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The influence of a frustration term in the exchange part of thet-J model onto the dispersion relation of one
hole has been investigated. We have chosen two independent methods, namely, a variational ansatz which
describes a magnetic polaron of minimal size and the exact diagonalization method of a 434 lattice. It has been
found that the frustration shifts the minimum from the point (p/2,p/2) to the point (0,p) in k space. It has also
been shown that the frustration term alone does not lead to the correct, experimentally observed flat dispersion
region around (0,p). A better agreement with the observed, extended saddle point singularity may be obtained
by simulating the decrease of spin correlations due to a finite temperature.

I. INTRODUCTION

There exist already numerous studies of the single-hole
motion in the two-dimensional~2D! t-J model. These studies
are based on the exact diagonalization of small clusters,1,2

the self-consistent Born approximation,3,4 or a ‘‘string’’ an-
satz for the hole wave function.5 One can also start from a
spin-rotational-invariant spin liquid state6 instead of dealing
with the two-sublattice Ne´el-type state3–5 and obtain qualita-
tively the same result: The hole motion occurs mainly on one
sublattice; i.e., the dispersion relation is dominated by an
effective hopping to next nearest neighbors with the mini-
mum of the dispersion at (p/2,p/2). Throughout the present
work we will choose the hole picture and we will set the
lattice constant to unitya51. It is generally believed that the
t-J model describes qualitatively the hole spectrum of the
CuO2 plane in high-temperature superconductors. Recently,
it has been possible to measure that dispersion directly in
the insulating compound, namely, in the compound
Sr2CuO2Cl2, by angle-resolved photoemission.7 In agree-
ment with the theory of thet-J model, the minimum of the
dispersion was found to be at (p/2,p/2). But the energy at
(0,p) was found to be much higher in the experiment than in
the calculations of thet-J model, such that it was nearly
degenerate with the value at theG point (0,0). That shows
already the necessity to extend the originalt-J model. Fur-
thermore, after doping the system, the experiment~see, e.g.,
Ref. 8! shows that the dispersion changes drastically: The
energy value at (0,p) goes down with respect to theG point
such that a remarkable dispersion occurs along the line
(kx,0). In the optimally doped compounds, the dispersion
relation is characterized by a flat region close to the point
(0,p).8,9 The energy value at the point (p,p) is even more
affected by the doping than the energy value at (0,p). As a
result, it seems to be that the spectrum of the doped com-
pounds resembles more a nearly free dispersion with effec-
tive nearest neighbor hopping and the photoemission data are

usually interpreted in terms of a large Fermi surface.9 Also
numerical calculations on finite size systems indicate a large
Fermi surface in the case of strong doping.11

The effect of doping can be simulated in several ways.
The first possibility is a frustration term in the Hamiltonian
as was proposed, for instance, in Ref. 10. Another possible
way is the inclusion of a finite temperature. This brings about
a decrease of the spin-spin correlation functions in a similar
way as can be expected from the doping process. For very
high temperatures one finds a dispersion which is dominated
by an effective nearest neighbor hopping6 which may explain
the transition to a large Fermi surface. In the present work
we will investigate the effect of frustration and temperature
on the dispersion relation of one hole. We are interested in
the question if the frustration or temperature has a similar
effect as has the doping in the experiments. Especially, we
will investigate if the energy value at (0,p) goes down with
respect to the other energies and if there occurs an extended
saddle point in the vicinity of (0,p).

We will choose two methods to investigate the effect of
frustration on the dispersion of one hole, a variational
method and the exact diagonalization of a 434 lattice. The
variational ansatz describes the one-hole state as a magnetic
polaron of minimal size and is an improvement of the ansatz
used in Ref. 6. Within that method the dispersion is deter-
mined by static spin-spin correlation functions. These are
calculated here in a spin-rotational-invariant Green’s func-
tion method12 ~see also the zero-temperature version13!. We
describe the state of the magnetic subsystem as a spin liquid
state in contrast to the widely used two-sublattice Ne´el-type
state due to several reasons. At first, our choice gives the
possibility to avoid the degeneracy of the hole spectrum be-
tween the points (0,0) and (p,p) which always occurs in the
Néel-type state. Second, the spin liquid state does not con-
tradict the Mermin-Wagner theorem14 which forbids mag-
netic order in two dimensions for any finite temperature. So
it gives the possibility to investigate one-hole motion at non-
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zero temperatures. Of course, the variational ansatz corre-
sponds to an approximate method. Therefore, it is reasonable
to investigate the problem by the exact diagonalization
method and to compare the results of two independent pro-
cedures. Let us remember, however, that also the exact di-
agonalization method has some shortcomings, such as finite-
size effects, for instance. We will see that both methods
complement each other.

