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We present an extensive study of the dc magnetic and transport properties of inductive Josephson junction
arrays at zero temperature. We carry out the analysis using the resistively shunted Josephson junction~RSJ!
model plus Faraday’s law. We explicitly discuss the gauge invariance of the equations as well as their
symmetries. We consider and compare the results of three different models for the corresponding inductance
matrix: self-inductance, nearest-neighbor inductance, and full inductance matrix. The importance of carefully
considering the boundary conditions for external currents is discussed as well. Heuristic analytic results are
derived from linearizing the RSJ plus Faraday’s law equations. In particular, we discuss the critical properties
of the model and the nature of the vortex-vortex interactions when going from negligible to strong screening
regimes. The dc properties of the arrays are analyzed as a function of the screening parameterk5l/a, with
l the magnetic penetration depth anda the lattice spacing. The weak or extreme type II regime corresponds to
k@1, and the strong screening or type I regime tok<1. We present results for the calculated magnetization
and vortex densities as a function of external magnetic fields for a set ofk ’s and lattice sizes. A qualitative
change is found between the dc magnetic and transport responses of the inductive Josephson arrays when going
from the type II to the type I regime.

I. INTRODUCTION

Two-dimensional arrays of Josephson junctions have been
extensively studied in the last few years.1,2 Modern photo-
lithographic techniques have allowed the fabrication of these
arrays with tailor made properties. They were initially fabri-
cated as model systems to study the Berezinskii-Kosterlitz-
Thouless~BKT! phase transition.3,4 In recent years the inter-
est has shifted to studying their dynamical properties.5–7

These studies extend the well studied resistively shunted
junction ~RSJ! model to describe the dynamics of a single
Josephson junction8 to the whole Josephson-junction array
~JJA!, plus Kirkhhoff current conservation conditions.5 Re-
cent experiments on fractional giant Shapiro steps9–11 have
been successfully interpreted using this model for the array
dynamics.12–18

In both RSJ dynamical studies and equilibrium thermody-
namical studies,1,4 the effect of self-induced magnetic fields
~SIMF’s! was neglected. This assumption takes the total
magnetic fieldB equal to the externally applied fieldHext,
which is valid whenever the array penetration depthl is
larger than the array size.19 For most arrays studied experi-
mentally near the BKT transition this is a good
approximation.4 However, at lower temperatures,l de-
creases and it can even become on the order of the lattice
constanta. This situation was found to be relevant in some
of the recent experiments in giant Shapiro steps.10 We have
explained some features of these experiments using the RSJ
dynamical model that included SIMF effects.16,17 In this pa-
per we plan to study the magnetic properties and theIV
characteristics of inductive Josephson-junction arrays
~IJJA’s!, i.e., JJA’s in which the effect of SIMF’s is strong

(l;a), using the models for different approximations to the
inductance matrix used in Ref. 17.

Other authors have also included the SIMF effects in their
dynamical studies. Nakajima and Sawada20 studied vortex
motion in JJA’s with screening. Majhofer, Wolf, and
Dieterich21 studied irreversible magnetic properties of IJJA’s
related to high-Tc superconductivity. Both these studies in-
cluded only the self-inductance contribution to the SIMF.
This local approximation is equivalent to the one used by
Minnhagen in his study of the Coulomb gas with screening.22

Later on we showed16 that at least the nearest-neighbor in-
ductance contributions have to be included in order to inter-
pret the experimental observations of Leeet al. in Ref. 10.
However, any realistic calculation of the SIMF effects has to
include the full inductance matrix. Stroud and Kivelson23

calculated the effective vortex-vortex interaction in IJJA’s
taking into account the long-range contributions to the induc-
tance matrix. They showed that the interaction energy de-
creases as 1/r for r@l andr@a, in analogy with the screen-
ing effects found by Pearl24 for superconducting thin films.
Also Orlando et al.25 have presented a phenomenological
discussion of the dynamical properties of vortices in a con-
tinuum limit of a JJA. Recently, Phillipset al.26–28were able
to do calculations of static and dynamic vortex properties of
IJJA’s, taking into account the full inductance matrix contri-
butions to the SIMF’s. They showed that, depending on the
use of a local approximation for the inductance or the full
inductance matrix, there are differences in the long-range
magnetic field and current distributions for vortices. In par-
ticular, this can affect the quantitative value of the critical
field for the nucleation of one vortex inside the array.26 Also
the full inductance matrix has been considered by Reinelet
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al.29 and by us17 in current-driven arrays. Hagenaarset al.30

have used the full inductance matrix in IJJA’s~in the same
way as considered here and in Ref. 17!, making a successful
comparison with recent experiments by Lachenmannet al.31

There have also been studies of SIMF effects in supercon-
ducting wire networks when analyzing their thermodynamic
and magnetic properties.32–34Recent simulations of the time-
dependent Ginzburg-Landau equation for continuous
superconductors35 are equivalent to the diagonal approxima-
tion of Refs. 20 and 21 in IJJA’s~i.e., they neglect demag-
netization effects in two-dimensional superconductors!,
when considering the magnitude of the order parameter con-
stant. The effect of a finite penetration depth has also been
taken into account in recent three-dimensional simulations
relating to high-temperature superconductors: on the vortex
lattice melting transition,36 on the nature of the vortex-glass
transition,37 and on the existence of a paramagnetic Meissner
effect.38 All these three-dimensional simulations are also
equivalent to a diagonal approximation of the inductance
matrix, believed to be a more accurate approach in three-
dimensional~3D! Josephson-junction arrays~see also Ref.
39 for an application to giant Shapiro steps in 3D JJA’s!.

Here we study the magnetic properties and theIV char-
acteristics of IJJA’s‘ atT50.40 We present calculations of
the dynamical behavior of the arrays based on the RSJ
model. We include the SIMF effects using either a local
approximation or the full inductance matrix, emphasizing
their similarities and differences. One of our main results is
that there is unusual physical behavior of the IJJA for strong
screening (l&a), regardless of the inductance matrix model
used. This behavior resembles a type I superconductor in
many respects. For high fields our results can be described in
terms of an extension of the Bean model41 for hard super-
conductors to discrete arrays. We show that this regime for
IJJA’s is caused by the existence of an effective attractive
interaction between vortices forl!a.

The paper is organized as follows. In Sec. II we present
the model equations that describe the self-consistent nature
of the dynamics of the arrays. In Secs. II A and II B we
discuss the equations in two different gauges. In Sec. II C we
define the three models for the inductance matrix considered
here, to wit, model A for a self-inductance, model B for a
self-plus nearest-neighbor inductance matrix approximation,
and model C for the full inductance model. In Sec. II D we
define the physical quantities calculated in our work. We
also discuss the relation between the inductance matrix and
the array’s penetration depth~Sec. III!, and the effective
vortex-vortex interaction in the Coulomb gas approximation
~Sec. III B!. Section IV is devoted to the study of the mag-
netic properties of the IJJA. We focus on the dynamical be-
havior for the magnetic field~and vortex! penetration from
the array boundaries. In Sec. IV A we discuss the case for
l*a, while in Sec. IV B we show results forl&a, and we
describe this type-I-like regime for IJJA’s. Section IV C con-
siders the nature of the vortex-vortex interactions in the type
I regime, which turn out to be attractive as compared to
being repulsive in the type II regime. In Sec. IV D we
present a lattice version of the Bean model that helps under-
stand the importance of lattice pinning in the behavior of the
IJJA in this regime. In Sec. IV E we calculate the critical
fields for vortex penetration from the boundaries. Then in

Sec. IV F we discuss the irreversible magnetic behavior of
IJJA’s in both regimes, relating to the previous work done by
Majhofer, Wolf, and Dieterich.21 Section V deals with the
behavior of the IJJA driven by a dc current. In Sec. V A we
show how the dynamical equations given in Sec. II B have to
be modified in order to include the external driving current.
This leads naturally to the presence ofantisymmetric edge
magnetic fieldsinduced by the external currents. In Sec. V B
we discuss some aspects of theIV characteristics and vortex
states of the current-driven IJJA. Finally, in Sec. VI we re-
state our main conclusions. There are also three appendixes
that discuss important technical considerations of the model
and calculations carried out in this paper. In Appendix A we
discuss the symmetries of the Hamiltonian studied in this
paper. In Appendix B we discuss the different algorithms
used to obtain our results. Appendix C clarifies the differ-
ences between the results obtained using different boundary
conditions for the currents fed into the IJJA.

II. THE MODEL

A Josephson-junction array~JJA! is made of anN3N
network of superconducting islands connected by Josephson
currents.1,2,4We use the RSJ model8 for the current through
the junction that goes fromr to r1m (m5êx ,êy):

Im~r !5I 0sin@Dmu~r !2Am~r !#

1
F0

2pR

d

dt
@Dmu~r !2Am~r !#. ~1!

Here, Dmu5u(r1m)2u(r ) and Am(r )5(F0/
2p)* r

r1mA¢ •d l¢, where I 0 is the junction’s critical current,
R is the shunt resistance, andF05h/2e is the quantum of
flux.

The Kirkhhoff, or current conservation, conditions are

Dm•Im~r !5I x~r !2I x~r2ex!1I y~r !2I y~r2ey!50 ,
~2!

which imply that we can writeIm(r ) as the lattice curl of a
‘‘mesh current’’ J(R), defined on the dual lattice sites
R5(r x1ex/2,r y1ey/2),

I x~r !5J~R!2J~R2ey!,

I y~r !5J~R2ex!2J~R!,

or, in shorthand notation,

Im~r !5Dm3J~R!. ~3!

Here we have definedJ(R) as positive when the current
around the meshR flows in the anticlockwise direction.

Note that including the self-fields in the currentIm(r ,t)
along the bonds of the lattice implies that

dAm~r ,t !

dt
Þ0,

where the vector potentialAm(r ,t) is related to thetotal
magnetic fluxF(R,t) at plaquetteR by
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2pF~R,t !

