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We present an extensive study of the dc magnetic and transport properties of inductive Josephson junction
arrays at zero temperature. We carry out the analysis using the resistively shunted Josephson(R®4gtion
model plus Faraday’s law. We explicitly discuss the gauge invariance of the equations as well as their
symmetries. We consider and compare the results of three different models for the corresponding inductance
matrix: self-inductance, nearest-neighbor inductance, and full inductance matrix. The importance of carefully
considering the boundary conditions for external currents is discussed as well. Heuristic analytic results are
derived from linearizing the RSJ plus Faraday’s law equations. In particular, we discuss the critical properties
of the model and the nature of the vortex-vortex interactions when going from negligible to strong screening
regimes. The dc properties of the arrays are analyzed as a function of the screening patamegerwith
\ the magnetic penetration depth amthe lattice spacing. The weak or extreme type |l regime corresponds to
«>1, and the strong screening or type | regimects 1. We present results for the calculated magnetization
and vortex densities as a function of external magnetic fields for a setsaind lattice sizes. A qualitative
change is found between the dc magnetic and transport responses of the inductive Josephson arrays when going
from the type Il to the type | regime.

[. INTRODUCTION (A~a), using the models for different approximations to the
inductance matrix used in Ref. 17.

Two-dimensional arrays of Josephson junctions have been Other authors have also included the SIMF effects in their
extensively studied in the last few yearsModern photo-  dynamical studies. Nakajima and Saw#dstudied vortex
lithographic techniques have allowed the fabrication of thesenotion in JJA’'s with screening. Majhofer, Wolf, and
arrays with tailor made properties. They were initially fabri- Dieterictf! studied irreversible magnetic properties of 1JJA’s
cated as model systems to study the Berezinskii-Kosterlitzrelated to high¥, superconductivity. Both these studies in-
Thouless(BKT) phase transitiof In recent years the inter- cluded only the self-inductance contribution to the SIMF.
est has shifted to studying their dynamical properti€s. This local approximation is equivalent to the one used by
These studies extend the well studied resistively shuntet¥linnhagen in his study of the Coulomb gas with screefing.
junction (RSJ model to describe the dynamics of a single Later on we showéeld that at least the nearest-neighbor in-
Josephson junctidnto the whole Josephson-junction array ductance contributions have to be included in order to inter-
(JJA), plus Kirkhhoff current conservation conditiondke-  pret the experimental observations of Letal. in Ref. 10.
cent experiments on fractional giant Shapiro steflshave  However, any realistic calculation of the SIMF effects has to
been successfully interpreted using this model for the arrajnclude the full inductance matrix. Stroud and Kiveléon
dynamicst?~18 calculated the effective vortex-vortex interaction in 1JJA’s

In both RSJ dynamical studies and equilibrium thermody-taking into account the long-range contributions to the induc-
namical studie$;’ the effect of self-induced magnetic fields tance matrix. They showed that the interaction energy de-
(SIMF’s) was neglected. This assumption takes the totatreases as dfor r>X\ andr>a, in analogy with the screen-
magnetic fieldB equal to the externally applied fieldy, ing effects found by Pedfl for superconducting thin films.
which is valid whenever the array penetration deptlis  Also Orlando et al?® have presented a phenomenological
larger than the array siZé.For most arrays studied experi- discussion of the dynamical properties of vortices in a con-
mentally near the BKT transition this is a good tinuum limit of a JJA. Recently, Phillipst al?®~?were able
approximatiorf However, at lower temperatures, de- to do calculations of static and dynamic vortex properties of
creases and it can even become on the order of the lattiddJA’s, taking into account the full inductance matrix contri-
constanta. This situation was found to be relevant in somebutions to the SIMF’s. They showed that, depending on the
of the recent experiments in giant Shapiro stépd/e have use of a local approximation for the inductance or the full
explained some features of these experiments using the R8uctance matrix, there are differences in the long-range
dynamical model that included SIMF effedfs!’ In this pa-  magnetic field and current distributions for vortices. In par-
per we plan to study the magnetic properties and Itfie ticular, this can affect the quantitative value of the critical
characteristics  of inductive Josephson-junction arrays field for the nucleation of one vortex inside the arfylso
(13JA’s), i.e., JJA’s in which the effect of SIMF’s is strong the full inductance matrix has been considered by Redtel
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al.?® and by ud’ in current-driven arrays. Hagenaasal®®  Sec. IV F we discuss the irreversible magnetic behavior of
have used the full inductance matrix in 1JJAla the same [JJA’s in both regimes, relating to the previous work done by
way as considered here and in Ref),Imaking a successful Majhofer, Wolf, and Dieterich! Section V deals with the
comparison with recent experiments by Lachenmanal3!  behavior of the 1JJA driven by a dc current. In Sec. V A we
There have also been studies of SIMF effects in supercorshow how the dynamical equations given in Sec. Il B have to
ducting wire networks when ana|yzing their thermodynamicbe.mOdiﬁed in order to include the external driVing current.
and magnetic propertiéé-3*Recent simulations of the time- This leads naturally to the presence aftisymmetric edge
dependent Ginzburg-Landau equation for continuoué“agnet'c field$nduced by the external currer_]ts. In Sec. VB
superconducto?s are equivalent to the diagonal approxima- We discuss some aspects of e characteristics and vortex
tion of Refs. 20 and 21 in 13JA'6.e., they neglect demag- states of the_current-dr_lven [JJA. Finally, in Sec. VI we re-
netization effects in two-dimensional supercondugtors Staté our main conclusions. There are also three appendixes
when considering the magnitude of the order parameter corthat d|scuss_|mportant techn_|cal _conS|derat|ons of th.e model
stant. The effect of a finite penetration depth has also beeind calculations carried out in this paper. In Appendix A we
taken into account in recent three-dimensional simulation&iSCuss the symmetries of the Hamiltonian studied in this
relating to high-temperature superconductors: on the vorteRaPer- In Appendix B we discuss the different algorithms
lattice melting transitiori® on the nature of the vortex-glass US€d t0 obtain our results. Appendix C clarifies the differ-
transition®” and on the existence of a paramagnetic Meissnef"CeS between the results obtained using different boundary
effect® All these three-dimensional simulations are alsotonditions for the currents fed into the 1JJA.

equivalent to a diagonal approximation of the inductance

matrix, believed to be a more accurate approach in three- Il. THE MODEL

dimensional(3D) Josephson-junction arraysee also Ref.

39 for an application to giant Shapiro steps in 3D JJA’s L
PP g P P J network of superconducting islands connected by Josephson

Here we study the magnetic properties and Ittiechar- >4
acteristics of 1JJA’'s' aff =0.*° We present calculations of currents.**We use the RSJ modefor the current through
gwe junction that goes fromtor+u (u==¢,ey):

the dynamical behavior of the arrays based on the RS
model. We include the SIMF effects using either a local .
approximation or the full inductance matrix, emphasizing Lu(r) =1osin A, 6(r) =A,(r)]

their similarities and differences. One of our main results is ®, d

that there is unusual physical behavior of the 1JJA for strong t5-7 a[Aﬂﬁ(r) —ALN]. (]
screening { <a), regardless of the inductance matrix model o

used. This behavior resembles a type | superconductor ipjere, AL 0=0(r+pu)—o(r) and AL (r)=(Po/
many respects. For high fields our results can be described E'w)f[”b&di wherel, is the junction’s critical current,

terms of an extgnsion of the Bean mddebr hard SUPEr™ % is the shunt resistance adel=h/2e is the quantum of
conductors to discrete arrays. We show that this regime foﬁ '

IJJA’s is caused by the existence of an effective attractive
interaction between vortices far<a.

