs.~2!–~4! ~finite-size effects are largest for
high electron density and lowJ/t). Since the ratio is close to
unity, it appears to confirm the earlier justification for using
this one-dimensional theory; i.e., only a single gapless
charge mode is observed.

With the values of the compressibility and the Drude
weight, we can obtain an estimate of the coefficientKr using
Kr51/2Apn2ks0. This behavior ofKr for the different
electron densities of the 2310 ladder is shown in Fig. 7 and
we have also plotted the results for a 235 ladder with elec-
tron density 0.4. Note that asJ/t is increased,Kr increases
~for all electron densities!, becoming infinite at phase sepa-
ration as the compressibility diverges. A similar calculation
has been performed by Troyer and co-workers16,10 for a spe-
cific electron density of 0.857, i.e., two holes on a 237

ladder, and the results are consistent in this region.
Before analyzing the behavior further, specifically the im-

portance ofKr , we present a speculative phase diagram of
the isotropic t-J ladder as a function ofJ/t and electron
density. This phase diagram is shown in Fig. 8 and we dis-
cuss briefly the various regions.

At larger values ofJ/t, the system phase separates, and to
estimate the value ofJ/t at which this occurs, we show the
data points at which the inverse compressibility vanishes in
the 2310 system~see Fig. 5!. On doping away from half
filling, the spin gap region persists and a phase exhibiting
one gapless charge mode is stabilized. On further doping a
gapless phase is stabilized: The schematic boundary between
these two phases is shown as a dot-dashed line. As for both
the one- and two- dimensionalt-J cases,24 a gas of electron

FIG. 7. Kr as a function of ratioJ/t for vari-
ous electron densities and system sizes. The dot-
ted lines are a guide to the eye.

FIG. 8. Speculative phase diagram of thet-J
ladder as a function ofJ/t and electron density
n. The circles and crosses represent results from
the 2310 system and the dotted lines are guides
to the eye. The dot-dashed lines separating the
different phases are estimated.
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pairs is formed at low electron densities above a critical
value of the ratioJ/t; other 2p-particle (p.1! bound states
could also become stable at largerJ/t in this region. Again
the boundary to this paired phase is shown as a dot-dashed
line and is schematic.

From the data in Fig. 7 we have plotted contours of con-
stantKr in order to allow a determination of the dominant
correlation functions. While the parameterKr is continuous
for a particular value ofJ/t as the electron density is
varied,23 at some region betweenn50.4 andn50.8 a gap
opens in the spin excitation spectrum and the correlation
functions change their form discontinuously, scaling to a dif-
ferent fixed point as explained in Sec. II. A ‘‘jump’’ in the
exponent of the superconducting correlations occurs with the
SCd charge exponent changing from 111/2Kr to 1/2Kr ; the
2kf CDW correlations jump from power law behavior~ex-
ponent 112Kr) to exponential decay. In addition, in the
gapped high-density state we would expect conjugate ‘‘four
fermion 4kf ’’ CDW correlations with exponent 2Kr .

For both the high-density gapped phase and the low-
density TL phase we expect different correlation functions to
dominate either side of the contourKr51/2; in both cases

superconducting correlations dominate forKr.1/2. How-
ever, in the gapped hole-doped phase, this region is much
larger and, in contrast to other models such as the one-
dimensionalt-J model,24 does not just exist as a precursor to
phase separation. A physical picture of the behavior is of the
holes pairing up on the rungs, the spins in singlets, and the
dominant correlation functions are then associated with the
movement of the hole pairs.
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