F0
5Ax~r ,t !1Ay~r1êx ,t !2Ax~r1êy ,t !2Ay~r ,t !

5Dm3Am~r ,t !. ~4!

In this case the totalF(R,t) now depends on the flux gen-
erated by the external fieldFx5Ha25 fF0 , plus the mag-
netic flux induced by all the currents flowing in the array.
Specifically we can write

F~R,t !5Fx~R!1 (
r 8,m8

G~R,r 8,m8!Im8~r 8,t !, ~5!

whereG(R,r 8,m8) is a matrix that explicitly depends on the
geometries of the array and the junctions. It is convenient to
write Eq. ~5! only in terms of dual or plaquette variables.

In terms of the plaquette variables Eq.~5! can now be
written as

F~R,t !5Fx~R!1(
R8

L~R,R8!J~R8,t ! ~6!

where

L~R,R8!5Dm83G~R,r 8,m8! ~7!

is the inductance matrix of the array.

A. Coulomb gauge

We note that to write down the set of dynamical equations
for Am(r ,t) andu(r ,t) we need to fix a gauge. In the Cou-
lomb gauge,

Dm•Am~r !50 , ~8!

with the boundary condition

An~boundary!50 , ~9!

with n the direction normal to the boundaries. Taking
Dm•Im(r ) in Eqs.~1!, and using Eqs.~2! and ~8!, we get

Dm
2 du~r !

dt
52

2pRI 0
F0

Dm•sin@Dmu~r !2Am~r !#, ~10!

with Dm
25Dm•Dm the discrete two-dimensional Laplacian.

This equation can be inverted using

Dm
2G~r ,r 8!52d r ,r 8, ~11!

whereG(r ,r 8) is the two-dimensional lattice Green function.
The dynamical evolution equation for the phaseu(r ) is then
given by

du~r !

dt
5
2pRI 0

F0
(
r 8

G~r ,r 8!Dm•sin@Dmu~r !2Am~r !#.

~12!

This is the same system of equations used to study the RSJ
dynamics of a JJA without screening as in, for example,
Refs. 5 and 6. The difference is that nowAm(r ) is a dynami-
cal variable. Therefore we have to complement Eq.~12! with
a set of equations for the dynamics of the electromagnetic
field variables.

Let us describe the dynamics of the magnetic field in
terms ofF(R). TakingDm3Im(r ) in Eq. ~1!, and using Eq.
~4!, we get

dF~R!

dt
5RI 0Dm3sin@Dmu~r !2Am~r !#2RDm3Im~r !.

~13!

Now, takingDm3 on Eq.~3!, and solving forJ(R) from Eq.
~6!, we finally arrive at

dF~R,t !

dt
5RI 0Dm3sin@Dmu~r ,t !2Am~r ,t !#

1RDm
2 F(

R8
L21~R,R8!~F~R8,t !2Fx!G .

~14!

To close this system of equations, we need to getAm(r )
from F(R). This can be done using Eq.~4! and Eq. ~8!
which, after some algebra, gives

Am~r !5Dm3(
R8

G̃~R,R8!F~R8!, ~15!

where G̃(R,R8) is the two-dimensional Green function of
the dual lattice.

The full dynamics of a JJA with screening is then gov-
erned by Eq.~12! together with Eq.~14!. The advantage of
using the Coulomb gauge is that the dynamics of the phase
u and the magnetic fluxF can be followed separately. Using
this gauge will be useful when discussing the relevant char-
acteristic lengths and time scales in Secs. III and III B. How-
ever, from the computational point of view it is more effi-
cient to use the temporal gauge, which we present in the next
subsection.

B. Temporal gauge

The temporal gauge has been extensively used in con-
densed matter physics in the past,42 and recently in Refs. 21,
16, 26, and 35. In this gauge we choose as the dynamical
variable the gauge-invariant phase difference

Cm~r !5Dmu~r !2Am~r !. ~16!

This can be thought of as a gauge in which we set
Dmu(r )50, and thereforeCm(r )52Am(r ). In this gauge
Eq. ~1! becomes

dCm~r !

dt
52

2pRI 0
F0

sinCm~r !1
2pR

F0
Im~r !. ~17!

SubstitutingJ(R) from Eq. ~6! in Eq. ~3! we get for
Im(r )

Im~r !5Dm3(
R8

L21~R,R8!@F~R8!2Fx#. ~18!

Combining Eq.~16! with Eq. ~4!, the total magnetic flux is

F~R!52
F0

2p
Dm3Cm~r !, ~19!
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where we have takenDmu(r ) as a variable in@2`,`# and,
therefore,Dm3Dmu(r )50. We arrive at the following set of
JJA dynamical equations in the temporal gauge:

dCm~r !

dt
52

2pRI 0
F0

sinCm~r !2RDm3(
R8

L21~R,R8!

3S Dm3Cm~r 8!1
2p

F0
FxD . ~20!

This system of equations is easier to compute numerically
than Eqs.~12!, ~14!, and~15!, but has the disadvantage that
the dynamics of the phase and the magnetic field are not
separated. Therefore it can be used when the characteristic
times of both variables are not too different.

C. Inductance matrix models

A general analytic expression for the inductance matrix
L(R,R8), valid for arbitrary (R,R8) and array geometry, is
not known. However, we can learn a lot about the main
qualitative properties of the array from the asymptotic prop-
erties ofL(R,R8) and its general symmetries. We start by
writing the standard definition of theG(R,r 8,m8) matrix de-
fined in Eq.~5!,

G~R,r 8,m8!5
m0

4p

1

SRSr 8m8
R RE

r 8m8

d l¢R•d l¢r 8m8dSRdSr 8m8

urWR2rW r 8m8u
.

~21!

Here,SR andSr 8m8 are the cross sectional areas of the junc-
tions in the plaquetteR and the branchesr 8 andm8, respec-
tively. The integrals are along the links between supercon-
ducting islands. This expression forG makes explicit its
dependence on the geometrical characteristics of the array
and the junctions. Using Eq.~7!, the representation of
L(R,R8) based on Eq.~21! gives

L~R,R8!5
m0

4p

1

SRSR8
R R R R8

d l¢R•d l¢R8dSRdSR8

urWR2rWR8u
.

~22!

This expression depends on the particular shape of the junc-
tions and geometry of the JJA. Here we note that the general
qualitative properties of the response of the array to external
probes will not depend on the detailed form of the full in-
ductance matrix.

The relevant properties ofL(R,R8), independent of the
specific array geometry, are that~i! L(R,R8) is a definite
positive matrix, with its diagonal element positive and its
off-diagonal elements negative,~ii ! the condition
(R852`

` L(R,R8)50 must be fulfilled, because of continuity
of the magnetic flux lines~the sum includesall theR8, even
outside the array!, and ~iii ! for large distances one can ap-
proximate the lattice problem by its continuum limit, leading
to

L~R,R8! uR2R8u@a'2
m0

4p

a4

uR2R8u3
, ~23!

which corresponds to the field of a three-dimensional mag-
netic dipole produced by a current loop. Note that the long-

range behavior ofL(R,R8) is always given by Eq.~23!, for it
is independent of the particular shape of the junctions.

On the other hand, the short-distance properties of the
L(R,R8) matrix depend explicitly on the specific geometry
of the junctions. Here we use the results of a short-distance
asymptotic evaluation ofL(R,R8) obtained by direct integra-
tion of Eq.~22! for a square network of cylindrical wires.34,29

For example, the local behavior ofL(R,R8) is found to be
given by

L~R,R!5L05
m0a

2p F8ln 2a

r ~112A2!
18A2214G ,

L~R,R6m!52M52
1

4
L01

m0a

2p
0.141 875, ~24!

L~R,R6ex6ey!52M1152
m0a

2p
0.4 . . . ,

where a is the lattice constant andr is the radius of the
wires. For the JJA we take 2r as the typical width of the
junctions.

We emphasize here that there aretwo parametersthat
must be given to adequately specify the inductance matrix:
~1! m0a, which determines the ‘‘strength’’ of the screening
effects and the long-range behavior ofL(R,R8) ~it deter-
mines the penetration depthl, as we will see below!, and~2!
a/r , which determines the short-range screening effects, i.e.,
the relative strengths of the local inductances as compared
with their long-range counterparts.

From now on we normalize the inductance matrix ele-
ments bym0a, or L(R,R8)5L(R,R8)/m0a, L05L0 /m0a,
andM5M /m0a. We usea/r510, which is a typical value
for arrays made with superconductor–normal-metal–
superconductor~SNS! junctions,10 for which L051.13. . . ,
M50.14. . . ,M1150.064 . . . .@This same value was used
in Refs. 17, 29, and 30, whereasa/r54, typical of
superconductor-insulator-superconduction~SIS! junction ar-
rays, was used in Refs. 26–28.#

We have introduced three different models for the induc-
tance matrix that depend on its range.

Model Aincludes screening effects toL(R,R8) only at the
diagonal or self-inductance component level, i.e.,

L~R,R8!5L0m0adR,R8. ~25!

This is the simplest approximation that leads to zero edge
magnetic fields. Model A has been used in the past by Na-
kajima and Sawada20 to study vortex motion, and by Ma-
jhofer et al.21 to model irreversible properties of ceramic su-
perconductors. This model is good when trying to describe
the properties of bulk samples, in three-dimensional
arrays.39,38

Model B improves on model A in that it includes the
nearest-neighbor mutual inductance contributions to the di-
agonal one:

L~R,R8!5L0m0adR,R82Mm0adR,R86m . ~26!

This model was introduced by us to study screening ef-
fects on the nucleation of giant Shapiro steps.16
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Model C includes thefull-range inductance matrix in the
calculations. We modelL(R,R8) in this case by taking into
account the local geometry of the junctions in the diagonal
and mutual inductance contributions, as specified in Eq.~24!,
using the filamentary wire approximation for the remaining
terms.