The paper is organized as follows. In Sec. Il we present _ _ _ _ Ca)—
the model equations that describe the self-consistent nature Aulu =10 = h(r=e)+1,(r=lyr-e)=0, @)
of the dynamics of the arrays. In Secs. Il A and Il B we
discuss the equations in two different gauges. In Sec. Il C wevhich imply that we can writd ,(r) as the lattice curl of a
define the three models for the inductance matrix consideretimesh current” J(R), defined on the dual lattice sites
here, to wit, model A for a self-inductance, model B for aR=(r,+e,/2,r,+e,/2),
self-plus nearest-neighbor inductance matrix approximation,

A Josephson-junction arragdJA) is made of anNXxXN

The Kirkhhoff, or current conservation, conditions are

and model C for the full inductance model. In Sec. Il D we I«(r)=J(R)—J(R—ey),
define the physical quantities calculated in our work. We
also discuss the relation between the inductance matrix and 1,(r)=J(R—e)—J(R),

the array’'s penetration depttSec. Ill), and the effective

vortex-vortex interaction in the Coulomb gas approximationor, in shorthand notation,

(Sec. lll B). Section 1V is devoted to the study of the mag-

netic properties of the IJJA. We focus on the dynamical be- 1, (N=A,XJR). (3
havior for the magnetic fieldand vortex penetration from

the array boundaries. In Sec. IV A we discuss the case forlere we have defined(R) as positive when the current
A=a, while in Sec. IV B we show results for<a, and we around the mesR flows in the anticlockwise direction.
describe this type-I-like regime for IJJA’s. Section IV C con-  Note that including the self-fields in the curreinj(r,t)
siders the nature of the vortex-vortex interactions in the typé&long the bonds of the lattice implies that

| regime, which turn out to be attractive as compared to

being repulsive in the type Il regime. In Sec. IVD we dA,(r,t)

present a lattice version of the Bean model that helps under- dt #0,

stand the importance of lattice pinning in the behavior of the

IJJA in this regime. In Sec. IV E we calculate the critical where the vector potentiah,(r,t) is related to thetotal
fields for vortex penetration from the boundaries. Then inmagnetic flux®(R,t) at plaquetteR by
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27 (R,1) R ~ Let us describe the dynamics of the magnetic field in
. =ANDFTA(r et —Adrtey,)—Ay(r,t)  terms of®(R). TakingA X1 ,(r) in Eq. (1), and using Eq.

0 (4), we get

=A,XA,r,1). (4) do(R) | )
In this case the totaP(R,t) now depends on the flux gen- gy ~-71oA X SIMALO(1) = AL(M)] =724, X1 ,(r).
erated by the external field,=Ha%=fd,, plus the mag-
, . PIEsS (13
netic flux induced by all the currents flowing in the array. ) )
Specifically we can write Now, takingA , X on Eq.(3), and solving ford(R) from Eq.
(6), we finally arrive at
D(R)=D(R)+ >, T(Rr',u)l(r't), (5 dd(Rt) ,
T g —gp = oA XSIMALB(r D) = A,(r 1)

wherel'(R,r’, ") is a matrix that explicitly depends on the
gepmetries of the. array and the junctions. It is cor!venient to +202 S L-YR,R') (DR ) — D) |.
write Eq. (5) only in terms of dual or plaquette variables. iy

In terms of the plaquette variables E@) can now be

written as (14)

To close this system of equations, we need toAyg(r)
O(R)=D,(R)+ > L(R,R)IR 1) (6) from ®(R). This can be done using Eg¢4) and Eq.(8)
R/ which, after some algebra, gives

where _
A (N=A,x> G(RR)PR'), (15)
L(RR)=A, XT(Rr',u") 7 # PR
is the inductance matrix of the array. where a(R,R’) is the two-dimensional Green function of
the dual lattice.
A. Coulomb gauge The full dynamics of a JJA with screening is then gov-

. . . erned by Eq(12) together with Eq(14). The advantage of
We note that to write down the set of dynamical equatlonsuSmg the Coulomb gauge is that the dynamics of the phase
for A,(r.t) and 6(r,t) we need to fix a gauge. In the Cou- 4 44 the magnetic flusb can be followed separately. Using
lomb gauge, this gauge will be useful when discussing the relevant char-

AL -AL(r1)=0 ) acteristic lengths and time scales in Secs. Il and Il B. How-
wom ' ever, from the computational point of view it is more effi-
with the boundary condition cient to use the temporal gauge, which we present in the next
subsection.
A,(boundary=0, 9

with n the direction normal to the boundaries. Taking B. Temporal gauge

A,-1,(r) in Egs.(1), and using Egs(2) and(8), we get The temporal gauge has been extensively used in con-
densed matter physics in the p&sand recently in Refs. 21,
16, 26, and 35. In this gauge we choose as the dynamical
variable the gauge-invariant phase difference

,do(r) 2771,

A dt D,

A,-sifA,0(r)—A,(r)], (10

with Ai=AM-AM the discrete two-dimensional Laplacian. W, (r)=A,0(r)—A,(r). (16)

Thi ti be i ted usi . . .
'S equation can be Inverted using This can be thought of as a gauge in which we set

A,ZLG(”'):—@ o (11) A,6(r)=0, and thereforeV ,(r)=—A,(r). In this gauge
' Eqg. (1) becomes
whereG(r,r’) is the two-dimensional lattice Green function.

The dynamical evolution equation for the phake) is then dw,(r) 277l 2n7%

given by TR o, sin¥ ,(r) + o, l,(r). (17
do(r) 2m7l, , _ SubstitutingJ(R) from Eq. (6) in Eqg. (3) we get for
Br T rZ G(r,r")A,-simA,0(r)—A,(n)]. 1)

(12

This is the same system of equations used to study the RSJ
dynamics of a JJA without screening as in, for example, o . . .
Refs. 5 and 6. The difference is that néw(r) is a dynami-  Combining Eq.(16) with Eq. (4), the total magnetic flux is
cal variable. Therefore we have to complement @§) with ®

a set of equations for the dynamics of the electromagnetic —_ 0

field variables. °(R) ZWA“ Y uln), (19

L(N=4,x> LY{RR)[®(R)-D,]. (18
R!



53 MAGNETIC AND TRANSPORT dc PROPERTIES OF ... 11 695

where we have takea ,6(r) as a variable if —«,] and,  range behavior of (R,R’) is always given by Eq(23), for it

therefore A , XA ,0(r)=0. We arrive at the following set of is independent of the particular shape of the junctions.

