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Luttinger-liquid behavior and superconducting correlations in t-J ladders
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The low-energy behavior of the isotroptel ladder system is investigated using exact diagonalization
techniques, specifically finding the Drude weight, the charge velocity, and the compressibility. By applying the
ideas of Luttinger-liquid theory, we determine the correlation expoKgnvhich defines the behavior of the
long-range correlations in the system. The boundary to phase separation is determined and a phase diagram is
presented. At low electron density, a Tomonaga-Luttinger-like phase is stabilized while at higher electron
densities a gapped phase with power law pairing correlations is stabilized: A large region of this gapped phase
is found to exhibit dominant superconducting correlations.

[. INTRODUCTION index (j=1,...L). We shall concentrate on the isotropic
case where the intraladdéalong x) couplingsJ andt are
Over the last few years, the behavior of strongly corre-equal to the interladdealongy) couplingsJ’ andt’.
lated electrons confined to coupled chains has received wide- At half filling the Hamiltonian reduces to the Heisenberg
spread attention; the reasons for this are numerous. First, ttrodel and the behavior is generally relatively well
behavior of electrons in one dimension, unded or  understood.A simple interpretation is given by considering
Hubbard-type interactions, is now relatively well understoodthe strong coupling limit {=0) in which the ground state
and described generally by the term Luttinger liquid.). consists of a singlet on each rung with a spin gapJ{()
The coupling of two such Luttinger liquids as in the ladderwhich corresponds to forming a triplet on one of the rungs.
geometry provides an interesting first step towards the chaWith the introduction of intrachain coupling, the triplets
lenge of describing the behavior in two-dimensional systemscan propagate and form a coherent band, thereby reducing
A second reason for interest in these systems lies in the unhe spin-gap. In the isotropic case, the spin gap remains
usual nature of the ground state in the undoped systeng,~0.5J).
namely, spin liquid behavior with a finite gap in the spin  The evolution of this spin-gapped state on doping is per-
excitation spectrunh;this behavior is in contrast to the gap- haps one of the most interesting aspects of the ladder
less behavior of a single chain. The evolution of the spinbehavior® Recent work on this hole-doped ph%&é® has
gapped state on doping has obvious relevance to gapped sudicated a finite spin gap, a single gapless charge mode,
perconducting behavior. In addition, compounds such a#ole pairing, and possible dominant superconducting corre-
(VO,)P,0+ (Ref. 2 and SrCyO; (Ref. 3 are believed to lations. In this paper we shall discuss some independent re-
be well described by a lattice of coupled chains. Very re-sults which provide a more complete description of not only
cently, experiments on La ,Sr,CuO, 5 (Ref. 4 have pro- this gapped phase but the whole region of parameter space.
vided insight into the doping of coupled chain systems.A possible phase diagram for the isotropid ladder as a
While there is considerable literature on many aspects of theunction of J/t and doping has been proposed recénglyd
t-J ladder behavior, a complete picture is still far from beingwe use these ideas in our analysis: Away from half filling the
realized: Our aim in this paper is to clarify some of the spin-gapped phase is stabilized upltv~ 2.1 where the sys-
behavior of thet-J ladder system by drawing on some of the tem phase separat¥sAs the system is doped further, a
ideas used in describing the strictly one-dimensional systemshase with a single gapless spin and a single gapless charge
(i.e., LL theory. In conjunction with results from several mode is found and, as we shall explain, this behavior is like
other techniques, we will then present a speculative phasiat of the one-dimensional Tomonaga—Luttinger-liquid sys-
diagram. tem. As in the gapped phase, phase separation occurs for
The t-J Hamiltonian on the XL ladder is defined as largeJ/t. At very small electron densities, an electron-paired
phase exists. Note that although in théd ladder there are
o 1 four possible zero-momentum gapless mo@te® spin and
H=J 2 (S 8273 nj,lnj,2)+J% (Si.p-Si+1p two charge, throughout the phase diagram only one gapless
charge mode and either zero or one gapless spin mode are
1 + observed; this then allows an almost identical treatment to
3 ”J,BnHlyﬁ)_tj%S Pa(Cj p:sCi+151 H.CIPg the strictly one-dimensional case.
o In Sec. Il we discuss briefly the Luttinger-liquid theory
, T used to describe strictly one-dimensional systems and also
—t % Pa(€j1:5Cj.2s1H.C)PG, @) the possible application of this theory to coupled chains, in
Sec. Il we present our numerical calculations, and finally in
where most notations are standa@l(=1,2) labels the two Sec. IV we apply the Luttinger-liquid theory to our results
legs of the laddeforiented along the axis) while j isarung and present a phase diagram for the system.
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Il. LUTTINGER-LIQUID BEHAVIOR: TABLE I. Correlation exponents for the Tomonaga-Luttinger
TOMONAGA-LUTTINGER and Luther-Emery cases with=0. SS and TS indicate singlet and
AND LUTHER-EMERY PHASES triplet superconductivitypairing correlations, respectively.
In dealing with strictly one-dimensional interacting ferm- correlation TL LE
ion systems, one can in general make use of conformal field
theory'* and bosonizatiolf which allow a determination of 2k SDW 1+K, exponential
the decay exponents of the various correlation functions t@k; COW 1+K, K,
be determined from the low-energy behavior of the modelSS +1K, 1K,
The general idea is that one-dimensional interacting fermioS 1+1K, exponential
systems can be mapped onto the Fermi-gas model and tl&; CDW 4K, 4K,