The inclusion of the full-range inductance matrix in the
study of JJA’s was considered by Phillipset al.,26 who de-
veloped an efficient algorithm to study static vortex proper-
ties in JJA’s. Also Reinelet al.29 recently implemented a full
inductance matrix approach to calculate static and dynamic
properties, somewhat closer in spirit to the method we used
to study the dynamic response of the JJA.17 Phillips et al.27

have extended their static approach to study the dynamic
response of JJA’s. We will compare our results for models A
through C to theirs where appropriate.

Note that the essential difference between models A, B,
and C is that A and B assume that the magnetic field lines are
constrained to lie on the plane while C fully takes into ac-
count the three-dimensionality of the physical problem.
However, in the limit of very narrow junctions,r!a, the
local inductances become dominant@because of the ln(a/r)
terms in Eq.~24!#, and model B withL0'24M becomes an
accurate approximation to model C.

The complexity of the algorithms needed to solve the dy-
namical equations grows with the range of the inductance
matrix. We discuss the specific details of the implementation
of these algorithms in Appendix C.

D. Physical variables calculated

We calculate the distribution of normalized total magnetic
flux in the arrays as a function of time,
f(R,t)5F(R,t)/F0 , from which we get the average mag-
netization

m5
1

~N21!2T(R (
t50

T21

f~R,t !2 f , ~27!

as a function of the external fieldf5Fx /F0 . We also have
calculated the distribution of vorticesn(R,t). The vorticity
is defined as the number 2p of ‘‘turns’’ of the gauge-
invariant phase difference around a plaquette. This
corresponds to 2p@n2f(R)#5Dm3C̃m(r ), with C̃m(r )
5Cm(r ) 22pnint@Cm(r )/2p# the gauge-invariant phase
difference restricted to the@2p,p# interval, and nint(x) giv-
ing the nearest integer tox. Then we evaluate the vorticity as

n~R,t !52Dm3 nintS Cm~r ,t !

2p D . ~28!

From this we get the average vortex density

q5
1

~N21!2T(R (
t50

T21

n~R,t !. ~29!

In Sec. V we also calculate the electric response as a
function of the driving dc currentI ext. If the current is ap-
plied in the y direction, we calculate the average voltage
difference as

v5
1

N~N21!T(r (
t50

T21
dCy~r ,t !

dt
, ~30!

where the voltage is normalized asv5V/RI 0 .

III. GENERAL LINEARIZED RESULTS

An analytic detailed study of the full dynamical equations
is out of the question. However, a number of relevant quali-
tative results can be obtained from analyzing these equations
in their linearized approximation. In this section we calculate
the magnetization and the vortex-vortex interaction potential
in the linearized approximation.

A. Magnetization

In a periodic array we have translational invariance; then
L(R,R8)5L(R2R8). It is useful to know the Fourier trans-
form of the inductance matrix,L(qW )5(RL(R)eiqR. Since
alsoL(R)5L(2R), L(q) has to be an even function of
q.

For a short-range matrix, as in model A, we can power
series expandL(q) as

L~qW !q→05L̄1L2q
2a21O~q4!. ~31!

However, for model C, we see that limN→`L̄
5(RL(R)50, due to the long-range nature ofL(R), and
the q4 term diverges. Instead, by taking the long-range be-
havior of the matrix as 1/R3, Eq. ~23!, one can estimate the
Fourier transform for small wave vectors as

L~qW !q→0'uqW ua. ~32!

We now can estimate howL(R,R8) determines the char-
acteristic lengths and times by linearizing the dynamical
equations. This means approximating sin@Dmu(r)2Am(r)#
'Dmu(r )2Am(r ). In order to keep track of the periodicity
of the sine function, we will takeDm3Dmu(r )52pn(R),
by compactifyingDmu(r ) within the interval@2p,p#. This
defines thevorticity n(R), with n an integer. We use the
Coulomb gauge in order to separately study the phases and
the magnetic flux variables.

Within the linear approximation Eq.~12! reduces simply
to

du~r !

dt
52

2pRI 0
F0

u~r !, ~33!

defining the relaxation time of the phases bytu5F0/
2pRI 0 .

The linear approximation of Eq.~14! for the magnetic flux
gives

df~R!

dt
5

1

tu
@n~R!2f~R!#

1
1

tF
Dm
2(
R8

L21~R,R8!@f~R8!2 f ~R8!#,

~34!

11 696 53DANIEL DOMÍNGUEZ AND JORGE V. JOSE´



wheref(R)5F(R)/F0 . This equation has two characteris-
tic relaxation times,tu and tF5m0a/R. In the particular
case of model A,L(R,R8)5L0dR,R8, Eq. ~34! reduces to

df~R!

dt
5

1

tu
@n~R!2f~R!#1

1

tFL0
Dm
2 @f~R!2 f #,

~35!

where we could have definedtF*5L0tF5L0 /R. SinceL0

is of order unity, it is just a matter of taste which one we
choose as the magnetic characteristic time. In this paper we
will work with tF .

43

We can estimate the characteristic magnetic length, in the
stationary limit of Eq.~34!, i.e., df(R)/dt→0. In this case
we have

tu

tF
Dm
2(
R8

L21~R,R8!@f~R8!2 f #5f~R!2n~R!.

~36!

In particular, it is easy to get the characteristic magnetic
length in model A since Eq.~36! reduces to

tu

tFL0
Dm
2f~R!5f~R!, ~37!

which is the lattice version of the London equation for the
magnetic field.44 ~Here we have taken the solution without
vortices @n(R)50#, and we putDm

2 @f(R)2 f #5Dm
2f(R),

which is true everywhere except at the boundaries, where
f(R)5 f .) Then the characteristic length in this case is the
Josephson penetration depthlJ5(tu /tFL0)

1/2a. We define
the dimensionless parameter for this case
kJ5lJ /a5(tu /tFL0)

1/2.
In the more general case, we evaluate the Fourier trans-

form of Eq. ~36!; definingf(q)5(Rf(R)eiqR, we get

f~q!5
n~q!

11~tu /tF!@D~q!/L~q!#
, ~38!

whereD(q)51/G(q)5422cosqxa22cosqya is the Fourier
transform of2Dm

25G21. As we want to consider the long-
range behavior of this equation, we takeD(q)q→0'(qa)2,
and then we have

f~q!5
n~q!

11~tu /tF!@q2a2/L~q!#
. ~39!

In the case of local screening, as in model A,L(q) is
given by Eq.~31!, and we get an effective Josephson pen-
etration depthl̄J5(tu /tFL̄)1/2a5k̄Ja.

For model C,L(q) is linear inq, Eq. ~32!, and then the
penetration depth islp5(tu /tF)a5kpa, defining the pa-
rameterkp5lp /a. This is equivalent to Pearl’s penetration
depth for a thin film,24 extended to a JJA.19,23

B. Effective vortex-vortex interaction

In JJA’s without screening it is known that the long-range
interaction energy between vortices is logarithmic,1,4 which
is the crucial ingredient in the BKT scenario.3 Let us see how
the effective~i.e., long-range! interaction between vortices is
affected by the SIMF effects.

This can be evaluated easily by mapping the Hamiltonian

H5EJ(
r ,m

$12cos@Dmu~r !2Am~r !#%

1
1

2(
R,R8

@F~R!2Fx#L
21~R,R8!@F~R8!2Fx#

~40!

to the Coulomb gas analog,

HCG52p2EJ(
R,R8

@n~R!2f~R!#G~R,R8!@n~R8!2f~R8!#

12p2EJkp(
R,R8

@f~R!2 f #L21~R,R8!@f~R8!2 f #.

~41!

It is possible to get an effective vortex-vortex
interaction by evaluating the partition functionZ
5*d$u(r )%*d$f i(R)%e2HCG@u(r ),f i (R)#/kT, with f i(R)
5f(R)2 f , and then doing the resulting Gaussian integral in
f i(R).23 Then the following effective Hamiltonian is ob-
tained:

HCG5 (
R,R8

@n~R!2 f #U~R,R8!@n~R8!2 f #, ~42!

whereU(R,R8)52p2EJU(R,R8) is the effective interac-
tion energy between two vortices located atR andR8, and
U(R,R8) is the solution to

2Dm
2U~R,R8!1

1

kp
(
R9

L~R,R9!U~R9,R8!5dR,R8.

~43!

We should mention that in this Coulomb gas approach,
the periodic pinning potential of the lattice has been ne-
glected. This will be relevant in the strong screening case as
we will see in the next section.

The dependence ofU(R,R8)5U(R2R8) for largeR can
be analyzed from theq→0 behavior of its Fourier transform,

U~q!5(
R

eiq•RU~R!5
1

D~q!1kp
21L~q!

. ~44!

For a short-range inductance matrix as in model B, we
get, after using Eq.~31!,

U~R!5
pEJ

11L2 /kp
K0S R

l̃J
D , ~45!

with l̃J5@(kp1L2)/L̄#1/2a, and K0 the modified Bessel
function of the second kind. This has the limiting behavior

U~R!5
pEJ

11L2 /kp
F lnl̃J

R
1 ln22gG , R!l̃J

U~R!5
pEJ

11L2 /kp

e2R/ l̃J

A2pR/l̃J
, R@l̃J. ~46!
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This effective interaction is equivalent to the one that exists
between vortices in continuous three-dimensional
superconductors.44 It is also the same that was used by Min-
nhagen as an approximation for the SIMF effects in the BKT
transition within the Coulomb gas analogy.22

In model C we get, after using Eq.~32!,

U~R!5
p2

2
EJFH0S Rlp

D2Y0S Rlp
D G , ~47!

where lp5kpa, H0 is the Struve function, andY0 is the
Bessel function of the second kind. The limiting behaviors of
this solution are

U~R!5pEJF lnlp

R
1 ln22gG , R!lp

~48!

U~R!5pEJ

lp

R
, R@lp .