JJA dynamical equations in the temporal gauge: On the other hand, the short-distance properties of the
L(R,R’) matrix depend explicitly on the specific geometry

dw,(r)  2mZlg of the junctions. Here we use the results of a short-distance

sin¥ ,(r)—.2A, % >, L YR,R")
R/

dt D, asymptotic evaluation df (R,R’) obtained by direct integra-
tion of Eq.(22) for a square network of cylindrical wiré§:>
. 2w For example, the local behavior &{R,R’) is found to be

This system of equations is easier to compute numerically
than Eqgs(12), (14), and(15), but has the disadvantage that L(R,R)=Ly=
the dynamics of the phase and the magnetic field are not 27’ r(1+ 24/2)
separated. Therefore it can be used when the characteristic
times of both variables are not too different.

+8.2-14|,

1 a
LIRRRzu)=—M=~— ZL°+ %0.141 875, (24

C. Inductance matrix models

A general analytic expression for the inductance matrix L(RR*e,+e)=—My=— '“_an_4 o
L(R,R’), valid for arbitrary R,R’) and array geometry, is Y 2w
not known. However, we can learn a lot about the rnalnwherea is the lattice constant and is the radius of the
qualitative properties of the array from the asymptotic prop- wires. For the JJA we taker2as the typical width of the
erties of L(R,R’) and its general symmetries. We start by .

» > 9 S . junctions.
}/ivr:gglgilntféz S(tSa)ndard definition of thE(R,r’, ") matrix de- We emphasize here that there @neo parametersthat

must be given to adequately specify the inductance matrix:
dio. di 4SS (1) woa, which determines the “strength” of the screening
jg J R w ™ w effects and the long-range behavior bfR,R’) (it deter-
u! lPR—Pr7 ] mines the penetration depkh as we will see beloyy and(2)
(21 al/r, which determines the short-range screening effects, i.e.,

Here,S; andsS,,, are the cross sectional areas of the junc-the relative strengths of the local inductances as compared

tions in the plaquett® and the branches andu’, respec- with their long-range counte(parts. : .
tively. The integrals are along the links between supercon- From now on we normalize the inductance matrix ele-
ducting islands. This expression fdr makes explicit its ments byuea, or A(R,R")=L(R,R")/uea, Ag=Lo/noa,
dependence on the geometrical characteristics of the arr d.Z=M/puoa. We usea/r=10, which is a typical value

. . : ; r arrays made with superconductor—normal-metal—
i?g Ig,")a d;sngSO;:'EqU(;ngifgg)’ the representation of superconductofSNS junctions®? for which A,=1.13. ..,

#=0.14. .., %#,,=0.064. .. [This same value was used

F(R,r/'ﬂ ) 477 SRSr’ ’

dl-di ,dS:dSs in Refs. 17, 29, and 30, whereaa/r=4, typical of
L(R,R’ )_ 35 é RZRT ) superconductor-insulator-superconducti&S) junction ar-
47T SrSk! SR’ lpr— PR/l rays, was used in Refs. 26—28.
(22 We have introduced three different models for the induc-

fance matrix that depend on its range.
Model Aincludes screening effects kdR,R") only at the
iagonal or self-inductance component level, i.e.,

This expression depends on the particular shape of the jun
tions and geometry of the JJA. Here we note that the generﬂ
gualitative properties of the response of the array to extern
probes will not depend on the detailed form of the full in- L
ductance matrix. LIR.R")=Aouoadrrr- (25

The relevant properties df(R,R’), independent of the This is the simplest approximation that leads to zero edge
specific array geometry, are thé) L(R,R’) is a definite  magnetic fields. Model A has been used in the past by Na-
positive matrix, with its diagonal element positive and its kajima and Sawad to study vortex motion, and by Ma-
off-diagonal elements negative,(ii) the condition jhoferet al?! to model irreversible properties of ceramic su-
S _,L(R,R")=0 must be fulfilled, because of continuity perconductors. This model is good when trying to describe
of the magnetic flux line¢the sum includesll theR’, even the properties of bulk samples, in three-dimensional
outside the arrgy and (iii) for large distances one can ap- arrays?>
proximate the lattice problem by its continuum limit, leading Model B improves on model A in that it includes the

to nearest-neighbor mutual inductance contributions to the di-
agonal one:
po A
L(RvR,)IRfR’»a”_Em’ (23 L(RR")=Aomoddrpr — #Zpoddrpi«y. (26

which corresponds to the field of a three-dimensional mag- This model was introduced by us to study screening ef-
netic dipole produced by a current loop. Note that the longfects on the nucleation of giant Shapiro stéps.
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Model Cincludes théefull-range inductance matrix in the 1 14w (r1)
calculations. We moddl(R,R’) in this case by taking into v= W—l)'l’z > # (30)
account the local geometry of the junctions in the diagonal ( rot=0
and mutual inductance contributions, as specified in(E4), where the voltage is normalized as-V/.7I
using the filamentary wire approximation for the remaining o
terms.

The inclusion of the full-range inductance matrix in the lll. GENERAL LINEARIZED RESULTS

’ H HIR 26 . . . .

study of JJA’s was considered by Phillips al,” who de- An analytic detailed study of the full dynamical equations

veloped an efficient algorithm to study static vortex proper-is oyt of the question. However, a number of relevant quali-
ties in JJA’s. Also Reinett al™ recently implemented a full - tative results can be obtained from analyzing these equations
inductance matrix approach to calculate static and dynamig, their linearized approximation. In this section we calculate

properties, somewhat closer in spirit to the method we useghe magnetization and the vortex-vortex interaction potential
to study the dynamic response of the J3/Rhillips et al: in the linearized approximation.

have extended their static approach to study the dynamic
response of JJA’s. We will compare our results for models A
through C to theirs where appropriate.

Note that the essential difference between models A, B, In a periodic array we have translational invariance; then
and C is that A and B assume that the magnetic field lines ard (R,R")=A(R—R’). Itis useful to know the Fourier trans-
constrained to lie on the plane while C fully takes into ac-form of the inductance matrixA (q) =SgA(R)eR. Since
count the three-dimensionality of the physical problem.also A(R)=A(—R), A(q) has to be an even function of
However, in the limit of very narrow junctions,<a, the .
local inductances become domindbtcause of the la(r) For a short-range matrix, as in model A, we can power
terms in Eq.(24)], and model B with,~ —4M becomes an  series expand (q) as
accurate approximation to model C.