The paper will be organized as follows. At first, in Sec. II
we will present both methods, i.e., the variational ansatz and
the exact diagonalization method. Then we show the results
of both methods for zero-temperature and increasing frustra-
tion ~Sec. III!. We discuss also the influence of temperature
on the dispersion relation in the frustrated and nonfrustrated
cases. Finally we present our conclusions.

II. VARIATIONAL ANSATZ VS EXACT
DIAGONALIZATION

We consider here the 2Dt-J model on a square lattice
with an exchange interaction that contains a frustration term,

H5Ht1HJ52(
ias

taXi
s0Xi1a

0s 1
1

2(ib JbSW i•SW i1b , ~1!

where

ta5H t1.0 if a is a nearest neighbor vector,

0 otherwise,
~2!

and

Jb5H J1.0 if b is a nearest neighbor vector,

J2.0 if b is a next nearest neighbor vector,

0 otherwise.

~3!

The Hubbard operatorXi
0s5cis(12ni2s) annihilates an

electron with spin projectionSi
z5s/2 at sitei with no double

occupancy ands is a spin indexs511 or 21. Analo-
gously,Xi

ss5nis(12ni2s), Xi
s2s5cis

† ci2s , and the spin
operators are expressed as

Si
s5Xi

s2s , Si
z5

1

2(s sXi
ss . ~4!

If each place is occupied by exactly one electron, also the
completeness relation holds, 15(sXi

ss . Without a hole,
model ~1! has already been investigated by many
methods12,13,15–17and with increasing frustrationJ2 several
transitions from the antiferromagnetic to a spin liquid and the
collinear stripe phase were found. Our following analytical
calculation is based on the Green’s function procedure12

which has the advantage that it is spin rotational invariant
and can be applied also at finite temperature.

Now, we look for the lowest state of~1! with one hole and
a fixed momentum. We choose a variational ansatz which is

constructed from the following five basis vectorsf i
a†uC0)

with a50,1, . . . ,4.Here, the vectoruC0) denotes the spin-
rotational-invariant singlet ground state of the pure spin sys-
temHJ without any hole. The corresponding five basis op-

eratorsf i
a† are

f i
05Xi

s0 , f i
a5(

s
Xi2a

ss Xi
s0 ~a51, . . . ,4!, ~5!

where we will use the following notation hereafter: The
small latin lettera denotes either a number between 0 and
4 or the corresponding lattice vector

0↔~0,0! 1↔~1,0! 3↔~21,0!,

2↔~0,1! 4↔~0,21!,
~6!

in a synonymous way. The set of operators~5! represents a
magnetic polaron of minimal size. It may be seen that

f i
a†uC0) corresponds to a one-hole state with a total spin

1/2 and with a spin-z projection2s/2. We are interested in
our variational approach only in states with total spin 1/2
since it is known that these states represent the bottom of the

lowest band. The basis operatorf i
0† corresponds to the cre-

ation of a hole on sitei in the stateuC0) without any addi-
tional spin excitation. The remaining operators

f i
1† , . . . ,f i

4† create a hole and an additional spin excitation
at the neighboring site. They appear after acting with the

kinetic energy operator on the statef i
0†uC0). A similar an-

satz was already used in Ref. 6 where, however, only a fixed

combination off i
1† , . . . ,f i

4† was chosen. Treating them as
independent states has the advantage that it gives correctly
the limit t150 where no dispersion should remain.

We will calculate the energy eigenvalues as in the Ritz
variational procedure using the basis~5!. For that we have to
calculate the overlap matrix which is defined after Fourier
transformation as

Sab5(
j

^f l
af j

b†&eik~ j2 l ! ~a,b50, . . . ,4!, ~7!

where ^•••& means the average with the ground state
(C0u•••uC0). It turns out that the overlap matrix does not
depend on the momentumk, and its matrix elements are
given by

Saa51/2 ~a50, . . . ,4!,

S0a5Za ~a51, . . . ,4!,

Sab5Da,a2b ~a,b51, . . . ,4! ~aÞb!,

~8!

where we introduced the abbreviations

Za5(
s

^Xi
ssXi1a

ss &, ~9!

