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One-hole motion in the two-dimensional frustratedt-J model
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The influence of a frustration term in the exchange part ofttfienodel onto the dispersion relation of one
hole has been investigated. We have chosen two independent methods, namely, a variational ansatz which
describes a magnetic polaron of minimal size and the exact diagonalization methodt éfiattdce. It has been
found that the frustration shifts the minimum from the point2,7/2) to the point (Oz) in k space. It has also
been shown that the frustration term alone does not lead to the correct, experimentally observed flat dispersion
region around (Qr). A better agreement with the observed, extended saddle point singularity may be obtained
by simulating the decrease of spin correlations due to a finite temperature.

I. INTRODUCTION usually interpreted in terms of a large Fermi surfadeso
numerical calculations on finite size systems indicate a large
There exist already numerous studies of the single-hol&ermi surface in the case of strong dopffig.
motion in the two-dimensiondRD) t-J model. These studies The effect of doping can be simulated in several ways.
are based on the exact diagonalization of small clustérs, The first possibility is a frustration term in the Hamiltonian
the self-consistent Born approximatidhor a “string” an-  as was proposed, for instance, in Ref. 10. Another possible
satz for the hole wave functichOne can also start from a way is the inclusion of a finite temperature. This brings about
spin-rotational-invariant spin liquid stdtéstead of dealing a decrease of the spin-spin correlation functions in a similar
with the two-sublattice Nel-type staté>and obtain qualita- way as can be expected from the doping process. For very
tively the same result: The hole motion occurs mainly on onehigh temperatures one finds a dispersion which is dominated
sublattice; i.e., the dispersion relation is dominated by arpy an effective nearest neighbor hopgimghich may explain
effective hopping to next nearest neighbors with the mini-the transition to a large Fermi surface. In the present work
mum of the dispersion at%/2,7/2). Throughout the present we will investigate the effect of frustration and temperature
work we will choose the hole picture and we will set the on the dispersion relation of one hole. We are interested in
lattice constant to unitpa=1. It is generally believed that the the question if the frustration or temperature has a similar
t-J model describes qualitatively the hole spectrum of theeffect as has the doping in the experiments. Especially, we
CuO, plane in high-temperature superconductors. Recentlywill investigate if the energy value at (8) goes down with
it has been possible to measure that dispersion directly irespect to the other energies and if there occurs an extended
the insulating compound, namely, in the compoundsaddle point in the vicinity of (Os).
Sr,CuO,Cl,, by angle-resolved photoemissibrin agree- We will choose two methods to investigate the effect of
ment with the theory of thé-J model, the minimum of the frustration on the dispersion of one hole, a variational
dispersion was found to be air(2,7/2). But the energy at method and the exact diagonalization of &4t lattice. The
(0,7) was found to be much higher in the experiment than invariational ansatz describes the one-hole state as a magnetic
the calculations of thé-J model, such that it was nearly polaron of minimal size and is an improvement of the ansatz
degenerate with the value at thepoint (0,0). That shows used in Ref. 6. Within that method the dispersion is deter-
already the necessity to extend the origitdl model. Fur- mined by static spin-spin correlation functions. These are
thermore, after doping the system, the experinieag, e.g., calculated here in a spin-rotational-invariant Green’s func-
Ref. 8 shows that the dispersion changes drastically: Theion method? (see also the zero-temperature versiprive
energy value at (@;) goes down with respect to tHepoint  describe the state of the magnetic subsystem as a spin liquid
such that a remarkable dispersion occurs along the linstate in contrast to the widely used two-sublatticeeNgpe
(ky,0). In the optimally doped compounds, the dispersionstate due to several reasons. At first, our choice gives the
relation is characterized by a flat region close to the poinpossibility to avoid the degeneracy of the hole spectrum be-
(0,7).8° The energy value at the pointr() is even more tween the points (0,0) andr( ) which always occurs in the
affected by the doping than the energy value atr0,As a  Neel-type state. Second, the spin liquid state does not con-
result, it seems to be that the spectrum of the doped contradict the Mermin-Wagner theoréfwhich forbids mag-
pounds resembles more a nearly free dispersion with effeaietic order in two dimensions for any finite temperature. So
tive nearest neighbor hopping and the photoemission data aregives the possibility to investigate one-hole motion at non-
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zero temperatures. Of course, the variational ansatz corre- 0 0 a < o
sponds to an approximate method. Therefore, it is reasonable ¢ =X, ¢ =2 X5 X (a=1,....4, (5
to investigate the problem by the exact diagonalization s
method and to compare the results of two independent pravhere we will use the following notation hereafter: The
cedures. Let us remember, however, that also the exact démall latin lettera denotes either a number between 0 and
agonalization method has some shortcomings, such as finité- or the corresponding lattice vector
size effects, for instance. We will see that both methods
complement each other. 0-(0,0 1-(1,0 3<(—1,0,
The paper will be organized as follows. At first, in Sec. Il 25(0,1) 4e(0,~1) (6)
we will present both methods, i.e., the variational ansatz and ' b