The comple_xity of the algprithms needed to sol_ve the dy- A(a)qHO:KjL A,q2aZ+0(q%). (31)
namical equations grows with the range of the inductance
matrix. We discuss the specific details of the implementation owever, for model C, we see that fm.A

A. Magnetization

of these algorithms in Appendix C. =3rA(R)=0, due to the long-range nature Af(R), and
the g* term diverges. Instead, by taking the long-range be-
D. Physical variables calculated havior of the matrix as R®, Eq. (23), one can estimate the

We calculate the distribution of normalized total magnetic':ourler transform for small wave vectors as

flux in the arrays as a function of time, - -
H(R,t)=D(R,t)/D,, from which we get the average mag- A(d)g—0=Iqla. (32

netization ) )
We now can estimate how(R,R’) determines the char-

1 T-1 acteristic lengths and times by linearizing the dynamical
= —22 2 (R —T, (27) equations. This means approximating [aipg(r)—A,(r)]
(N-D TR = ~A,0(r)—A,(r). In order to keep track of the periodicity
of the sine function, we will take\ , XA ,6(r)=2mn(R),

by compactifyingA , 6(r) within the intervall — r,7]. This

. : » 3 defines thevorticity n(R), with n an integer. We use the
is defined as the numberm2 of “turns” of the gauge-  coylomb gauge in order to separately study the phases and
invariant phase difference around a plaquette. Thigy o magnetic flux variables.

corresponds to 2[n—$(R)]=A,XW¥,(r), with ¥, (r) Within the linear approximation Eq12) reduces simply
=V ,(r) —2mnin{ V¥ ,(r)/27] the gauge-invariant phase tq

difference restricted to the- #, 7] interval, and nint) giv-

m

as a function of the external fielid=®, /d,. We also have
calculated the distribution of vorticeyR,t). The vorticity

ing the nearest integer to Then we evaluate the vorticity as de(r) 277,
=- o(r), (33
dt D,
~ (WLt
n(R)=—4,x nint —>——1. (28 gefining the relaxation time of the phases y= Do/
From this we get the average vortex density The linear approximation of E14) for the magnetic flux
gives
1 T-1
=—>= n(R,t). 29 do(R 1
9= ooy 2 RO (29 ¢;(t >:T_[n(R)_¢(R)]
4

In Sec. V we also calculate the electric response as a 1,
function of the driving dc current,,. If the current is ap- + T—AME ATHRR)[H(R)—F(R)],
plied in they direction, we calculate the average voltage ® R
difference as (34
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where$(R) =®(R)/®,. This equation has two characteris-  This can be evaluated easily by mapping the Hamiltonian

tic relaxation times,ry and 7q,= uoa/.%. In the particular

case of model AA(R,R")=A(drr, EQ.(34) reduces to W= EJZ {1—cog A ,6(r)—A, ()]}
)

IR (R (R + ——A2[ $(R) 1]
at 7 Talo " | +23 [BR1-B,]L YRR )[B(R)~by]
(35 208
where we could have defineff,=Ayro=Lo/.%. SinceA, (40

is of order unity, it is just a matter of taste which one we
. o ; to the Coulomb gas analog,
choose as the magnetic characteristic time. In this paper we
will work with 74 .43
We can estimate the characteristic magnetic length, in th%ce=2w2EJz [N(R)— ¢(R)]IG(R,R)[N(R")—¢(R")]
stationary limit of Eq.(34), i.e., d¢(R)/dt—0. In this case RR
we have
+2m°Egiey, 2, [$(R)—FIATHRR)[H(R) ],
70023 AYRRO[S(R) 1= $(R)-N(R) "
o "R ' ' (41
(36) . : .
_ o o It is possible to get an effective vortex-vortex

length in model A since E(36) reduces to :j-d{a(r)}fd{¢i(R)}e—,%cde(r),qSi(R)]/kT with  #(R)
r = ¢(R)—f, and then doing the resulting Gaussian integral in
®_A24(R)=4(R), (37  ¢'(R).® Then the following effective Hamiltonian is ob-
Ao # tained:
which is the lattice version of the London equation for the
magnetic field** (Here we have taken the solution without e n(R)— F1ZZR R n(R') — 42
vortices [n(R)=0], and we putA2[ ¢(R)—f1=A24(R), 6 Fé [(n(R-IZRROINRYH-11, - (42

which is true everywhere except at the boundaries, wher N_o. 2 N Lo i
¢(R)=f.) Then the characteristic length in this case is theﬁlhere #(RR)=2m"E,U(RR’) is the effective interac

Josephson penetration depth= (7, /7¢Ao) 2. We define tion en,ergy between two vortices locatedRaandR’, and
) . . U(R,R’) is the solution to
the dimensionless parameter  for  this case
KJZ)\J/az(TQ/Tq)Ao)lIZ. 1
In the more general case, we evaluate the Fourier trans- —AZU(R,R’)+ K—E A(RRHU(R",R")= R r.

form of Eq. (36); defining ¢(q) =Srp(R)€'IR, we get PR 3
d(q)= n(q) , (38) We should mention that in this Coulomb gas approach,
1+(79/79)[D(a)/A(Q)] the periodic pinning potential of the lattice has been ne-

where D(q) = 1/G(q) =4 — 2cosja—2cosj,a is the Fourier glected. This will be relevant in the strong screening case as

transform of—Ai= G~ 1. As we want to consider the long- WeTvr\:itlal §:§;2dt2ﬁcge£(§egic)m'u(pz R') for largeR can
range behavior of this equation, we taR€q),_.o~(qa)?, I =OART .
andgthen we have g Dg-0~(ad) be analyzed from thg— 0 behavior of its Fourier transform,

_ N U@)=2 €TFUR)= g (49
¢(CI)— l+(7'9/7'q>)[q232//\((,])]. (39) R D(Q)+Kp A(Q)
In the case of local screening, as in model A(q) is For a short-range inductance matrix as in model B, we

given by Eq.(31), and we get an effective Josephson pen-get, after using Eq(31),
etration depth\;=(7,/7oA)Y2a=«k;a.

For model C,A(q) is linear inq, Eg.(32), and then the W(R)= mE; K 5 (45)
penetration depth ia,=(7,/7¢)a=kpa, defining the pa- ' 1+Ay/ Ky °\X,)
rameterx,=\,/a. This is equivalent to Pearl’s penetration ~~ _ —n -
depth for a thin filn?* extended to a JIA?3 with X\;=[(kp+A2)/A]"%a, and K, the modified Bessel

function of the second kind. This has the limiting behavior

B. Effective vortex-vortex interaction

P ’7TEJ ’;\’J ~
In JJA’s without screening it is known that the long-range R =17 A 7| Ing HIn2— 7}, R<N,
interaction energy between vortices is logarithfritayhich 27
is the crucial ingredient in the BKT scenafitet us see how E o RIS
TE

the effective(i.e., long-rangginteraction between vortices is W(R)=

. R>X,. 46
affected by the SIMF effects. 1+ A/ kp \27RIN, ’ 48
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This effective interaction is equivalent to the one that exists

screenind” It is equivalent to the interaction energy calcu-
lated by Pearl for two-dimensional superconductfrilote _0.25
that the main difference fror¥6), apart from a redefinition

of the penetration depth, is the very slow decrease of the
interaction energy for long distances Rlinstead of expo- 2
nentia). This same difference was found in the numerical
simulations of Phillipset al2® >

[ T T T T I T T T T I T T T ]

between vortices in continuous three-dimensional 0 3 (@) 1

superconductor¥ It is also the same that was used by Min- 0.05 C ]

nhagen as an approximation for the SIMF effects in the BKT ~~° | B

transition within the Coulomb gas analotfy. i ]