Da,b5(
s1s2

^Xi
ss1Xi1a

s1s2Xi1b
s2s

&, ~10!

and for further use we define, also,

Va,b,c5 (
s1s2s3

^Xi
ss1Xi1a

s1s2Xi1b
s2s3Xi1c

s3s
&. ~11!

The definitions~9!–~11! are only valid for noncoinciding
lattice sites different from zero,aÞbÞcÞ0. Note that the
lattice sitesa2b which occur in~8! can be different from
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nearest and next nearest neighbors. Using the spin-rotational-
invariance we obtain from~9!–~11!

Za5
1
4 1Sa , Sa5^SW i•SW i1a&, ~12!

Da,b5
1
8 1 1

2 ~Sa1Sb1Sb2a!, ~13!

Va,b,c5
1
16 1 1

4 ~Sa1Sb1Sc1Sb2a1Sc2a1Sc2b!1Sabc

2Sbac1Scab , ~14!

where the following four-point spin-correlation functions ap-
pear:

Sabc5^~SW i•SW i1a!~SW i1b•SW i1c!&. ~15!

Next we determine the kinetic energy matrix

Kab~k!5(
j

^@f l
a ,Ht#f j

b†&eik~ j2 l ! ~a,b50, . . . ,4!,

~16!

which depends explicitly onk. Here, we calculate the Hamil-

ton matrix element not in the form̂f i
aHf j

b†&, but by means
of the commutator. Both definitions coincide if we assume a
zero ground state energy of the pure spin Hamiltonian, i.e.,
of the stateuC0). In other words, the variational ansatz gives
the energy difference between the lowest state with one hole
and a given momentum and the ground state energy without
any hole. The matrix elements~16! are calculated to be

K00~k!5 (
a51

4

taZae
ika, ~17!

K0a~k!5
1

2
tae

ika1 (
c51

4

d̄actcDc,c2ae
ikc ~a51, . . . ,4!,

~18!

where we introducedd̄ac512dac anddac51 for a5c and
zero elsewhere. Further, we obtain

Kaa~k!5taZa~e
ika1e2 ika!1 (

c51

4

d̄acd̄2a,ctcVa,a1c,ce
ikc

~a51, . . . ,4! ~19!

and foraÞb (a,b51, . . . ,4)

Kab~k!5 d̄2a,btbZae
ikb1taZbe

2 ika1tb2aZb2ae
ik~b2a!

1 (
c51

4

d̄2a,cd̄bcd̄b2a,ctcVa,a1c,a1c2be
ikc. ~20!

Analogously, we obtain the matrix of the exchange energy
which does not depend on the momentumk like the overlap
matrix S,

Eab5^@f i
a ,HJ#f i

b†&5~J11J2!S
ab1Ẽab ~a,b50, . . . ,4!,

~21!

where the matrix elementsẼab have the form

Ẽ0052
1

2(c51

8

JcZc , ~22!

Ẽ0a52 (
c51

8

JcS dac
4

1
d̄ac
2
Dc,c2aD ~a51, . . . ,4!, ~23!

Ẽaa52 (
c51

8

JcFdac2 Zc1 d̄acS Zc2 Zc2a

2 D G ~a51, . . . ,4!, ~24!

Ẽab5
1

2(c51

8

Jc@2dbcZa2b2dacZb1dc2a,2b~Za2b2Za!2 d̄acd̄bcVa2c,a,a2b1 d̄acd̄c2a,2b~Vc,a,a2b2V2c,a2c,a2c2b!#

~aÞb! ~a,b51, . . . ,4!. ~25!

Here, the summationc runs over nearest and next nearest
neighbors. The Hamilton matrix is then given byH5K1E
and the lowest eigenvalue of the diagonalization ofH S21

gives the quasiparticle dispersion. Of course, our method
cannot take into account the quasiparticle damping. The low-
est eigenvalues, however, correspond to the coherent part of
the spectrum which was found in Refs. 1–4. From Eqs.
~12!–~15! one can see that in our method the Hamilton and
overlap matrices are completely determined by static spin-
spin correlation functions. In our calculation we will ap-
proximate the four-point spin correlation functions~15! as in

a linear spin wave theory~see also Ref. 18!, i.e.,

Sabc5SaSc2b1
1
3 SbSc2a1

1
3 ScSb2a . ~26!