corresponding §-ology” weak coupling theory® This
Fermi-gas model scales to two different regimes, namely, the ) ) . ) )
Tomonaga-LuttingefTL) fixed point and the Luther-Emery These equations pr_owde us with three independent co_ndl—
(LE) line which are relevant for repulsiveg(>0) and at- tons onK, andu, which can be used to check the consis-
tractive (g,<0) backscattering matrix elements, respec_tency of the Luttujger—hq'wd relatpns. Also a calcula'tlon of
tively; as we shall explain, the important difference betweerf® ParameteK,, is relatively straightforward and this pa-

these two universality classes lies in the spin degrees of freé@meter then determines the exponent coefficients of all the

dom. The low-lying excitations of the Fermi-gas model arecorrelation functions. S

collective spin or charge density oscillations, which propa- AS explained previously, the essential difference between
gate with different velocities, giving rise to spin-charge sepath€ TL and LE fixed points lies in the spin degrees of free-
ration and power law behavior of the correlation functions.dom: The LE region is gapped while the TL region is gap-
In the TL phase, both a gapless spin and a gapless char@SS: For the one-dimensional case<0) the correlation
mode are exhibited; in contrast, while exhibiting a gaples$£Xponents of the two different cases are summarized in Table

charge mode, the LE phase has a gap to all spin excitations.(taken from Ref. & We have omitted the logarithmic cor-
Conformal field theory relates the properties of a finiterections and these are detailed in Ref. 14. We emphasise that

system(such as the compressibility and the Drude welight for LL systems, the correlation functions show either power
with the correlation exponents; one coefficieit, deter- law or gxponentlal decay, _w_|th interaction-dependent powers
mines the exponents of all the power law decéysd simi- ~ detérmined by one coefficier,. Also we see that for
larly the singularity of the momentum distribution function K,<1 (spin or chargedensity wavesSDW, CDW) at
close tok;). Hence if a particular model scales to the Tr ~ a@ré eénhanced and diverge, whereasKgr-1 pairing fluc-
LE) universality class, one can infer the dominant correlafuations dominate. _ _ o
tions from the low-energy behavior of the system which can While in strictly one-dimensional systems there is a single
be deduced from much smaller system sizes than would b@apPless charge mode, the theory could equally well be ap-
required to calculate the correlation lengths directly. plied in a case where more than one gapless mode existed if
The relationships between the correlation exponéf) ( the excitations were decoupled in the low-energy regime. In-
and the low-energy behavior of the model are given belowuch @ case, each degree of freedom would have an associ-
for a system of siz&l and lengthl (we have chosen to give at€d operator algebra, i.e., an associaigd .
general equations such tHat=L for a chain,N=2L for the Specifically considering the problem of coupled chains,
ladder geomety First, the ratio of the charge velocity, to W€ note that at present little is known and there is much
the coefficientK , is proportional to the variation of the INterestin how to connect the quasi-one-dimensional results
p