of both methods for zero-temperature and increasing frustranagnetic polaron of minimal size. It may be seen that

i i i T . .
tion (Sec. lll). We discuss also the influence of temperature , » 1W,) corresponds to a one-hole state with a total spin

on the dispersion relation in the frustrated and nonfrustrate /i2 and with a spire proiection— o/2. We are interested in
cases. Finally we present our conclusions. PITE proj gle.

our variational approach only in states with total spin 1/2
since it is known that these states represent the bottom of the
II. VARIATIONAL ANSATZ VS EXACT

. T
DIAGONALIZATION onvest band. The bgs_|§ operatqzifJ corresponds to the cre-
ation of a hole on sité in the statd W) without any addi-
We consider here the 2D-J model on a square lattice tional spin excitation. The remaining operators
i i i i i i T . . o
with an exchange interaction that contains a frustration term¢i1 . ’¢>i4 create a hole and an additional spin excitation

1 at the neighboring site. They appear after acting with the
. C T .
H=H+Hy= = t.X7OXP7,+ EZ JuSi-S+p, (1) kinetic energy operator on the statd |¥,). A similar an-
i b satz was already used in Ref. 6 where, however, only a fixed

where combination ofg?', ... ,4* was chosen. Treating them as
o ) independent states has the advantage that it gives correctly
_|ta>0 ifais a nearest neighbor vector, 5  the limitt;=0 where no dispersion should remain.
a o otherwise, @) We will calculate the energy eigenvalues as in the Ritz
variational procedure using the bagi. For that we have to
and calculate the overlap matrix which is defined after Fourier
J;>0 if bis a nearest neighbor vector, transformation as

Jy,=1 J2>0 if b is a next nearest neighbor vector, (3) =3 <¢a¢bf>eik(1’fl) (a,b=0 4 7
T 4 | i MYy e,
]

0 otherwise.
The Hubbard operatob(?‘T:ciU(l—ni,U) annihilates an Where (---) means the average with the g_round state
electron with spin projectio?= ¢/2 at sitei with no double (Wo|---|¥o). It turns out that the overlap matrix does not
occupancy andr is a spin indexe=+1 or —1. Analo- depend on the momentum, and its matrix elements are
gously, X7=n;(1-n;_,), X° “=cl ¢;_,, and the spin 9Ven by

io io

operators are expressed as se=1/2  (a=0,....4

she=z, (a=1,....,4, 8

1
=X, S=— X, 4
oo ! 220' @ SP=D,.p (ab=1,....4 (a#b),

If each place is occupied by exactly one electron, also the . .
completeness relation holds=& ,X?. Without a hole, where we introduced the abbreviations
model (1) has already been investigated by many
method$?1315-17and with increasing frustratiod, several Za=2, (XISXS7,), 9
transitions from the antiferromagnetic to a spin liquid and the s
collinear stripe phase were found. Our following anael%{!tlical
calculation is based on the Green’s function procedure — TS13,5152S20°
which has the advantage that it is spin rotational invariant Dab 122 XX ), (10
and can be applied also at finite temperature.