This long-range vortex-vortex interaction energy has also
been obtained by Stroud and Kivelson for arrays with
screening.23 It is equivalent to the interaction energy calcu-
lated by Pearl for two-dimensional superconductors.24 Note
that the main difference from~46!, apart from a redefinition
of the penetration depth, is the very slow decrease of the
interaction energy for long distances (1/R instead of expo-
nential!. This same difference was found in the numerical
simulations of Phillipset al.26

IV. MAGNETIC PROPERTIES

Here we study the magnetic response of IJJA’s atT50.
We will show results obtained either with model A or with
model C~the response with model B is essentially the same
as in model A by replacingL0→L̄5L024M).

In this section we calculate the magnetizationm as a
function of field f , and the stationary vortex and field distri-
butions for a given value off . All the magnetization curves
we show here were obtained starting fromf50 and
f(R,t50)50, and then increasingf by d f steps taking as
initial condition the final configuration of the previous step,
i.e., f(R,t5t0 , f1d f )5f(R,t5t f , f ). We also find essen-
tially the same results taking as initial condition
f(R,t50)50 for everyf . Note that under these initial con-
ditions, the magnetization does not have to be periodic inf
~see Appendix A!.

Our main result here is that there is a qualitative change
of behavior when going fromk*1 to k&1, wherek stands
for eitherkJ or kp , depending on which inductance matrix
model we are using. This behavior change resembles the
difference between hard and soft superconductivity in con-
tinuous superconductors. We name the two regimes type I
and type II, respectively.

A. Type II regime

First we analyze the case which corresponds to a JJA with
weak screening, i.e.,k*1.

In Fig. 1~a! we show the magnetizationm as function of
f for model A with kJ51.41, and lattice size 30330. We
note that for small fieldsm decreases linearly withf , and

then for larger fields the curve shows oscillatory behavior
with period f51. This is consistent with the symmetries of
the Hamiltonian~see Appendix A!. In Fig. 1~b! we show the
magnetization for small fields for the samekJ in more detail
while Fig. 1~c! shows the corresponding vortex densityq for
the same parameter values. We see that the linear decrease of
m corresponds to a state without vortices,q50, i.e., a
Meissner-like state. Then above a critical fieldf c1 , vortices
start to penetrate the array and the magnetization starts to
oscillate. For fieldsf. f c1 , we note a structure in the curve
that resembles that found in noninductive JJA’s for fractional
f .1,4,45We see that close to fractionalf5r /s, notably close
to f5n11/2, the magnetization starts to be quasilinear and
q is almost constant, up to a certainf5r /s1d f , in which
the magnetization has a minimum.

In Fig. 2 we show the magnetization curve for model C
with kp52, and lattice size 32332. In this case the calcula-
tions are more CPU intensive; thus we have fewer points
than in Fig. 1. However, we essentially see a similar struc-
ture as in Fig. 1~b!.

FIG. 1. ~a! Magnetizationm vs external magnetic fieldf for a
30330 array with diagonal inductance matrix~model A! and
kJ51.41. ~b! The same as~a! but for a 40340 array.~c! Vortex
densityq vs magnetic fieldf for the same array as in~b!.
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Since in either case the magnetization never goes to zero,
there is no upper critical field ‘‘f c2 .’’ However, we define
f c2 as the field for whichq51, i.e., for which there is one
vortex everywhere, and we find thatf c2' f c111. In a sense
this field represents the field above which the properties of
the array repeat periodically withf .

For fields f, f c1 the stationary state is a Meissner-like
state. This is shown in Fig. 3~a! for model C withkp52.
Similar results are obtained for model A. We find that the
magnetic field decreases exponentially from the boundaries
with a characteristic length that is approximately equal to
kpa in model C, orkJa in model A.

Few vortices penetrate into the sample from the bound-
aries just abovef c1 . In Fig. 3~b! we show the vortex distri-
bution for kJ51.41 for model A. As we will discuss later,
this shows thatf c1 actually corresponds to a critical field for
vortex penetration through the boundaries, and not to the
‘‘equilibrium’’ critical field for nucleation of one vortex in
the middle of the sample, which is lower~see Sec. IV E!.

For larger fields, the vortices form structures in the array
resembling the lattices found in the limitk5`.45 In Figs.
3~c! and 3~d! we show the vortex distributions forf51/2 for
model A with kJ51.41, and for model C withkp52, re-
spectively. We note that in both cases the vortex distribu-
tions have the same general structure. In both cases they
have a crosslike symmetry, due to the finite size of the lat-
tice, for it is easier for the field to penetrate from the corners.
We see that the vortex distributions do not correspond to a
perfect ‘‘checkerboard’’ as in thek5` case.45 This is be-
cause nowq, f51/2, for there is partial flux expulsion due
to the finite penetration depth. These states correspond to
flux penetration from the boundaries for they were obtained
with initial conditionf(R,t50)50.

For larger fields, f@ f c111, the vortex distributions
n(R) follow almost perfectly the symmetry transformation
of n(R)→n(R)1p after f→ f1p, with p an integer.

The time needed to reach the stationary state also depends
on f , as is shown in Fig. 4 for model A withkJ51.41.
Equilibrium is reached exponentially fast, in the Meissner
state with a relaxation time of ordertF ( f50.1, f c1 5 0.21
in the figure!. For f. f c1 much longer relaxation times are
needed to form the vortex lattice starting from the initial
condition f(R,t50)50 ( f50.5 in Fig. 4!. In particular,
close tof c1 the field penetration is very slow (f50.22 in the
figure!.

We have also analyzed the size dependence of the mag-
netization in this regime. Results are shown in Fig. 5, for
model A with kJ51.41. Here we see thatf c1 is essentially
size independent, and the magnetization tends to negatively
increase with the size of the lattice. Note, however, that for
smaller lattices the magnetization shows more structure
while it becomes smoother for larger lattices. The reason for
this is that the dips inm are related to vortex lattice com-
mensurate states that fit inside the lattice. When the lattice is
larger the number of rational numbers corresponding to com-
mensurate vortex lattices increases but at the same time get
to be closer inf so that for a fixed current mesh they essen-
tially overlap and thus the smoother nature ofm for larger
lattices.

B. Type I regime

Below we show that the situation is very different when
k&1 as compared to the type II regime discussed in the
previous subsection.

Figure 6~a! shows the magnetization for model A, with
kJ50.35 for a lattice of 30330, and its corresponding vor-
tex density is shown in Fig. 6~b!. Again, for small fieldsm
decreases linearly corresponding to a Meissner state with
q50. After a critical field f c0.1, vortices start penetrating
the array. For larger fields the magnetization has a sawtooth-
like behavior of periodf51, while the vortex density has a
ladderlike structure, with plateaus and discontinuous jumps,
also of periodf51.

In Figs. 7~a!, and 7~b! we show the magnetization and
vortex densities for model C withkp50.1. In this case the
curves do not have the discontinuous jumps as in model A,
but they do show a monotonic decrease and weak oscillatory
behavior.

The similarities and differences between the two cases
become more evident from looking at the vortex distribu-
tions. Below f c0 there is a Meissner state. This is shown in
Fig. 8~a! for model C withkp50.1, the same as in model A.
Again, the magnetic field decays exponentially with a char-
acteristic length which is eitherkpa or kJa for each case.
Just abovef c0 5 1.5, we see that the vortices have pen-
etrated the array in a very particular way, as shown in Fig.
8~b! for model A. They form a ‘‘vortex collar’’ all around
the boundary, with constant vorticityn(R5 boundary)51.
In Fig. 8~c! we show the vortex distribution for much higher
fields, f@ f c0 . In this case, we see that the ‘‘collars’’ of
constant vorticity have penetrated deeper into the array. The
total vorticity of the collars decreases linearly from the
boundary towards the center of the array. The linear slope
with which the vorticity decreases is approximately equal to
f c0 . In this high field regime, each time the fieldf is in-
creased by 1, there is a collar vorticity increase fromn(R) to

FIG. 2. ~a! Magnetizationm vs external magnetic fieldf for a
32332 array with full inductance matrix~model C! andkp52. ~b!
Vortex densityq vs magnetic fieldf for the same array as in~a!.
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n(R)11 in the whole array. This explains the jumps seen in
the magnetization. Also, in Fig. 8~d! we show the vortex
distribution for the model C andf@ f c0 . We see again that in

this case the vorticity decreases linearly from the boundaries
towards the center of the array, with linear slope approxi-
mately equal tof c0 . The only qualitative difference is that
the vorticity decrease shows more structure. Therefore the
vorticity increases more smoothly when increasing the field,
thus giving a magnetization that is smoother than in the di-
agonal case. We analyze the type I behavior in more detail
below.

C. Effective attractive vortex interactions in type I regime

The fact that the vortex states and magnetization are es-
sentially different in this regime compared to type II will
become clearer after analyzing the interaction between vor-
tices. A basic characteristic of these type I vortex states is
that the vortices are all grouped together, instead of forming
lattice structures as in the type II regime.

It is known that in continuous superconductors the vortex-
vortex interactions are attractive in the type I case.46 Let us

FIG. 3. ~a! Magnetic flux distributionf(R) showing the Meissner state for model C of an array withkp52 for f50.1. ~b! Vortex
distribution for a model A array withkJ51.41 and f50.22, close to the critical fieldf c150.21. Black squares represent vorticity
n(R)51. ~c! Vortex structure for the same array as in~b! but for f50.5. ~d! Vortex structure for a model C array withkp52 and
f50.5.