ground state energ, with particle densityn, i.e., the in- to the strictly one-dimensional case. A recent calculation by
verse compressibilityo N SchulZ® has considered the coupling of two Luttinger liquids

by a small interchain hopping using a bosonization tech-

7 U, 1 9*(Eq/N) nique. Interestingly, in the presence of both forward and
2K. nm2e onZ 2 backward scattering terms, the calculation predicts a gap in
e all the magnetic excitations and a gapless charge ntasle

The coefficientK , is also related to the Drude weight;,  observed for the hole-doped region of thé ladde). This

this Drude weight is the weight of the zero-frequeridg)  gapped phase, however, exhibits somewhat different correla-
peak in the conductivityr,, and may be obtained by consid- tions to the strictly one-dimensional LE phase described
ering the curvature of the ground state energy level as above. First, the CDW and SDW, correlations decay ex-

function of threaded fluxgp, _ .
TABLE Il. Correlation exponents for the spin gapped and gap-

L2 ,92(EO/N) less phases in the ladder geometry=(t). The = indicates that the
00~ ZUpr:E T ap2 3 correlations along the two chains are out of phase.
We can also determine the charge velocity by consideringorrelation Gapless Gapped spin
the dispersion of the energy spectrum 2, SDW. 112K, exponential
u,=(Ey,—Eg)/(2m/L), (4) 2k¢ CDW 1+2K,, exponential
scd +1/2K, 1/2K,
where Ey, is the lowest-lying charge mode to the ground 4«, cpw 8K, 2K,

state €y) with neighboringk value.
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ponentially along the chainsve use the notation of Schulz these are used in the calculationswpf and «, specifically
where 0 ors indicate the oscillations are in or out of phase antiperiodic boundary conditions fan<0.5 and periodic
between the two chains, respectively, i.e., “bonding” or boundary conditions fon>0.5.

“antibonding”). A divergent density-density response, de-

caying as~cog2(kK'+k)rlr~%%, exists in analogy with the A. Drude weight and anomalous flux quantization

4k, oscillations of a single chainkf and k7 refer to the
Fermi points of the bonding and antibonding quasiparticlew
branches, respectivelythe definition ofK, is the same as
that used previously for the strictly one-dimensional case
The superconducting correlatiofross chain pairingdecay
as r~ Y%, and exhibit ad-like character. Hence for this
gapped phase, we would expect dominant superconducti
correlations forK ,>1/2. In agreement with these findings,
different approaches by Troyeet al,'® Nagaosd’ and
Balents and Fishé&t predict similar behavior in the spin-
gapped region, i.e., Luther-Emery-like in the sense that ther

exist two order paramete(analogous to the on-site pairing Drude weight corresponds to curvature of a single ground-

and X; CDW in the LE class whose exponents obey a i ; . .
reciprocal relation: These correspond to the pair field corre—State many-body energy level while the superfiuid density

lati d to a four-fermi ¢ 0 h corresponds to the curvature of the envelope of the indi-
ations and 1o a our‘-‘erm|op ,(,)pera O"B.(r)nB( )), where vidual many-body states as a function of flux. However,
ng is the density of “bosonic” hole pairs bound on a rung

[analogous to the K4 oscillations of a single chaifi.e since the flux ¢;) at which another many-body energy level

K04 2kM 1. In Table I e th It crosses the zero-flux ground state energy level varies as
ft f)] n Table Il we summarize the correlation expo- d)c’“(hC/e)Llid (Whered is the dimenSiOhlg in one di-

nents predicted for the case wheret’, i.e., the ladder ge- ansiong. is independent of ; there is only a finite number
ometry. Note that in electing to retain the previous definition energy level crossings in the thermodynamic limit and

of K,, the exponents of the gapless “TL” phase are re:scaleqT0 and D, are equalup to a factor of 2r).