As a result, the spectrum is completely determined by the
static two-point spin-spin correlation functions. They have to
be calculated from the Heisenberg model with frustration.
We choose here the Green’s function method.12 As one can
see, only the short-range magnetic order is important in our
ansatz.
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The Lanczos exact diagonalization scheme is used as a
complementary method to calculate the low-lying eigenstates
for a square lattice of 434 sites ~with periodic boundary
conditions!. These low-lying states are classified by momen-
tum k and the total spin. Here we will concentrate on the
band with total spin 1/2. There are only few exceptions@for
the higher states with momentum (p,p) or (0,0)# where the
lowest states have spin 3/2. It was already mentioned that the
variational ansatz gives the energy difference between the
lowest state with one hole for total spin 1/2 and fixed mo-
mentum and the ground state without any hole. The same
energy difference is calculated for the 434 lattice and we
will compare both methods in the next section.

III. NUMERICAL RESULTS

In Fig. 1 we show the influence of frustration on the one-
hole motion at zero-temperature forJ151. In our calcula-
tions we will take t1 as the unit of energy and we put
t151. One observes a quite reasonable agreement between
the variational ansatz and the exact diagonalization data for
these parameter values. And the important effect of the frus-
tration, namely, that the energy at the pointX5(0,p) is de-
creased in comparison with the energy at (p/2,p/2), is vis-
ible in both methods. That coincidence is understandable
since for such large values ofJ1 the magnetic energy stabi-
lizes the size of the magnetic polaron and our concept of a
polaron of small radius is justified. Let us note that for
J1!t1 the bandwidth tends to be proportional toJ1 .

1–5 In
principle this result may also be obtained within our varia-
tional procedure if we enlarge the polaron size by taking into
account more trial wave functions. However, the results for
J151 are already representative for the more realistic value

J150.4 if we scale the bandwidth by a factor of roughly
0.4. That is seen in Fig. 2 where we compare the exact di-
agonalization results for both values ofJ1 dependent on
J2 /J1 . For simplicity we did not subtract the ground state
energy without a hole in Fig. 2 in contrast to the energy
scales in Figs. 1 and 3.

Let us now discuss in more detail the results for zero-
temperature and without frustration@Fig. 1~a!#. In that case
the data of our exact diagonalization procedure coincide with
that given by Dagottoet al.,2 besides another sign of the
hopping amplitudet1 in Ref. 2. That can be compensated
shifting by (p,p) in k space. Due to the special 434 size of
the lattice, exact diagonalization leads to a degeneracy be-
tween (p/2,p/2) and (0,p) in the absence of frustration. The
variational method gives the opportunity to clarify that the
minimum of the spectrum is close to (p/2,p/2). Neverthe-
less, also the variational method shows that (p/2,p/2) and
(0,p) are very near in energy. In the corresponding contour
plot one may easily observe a flat region around the mini-
mum near (p/2,p/2) in the direction of (0,p).

If we increase the frustration, we can observe from Figs.
1~b! and 1~c! that the minimum and also the flat region are
moved to a point of the line (0,p)-(p/2,p). Also in the data
of the exact diagonalization~Fig. 2! we see that the energy
distance between the points (p/2,p/2) and (0,p) increases
with frustration, whereas the distance between (0,p) and
(p/2,p) decreases. ForJ250.5 the last two points are even
equal in energy. The flat dispersion region between (0,p)
and (p/2,p) which can be observed in Fig. 1~c!, resembles
the flat dispersion region which may be observed in the pho-
toemission experiment of the doped compound. But there it
extends from (0,p) into the direction of (0,p/2). A second

FIG. 1. Quasiparticle dispersion along the lineM -G-X-M and contour plot forJ15t151, T50.085, and increasing frustration:~a!
J250, ~b! J250.2, and~c! J250.4. The points ink space meanM5(p,p), G5(0,0), andX5(0,p). The circles are the result of the exact
diagonalization of a 434 lattice atT50 with total spinS51/2.
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shortcoming of our data in comparison with experiment is
the low-lying energy at (0,p) without frustration. In the ex-
periment one observes (0,p) much higher in energy and,
connected with that, a much more isotropic minimum around
(p/2,p/2). It may be that both features can be obtained due
to the inclusion of a next nearest neighbor hopping term in
our calculation. Such an additional term arises if we under-
stand thet-J model as derived from thep-d model of the
CuO2 plane, taking into account direct oxygen-oxygen hop-
ping.