In model C we get, after using E2), g0t E B

, 2 R R ~0.15 |- 3

Z(R)= 5 E, Ho()\_p>_Yo()\—p) , (47) : :

-02 | .

where \y=«k,a, Hg is the Struve function, and|, is the T R M R S M.
Bessel function of the second kind. The limiting behaviors of 0 5 10

this solution are f

7 R _ E | A'p I 2 R 0 T T T T | T T T T I T T T T ]

/( )—77 J nE‘Fn man <)\p (b)E

49) -0.05 - E

) A C ]

#(R)=mE;5 . R\, _-o1f E

E o ]

This long-range vortex-vortex interaction energy has also > F E

been obtained by Stroud and Kivelson for arrays with _ 5| E

IV. MAGNETIC PROPERTIES

Here we study the magnetic response of 1JJA'S &t0.
We will show results obtained either with model A or with 0
model C(the response with model B is essentially the same
as in model A by replacinghg—A=Ay—4.7%). t

In this section we calculate the magnetizationas a
function of fieldf, and the stationary vortex and field distri- ~ FIG. 1. (@) Magnetizationm vs external magnetic field for a
butions for a given value of. All the magnetization curves 30x30 array with diagonal inductance matrixnodel A and
we show here were obtained starting frofi=0 and ;=141 (b) The same asa) but for a 40<40 array.(c) Vortex
#(R,t=0)=0, and then increasinf by 5f steps taking as densityq vs magnetic field for the same array as ib).

initial condition the final configuration of the previous step,th for | fields th h illat behavi
ie. d(Rt=ty,f+5F)=B(Rt=t;,f). We also find essen- en for larger fields the curve shows oscillatory behavior

tially the same results taking as initial condition with peripdf_zl. This is con§istent With the symmetries of
¢(R,t=0)=0 for everyf. Note that under these initial con- the Hamiltonian(see Appendix A In Fig. 1(b) we show the
ditions, the magnetization does not have to be periodit in ma.gnet_|zat|on for small fields for the'samgam more Qetan
(see Appendix A while Fig. 1(c) shows the corresponding vortex dengitjor

Our main result here is that there is a qualitative changéhe same parameter values. We see that the linear decrease of

of behavior when going from=1 to k<1, wherex stands m porresp_onds to a state without .V.O”iC@’:O' i.e'., a
for either , or «,, depending on which inductance matrix Meissner-like state. Then above a critical fidld, vortices

model we are using. This behavior change resembles thart o penetrate the array and the magneti;ation starts to
oscillate. For fieldd>f.;, we note a structure in the curve

difference between hard and soft superconductivity in cons bles that found i inducti A's for fractional
tinuous superconductors. We name the two regimes typet ?Ezgsem es that found in nonin uctive JJA's for fractiona
; M We see that close to fractionb=r/s, notably close
and type I, respectively. o )
to f=n+1/2, the magnetization starts to be quasilinear and
g is almost constant, up to a certafirrr/s+ 5f, in which
the magnetization has a minimum.
First we analyze the case which corresponds to a JJA with In Fig. 2 we show the magnetization curve for model C
weak screening, i.ex=1. with «k,=2, and lattice size 3232. In this case the calcula-
In Fig. 1(a) we show the magnetizatiam as function of tions are more CPU intensive; thus we have fewer points
f for model A with k;=1.41, and lattice size 3030. We than in Fig. 1. However, we essentially see a similar struc-
note that for small fieldsn decreases linearly withi, and ture as in Fig. (b).

[=]
w

A. Type Il regime
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For larger fields, f>f_  +1, the vortex distributions
n(R) follow almost perfectly the symmetry transformation
of n(R)—n(R) +p after f —f+p, with p an integer.

The time needed to reach the stationary state also depends
on f, as is shown in Fig. 4 for model A witlkx;=1.41.
Equilibrium is reached exponentially fast, in the Meissner
state with a relaxation time of ordey, (f=0.1<f.; = 0.21
in the figurg. For f>f_; much longer relaxation times are
needed to form the vortex lattice starting from the initial
condition ¢(R,t=0)=0 (f=0.5 in Fig. 4. In particular,
close tof ;; the field penetration is very slow € 0.22 in the
figure).

We have also analyzed the size dependence of the mag-
netization in this regime. Results are shown in Fig. 5, for
model A with k;=1.41. Here we see thdt, is essentially
size independent, and the magnetization tends to negatively
increase with the size of the lattice. Note, however, that for
smaller lattices the magnetization shows more structure
while it becomes smoother for larger lattices. The reason for
this is that the dips irm are related to vortex lattice com-
mensurate states that fit inside the lattice. When the lattice is
larger the number of rational numbers corresponding to com-
f mensurate vortex lattices increases but at the same time get
to be closer inf so that for a fixed current mesh they essen-
tially overlap and thus the smoother naturenoffor larger
lattices.

-0.02 (a)
-0.04
£.0.06
-0.08

-0.1

PR R N N S WY S S M AV RN AT P W NS FAWE RN EW R |

LML AN SR B I I L L L I LB L L L L B

(=
—
N
w

FIG. 2. (a) Magnetizationm vs external magnetic fielél for a
32x 32 array with full inductance matrigmodel Q and x,=2. (b)

Vortex densityq vs magnetic field for the same array as i@). B. Type | regime

. L o Below we show that the situation is very different when
Since in either case the_mag‘netyllzatlon never goes to zerg. 1 a5 compared to the type Il regime discussed in the

there is no upper crmgal field fcz- Howeyer, we dgfme previous subsection.

fe2 as the field for whichg=1, i.e., for which there is one ~ Figure §a) shows the magnetization for model A, with

vortex everywhere, and we find thit,~f;;+ 1. In a sense  x;=0.35 for a lattice of 3& 30, and its corresponding vor-

this field represents the field above which the properties ofex density is shown in Fig.(6). Again, for small fieldsm

the array repeat periodically with decreases linearly corresponding to a Meissner state with
For fields f<f., the stationary state is a Meissner-like 4=0. After a critical fieldf;,>1, vortices start penetrating

state. This is shown in Fig.(8 for model C with x,=2. the array. For larger fields the magnetization has a sawtooth-

Similar results are obtained for model A. We find that thellké behavior of period =1, while the vortex density has a

magnetic field decreases exponentially from the boundarie@dderlike structure, with plateaus and discontinuous jumps,

with a characteristic length that is approximately equal toalsﬁ] oliiggnc‘):(if):;ﬁd 7b) we show the magnetization and
Kp?::er\]/vn\]/z(rjtiecl:ei' O;’:]Jeatlr;en}g?oeltﬁé sample from the boun dyortex densities for model C witk,=0.1. In this case the
P P curves do not have the discontinuous jumps as in model A,

arigs just abovd, . In Fig. Ib) we show the vortex distri- ¢ they do show a monotonic decrease and weak oscillatory
bution for x;=1.41 for model A. As we will discuss later, papavior.

this shows thaf; actually corresponds to a critical field for The similarities and differences between the two cases
vortex penetration through the boundaries, and not to thgecome more evident from looking at the vortex distribu-
“equilibrium” critical field for nucleation of one vortex in  tions. Belowf, there is a Meissner state. This is shown in
the middle of the sample, which is lowésee Sec. IV E Fig. 8(@) for model C withx,=0.1, the same as in model A.