(Kp—>2K,). _ _ i ) _ In addition to the Drude weight and the superfluid density,
.In the foII_owmg section we give details pf calculations o function Eo(®) also yields information regarding the
using these ideas to characterize the behavior of-théad-  yhenomenon of anomalous flux quantization; this has been

der, finding the parametét, and hence the dominant corre- explained in a previous publicatidnand so we mention it
lation functions. We consider various electron densities an%my briefly here. While in general the ground state envelope
various ratios ofl/t to build up a speculative phase diagram. Eo(®) exhibits a periodicity of 1, Byers and Yaffghave
shown that in the thermodynamic lintity(®P) exhibits local
. NUMERICAL CALCULATIONS minima at quantized values of flux, the separation of which
is 1/ wheren is the sum of the charges in the basic group.

Smge we require information concerning th.e IOW'enerngence, for a paired superconducting state we would expect
properties of the model, the dominant technique we have

. ) o L minima in Eg(®) at intervals of 1/2. These minima are re-
employed is that of exact diagonalization of finite SyStemslated to the existence of supercurrents which are trapped in
specifically 2<5 and 2< 10 double chain rings. Exact diago-

nalization techniques are particularly well adapted to the in_metastable states corresponding (o the flux minima and are

S F WS ion ofhus unable to decay awaylt should be mentioned that this
vestigation of low-energy modes since implementation o

various quantum numbers is straightforward; the various exgnomalous flux quantizatiopAFQ) is an indication of pair-

citation modes can be obtained by calculating the groun' tglt(z;md is not in itself sufficient to imply a superconducting

state energy in each symmetry sector. The low-energy modes Numerically the application of a flux through the double-

of the system are characterized first by their spin: Singlet anghain fing is achieved by modifying the kinetic term of the
triplet excitations correspond to charge and spin modes, r& amiltonian such that

spectively. It is also useful to consider the parity of the states
under a reflection in the symmetry axis of the ladder along
the direction of the chains: EvenR{=1) or odd
(Ry=—1) excitations corresponding to bonding)(or an- where® is the flux through the ring measured in units of
tibonding (A) modes, respectively (0 and as used by ®,. Hence the application of a flux is numerically equiva-
Schul2d). Finally the dispersion relation of each mode islent to a change in the boundary conditions of the problem,
determined by the momentuky=27n/L. @ =0 representing periodic arti=1/2 representing antipe-

In order to ensure that the antiferromagnetic correlationsgiodic boundary conditions. In the thermodynamic limit
are not frustrated when one goes around each chain, we hawgust be independent of the phase introduced at the ring
chosen the electron number to be always a multiple of 4; ouboundary? and therefore we consider the whole of the enve-
results then concern electron densities 0.4 and 0.8 for botlope Eo(P) as a function of flux(iin general consisting of
system sizes and in addition 0.2 and 0.6 for the larger systerseveral parabolas
size. The absolute ground state is given by the boundary Choosing the parameters=0.8 andJ/t=0.5, we show
conditions that form a closed shell in the noninteractingin Fig. 1(a) [1(b)] all the possible spin and charge modes of
Fermi sea(obtained by turning off the interactiod) and the 2x5 [2X 10] system, for all possible momenta, as a

The first calculation we present concerns the Drude
eight, defined by Eq.3). The numerical technique involves
threading the double chain ring with a fldx and studying
the functional form of the ground state energy with respect to
the threaded flux, nameliy(P). In generaEy(®P) consists
of a series of parabolas, corresponding to the curves of the
Ndividual many-body stateg,,(®): This envelope exhibits
a periodicity of 1, where we have chosen to measure the flux
in units of the flux quantund,=hc/e. Note that the func-
tion Eo(P) also gives a quantitative value of the superfluid
fensity D, which is in general different fromry.1° The