In Fig. 2 we present the low-lying eigenstates of the 4
34 lattice with total spin 1/2 and several momenta for
J151 @Fig. 2~a!# andJ150.4 @Fig. 2~b!#. The similarity be-
tween both sets of curves is remarkable. Only the bandwidth
is scaled. In both cases, the lowest state forJ2 /J1<0.5 has
momentum (0,p), and by increasingJ2 /J1 further, the state
with momentum (p/2,p) becomes the lowest one. There is a
minor difference that the lowest state forJ151 and
J2 /J1>0.7 has momentum (0,p). Such small differences,

however, do not change the general statements. Level cross-
ings between several bands with the same momentum and
S51/2 may be observed in Fig. 2 due to changes in the
slope. Up toJ2 /J1.0.5 the bandwidth of theS51/2 band is
diminished due to frustration. For still larger values ofJ2
(J2 /J1.0.6) there occurs a complete rearrangement of the
spectrum. That is connected with the fact that for such large
values ofJ2 a completely new magnetic structure appears,
close to the collinear stripe phase.17 Of course, it is question-
able whether such large values ofJ2 may still be connected
with the doping process.

FIG. 2. The lowest-energy values of the 434 lattice for several
momenta and total spinS51/2 for ~a! J15t151 and~b! J150.4,
t151 dependent on the frustration. Discontinuities in the slope are
due to level crossings for the lowest state. In the regionJ2 /J1
&0.2 and for momentum (p,p) ~in both cases! and (0,0)~only for
J150.4) there are even lower states with total spinS53/2 which
are not shown.

FIG. 3. Dispersion and contour plot forJ2 /J150 and different
temperatures:~a! T50.8 and~b! T51. The other parameters are as
in Fig. 1.
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Within the variational method, the one-hole dispersion
will be determined by the two-point spin-spin correlations
which act like parameters. Changing the spin-spin correla-
tions also changes the dispersion. In Table I we compare the
spin-spin correlations from the Green’s function method12

with the exact diagonalization of the 434 lattice. One needs
more distant spin-spin correlation functions in the variational
ansatz than are shown in Table I. In the exact diagonalization
approach, due to the periodic boundary conditions of the
finite lattice ~434!, the distant spin-spin correlation func-
tions are traced back to that shown in Table I, i.e.,
S(3,0)5S(1,0) ,S(3,1)5S(1,0) ,S(3,1)5S(1,1) ,S(3,2)5S(2,1) , and
they do not decay with distance. The variational ansatz uses
the results of the Green’s function method12 which is free
from this shortcoming. One may observe that the data coin-
cide quite well forJ250, but there are remarkable differ-
ences if we increase the frustration~see also Ref. 13!. There
may be several reasons for this discrepancy. On the one
hand, the exact diagonalization has difficulties for large val-
ues of J2 /J1 and especially in the limitJ150 when the
lattice decouples into two noninteracting sublattices with
only eight spins in each of them. The Green’s function
method describes this limit correctly; i.e., for instance,
S(2,2) at J150 coincides withS(1,1) at J250.13 On the other
hand, it seems that the Green’s function method overesti-
mates the influence of frustration and leads to a rather wide
region of the spin liquid state in the phase diagram. But as
may be seen from Fig. 1, both sets of spin correlations lead
qualitatively to a similar effect of frustration on the low-
lying parts of the spectra.

Let us mention some additional points in the discussion.
Without frustration@Fig. 1~a!# one may observe the varia-
tional property of our ansatz; i.e., its energy values are al-
ways higher than the exact diagonalization values. This prop-
erty is destroyed for Figs. 1~b! and 1~c!. That is due to the
larger deviations of the spin-spin correlations~Table I! for
the frustration valuesJ250.2 and 0.4. If we choose for the
spin correlations in our variational ansatz the values from the
exact diagonalization~Table I!, the curves are shifted in such
a way that the variational property will be restored. How-
ever, the overall agreement is not better than that shown in
Figs. 1~b! and 1~c!. Another point is that we have chosen
T50.085 instead of a zero-temperature in the numerical
procedure12 to calculate the spin-spin correlation function.
The reason is that it is numerically simpler to deal with a
small finite temperature. The results forSa , however, are

nearly not distinguishable from their values atT50 ~see Ref.
12!.