For larger fields, the vortices form structures in the arrayagain, the magnetic field decays exponentially with a char-
resembling the lattices found in the limit=oc.° In Figs.  acteristic length which is eithet,a or «,a for each case.
3(c) and 3d) we show the vortex distributions fd=1/2 for ~ Just abovef,, = 1.5, we see that the vortices have pen-
model A with k;=1.41, and for model C withc,=2, re-  etrated the array in a very particular way, as shown in Fig.
spectively. We note that in both cases the vortex distribu8(b) for model A. They form a “vortex collar” all around
tions have the same general structure. In both cases thelye boundary, with constant vorticity(R= boundary)= 1.
have a crosslike symmetry, due to the finite size of the latin Fig. 8(c) we show the vortex distribution for much higher
tice, for it is easier for the field to penetrate from the cornersfields, f>f.,. In this case, we see that the “collars” of
We see that the vortex distributions do not correspond to @onstant vorticity have penetrated deeper into the array. The
perfect “checkerboard” as in the=o case® This is be- total vorticity of the collars decreases linearly from the
cause nowq<f=1/2, for there is partial flux expulsion due boundary towards the center of the array. The linear slope
to the finite penetration depth. These states correspond twith which the vorticity decreases is approximately equal to
flux penetration from the boundaries for they were obtained.,. In this high field regime, each time the fiefdis in-
with initial condition ¢(R,t=0)=0. creased by 1, there is a collar vorticity increase frofR) to
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FIG. 3. (@ Magnetic flux distribution$(R) showing the Meissner state for model C of an array with=2 for f=0.1. (b) Vortex
distribution for a model A array withk;=1.41 andf=0.22, close to the critical field.;=0.21. Black squares represent vorticity
n(R)=1. (c) Vortex structure for the same array as (i) but for f=0.5. (d) Vortex structure for a model C array witk,=2 and

f=0.5.

n(R) +1 in the whole array. This explains the jumps seen inthis case the vorticity decreases linearly from the boundaries
the magnetization. Also, in Fig.(8 we show the vortex
distribution for the model C ant>f.,. We see again that in mately equal tof .. The only qualitative difference is that

1.000€

£=0.5

0.100 E
£=0.22 ]

=
o.otol =01 -
0.001 . . . .
0 100 200 300 400

t

500

FIG. 4. Magnetic flux density as a function of tiniét), for
different fieldsf=0.1, f =0.22, andf =0.5; for a 64< 64 array with

diagonal inductance and;=1.41. Heref ,=0.21.

towards the center of the array, with linear slope approxi-

the vorticity decrease shows more structure. Therefore the
vorticity increases more smoothly when increasing the field,
thus giving a magnetization that is smoother than in the di-
agonal case. We analyze the type | behavior in more detail
below.

C. Effective attractive vortex interactions in type | regime

The fact that the vortex states and magnetization are es-
sentially different in this regime compared to type Il will
become clearer after analyzing the interaction between vor-
tices. A basic characteristic of these type | vortex states is
that the vortices are all grouped together, instead of forming
lattice structures as in the type Il regime.

It is known that in continuous superconductors the vortex-
vortex interactions are attractive in the type | c&eet us
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S — which can become negative for a characteristic
K;<(Ao+3.,/Z)/4~O.4O. For model A this condition re-
—0.05 {3 duces simply tac;<1/2. Although this is a crude estimate it
C is important that it shows that below a characterisdgcthe
-0.1 | interaction between vortices will become attractive. Also
E u note that this argument is independent of the long-range na-
—0.15 - ture of the inductance matrix.
F Another argument that shows how the effective interac-
-02 tion between vortices can become attractive follows from a
E | | “pinning” model. In Sec. Il B we have calculated the
S0 e ", vortex-vortex interaction energy/(R,R’) in the Coulomb

gas approximation. This energy is always repulsive but de-
creases a§d~2772EJKp in the high screening limit. How-
ever, in this approximation the lattice pinning potential has
been neglected. If we consider the pinning potential energy,
it increases with the magnetic screening, as has been calcu-
lated in Ref. 26. From this point of view we see that what is

then estimate the interaction energy of two neighboring vorh."’lpp‘?n'ng,,'?’ that the vortices cannot overcome their repul-
ve “bare” interaction, for they are strongly pinned by the

tices as compared to two well separated ones. The energy attice. We can make this argument a bit more quantitative
two infinitely separated vortices is twice the energy of a l . ; . '
y sep 9y In Fig. 9@ we show the on-site/(R,R) bare interaction

single vortex. For an isolated vortex let us use the “arctan” lculated f Eq43 d the pinni
approximatiort® In this case the phase differences around""eray, caicuiated from q43), an € pinning energy

the plaquette for a vortex are all equalA@= /2, and then EarriertAIlE(p asfa functtri]on Olep' {Thet_pin?igg gnegyfhaEG
the current flowing around the plaquette Js=Iysinm/2 A?Een—OaZEen1+r§T/ i\ \iagu;:/ esA::”nat_e F'In be. ’
=1l,. The vortex energy is thek,,=4E;(1—cosm/2)+ 3 p=0.25,[1+5(1/kp) (Ao 7)1 S0, In |g._SI ) we

2 show the nearest-neighbor bare interaction energy
Lolo=E,(4+ Ao/2kp). Therefore the energy of two free 7Z(R,R* 1) compared witlAEp . In both cases we see that
vortices is approximateIE;\,:ZElV: Ey(8+ Ag/kp). For IR R P P

T - .
two nearest-neighbor bound vortices we approximate th below a characteristi, the pinning energy is larger than

phase difference in the junctions By=2m/3, except in the ?he interaction'energy. We also see .tha.t ﬂﬁei; essentially
junction between them, for which §=0. Then the mesh the same for either model C or B, while it is higher for model

* . iy
current in each one of the plaquettes will be” W€ also note that theq, for which AEp=7/(R,R)

* __ ile* ~
J=1,sin2m/3=1,13/2, and the vortex energy for a pair is (Kp~0-14 for models B ‘ind C, Wh|leip/~0.15jor mod*el
E5v=Ey(9+3Ao/k,— 3 #IK,). Therefore the energy dif- A) is smaller than thex, for AEp=7(RR*u) (xp

FIG. 5. Magnetizatioom vs magnetic field for model A arrays
with «;=1.41 for different lattice sizes. ) 16X16, (A)
32x32, ([O) 40X 40, (O) 48%x48.