T T i2®/L
Cj psCi+185C) gsCi+18€ 5
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a) 2x5 J/t=0.5 <n>=0.8 b) 2x10 JA=0.5 <n>=0.8

ENERGY
ENERGY

0.0 012 o4 06 08 1.0 00 02 04 0.6 0.8 1.0
(a) FLUX (b) FLUX

FIG. 1. Energy as a function of flufin units of ®y=hc/e) for (a) the 2<5 and(b) the 2< 10 ladders withJ/t=0.5 andn=0.8. We
show all possible momenta for various quantum numbers: For the charge modes, the solid lines correspond to bonding and the dotted lines
to antibonding, while for the spin modes the dashed lines correspond to bonding and the dot-dashed lines to antibonding. For the larger
system size, we give only the charge bonding and the lowest-lying spin antibonding mode in full to simplify the diagram.

function of applied flux. In the case of the larger system, weshow only small finite-size effects. Anomalous flux quanti-
show the full spectrum fo <0.25 in order to simplify the zation is observed for the larger electron dengfyr the
diagram(this work has been previously publistied=or both  lower values ofl/t), indicating pairing, and hence consistent
system sizes the minimum energy is formed by chdspin ~ with a superfluid state in this region.
zerg bonding modes; the excited modes with different quan- In order to determine the Drude weight, we simply calcu-
tum numbers move farther from the ground state as the sysate the average value of the curvature of
tem size is increase@ result we have checked by finite-size L[ Ey(®) —Ey(®=0)] over all ; a quadratic curve was
scaling and hence will not interfere witko(®). The exist- fitted to each portion. In Fig.(d we plot the Drude weight
ence of minima at intervals of half a flux quantufine., as a function ofl/t for electron densities 0.2, 0.4, 0.6, and
anomalous flux quantizatigrelearly indicates the existence 0.8 for the 2< 10 system and electron densities 0.4 and 0.8
of pairing. for the 2X5 system. The curves are plotted up to a maxi-
The envelopd [Eo(P) — Eq(P=0)] has been extracted mum in J/t which is determined by the value at which the
and is shown in Figs. (@ and 2b) along with equivalent system phase separatese compressibility In Fig. 3b) we
plots from other regions of the phase diagram: Figui@ 2 plot the Drude weight as a function of electron density for
shows the data fad/t=1.0 and electron densities of 0.4 and various values of the ratid/t.
0.8, while Fig. Zb) shows the data for an electron density of There are several features of the resulting behavior we
0.8 for ratiosJ/t=0.5 and 4.0. Apart from the curve with should mention: Note first that finite-size effects are rela-
n=0.8, J/t=4.0 (which appears to scale to a flat function, tively small with the 2<5 results close to those of the
consistent with a phase-separated $tatibthe data appearto 2Xx 10 results. The Drude weight increases as the electron

12

L {E(flux)-E(flux=0)}
L {E(flux)-E(fllux=0)}

-4.5 I . . .
0.0 0.2 0.4 0.6 0.8 1.0

FLUX

FIG. 2. L[Eo(P) —Eo(P=0)] whereL is the length of the ladder aril,(P) is the ground state energy with an applied fthx The
dashed lines correspond to<5, the solid lines to X 10. (a) shows the results fan=0.4 andn=0.8 both withJ/t=1.0, while(b) shows
J/t=0.5 andJ/t=4.0 both withn=0.8.
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FIG. 3. The Drude weightr, (a) as a function of ratid/t for various electron densities and system sizes,(bhds a function of electron
density for variousl/t. The solid lines are a guide to the eye.