FIG. 4. Magnetic flux density as a function of timef (t), for
different fieldsf50.1, f50.22, andf50.5; for a 64364 array with
diagonal inductance andkJ51.41. Heref c150.21.
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then estimate the interaction energy of two neighboring vor-
tices as compared to two well separated ones. The energy of
two infinitely separated vortices is twice the energy of a
single vortex. For an isolated vortex let us use the ‘‘arctan’’
approximation.19 In this case the phase differences around
the plaquette for a vortex are all equal toDu5p/2, and then
the current flowing around the plaquette isJ5I 0sinp/2
5I 0 . The vortex energy is thenE1V54EJ(12cosp/2)1 1

2

L0I 0
25EJ(41L0/2kp). Therefore the energy of two free

vortices is approximatelyE2V
f 52E1V5EJ(81L0 /kp). For

two nearest-neighbor bound vortices we approximate the
phase difference in the junctions byDu52p/3, except in the
junction between them, for whichDu50. Then the mesh
current in each one of the plaquettes will be
J5I 0sin2p/35I 0A3/2, and the vortex energy for a pair is
E2V
B 5EJ(91 3

4L0 /kp2
3
4M/kp). Therefore the energy dif-

ference DE2V5E2V
B 2E2V

f 5EJ(12 1
4L0 /kp2

3
4M/kp),

which can become negative for a characteristic
kp*,(L013M)/4'0.40. For model A this condition re-
duces simply tokJ,1/2. Although this is a crude estimate it
is important that it shows that below a characteristickp* the
interaction between vortices will become attractive. Also
note that this argument is independent of the long-range na-
ture of the inductance matrix.

Another argument that shows how the effective interac-
tion between vortices can become attractive follows from a
‘‘pinning’’ model. In Sec. III B we have calculated the
vortex-vortex interaction energyU(R,R8) in the Coulomb
gas approximation. This energy is always repulsive but de-
creases asU;2p2EJkp in the high screening limit. How-
ever, in this approximation the lattice pinning potential has
been neglected. If we consider the pinning potential energy,
it increases with the magnetic screening, as has been calcu-
lated in Ref. 26. From this point of view we see that what is
happening is that the vortices cannot overcome their repul-
sive ‘‘bare’’ interaction, for they are strongly pinned by the
lattice. We can make this argument a bit more quantitative.
In Fig. 9~a! we show the on-siteU(R,R) bare interaction
energy, calculated from Eq.~43!, and the pinning energy
barrierDEP as a function ofkp . $The pinning energy has
been taken from the value estimated in Ref. 26,
DEP50.2EJ@11 3

2(1/kp)(L02
8
3M)#%. Also, in Fig. 9~b! we

show the nearest-neighbor bare interaction energy
U(R,R6m) compared withDEP . In both cases we see that
below a characteristickp* the pinning energy is larger than
the interaction energy. We also see that thekp* is essentially
the same for either model C or B, while it is higher for model
A. We also note that thekp* for which DEP5U(R,R)
(kp*'0.14 for models B and C, whilekp*'0.15 for model
A! is smaller than thekp* for DEP5U(R,R6m) (kp*
'0.34 for models B and C, andkp*'0.5 for model A!. But

FIG. 5. Magnetizationm vs magnetic fieldf for model A arrays
with kJ51.41 for different lattice sizes. (3) 16316, (n)
32332, (h) 40340, (s) 48348.

FIG. 6. ~a! Magnetizationm vs f , for a 30330 array for model
A with kJ50.35 ~full line!. The dashed line corresponds to the
Bean model of Eq.~50! with a51.0. ~b! Vortex densityq vs f for
the same parameter values as in~a!.

FIG. 7. ~a! Magnetizationm vs external magnetic fieldf for a
32332 array for model C andkp50.1 ~full line!. The dashed line
corresponds to the Bean model result of Eq.~52! with a50.75. ~b!
Vortex densityq vs f for the same parameter values as in~a!.
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in all cases 0.1,kp,1. This means that when decreasing
kp first the nearest-neighbor vortex interactions become at-
tractive, and then at a lowerkp the on-site interactions be-
come attractive. This defines a crossover region between the
type II and type I regimes askp decreases. In our simulations
we do not see a sharp transition from one regime to the other
at a precise value ofkp .

D. Bean model description

Since the type I regime can be thought of as a regime of
‘‘strong pinning,’’ a description similar to the Bean model41

for type II superconductors with strong pinning should be
appropriate. In fact, the linear decrease of the magnetization
shown in Figs. 8~c! and 8~d! can adequately be described by
this model, as was suggested in Ref. 21.

Let us first discuss model A. In this case, just abovef c0
the field penetrates as one collar around the boundary with
constant vorticityn(R)51. When increasing the field fur-
ther, more vortex collars will penetrate the array in an or-
dered way. The average slope with which the vorticity de-
creases from collar to collar, when going towards the center,
is aboutf c0 , i.e., f c0 measures how much the field has to be
increased in order to get another collar inside. Let us com-
pute how many vortices are in an array of sizeN3N for a
given field f . The number of plaquettes in collari is
4(N22i11), wherei stands for the position of the collar
from outside to inside (i51 is the first collar close to the
boundary!. Then, if the vorticity of thei51 collar isk, and
it decreases with slopea, the vorticity of the collari will be
k2a( i21). The total number of vortices in this case will
then be

FIG. 8. ~a! Magnetic flux distributionf(R) showing the Meissner state for model C withkp50.1 andf50.5. ~b! Vortex distribution for
model A withkJ50.35 andf51.55, slightly above the critical fieldf c051.5. Black squares represent vorticityn(R)51 and the corners are
equal to zero.~c! Vortex distributionn(R) for the same array as in~b! but for f510.3. ~d! The same as in~c! for a model C array with
kp50.1 andf510.3.
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Q54(
i51

k/a

@k2a~ i21!#~N22i11!. ~49!

The magnetization ism5Q/N22 f , so that

m5S 22
2

3ND kN1S 12
1

ND k2k* 2
k3

3~k* !2
2 f . ~50!

This is valid fork,k* , wherek*5(N/2)a, corresponding
to the field for which the vortex collars have penetrated up to
the center of the array. Now,k has to be close tof and jump
by 1 when f is increased by 1. In Eq.~50! we take
k5@ f2 f c0#1@ f c0#, where@x#5 integer part ofx. This gives
for k* an f *5(N/2)a1 f c0 . At this field the array reaches
its minimum magnetization

m*52 f c02aSN6 2
1

2
1

1

3ND . ~51!

Then for f. f * the vorticity is increased by 1 everywhere in
the array each timef is increased by 1. In Fig. 6~a! we
compare the numerically calculated magnetization with Eq.
~50! for a' f c0 . What is important from this ‘‘discrete’’
Bean model is that the magnetization is strongly size depen-
dent, which is an important difference from the type II re-
gime. This is shown in Fig. 10, forkJ50.35. There we
clearly see the size dependence of the magnetization and, in
fact,m* decreases linearly withN as given in Eq.~51!.

We saw in Fig. 8~d! for model C that the field penetration
was more complicated than in model A described by the
vortex collars. But on average it also has a linear penetration
with slopea' f c0 . If we now assume a continuous version
of the Bean model, i.e., vorticity decreasing linearly with
slopea, we get the Bean model for the magnetization:

m52 f1
f 2

f *
2
1

3

f 3

~ f * !2
, f, f *

~52!

m52
f *

3
, f. f * ,

with f *5aN/2. In Fig. 7~a! we see that this functional de-
pendence describes the overall calculated magnetization very
well for the lattice size considered. Also, Eq.~52! can be
used to describe the overall shape of the magnetization for
model A, even when Eq.~50! is more accurate for a lattice
system.

E. Critical fields

In Fig. 11 we show the calculated critical fields for vortex
penetration in the array for model A as a function ofkJ . The
critical fields were extracted from the magnetization curves
and correspond to eitherf c1 or f c0 depending on whichk
regime we are in.

FIG. 9. ~a! On-site bare interaction energyU(R,R) vs kp for
model A (s), model B (n), and model C (3). The dashed line is
the pinning energy barrierDEP . ~b! Nearest-neighbor bare interac-
tion energyU(R,R6m) for the same cases as in~a!.

FIG. 10. Magnetizationm vs f for model A arrays with
kJ50.35 and for different lattice sizes: 16316 ~long dashed line!,
20320 ~dotted line!, 30330 ~dashed line!, and 40340 ~full line!.

FIG. 11. Critical magnetic fieldf c for vortex penetration for
30330 arrays for model A as a function ofkJ . The dashed line
corresponds to Eq.~60!, and the dotted line corresponds to a fit with
Eq. ~62! with g56.119 obtained from a fit to the data.
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In order to interpret the data, we will analytically estimate
the critical fields. Using the Coulomb gas approximation, the
energy of the Meissner state can be calculated from Eq.~42!
for n(R)50,

EM52p2EJf
2(
R,R8

U~R,R8!. ~53!

For large lattices we can neglect boundary effects and esti-
mate(R,R8U(R,R8)'kpN

2/L̄ with L̄5(RL(R,R8), giving

EM52p2EJf
2
kpN

2

L̄
. ~54!

The energy corresponding to one vortex located atR0 ,
n(R)5dR,R0, can be obtained from Eq.~42!:

E1V52p2EJFU~R0 ,R0!22 f(
R

U~R0 ,R!

1 f 2(
R,R8

U~R,R8!G . ~55!

Then we can extract a critical fieldf c for which
EM5E1V as

f c5
U~R0 ,R0!

2(RU~R0 ,R!
. ~56!

For a very large sample andR0 away from the boundaries,
this result is independent ofR0 . For example, if we approxi-
mate U(R0 ,R0) by Eq. ~48!, and take (RU(R,R0)
'kp /L̄,we get

f c'
L̄

4pkp
lnkp . ~57!

Note that sinceL̄;1/N for N→`, f c is size dependent and
f c→0 for largeN, analogous to what was found for two-
dimensional superconducting films.24,47 The field f c calcu-
lated this way corresponds to the vortex nucleation in the
middle of the array. However, this is not the case considered
in our calculations, since the critical fields we obtained for
the magnetization correspond to the penetration from the
boundaries. Let us estimate then the energy difference
DE1V5E1V2EM ,

DE1V52p2EJFU~R0 ,R0!22 f(
R

U~R0 ,R!G . ~58!