Now, we look for the lowest state ¢f) with one hole an
a fixed momentum. We choose a variational ansatz which is
constructed from the following five basis vectatd | W) Vape= 2 (XTSXCI2X25X57), (12)
with a=0,1, ... ,4.Here, the vectot¥,) denotes the spin- $152%3
rotational-invariant singlet ground state of the pure spin sysThe definitions(9)—(11) are only valid for noncoinciding
tem H; without any hole. The corresponding five basis op-|attice sites different from zer@=b+c+0. Note that the
erators¢? are lattice sitesa—b which occur in(8) can be different from

d and for further use we define, also,



11716 HAYN, BARABANOV, SCHULENBURG, AND RICHTER 53

nearest and next nearest neighbors. Using the spin-rotational- 4 _
invariance we obtain fronf9)—(11) KO(k)= >, t,Z.e'*?, (17
a=1
Z,=1+S:, S.=(5-S:a), (12 . s
KO(k)= =t @+ > 5,4Dcc a€*C (a=1,...,9,
Dov=t+ 3 S+ S+ S0 1y K0T 2 dudDecae™ !
(18)
Vap,e=15+ 7 (SatSp+SctSp-at Se-at Se-n) + Zanc where we introduced,.=1— 8,. and 5,.= 1 for a=c and
zero elsewhere. Further, we obtain
_Ebac+zcabv (14)
4
where the following four-point spin-correlation functions ap- - . —_—— .
pear: Kaa(k):taza(elka+e Ika)+;l 5ac5—a,ctcva,a+c,celkc
3 b= (S-S +2)(Svp Sivo))- (15) (a=1,....4 (19
Next we determine the kinetic energy matrix and fora#b (a,b=1,...,4)

- KaP(K) = &_, ptpZae P+ t,Zpe et t,_ 7, _e'k(P=a
Ke®(0=3 ([¢f HI#)e ™) (a,b=0,... 4, ()7 0-aptoZe® ™+ o208 to-Zb-a
j 4
(16) + Zl 5—a,c5bc5b—a,ctcVa,a+c,a+c—belkc- (20)
which depends explicitly ok. Here, we calculate the Hamil- < _ _
ton matrix element not in the forgy®H ¢b*> but by means Analogously, we obtain the matrix of the exchange energy
AR S hich does not depend on the momentrike the overla;
of the commutator. Both definitions coincide if we assume aVNic! P p
zero ground state energy of the pure spin Hamiltonian, i.e Matrix S,

of the statdW,). In other words, the variational ansatz gives _,, - ,a by b Zab B
the energy difference between the lowest state with one hol& =([7" Hildi )=(31+J,)SP+E (a,b=0,... 4,

and a given momentum and the ground state energy without _ @1
any hole. The matrix element&6) are calculated to be where the matrix elemen&2” have the form
|
1 8
E%=- 2> J.Z.. (22)
281
8 (6. ba
E°a=—§1 JC(T“+ %Dcyc_a) (a=1,....4, (23
8
=aa Oac = Ze-a
E :_21 ) & Zotdad Zo= —5— || (a=1.....4, (24)

8
_. 1 S S
Eabzzgl Jc[ - 5bcza—b_ 5aczb+ 5c—a,—b(za—b_ Za) - 5ac5bcva—c,a,a—b+ 5ac5c—a,—b(vc,a,a—b_ V—c,a— c,a—c—b)]

(a#b) (a,b=1,...,9. (25

Here, the summatio runs over nearest and next nearesta linear spin wave theorfsee also Ref. 18i.e.,
neighbors. The Hamilton matrix is then given By=K+E

and the lowest eigenvalue of the diagonalizationHoB * . 1

gives the quasiparticle dispersion. Of course, our method Zabe=SaSe-bt 5 SSc-at 5 ScSp-a-
cannot take into account the quasiparticle damping. The low-

est eigenvalues, however, correspond to the coherent part 865 a result, the spectrum is completely determined by the
the spectrum which was found in Refs. 1-4. From Eqgsstatic two-point spin-spin correlation functions. They have to
(12—(15) one can see that in our method the Hamilton andbe calculated from the Heisenberg model with frustration.
overlap matrices are completely determined by static spinWe choose here the Green’s function metfoés one can
spin correlation functions. In our calculation we will ap- see, only the short-range magnetic order is important in our
proximate the four-point spin correlation functiofif) as in  ansatz.