density is increased from zero, until it reaches one-quartepresent some difficulty close to one-quarter fillingNote
filling, and then decreases with increasing electron densityagain that finite-size effects are relatively small.
Also, as we would expect for a spin-charge-separated state,

the Drude weight is effectively independent bf C. Compressibility
The next quantity we calculate is that of the compressibil-
B. Charge velocity ity, defined by Eq(2). The finite-size equivalent is given by
The second quantity we have calculated is the charge ve- 1 1 [Eo(n+An)+Eg(n—An)—2E(Nn)

locity, defined by Eq.(4). Considering the charge bonding FUETE (An)2 , (6
modes(the lowest-lying charge modgsthe energy differ-

ence between the ground state energy level and the energyhereEy(n) is the ground state energy of the finite system
level with neighboring momentumk,=2/L was calcu- of ladder lengthL with an electron densitn. As for the
lated. As an example, we show in Figajtthe charge bond- calculation of the charge velocity, the boundary conditions
ing modes for the casa=0.4, J/t=2.0, indicating with have been chosen to give the absolute ground stateep-
solid lines the specific energy levels whose energy differenceesents the finite change in electron density, 0.2 and 0.4 for
gives the charge velocity. We note that the dapd there- the 2x 10 and 2<5 systems, respectively. In Fig. 5 we show
fore u,) is approximately constant as a function of flux. For the results of the calculation ofri9« for electron densities
consistency with future data, however, we have calculatedorresponding to 0.2, 0.4, 0.6, and 0.8 for the 2D ladder

the charge velocity at the particular flux which gives theand we also plot the result of thex5 system for an electron
absolute ground state, i.&b,=0.5 forn<0.5 and®=0 for  density of 0.4.

n>0.5; the results are shown in Fig(b4 as a function of In addition to the determination of the specific values of
J/t for various system sizes and various electron densitiethe inverse compressibility, the boundary to phase separation
(the results fom=0.6 are not included since the numerics may also be determined from these results. It is well known

20| F<n>=0.2 (2x10)
2x10 JA=2.0 <n>=0.4 @ <n>=0.4 (2x10)
186 | ] X <n>=0.8 (2x10)
o 7 <n>=0.8 (2x5)
+ $ —+<n>=0.4 (2x5)
15 »-.
> G '}
& e k. e, e
i e * +
2 8’ 1.0 - "o
] 5 -
= *
© Ko .
X *
05 | |
v V . 6 i v
X
-20.6 L . L L 0.0 L L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 1.0 20 3.0
(a) FLUX (b) J/t

FIG. 4. (a) Energy of the charge bonding modes as a function of flux for thd@ system witm=0.4, J/t=2.0. The solid lines indicate
the ground state and the excited states used to calculate the charge véditye charge velocityl, as a function of ratid/t for various
electron densities and system sizes. The dotted lines are a guide to the eye.
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that at sufficiently large values dft, a system will undergo

a separation into two phases, a hole-rich and an electron rich

IV. LUTTINGER-LIQUID PARAMETERS FOR THE

LADDER

phase. This effect arises principally to minimize the number
of broken antiferromagnetic bonds in the system. Phase sepgy
ration occurs when the compressibility diverdes., a “lig-
uid” to a “solid” phase) and hence the inverse compress-

In order to explore the validity of the Luttinger-liquid
ations in our problem, we consider the ratig/ mn?«u?
which equals unity for a Luttinger liquid. The results of the

ibility vanishes. While there remain some small finite-size

numerical calculation of this quantity are shown in Fig. 6 for
various electron densities.

effects, the general form of the phase separation line is At jow electron densitiegi.e., for the cases=0.2 and

readily observed from Fig. 5. As electron density is in-n—0 4), previous work has suggested that a TL phase is
creased, the value af/t at which phase separation occurs stapilized and the results of this ratio show good agreement
decreasesalthough electron densities of 0.6 and 0.8 bothwith the predicted value of unity; for the case ¥ 0.4 an

indicate phase separation closeJ{o ~ 2.1). These results
agree well with those of Tsunetsugtia

|10

who used a simi-

increase in system size shows the ratio scaling towards unity.
For the hole-doped spin-gapped regian=0.8), where the

lar technigue but varied both system size and electron derbehavior is less well understood, the system phase separates
sity simultaneously. The phase separation curve can be eat a much lower value od/t and hence the curve drops to
trapolated to all electron densities and will be shown in thezero atJ/t~2.1. Before this phase separation, the data are

predicted phase diagram, Fig. 8.