ference AE,=ES,—Eb,=E;(1- %Ao/Kp— %/%/Kp)' ~0.34 for models B and C, and; ~0.5 for model A. But
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FIG. 6. (a) Magnetizationrm vs f, for a 30x 30 array for model FIG. 7. (&) Magnetizationm vs external magnetic field for a
A with «;=0.35 (full line). The dashed line corresponds to the 32X 32 array for model C ane,=0.1 (full line). The dashed line
Bean model of Eq(50) with «=1.0. (b) Vortex densityq vs f for corresponds to the Bean model result of E52) with «=0.75. (b)
the same parameter values agan Vortex densityq vs f for the same parameter values agan
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FIG. 8. () Magnetic flux distributionp(R) showing the Meissner state for model C witg=0.1 andf=0.5. (b) Vortex distribution for
model A with k;=0.35 andf = 1.55, slightly above the critical fielfl,=1.5. Black squares represent vorticit§R) =1 and the corners are
equal to zero(c) Vortex distributionn(R) for the same array as ifb) but for f =10.3. (d) The same as iiGc) for a model C array with

kp=0.1 andf=10.3.

in all cases 0.£«x,<1. This means that when decreasing Let us first discuss model A. In this case, just abbyg

kp first the nearest-neighbor vortex interactions become athe field penetrates as one collar around the boundary with
tractive, and then at a lowet, the on-site interactions be- constant vorticityn(R)=1. When increasing the field fur-
come attractive. This defines a crossover region between tiBer, more vortex collars will penetrate the array in an or-

type Il and type | regimes as, decreases. In our simulations dered way. The average slope with which the vorticity de-

we do not see a sharp transition from one regime to the othéiréases from collar to collar, when going towards the center,
is aboutf g, i.e., f.g measures how much the field has to be

at a precise value ot . . . U
increased in order to get another collar inside. Let us com-
D. Bean model description pute ho_w many vortices are in an array of s_Me<N f_or_a
given field f. The number of plaquettes in collar is
Since the type | regime can be thought of as a regime ofi(N—2i+ 1), wherei stands for the position of the collar
“strong pinning,” a description similar to the Bean motfel from outside to insidei=1 is the first collar close to the
for type Il superconductors with strong pinning should beboundary. Then, if the vorticity of thd =1 collar isk, and
appropriate. In fact, the linear decrease of the magnetizatioit decreases with slope, the vorticity of the collai will be
shown in Figs. &) and 8d) can adequately be described by k—«(i —1). The total number of vortices in this case will

this model, as was suggested in Ref. 21. then be
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S =2 B n 20% 20 (dotted ling, 30X 30 (dashed ling and 40<40 (full line).
oLg ] L
003 0.1 1 10 m= f* 3 ()2
x,, (52)
f*
FIG. 9. (a) On-site bare interaction energy(R,R) vs «, for m=——, f>f*,
model A (O), model B (), and model C k). The dashed line is 3
the pinning energy barriekEp . (b) Nearest-neighbor bare interac- ) ) )
tion energyZ/(R,R= ) for the same cases as (a). with f* =aN/2. In Fig. 1a) we see that this functional de-
pendence describes the overall calculated magnetization very
Kl o well for the lattice size considered. Also, EG2) can be
Q=42 [k—a(i—1)](N=2i+1). (49)  used to describe the overall shape of the magnetization for
i=1 model A, even when E(50) is more accurate for a lattice

o system.
The magnetization ism=Q/N?—f, so that

E. Critical fields

k 1\ k? k3

NT ( 1- N) k*  3(k¥)2 f. (50 In Fig. 11 we show the calculated critical fields for vortex
penetration in the array for model A as a functiorkgf The

This is valid fork<k*, wherek* =(N/2)«, corresponding critical fields were extracted from the magnetization curves

to the field for which the vortex collars have penetrated up t@nd correspond to eitheft,; or fco depending on whiche

the center of the array. Now, has to be close tb and jump  réegime we are In.

by 1 when f is increased by 1. In Eq(50) we take

k=[f—f.]+[fcol, where[x]=integer part ok. This gives

for k* anf*=(N/2)a+f. . At this field the array reaches

its minimum magnetization 10

3N

2
m=(2-——

T
|

N 1 1
) . (51

* _ 4
m fCO CY(6 2+3N

Then forf>f* the vorticity is increased by 1 everywhere in w
the array each timd is increased by 1. In Fig.(6 we
compare the numerically calculated magnetization with Eq.
(50) for a~f.y. What is important from this “discrete”
Bean model is that the magnetization is strongly size depen- 0.1
dent, which is an important difference from the type Il re-
gime. This is shown in Fig. 10, fok;=0.35. There we
clearly see the size dependence of the magnetization and, in
fact, m* decreases linearly witNl as given in Eq(51).

We saw in Fig. &) for model C that the field penetration Ky
was more complicated than in model A described by the
vortex collars. But on average it also has a linear penetration |G, 11. Critical magnetic field, for vortex penetration for
with slopea~f.,. If we now assume a continuous version 30x 30 arrays for model A as a function af;. The dashed line
of the Bean model, i.e., vorticity decreasing linearly with corresponds to Eq60), and the dotted line corresponds to a fit with
slopea, we get the Bean model for the magnetization: Eq. (62) with y=6.119 obtained from a fit to the data.
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In order to interpret the data, we will analytically estimate
the critical fields. Using the Coulomb gas approximation, the £=0.0001 |
energy of the Meissner state can be calculated from(4). | £-0.001
for n(R)=0,

Ey=2mE;2>, URR). (53) I
R,R’

AEyy
T

For large lattices we can neglect boundary effects and esti- L
mate=Zg g U(R,R")~ x,N?/A with A=A (R,R’), giving 02

Ky N2
Ey = 2m2E,f2 ZT . (54)

The energy corresponding to one vortex locatedRgt
n(R)= SRR, Can be obtained from E@42):

FIG. 12. Potential energy barrier for vortex penetratids,,, as
a function of f and Ry=(Ry,N/2) for an array of linear size
N=256 and«,=20. Note that for the critical field estimated from
Eq. (56), f.=0.006 904, there is a potential barrier against vortex
penetration from the boundary.

Eyv=2mE,| U(Ry,Ry) —2f >, U(Ry,R)
R

+2> U(R,R)

R,R’

. (55

Meissner state equals the energy of the “normal” state. In
the normal state there is no phase coherence, so

Then we can extract a critical field. for which (cos¥ (r))=0, andh(R)=f; then

EM = ElV as
__U(Ry,Ro) - En=2N"E,. (59)
¢ 23gU(Rg,R)’ After settingEy=E, and using Eq(54), we get
For a very large sample ait}) away from the boundaries, 1 A2
this result is independent &,. For example, if we approxi- fclz_(_> (60)
mate U(Ry,Ry) by Eg. (48), and take ZRU(R,Rg) T\ Kp
~kplA,we get which for model A isf.;=1/mk;. In Fig. 11 we see that this
A estimatedf ., fits the critical fields in the regior;=1 very
fo~——Ink,. (57) well.
4 In the type | regimeg;=<1, the field penetration is differ-

ent, as we saw before. The critical field corresponds to the
penetration of a “collar” of vortices around the boundary,
instead of a single vortex. Let us make a crude estimate of

lated this way corresponds to the vortex nucleation in théhIS critical field for model A Tgke the !(|net|c energy as
middle of the array. However, this is not the case considerex = EJEF'#[l_COS‘P#(r)]_’ wh|c_h is essentially proportional
in our calculations, since the critical fields we obtained for© the number of vortices in the collar,N\d so that
the magnetization correspond to the penetration from th&x™=Y4NE,, with y a constant. For the magnetic part of the

boundaries. Let us estimate then the energy differencEN€r9YEL, let us takeg(R)=1 for R in the collar, and
AE;y=E;y—Ey, #(R)=0 otherwise. Then we get the energy of a collar,

ElC: EK+ EL’ as

Note that since\~ 1/N for N—oo, f. is size dependent and
f.—0 for largeN, analogous to what was found for two-
dimensional superconducting filri$*’ The field f, calcu-

AE;y=27"E;) U(Rg,Rp) —2f X U(Ro,R)|.  (58) 27%E jx
R Eyc~ yE 4N+ A—p[4N(1—f)2+(N2—4N)f2].