In Fig. 12 we showDE1V(R0 , f ) as a function ofR0 for
different fieldsf . We see that whenf; f c50.006 904 there
is a potential barrier opposing vortex entry. Afterf is in-
creased further, the barrier disappears and a vortex penetrates
the array easily. In continuous superconductors this barrier
has been calculated by de Gennes.44 The critical field for
which the barrier disappears corresponds to (]DE1V /
]R0)R05a50, and is of the order of the thermodynamical
critical field.44

Let us estimatef c1 as the corresponding ‘‘thermodynamic
critical field,’’ e.g., the field for which the energy of the

Meissner state equals the energy of the ‘‘normal’’ state. In
the normal state there is no phase coherence, so
^cosCm(r)&50, andf(R)5 f ; then

EN52N2EJ . ~59!

After settingEN5EM , and using Eq.~54!, we get

f c15
1

p S L̄

kp
D 1/2, ~60!

which for model A isf c151/pkJ . In Fig. 11 we see that this
estimatedf c1 fits the critical fields in the regionkJ*1 very
well.

In the type I regime,kJ&1, the field penetration is differ-
ent, as we saw before. The critical field corresponds to the
penetration of a ‘‘collar’’ of vortices around the boundary,
instead of a single vortex. Let us make a crude estimate of
this critical field for model A. Take the kinetic energy as
EK5EJ( r ,m@12cosCm(r)#, which is essentially proportional
to the number of vortices in the collar, 4N, so that
EK'g4NEJ , with g a constant. For the magnetic part of the
energyEL , let us takef(R)51 for R in the collar, and
f(R)50 otherwise. Then we get the energy of a collar,
E1C5EK1EL , as

E1C'gEJ4N1
2p2EJkp

L0
@4N~12 f !21~N224N! f 2#.

~61!

After comparing with the Meissner state energy, Eq.~54!,
E1C5EM , we get

f c0'
1

2
1

g

4p2

L0

kp
5
1

2
1

g

4p2kJ
21/2. ~62!

In Fig. 11, we see that this expression forf c0 can fit the
calculated critical fields in the small-kJ regime, with
g56.119.

FIG. 12. Potential energy barrier for vortex penetrationDE1V as
a function of f and R05(RX ,N/2) for an array of linear size
N5256 andkp520. Note that for the critical field estimated from
Eq. ~56!, f c50.006 904, there is a potential barrier against vortex
penetration from the boundary.
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F. Hysteresis and remanent magnetization

The presence of pinning due to the lattice periodic poten-
tial makes the magnetic response history dependent. Here we
show results for the magnetization for model A with increas-
ing and decreasing external fieldf . The magnetization
curves are obtained by incrementing the field byd f , and
taking the final configuration forf as an initial condition for
f1d f . We increase the field up to anfmax starting from
f50, and then decrease it down to2 fmax, then increase it
again, repeating this cycle several times. We found that
whenever we turn back the field forf max, f c1 or
fmax, f c0 , depending on the value ofkJ , the magnetization
curve is completely reversible. However, once there are vor-
tices inside the array, reversibility is lost. In Fig. 13~a! we
show the hysteresis loop in the magnetization when
f c1, fmax,11 f c1 , for an array withkJ51.41, in the type II
regime. In Fig. 13~b! we show the hysteresis in the vortex
densityq. Here we see that when the field is reversed,q
remains constant for a certainf range~approximately up to
' fmax2 f c1). This means that the vortices remain pinned in
the lattice until the external field has been reduced suffi-
ciently so that some of the vortices start to be expelled. This
makes it possible to have positive magnetization in the array.
In Fig. 14~a! we show the case whenfmax. f c111, for
kJ51.41, also in the type II regime. Here, the symmetries of
the Hamiltonian, discussed in Appendix A as a function of
f , become evident. In fact, the upper branch of the hysteresis
cycle ~positive magnetization! can be reproduced after the
transformationf→n2 f of the lower branch.

Finally in Fig. 14~b! we show the case for an array in the
type I regime, withkJ50.35. Here the hysteresis cycle is
much bigger than in the previous case because pinning is
dominant in this regime. Also, the size of the hysteresis cycle

depends on the lattice size, as should have been expected
from the Bean model’s description of this regime.

We can also study the irreversible magnetic behavior of
the IJJA by turning off the field after reaching the stationary
state for a givenf . In Figs. 15~a! and 15~b! we show the field
profiles for f50.3 andkJ51.41, before and after turning off
the field, and in Figs. 15~c! and 15~d! for f510.3 and
kJ50.35. In both cases we see that there is a remanent mag-
netization in the array, since some vortices remain pinned by
the lattice. In particular, in the type I regime the remanent
field profile is also linear inR as could have been predicted
within the Bean model description.

This magnetic irreversible behavior has also been noted
by Majhoferet al.21 but not its connection with the presence
of quantified vortices. Here we see that the irreversibility is
due to the pinning of vortices in the lattice potential of the
IJJA, and that in the type I like regime it can be described by
a discrete version of the Bean model.

V. DC TRANSPORT PROPERTIES

In this section we study theIV characteristics of IJJA’s
when driven by a dc current. We pay particular attention to
vortex distributions and the edge fields produced by the ex-
ternal current for models B and C. We also analyze the
history-dependent properties of the IJJA as a function ofk.

A. Edge fields

When solving the dynamical IJJA equations with an ex-
ternal currentI ext one must carefully specify the boundary
conditions. The reason is that total magnetic field, external1
induced, depends on the external and internal currents~see

FIG. 13. Hysteresis loops in~a! the magnetizationm and~b! the
vortex densityq as a function of f . Model A arrays of size
30330 andkJ51.41. FIG. 14. Hysteresis loops in the magnetizationm as a function

of f for a model A 30330 array.~a! kJ51.41 and~b! kJ50.35.
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Appendix C for a detailed discussion of this point!. The cur-
rent conservation conditions are

Dm•Im~r !5I ext~r !, ~63!

whereI ext(r ) depends on the boundary conditions. Here we
take

Dm•Im~r !50 ~64!

for all r and

Dm•Im~r !5I ext ~65!

for the top and bottom boundaries. From these current con-
servation conditions in the dual lattice we have

I x~r ,t !5J~R,t !2J~R2êy ,t !,

I y~r ,t !5J~R2êx ,t !2J~R,t !1I ext~ t !,

whereJ(R,t) is the plaquette’s current. We can rewrite these
equations as

Im~r !5Dm3J~R!1dm,yI ext, ~66!

with the external current only applied along they direction.
In terms of the plaquette variables Eq.~5! the total flux is

F~R,t !5Fx~R!1(
R8

L~R,R8!J~R8,t !1E~R!I ext~ t !,

~67!

where

E~R!I ext~ t !5(
r 8

G~R,r 8,êy!I ext~ t !. ~68!

This term gives the magnetic flux induced by the applied
external currents, which is antisymmetric along thex direc-
tion. In Fig. 16 we show a plot ofE(R) along thex direction
calculated within the filamentary approximation. These mag-
netic fields have maximum amplitude at the edges of the
array and decrease towards its center, and thus they are
called ‘‘edge magnetic fields.’’ For example, for a current
sheet they are given by

E~Rx ,Ry!'
m0a

2p
lnSNxa2Rx

Rx
D ,

with RxP@a,(Nx21)a#. This result is a good approximation
for the actual value ofE(R) ~see Fig. 16!. Note that the
magnitude ofE depends directly on the size of the array, and
it decreases at the center of the lattice as the lattice size
grows. In the limit uNxa/22Rxu!Nxa, E(Rx)'(2m0 /
pNx)(Nxa/22Rx) at the center of the array. We note that
there are other ways of separating and interpreting the dif-
ferent contributions in Eq.~6!, as was done in Ref. 27.

We can now rewrite the normalized dynamical equations
in the temporal gauge as

FIG. 15. Magnetic flux profiles in a model A 64364 array.~a!
For kJ51.41 andf50.3. ~b! The same as~a! but after turning off
the field. ~c! For kJ50.35 andf510.3. ~d! The same as~c! but
after settingf50.

FIG. 16. Antisymmetric magnetic edge field distributionE(R)
for a 5123512 array along the direction perpendicular to the exter-
nal current. The dotted line represents the approximation
E(R)'(m0a/2p)ln@(Na2Rx)/Rx#.
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dCm~r !

dt
52sinCm~r !2kpDm3(

R8
L21~R,R8!

3Dm3Cm~r 8!12p f1E~R8!i /kp]1dm,ey
i ,

~69!

where we have normalized the edge fields,E(R)/m0a
→E(R), and the external current,i5I ext/I 0 .

We note that in model A the edge fields areE(R)50
everywhere. The first approximation of the inductance ma-
trix that takes the edge fields into account is in model B. In
this case the matrixE(R) reduces toE(left boundary)
5M, E(right boundary)52M, andE(R)50 elsewhere.
Model C fully takes into account the edge fields as shown in
Fig. 16.

The presence of antisymmetric magnetic edge fields has
been identified as important in understanding the experi-
ments by Leeet al. in Ref. 10. We have shown that even
with model B the edge fields can produce subharmonic Sha-
piro steps as seen in the experiments.16,17

B. IV characteristics and vortex states

Here we calculate the average voltage dropv along the
current direction as defined in Eq.~30! as a function of the dc
current i . This defines theIV characteristics of the IJJA.
Reinelet al.29 have also calculatedIV curves of IJJA’s. Here
we complement the study of theIV curves with a calculation
of the corresponding dynamical vortex states and the history
dependence of the magnetic behavior of the IJJA.