not inconsistent with the LE-like behavior which may be

1.5 . .
X ¥ <n>=0.2 (2x10)
\ ® <n>=0.4 (2x10)
\3< +<n>=0.4 (2x5)
. X <n>=0.8 (2x10)
1.0
-2 FIG. 6. The ratiOWnZKu,f/ao as a function of
o J/t for various electron densities and system
sizes. The dotted lines are a guide to the eye.
05
oy
00 L 1 1
0.0 1.0 2.0 3.0

J/t
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25 T T
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20 [ X<n>=0.8 (2x10) 1
+<n>=0.4 (2x5) /
Kp FIG. 7. K, as a function of ratid)/t for vari-
X . ous electron densities and system sizes. The dot-
1.0 ’ ><<> * 1 ted lines are a guide to the eye.
05 4
0-0 1 i L
0.0 1.0 2.0 3.0

described by Eqs(2)—(4) (finite-size effects are largest for ladder, and the results are consistent in this region.

high electron density and lod/t). Since the ratio is close to Before analyzing the behavior further, specifically the im-
unity, it appears to confirm the earlier justification for using portance of ,, we present a speculative phase diagram of
this one-dimensional theory; i.e., only a single gaplesshe isotropict-J ladder as a function o8/t and electron

charge mode is observed. density. This phase diagram is shown in Fig. 8 and we dis-
With the values of the compressibility and the Drudecuss briefly the various regions.
weight, we can obtain an estimate of the coeffici¢ptusing At larger values ofl/t, the system phase separates, and to

K,= 1/2\mn?ko,. This behavior ofK, for the different estimate the value ai/t at which this occurs, we show the
electron densities of the>10 ladder is shown in Fig. 7 and data points at which the inverse compressibility vanishes in
we have also plotted the results for x 8 ladder with elec- the 2x10 system(see Fig. 5. On doping away from half
tron density 0.4. Note that aB't is increasedK, increases filling, the spin gap region persists and a phase exhibiting
(for all electron densitigs becoming infinite at phase sepa- one gapless charge mode is stabilized. On further doping a
ration as the compressibility diverges. A similar calculationgapless phase is stabilized: The schematic boundary between
has been performed by Troyer and co-work&t&for a spe-  these two phases is shown as a dot-dashed line. As for both
cific electron density of 0.857, i.e., two holes on &2 the one- and two- dimensional) case$’ a gas of electron

1.0 T L T T T T
1.0
0.5 0.7 ;
08 - >< >< >< >< i x phase separation i
spm moa_es gapped
0.6 - >< >< >< ke ><>< _ FIG. 8. Speculative phase diagram of thé
S ; ladder as a function o/t and electron density
c e e n. The circles and crosses represent results from
T the 2x 10 system and the dotted lines are guides
04 r ' : 1 to the eye. The dot-dashed lines separating the
different phases are estimated.
spin & charge modes g'a_pless
02t b ]
00 . . . -~ gasofelectron pairs

0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0
J/t
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pairs is formed at low electron densities above a criticalsuperconducting correlations dominate #>1/2. How-
value of the ratial/t; other D-particle (p>1) bound states ever, in the gapped hole-doped phase, this region is much
could also become stable at largkt in this region. Again larger and, in contrast to other models such as the one-
the boundary to this paired phase is shown as a dot-dashefinensionat-J model?* does not just exist as a precursor to
line and is schematic. phase separation. A physical picture of the behavior is of the
From the data in Fig. 7 we have plotted contours of conoles pairing up on the rungs, the spins in singlets, and the
stantK, in order to allow a determination of the dominant dominant correlation functions are then associated with the
correlation functions. While the parametey, is continuous  oyement of the hole pairs.
for a particular value ofJ/t as the electron density is
varied®® at some region betweem=0.4 andn=0.8 a gap
opens in the spin excitation spectrum and the correlation ACKNOWLEDGMENTS
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