(26)
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FIG. 1. Quasiparticle dispersion along the liNeG-X-M and contour plot forJ,=t,=1, T=0.085, and increasing frustratiofe)
J,=0, (b) J,=0.2, and(c) J,=0.4. The points irk space meai = (7, 7), G=(0,0), andX=(0,7). The circles are the result of the exact
diagonalization of a % 4 lattice atT=0 with total spinS=1/2.

The Lanczos exact diagonalization scheme is used as 3 =0.4 if we scale the bandwidth by a factor of roughly
complementary method to calculate the low-lying eigenstate8.4. That is seen in Fig. 2 where we compare the exact di-
for a square lattice of %44 sites (with periodic boundary agonalization results for both values df dependent on
conditions. These low-lying states are classified by momen-j,/J,. For simplicity we did not subtract the ground state
tum k and the total spin. Here we will concentrate on theenergy without a hole in Fig. 2 in contrast to the energy
band with total spin 1/2. There are only few exceptifits  scales in Figs. 1 and 3.
the higher states with momenturw () or (0,0)] where the Let us now discuss in more detail the results for zero-
Iovv_es_t states have spin 3/2. It was alregdy mentioned that ﬂ\%mperature and without frustratigfig. 1(a)]. In that case
variational ansatz gives the energy difference between thg,e gata of our exact diagonalization procedure coincide with
lowest state with one hole for tot.al spin 1/2 and fixed MO-that given by Dagottcet al,? besides another sign of the
mentum gnd the ground state without any hole. The Samﬁopping amplitudet; in Ref. 2. That can be compensated
energy difference is calculated for thex4 lattice and we hifting by (r, ) in k space. Due to the speciakd: size of
will compare both methods in the next section. SNITNG by {ar,7r) In K space. L b

the lattice, exact diagonalization leads to a degeneracy be-
tween (w/2,7/2) and (O7) in the absence of frustration. The
variational method gives the opportunity to clarify that the

In Fig. 1 we show the influence of frustration on the one-minimum of the spectrum is close tar(2,7/2). Neverthe-
hole motion at zero-temperature fdy=1. In our calcula- less, also the variational method shows that,=/2) and
tions we will taket; as the unit of energy and we put (0,7) are very near in energy. In the corresponding contour
t;=1. One observes a quite reasonable agreement betweplot one may easily observe a flat region around the mini-
the variational ansatz and the exact diagonalization data fonum near /2,7/2) in the direction of (Ox).
these parameter values. And the important effect of the frus- If we increase the frustration, we can observe from Figs.
tration, namely, that the energy at the poit (0,77) is de-  1(b) and Xc) that the minimum and also the flat region are
creased in comparison with the energy atZ,7/2), is vis- moved to a point of the line (&)-(/2,7). Also in the data
ible in both methods. That coincidence is understandablef the exact diagonalizatio(Fig. 2) we see that the energy
since for such large values df the magnetic energy stabi- distance between the pointsrf2,7/2) and (O7) increases
lizes the size of the magnetic polaron and our concept of avith frustration, whereas the distance betweenmjOand
polaron of small radius is justified. Let us note that for (7/2,7) decreases. Fal,=0.5 the last two points are even
J,<t, the bandwidth tends to be proportional 19.1~° In equal in energy. The flat dispersion region betweenr)O,
principle this result may also be obtained within our varia-and (z/2,7) which can be observed in Fig(d, resembles
tional procedure if we enlarge the polaron size by taking intahe flat dispersion region which may be observed in the pho-
account more trial wave functions. However, the results foitoemission experiment of the doped compound. But there it
J1=1 are already representative for the more realistic valuextends from (Qr) into the direction of (Oy/2). A second

IIl. NUMERICAL RESULTS
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FIG. 2. The lowest-energy values of th& 4 lattice for several kx/ T
momenta and total spiB=1/2 for (a) J;=t;=1 and(b) J;=0.4,
t;=1 dependent on the frustration. Discontinuities in the slope are
due to level crossings for the lowest state. In the regighd;
=0.2 and for momentumst, 7r) (in both casesand (0,0)(only for
J1=0.4) there are even lower states with total sBin3/2 which 0
are not shown. 5«
g
shortcoming of our data in comparison with experiment is § -1
the low-lying energy at (@r) without frustration. In the ex-
periment one observes @), much higher in energy and, ) M G X M

connected with that, a much more isotropic minimum around

(7/2,712). It may be that both features can be obtained due

to the inclusion of a next nearest neighbor hopping term in FIG. 3. Dispersion and contour plot fd,/J;=0 and different
our calculation. Such an additional term arises if we undertemperaturesi@) T=0.8 and(b) T=1. The other parameters are as
stand thet-J model as derived from thp-d model of the in Fig. 1.