When there is no external applied field,f50, and for
k5`, it is known that the JJA dynamics atT50 reduces to
that of a set of uncoupled one-dimensional series arrays
along the current direction.6 The IV characteristics can be
reduced to that of a single Josephson junction, giving
v5Ai 221 for i.1, andv50 for i,1. If we neglect edge
fields, the same is true for the IJJA for any value ofk,
leading to IV characteristics independent of screening for
f50. As soon as the edge fields are included, in model B or
C we find that theIV is different from that of a single junc-
tion case. We find that in thef50 case there is a reduction
of the IJJA critical current due to the presence of the edge
fields, as is shown in Fig. 17. Note that this reduction is

stronger in the type I regime. The dynamical vortex states
that are induced by the edge fields in this case have been
recently studied by Hagenaarset al.30 They used the same
model C as here, and their results compare very well with
recent experiments by Lachenmannet al.31 measuringIV
characteristics and images of vortex dynamics with a low-
temperature scanning electron microscope~LTSEM! tech-
nique.

In Figs. 18~a! and 18~c! we show theIV characteristics
for the interestingf51/2 case for models B and C, respec-
tively, starting from the checkerboard ground state, in the
type II regime. In both cases theIV curves are reversible
when increasing and decreasing the current. However, when

FIG. 17. Model C voltage-current characteristics for a 32332
array for f50. We show the extreme (kp5`) and moderate
(kp52), type II regime and a type I regime (kp50.1) result.

FIG. 18. ~a! Voltage-current characteristics for model B for a
32332 array andkJ51.41 for f50.5. ~b! Vortex density as a func-
tion of current for the same case as in~a!. ~c! Voltage-current char-
acteristics for model C for a 32332 array withkp52, for f50.5.
~d! Vortex density as a function of current for the same parameters
as in ~c!.
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we look at the corresponding vortex densities shown in Figs.
18~b! and 18~d!, we find that they are history dependent. In
both cases, ati50, the vortex density isq, f51/2, as in the
equilibrium state found in Sec. IV A. After turning on the
current,q starts to increase and above the critical currenti c it
reaches the valueq51/2. For larger currents, in the ‘‘flux
flow’’ regime, we always find that the vortex density stays
around q5 f . This regime corresponds to the region for
which theIV curves are linear. When decreasing the current,
the vortices stay pinned by the lattice belowi c , and the
vortex density formed is maintained aroundq5 f . Therefore
the magnetic behavior of the array is irreversible even when
the IV characteristics are reversible.

In Fig. 19~a! we show the vortex distribution for currents
i, i c for model C~nearly the same kind of vortex distribu-
tions are seen for model B!. This corresponds to the station-
ary state starting with zero vorticity as initial condition, i.e.,
to turning on the field only after the current is on. We note
that the vortex distributions are different from the ones pro-
duced ati50, even when the vortex density is approximately
the same. Notice that there is a reflection symmetry along the

current direction. But in the perpendicular direction the sym-
metry is broken by the Lorentz force caused by the current.

In the Ohmic regime above the critical current,i@ i c , the
stationary moving vortex state hasq5 f ~and therefore zero
magnetization!. The vortex structure in this case does not
correspond to the checkerboard pattern; it has a high density
of domain walls and defects, as can be seen in Fig. 19~b!.
This situation is similar to the one seen in JJA’s without
screening by Faloet al.7 for large currents.

In the type II regime, with high concentration of vortices,
the edge field effects are very weak. In fact, we find nearly
the sameIV characteristics and the same kind of vortex
structures when doing the simulations of model A.

FIG. 19. Vortex structures for a model C array withkp52 and
f50.5. Black squares represent vorticityn(R)51, while for blank
onesn(r )50. ~a! For a currenti50.1 (i c50.27); ~b! for i51.5.

FIG. 20. ~a! Voltage-current characteristics for model B for a
32332 array withkJ50.35 andf50.5. ~b! Vortex density as a
function of current for the same case as in~a!. ~c! Voltage-current
characteristics for model C with a 32332 array andkp50.1 for
f50.5. ~d! Vortex density as a function of current for the same
parameter values as in~c!.
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We now move on to discuss the type I regime. In Figs.
20~a! and 20~c! we show theIV curves for models B and C,
respectively, for the same field,f51/2. In this regime the
critical current is much higher than in the type II regime.
This is consistent with the fact that there is stronger pinning
in this case. We show the vortex density as a function of
currents in Figs. 20~b! and 20~d!. Again, we find that the
vortex densities formed are irreversible even when the IV’s
are reversible while increasing and decreasing the current.
The difference in this type I regime is that the initial state at
i50 is the Meissner state. When increasing the current, the
array remains in the Meissner state (q50). Then the vortices
start to penetrate the array (qÞ0) as the current approaches
i c from below. Finally, in the ‘‘flux flow’’ regime the vortex
density equals the external field (q5 f ). Again, when de-
creasing the current from this state, vortices remain pinned
inside the array belowi c , making its magnetic response his-
tory dependent.

It is interesting to see the vortex distribution in this case.
This is shown in Fig. 21~a! for a currenti51.5. i c for model

B. We note that the vortices are distributed in parallel
‘‘stripes’’ of constant vorticity along the external current di-
rection. For this field we find alternating stripes of vorticity
zero and 1, consistent with a vortex density ofq50.5. This
state with stripes also has domain walls as can be seen in the
figure. The stripes are due to the attractive vortex-vortex in-
teraction in the type I regime, as shown in Sec. IV C. In
particular, this vortex state is reminiscent of the intermediate
state in type I superconductors, if we interpret the stripes of
vorticity 1 as ‘‘normal’’ material. Note, however, that this
state is dynamically generated by the driving current. See
also that this vortex state corresponds to the one found to
oscillate in the fractional giant Shapiro steps in the type I
regime.16,17 We note that a similar dynamical vortex state
was obtained in Ref. 28, in the row-switched state of an
underdamped IJJA. In Fig. 21~b! we show the distribution of
vorticity for the same case as above, but for model C. Here,
the edge fields effect are strong and they affect the vorticity
close to the boundaries. However, in the center of the array
we see the same kind of vortex structure formed by stripes as
seen in model B.

VI. DISCUSSION

Among the main results of this paper is that there is a
qualitative change of behavior in the response of a JJA when
going from weak to strong screening effects. This change is
manifested in the magnetic and transport properties of IJJA’s
for both local and long-range inductances. Thisl&a regime
loosely resembles that of type I superconductors in that the
effective vortex interactions are attractive. Also, it can be
thought of as a regime in which pinning dominates, and the
magnetic behavior for high fields can be understood in terms
of Bean’s model. We note that even in superconducting
quantum interference devices~SQUID’s! there is a qualita-
tive change in behavior when increasing the self-inductance
L such that 2pLI 0/F0.1.48 In this case the change is
from a reversible to an irreversible magnetic behavior. The
IJJA’s always show irreversibility in their magnetic response
~as shown in Sec. IV F!, since there is always a loop of
radiusR and inductanceLR'm0R such that 2pLRI 0/F0
.1 @in the case of model A, it should beLR'L0(R/a)

2

instead#. Then the characteristic radius above which there is
irreversible behavior isRc'F0/2pm0I 05lp , and the cross-
over to type I behavior occurs for the smallest possible
length scale, i.e.,Rc'a.

We should mention that our magnetization studies have
essentially considered vortex penetration from the bound-
aries. A different, and also interesting, problem to study is
that of vortex nucleation inside the arrays. This, of course,
will lead to different critical fields and magnetic responses,
in particular in thel&a regime. We leave this issue for
future studies.

From our results, it would seem at first sight that there are
no significant differences between a local or the full induc-
tance matrix approximations. There is in fact an important
difference that relates to the long-range nature of the vortex-
vortex interactions as already shown in Ref. 26. The differ-
ence was discussed in Sec. III B, and it is relevant at low
vortex densities in the array (q!1). It affects the quantita-
tive value of the critical field for vortex nucleation as shown

FIG. 21. ~a! Vortex distributions for a model B array with
kp50.5 andf50.5 and external currenti51.5. Black squares rep-
resent vorticityn(R)51. ~b! Surface plot ofn(R) for a model C
array withkp50.1, f50.5, andi51.5.
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by Phillips et al.. It is not so important for the microscopic
vortex configurations in which the vortex densities are high
(q;1), as was the case for the systems analyzed here.

In this paper we concentrated on the zero temperature
regime. It will be interesting to study finite temperature ef-
fects in IJJA’s by adding a Langevin current noise to Eq.~1!.
In particular, there is the question of stability against thermal
fluctuations, in particular forl&a. Our preliminary results
show that this regime is stable.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with J. Castro, F. de
la Cruz, G. Chu, T. Hagenaars, J. van Himbergen, and P.
Tiesinga. This work has been partially supported by NSF
Grant No. DMR-95-21845. D.D. acknowledges the Interna-
tional Centre for Theoretical Physics, Trieste, Italy, where
part of this work was completed, for financial support.

APPENDIX A: HAMILTONIAN AND SYMMETRIES

The physical properties of JJA’s without screening are
invariant under the changesf→ f1n and f→2 f , with
f5Fx /F0 andn an integer.4 These symmetries, which are
manifestations of flux quantization in JJA’s, have been
widely tested experimentally.1,4

The Hamiltonian for a JJA with screening, and without
external currents, is

H5EJ(
r ,m F12cos~Dmu~r !2Am~r !#

1
1

2(
R,R8

@F~R!2Fx#L
21~R,R8!@F~R8!2Fx#,

~A1!

with EJ5F0I 0/2p the Josephson energy. It is not obvious
that this Hamiltonian preserves these symmetries. We note
that the ‘‘true’’ dynamical magnetic variable is the induced
magnetic field and not the total field. We write
F(R)5F i(R)1Fx and Am(r )5Am

i (r )1Am
ext(r ), with

F i(R) andAm
i (r ) the induced flux and vector potential, re-

spectively.
For example, in the Landau gauge the external vector po-

tential Am
ext(r )52p f nxdm,ey

, where r5(nxa,nya), and we
get

H5EJ(
r

$22cos@Dxu~r !2Ax
i ~r !#2cos@Dyu~r !2Ay

i ~r !

22p f nx#%1
1

2(
R,R8

F i~R!L21~R,R8!F i~R8!. ~A2!