It is seen from Fig. 1 that the frustration alone leads to a
flat dispersion region but not to an extended saddle point
which is experimentally observed. Therefore, it is interesting
to investigate if such an effect may be obtained by increasing
the temperature. It is clear that at very high temperatures the
antiferromagnetic short-range order is destroyed and the
spin-spin correlation functions are purely paramagnetic. In
this case the spectrum is dominated by an effective nearest
neighbor hopping with a saddle point at (0,p) which is
shown in Fig. 3~b!. For a slightly lower temperature
(T50.8), namely if the magnetic correlation length is of the
order of the magnetic polaron size,6 one observes a very
interesting dispersion relation@Fig. 3~a!#. As is seen, the
spectrum has not only a flat dispersion region in the vicinity
of the point (0,p), but it also demonstrates the occurrence of
an extended saddle point along the same direction as in the
experiment. For lower temperaturesT&0.6 the spectrum is
very similar to the zero-temperature one@see Fig. 1~a!#. A
similar destruction of the magnetic polaron due to tempera-
ture as in Fig. 3 was already observed in Ref. 6. But now we
find a more pronounced extended saddle point feature@Fig.
3~a!# than in Ref. 6. That may be due to the larger basis in
the present calculation.

Finally, we have also investigated the influence of a finite
temperature in the frustrated case. As can be expected, one
also observes for large enough temperature a dispersion
which is dominated by nearest neighbor hopping. Surpris-
ingly, the temperature which is needed to change the disper-
sion is only slightly reduced in the frustrated case in com-
parison with the nonfrustrated one. Then we obtain a
dispersion similar to Fig. 3~b!. An extended saddle point
between the points (0,p/2) and (0,p) as in Fig. 3~a!, how-
ever, was not obtained if we increase the temperature in the
frustrated case. That is also the reason why we do not show
further pictures.

IV. CONCLUSION

The experiment shows that the quasiparticle dispersion of
the copper-oxygen plane is drastically changed by the doping
process. One may observe two main features: First, the en-
ergy value at the point (0,p) in k space is shifted down-
wards, and second, there occurs an extended saddle point
singularity between (0,p/2) and (0,p). To simulate the ef-
fect of doping in a study of one-hole motion in a quantum
antiferromagnet we have compared two possibilities,
namely, the influence of frustration or a finite temperature.

It was found that the frustration shifts the minimum of the
hole dispersion from (p/2,p/2) to the point (0,p). That was
obtained within two different methods, namely, a variational
ansatz where the spin-spin correlations in the frustrated
Heisenberg model were calculated by a Green’s function
method12 and the exact diagonalization of a 434 lattice.
Both methods had a quite reasonable agreement where the
variational method showed the effect in a more pronounced
way. Furthermore, we have found flat dispersion regions in
the nonfrustrated and frustrated cases. Without frustration,
the flat region occurs around (p/2,p/2), whereas for frustra-
tion J2 /J1*0.4 it occurs between (0,p) and (p/2,p). Such

TABLE I. Spin-spin correlation functionsSa5^SW i•SW i1a& for the
pure spin modelHJ without any hole as obtained from the Green’s
function ~GF! method forT50.085 and by exact diagonalization of
the 434 lattice for different frustrationJ2 /J1 .

J2 /J150 J2 /J150.2 J2 /J150.4
GF 434 GF 434 GF 434

S(1,0) 20.352 20.351 20.282 20.349 20.208 20.332
S(1,1) 0.229 0.214 0.116 0.19320.002 0.141
S(2,0) 0.200 0.214 0.091 0.194 0.047 0.151
S(2,1) 20.188 20.202 20.063 20.165 0.007 20.086
S(2,2) 0.165 0.180 0.038 0.14220.004 0.058
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a flat region is similar to the experiment, but there it occurs
between (0,p) and (0,p/2). In addition, we have found that
the frustration term alone produces only a flat region but no
extended saddle point as in the experiment.

Interestingly, some similarities with the observed, ex-
tended saddle point singularity may be obtained by simulat-
ing the doping process by a finite temperature. A large
enough temperature weakens the spin correlations to such an
extent that the effective dispersion will be dominated by
nearest neighbor hopping. A finite temperature, however,
does not produce a downshift of the energy at (0,p).

Of course, one cannot expect a complete coincidence be-
tween the present, quite simple investigation and all the ex-
perimental details. So there is already a difference between
the measured dispersion of the undoped substance and the
theoretical result of the puret-J model without frustration or

temperature. The experiment shows a much more isotropic
minimum near (p/2,p/2) and a higher energy at (0,p). To
obtain a better agreement it seems to be necessary to include
additional hopping terms. It would be interesting to investi-
gate if that gives also a better agreement in the doped case.
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