CuO, plane, taking into account direct oxygen-oxygen Nop-,vever, do not change the general statements. Level cross-

ping. _ _ ings between several bands with the same momentum and

In Fig. 2 we present the low-lying eigenstates of the 4g= 1> may be observed in Fig. 2 due to changes in the
X4 lattice with total spin 1/2 and several momenta forslope. Up tad,/J;=0.5 the bandwidth of th&=1/2 band is
J;=1[Fig. 2a)] andJ;=0.4[Fig. 2b)]. The similarity be-  giminished due to frustration. For still larger values Jf
tween both sets of curves is remarkable. OnIy the bandWIdttl‘]z/J1> 0.6) there occurs a complete rearrangement of the
is scaled. In both cases, the lowest stateJfofJ;<0.5 has  spectrum. That is connected with the fact that for such large
momentum (O7), and by increasing,/J; further, the state values ofJ, a completely new magnetic structure appears,
with momentum ¢r/2,7r) becomes the lowest one. There is aclose to the collinear stripe phakeOf course, it is question-
minor difference that the lowest state fal;=1 and able whether such large values bf may still be connected
J>/3,=0.7 has momentum (8). Such small differences, with the doping process.



53 ONE-HOLE MOTION IN THE TWO-DIMENSIONAL . .. 11719

TABLE I. Spin-spin correlation functions,= (S-S, ,) forthe  nearly not distinguishable from their valuesTat O (see Ref.
pure spin modeH ; without any hole as obtained from the Green’s 12).
function (GF) method forT=0.085 and by exact diagonalization of It is seen from Fig. 1 that the frustration alone leads to a

the 4x 4 lattice for different frustratiod,/J; . flat dispersion region but not to an extended saddle point
which is experimentally observed. Therefore, it is interesting
J213,=0 J213,=0.2 J2/3,=0.4 to investigate if such an effect may be obtained by increasing

GF 4x4 GF a4 GF 4<4 the temperature. It is clear that at very high temperatures the
antiferromagnetic short-range order is destroyed and the
spin-spin correlation functions are purely paramagnetic. In
this case the spectrum is dominated by an effective nearest
neighbor hopping with a saddle point at 40, which is
shown in Fig. 8b). For a slightly lower temperature
(T=0.8), namely if the magnetic correlation length is of the
order of the magnetic polaron si2eyne observes a very
interesting dispersion relatiofFig. 3(a)]. As is seen, the
Within the variational method, the one-hole dispersionspectrum has not only a flat dispersion region in the vicinity
will be determined by the two-point spin-spin correlations of the point (07), but it also demonstrates the occurrence of
which act like parameters. Changing the spin-spin correlaan extended saddle point along the same direction as in the
tions also changes the dispersion. In Table | we compare thexperiment. For lower temperatur@ss0.6 the spectrum is
spin-spin correlations from the Green’s function meftfod very similar to the zero-temperature ofeee Fig. a)]. A
with the exact diagonalization of the<4 lattice. One needs Similar destruction of the magnetic polaron due to tempera-
more distant spin-spin correlation functions in the variationature as in Fig. 3 was already observed in Ref. 6. But now we
ansatz than are shown in Table I. In the exact diagonalizatiofind @ more pronounced extended saddle point e/t
approach, due to the periodic boundary conditions of the3(@] than in Ref. 6. That may be due to the larger basis in

finite lattice (4x 4), the distant spin-spin correlation func- the present calculation. _ _ o