It is now clear that the Hamiltonian is invariant under
f→ f1n, but is not invariant underf→2 f , for the induced
field changes sign,F i(R)→2F i(R). Therefore as soon as
the dynamics of the magnetic field become important the
‘‘reflection’’ symmetry is broken.

When we consider the time evolution of the dynamical
system, given either by Eqs.~12! and~14! or by Eq.~20!, we
have to take into account the symmetries of the initial con-

ditions. The solutions have the same response under a sym-
metry transformationf→ f1n only if the initial conditions
satisfy the same symmetry. For example, if we study the
IJJA under a frustration f with initial condition
F(R,t50)50 for all R we get the same physical response
for a frustration f1n after an initial condition
F(R,t50)5nF0 for all R.

APPENDIX B: ALGORITHMS

In this appendix we sketch the algorithms we used to
calculate the dynamical behavior of the inductive Josephson
junction arrays.

The numerical integration of the dynamical equations re-
quires taking into account the relevant time scales of the
system, i.e., the relationkp5tu /tF . In the regimekp@1
the fast variables are the fluxes while theu ’s are slow, with
the opposite in thekp!1 regime. This situation is typical of
‘‘stiff’’ problems in ordinary differential equations, which
are notoriously difficult to treat numerically and even ana-
lytically, for they lead to singular perturbations.49,50 On the
other hand, since the equations of motion are gauge invariant
we have used this symmetry to find the most appropriate
gauge to solve the equations. It turns out that one specific
gauge does not allow us to efficiently solve the problem for
all values ofkp . In thekp@1 limit the stiffness problem is
very difficult to overcome sincetF→0 as k→`. In this
case, a convenient gauge to choose is the Coulomb gauge,
Eqs.~12! and~14!, because the variablesu andF are almost
separated. We have implemented an algorithm that works in
this case. However, our discussion in this paper concentrates
on the intermediate regime 0.1&kp&10, where the stiffness
problem is less severe. Within this parameter range it is more
convenient to use the temporal gauge, Eq.~20!, to efficiently
solve the problem. In this gauge, we used a fourth order
Runge-Kutta algorithm to integrate the dynamical equations.
Typical integration time steps wereDt/tmin50.02–0.1 with
tmin5min(tu ,tF).

The second step is to efficiently evaluate the right hand
side of Eq.~20!. Let us first write these equations in a di-
mensionless form. We normalize the currents byI 0 ,
I→I /I 0 , time by tu , t→t/tu , inductance bym0a, L
5L/m0a, and fluxes byF0 , f5Fx /F0 . Then Eq. ~20!
reads

dCm~r !

dt
52sinCm~r !2kpDm

3(
R8

L21~R,R8!@DmCm~r 8!12p f #.

~B1!

We studied this dynamical system in square arrays of size
N3N with free boundary conditions. We solved Eq.~B1! in
two steps.

The first step consists of obtaining the mesh currents
J(R) from Cm(r ), solving the equation

(
R8

L~R,R8!J~R8!52kp@2p f1Dm3Cm~r !#, ~B2!
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which can be simply written in matrix notation as

LJ5F. ~B3!

This step is the crucial part of the algorithm, and it depends
on the specific model for the inductance matrix.

For model A we directly evaluate

J~R!52
kp

L0
@2p f1Dm3Cm~r !#. ~B4!

For model B, one has to solve forJ(R) from

L0J~R!2M(
m

J~R6m!52kp@2p f1Dm3Cm~r !#,

~B5!

or

LNNJ5F. ~B6!

We solve this equation by performing a fast sine transform
~the Fourier transform consistent with the boundary condi-
tions! in the x direction and then solving the resulting tridi-
agonal equation along they direction. This is in the same
spirit as the FACR~Fourier analysis and cyclic reduction!
algorithm, typically used as a fast solver for the Poisson
equation.49,51 The computing time needed for each fast sine
transform is on the orderNlnN and solving each tridiagonal
matrix is on the order ofN; therefore the total computing
time varies asN2lnN.

It is more complicated to solve model C. There we have
to solve~B2! for a matrixL where all theN4 elements have
to be considered. In this case we use an algorithm like the
one introduced by Phillipset al.26 It consists of noting that
L(R,R8)5L(R2R8), so that we can do the matrix product
with J(R) using the fast Fourier transform~FFT!. We have
to pad J(R) and L(R) with zeros because of the finite
boundary conditions in order to adequately use the FFT tech-
nique, thus doubling their linear dimensions to 2N. Being
able to do this matrix multiplication very fast makes it ap-
propriate to solve~B2! via an iterative method, like the ones
used to solve linear sparse matrices.49,52 We use the conju-
gate gradient method,49 preconditioned52 by the nearest-
neighbor matrixLNN . This means that instead of solving for
J in F5LJ, we solve forY5LNNJ in F5LLNN

21Y. The
CPU time involved in this calculation varies as
k(2N)2ln(2N), with k the number of iterations needed by
the conjugate gradient method to converge. Typically, we
neededk510 to solve the system with double precision
floating point arithmetic.

After obtainingJ(R) the last step is simply to evaluate

dCm~r !

dt
52sinCm~r !1Dm3J~R! ~B7!

directly.

APPENDIX C: BOUNDARY CONDITIONS

There is an ambiguity in the definition of the mesh cur-
rentsJ(R). In model C this ambiguity is irrelevant, since any
choice ofJ(R) leads to the same physical result. However,
this ambiguity turns out to be relevant for the boundary con-

ditions of models A and B. In the recent literature27,16 the
‘‘self-inductance approximation’’ has led to different results.
We show below that this difference arises from different
definitions ofJ(R) and its boundary conditions.

The physically well defined quantity is the current flowing
in the junctions,Im(r ). Current conservation states that

Dm•Im~r !50 , ~C1!

except at the top and bottom boundaries, where

Dm•Im~r !5I ext. ~C2!

One possible choice forJ(R), let us call it choice~i!, which
satisfies these equations is

Im~r !5Dm3J~R!1dm,ey
I ext, ~C3!

with the boundary condition

J~R!50 , ~C4!

for R outside the array. Choice~i! is the one that we have
used in our previous work in inductive JJA’s~Refs. 16 and
17! and in this paper.~It has also been used by Eikmans and
van Himbergen in noninductive JJA’s.14!

Another possible choice, choice~ii !, which also satisfies
current conservation, is

Im~r !5Dm3J~R!, ~C5!

with the boundary conditions

J~Rx,0!5I extSNx

2
2RxD , ~C6!

J~Rx ,Ny!5I extSNx

2
2RxD ,

J~0,Ry!5I ext
Nx

2
,

J~Nx ,Ry!52I ext
Nx

2
.

Clearly, since these twoJ(R)’s are different they will
induce different magnetic flux distributions. Let us consider
the magnetic flux induced by the branch currentsIm(r ),

F~R!5Fx1 (
r8,m8

G~R,r 8,m8!Im8~r 8!. ~C7!

We have for choice~i!

F~R!5Fx1(
R8

L~R,R8!J~R8!1I extE~R!, ~C8!

with L(R,R8)5Dm83G(R,r 8,m8) and
E(R)5( r8G(R,r 8,ey). Note that the first term in this equa-
tion does not depend on the boundaries, since there we have
J(R)50, while the second term gives the magnetic field in-
duced by the external currents~antisymmetric edge fields!. In
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this case, any truncation of the inductance matrix affects
both L(R,R8) and E(R) as discussed in the body of the
paper.

For choice~ii ! we have

F~R!5Fx1(
R8

L~R,R8!J~R8!. ~C9!

Here the external currents are considered only on the bound-
ary conditions forJ(R8). In this case a model A8 gives only
L(R,R8)5L0dR,R8, and model B8 gives L(R,R8)
5L0dR,R82MdR,R8. However, note that now the boundary
condition onJ(R) for model A8 gives a magnetic flux of
F( boundaries)56L0I extNx/2 in the left and right bound-
aries. This must be compared with the absence of edge fields
@E(R)50# in model A with choice~i!. Similar consider-
ations lead to big differences between fields at the bound-
aries in models B and B8. But when considering model C,
both choices~i! and ~ii ! become equivalent. The magnetic
flux induced byJ(R) at the boundaries extends all over the
sample and is equivalent to the edge magnetic fields.

In Fig. 22 we show the computed branch currentsIm(r )
for models A, B, and C for choices~i! and ~ii ! with a small
bias current (I ext50.1I 0) and f50. We take the current cross
section along the direction of the applied current (m5ey) at
the middle of the array@r5(r x ,Nya/2)#. Figure 22~a! shows
the current distributions of choice~i! for models A, B, and C.
We note that model A gives a completely uniform current
distribution which is equal to the external current
@ I y(r )5I ext#. For model C, part of the current accumulates
close to the boundaries due to the edge magnetic fields, and
the current tends to be homogeneous at the center of the
array. Model B gives similar current distributions as model
C, but with a smaller current concentrations at the edges, due
to the weaker edge field effects in this model. The main
difference between the three models appears only at the
edges of the array, as shown in detail in the inset of Fig.
22~a!. In Fig. 22~b! we show the current distributions for
choice ~ii ! and models A, B, and C. Here we clearly see a
significant difference for the truncated models as compared
to choice~i!. Models A8 and B8 give current distributions
which are rather large at the edges and then fall off very

rapidly inside the array. The only difference between models
A8 and B8 is in the decay range of the currents from the
edges. Choice~ii ! was used by Phillipset al.27 when discuss-
ing the effects of truncating the inductance matrix in current-
driven arrays and they obtained similar current distributions
as shown in Fig. 22~b!. As seen from Fig. 22~b!, in this case
there are very strong differences between models C and A8
and B8. Instead, we have preferred to use choice~i!, since
models A and B give a much better approximation to model
C, as is clear from Fig. 22~a!.

*Present address: Centro Atomico Bariloche, 8400 S.C. Bar-
iloche, Rio Negro, Argentina.
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