S3.0=S1.0):Sa1)= S(1.0)»S3.)= S1.1):S32= Sz, and temperature in the frustrated case. As can be expepted, one
they do not decay with distance. The variational ansatz used/SO observes for large enough temperature a dispersion
the results of the Green’s function metfbdavhich is free  Which is dominated by nearest neighbor hopping. Surpris-
from this shortcoming. One may observe that the data coinindly, the temperature which is needed to change the disper-
cide quite well forJ,=0, but there are remarkable differ- Sion is only slightly reduced in the frustrated case in com-
ences if we increase the frustratisee also Ref. 13There  Parison with the nonfrustrated one. Then we obtain a
may be several reasons for this discrepancy. On the orf@Spersion similar to Fig. ®). An extended saddle point

hand, the exact diagonalization has difficulties for large valPetween the points (@/2) and (Or) as in Fig. 3a), how-
ues of J,/J; and especially in the limit),=0 when the €Vver, was not obtained if we increase the temperature in the

lattice decouples into two noninteracting sublattices withffustrated case. That is also the reason why we do not show

only eight spins in each of them. The Green’s functionfurther pictures.
method describes this limit correctly; i.e., for instance,
S(2.2) at J;=0 coincides withS;; 1 at J,=0.* On the other V. CONCLUSION
hand, it seems that the Green’s function method overesti-
mates the influence of frustration and leads to a rather wide The experiment shows that the quasiparticle dispersion of
region of the spin liquid state in the phase diagram. But ashe copper-oxygen plane is drastically changed by the doping
may be seen from Fig. 1, both sets of spin correlations leagrocess. One may observe two main features: First, the en-
gualitatively to a similar effect of frustration on the low- ergy value at the point (&) in k space is shifted down-
lying parts of the spectra. wards, and second, there occurs an extended saddle point
Let us mention some additional points in the discussionsingularity between (6;/2) and (0s). To simulate the ef-
Without frustration[Fig. 1(@)] one may observe the varia- fect of doping in a study of one-hole motion in a quantum
tional property of our ansatz; i.e., its energy values are alantiferromagnet we have compared two possibilities,
ways higher than the exact diagonalization values. This propramely, the influence of frustration or a finite temperature.
erty is destroyed for Figs.(fh) and Xc). That is due to the It was found that the frustration shifts the minimum of the
larger deviations of the spin-spin correlatiofible ) for  hole dispersion from%/2,7/2) to the point (Oz). That was
the frustration valued,=0.2 and 0.4. If we choose for the obtained within two different methods, namely, a variational
spin correlations in our variational ansatz the values from th@nsatz where the spin-spin correlations in the frustrated
exact diagonalizatiofiTable I), the curves are shifted in such Heisenberg model were calculated by a Green’s function
a way that the variational property will be restored. How-method? and the exact diagonalization of ax4 lattice.
ever, the overall agreement is not better than that shown iBoth methods had a quite reasonable agreement where the
Figs. 1b) and Xc). Another point is that we have chosen variational method showed the effect in a more pronounced
T=0.085 instead of a zero-temperature in the numericaway. Furthermore, we have found flat dispersion regions in
procedur® to calculate the spin-spin correlation function. the nonfrustrated and frustrated cases. Without frustration,
The reason is that it is numerically simpler to deal with athe flat region occurs aroundr(2,7/2), whereas for frustra-
small finite temperature. The results f8;, however, are tion J,/J;=0.4 it occurs between (8) and (7/2,7). Such

Su9 —0.352 -0.351 —-0.282 —-0.349 —0.208 —0.332
Sy 0.229 0.214 0.116 0.193-0.002 0.141
S2,0 0.200 0.214 0.091 0.194 0.047 0.151
Sy —0.188 —-0.202 —0.063 —0.165 0.007 —0.086
S22 0.165 0.180 0.038 0.142—-0.004 0.058
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a flat region is similar to the experiment, but there it occurstemperature. The experiment shows a much more isotropic

between (0f) and (04/2). In addition, we have found that minimum near ¢/2,7/2) and a higher energy at (©). To

the frustration term alone produces only a flat region but nambtain a better agreement it seems to be necessary to include

extended saddle point as in the experiment. additional hopping terms. It would be interesting to investi-
Interestingly, some similarities with the observed, ex-gate if that gives also a better agreement in the doped case.

tended saddle point singularity may be obtained by simulat-
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