In Fig. 12 we showAE;y(Ry,f) as a function ofR, for 0 (61)

different fieldsf. We see that whefi~f.=0.006 904 there

is a potential barrier opposing vortex entry. Afteris in-  After comparing with the Meissner state energy, Esf),

creased further, the barrier disappears and a vortex penetratesc= Eyn , We get

the array easily. In continuous superconductors this barrier

has been calculated by de GenfitShe critical field for 1 v Ao 1 v _p

which the barrier disappears corresponds @A,/ fC0~§+ WK_p: §+ a2 (62)
ﬂRo)RO:aZ 0, and is of the order of the thermodynamical

critical field** In Fig. 11, we see that this expression fgg can fit the

Let us estimatd ., as the corresponding “thermodynamic calculated critical fields in the smadl; regime, with
critical field,” e.g., the field for which the energy of the y=6.119.
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FIG. 13. Hysteresis loops if@) the magnetizatiom and(b) the
vortex densityq as a function off. Model A arrays of size

30% 30 andx,=1.41 FIG. 14. Hysteresis loops in the magnetizatioras a function

of f for a model A 30<30 array.(a) x;=1.41 and(b) x;=0.35.
F. Hysteresis and remanent magnetization . .
depends on the lattice size, as should have been expected

The presence of pinning due to the lattice periodic potenfrom the Bean model's description of this regime.
tial makes the magnetic response history dependent. Here we We can also study the irreversible magnetic behavior of
show results for the magnetization for model A with increas-the 1JJA by turning off the field after reaching the stationary
ing and decreasing external fielh The magnetization state for a giver. In Figs. 15a) and 15b) we show the field
curves are obtained by incrementing the field &f and  profiles forf=0.3 andx;=1.41, before and after turning off
taking the final configuration fof as an initial condition for the field, and in Figs. 16) and 1%d) for f=10.3 and
f+6f. We increase the field up to af), Starting from  x;=0.35. In both cases we see that there is a remanent mag-
f=0, and then decrease it down tof ,,,, then increase it netization in the array, since some vortices remain pinned by
again, repeating this cycle several times. We found thathe lattice. In particular, in the type | regime the remanent
whenever we turn back the field fof ,<f.; or field profile is also linear irR as could have been predicted
fmax<fco, depending on the value &f;, the magnetization within the Bean model description.
curve is completely reversible. However, once there are vor- This magnetic irreversible behavior has also been noted
tices inside the array, reversibility is lost. In Fig.(8Bwe by Majhoferet al?! but not its connection with the presence
show the hysteresis loop in the magnetization wherof quantified vortices. Here we see that the irreversibility is
for<fmax<1l+f.y, for an array withk;=1.41, in the type Il due to the pinning of vortices in the lattice potential of the
regime. In Fig. 1&) we show the hysteresis in the vortex 1JJA, and that in the type | like regime it can be described by
densityq. Here we see that when the field is reversqd, a discrete version of the Bean model.
remains constant for a certafnrange(approximately up to
~fnax— fc1)- This means that the vortices remain pinned in
the lattice until the external field has been reduced suffi-
ciently so that some of the vortices start to be expelled. This |n this section we study theV characteristics of 1JJA’s
makes it possible to have positive magnetization in the arraywhen driven by a dc current. We pay particular attention to
In Fig. 14a) we show the case whef,>f.1+1, for  vortex distributions and the edge fields produced by the ex-
k;=1.41, also in the type Il regime. Here, the symmetries ofternal current for models B and C. We also analyze the
the Hamiltonian, discussed in Appendix A as a function ofhjstory-dependent properties of the 1JJA as a functior.of
f, become evident. In fact, the upper branch of the hysteresis
cycle (positive magnetizationcan be reproduced after the ,
transformationf —n— f of the lower branch. A. Edge fields

Finally in Fig. 14b) we show the case for an array inthe =~ When solving the dynamical 1JJA equations with an ex-
type | regime, withkx;=0.35. Here the hysteresis cycle is ternal currentl ., one must carefully specify the boundary
much bigger than in the previous case because pinning isonditions. The reason is that total magnetic field, exteinal
dominant in this regime. Also, the size of the hysteresis cyclénduced, depends on the external and internal curresets

V. DC TRANSPORT PROPERTIES
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FIG. 16. Antisymmetric magnetic edge field distributiB(R)
for a 512x512 array along the direction perpendicular to the exter-
nal current. The dotted line represents the approximation
0 20 40 60 E(R)~ (noa/2m)In[(Na—RY/R,].

whereJ(R,t) is the plaguette’s current. We can rewrite these
equations as

,(r)=A,XJR)+ 5, ylex (66)

¢(R)

with the external current only applied along thedirection.
In terms of the plaquette variables H§) the total flux is

0 20 40 60
: D(R) =D (R)+ >, L(R,R)I(R',1) +E(R)I (1),
af @ ) (67
g sef
-4 47\ /\; where
2
2y )
0 20 40 60 E(R)ex() =2 T(R,I",&)lex(1). (68)
R "

FIG. 15. Magnetic flux profiles in a model A 6464 array.(a) This term gives the magnetic flux induced by the applied
For «,=1.41 andf=0.3. (b) The same aga) but after turning off external currents, which is antisymmetric along theirec-

the field. (c) For x,=0.35 andf=10.3. (d) The same agc) but  tion. In Fig. 16 we show a plot di(R) along thex direction
after settingf =0. calculated within the filamentary approximation. These mag-

netic fields have maximum amplitude at the edges of the
Appendix C for a detailed discussion of this pgirkhe cur- ~ array and decrease towards its center, and thus they are

rent conservation conditions are called “edge magnetic fields.” For example, for a current
sheet they are given by
Al (r)=ledr), (63
wherel ., (r) depends on the boundary conditions. Here we E(R.R)) ,uoal N,a— RX)
1 ~ o n - 1
take x 1 Ry o Ry
A,-1,(r)=0 (64)
with R, e[a,(Ny—1)a]. This result is a good approximation
for all r and for the actual value oE(R) (see Fig. 16 Note that the
A | 65 magnitude o depends directly on the size of the array, and
(N =lex (65 it decreases at the center of the lattice as the lattice size
for the top and bottom boundaries. From these current cor@rows. In the limit [N,a/2—R,|<N,a, E(R)~(2uo/
servation conditions in the dual lattice we have mN,) (Nxa/2—R,) at the center of the array. We note that
there are other ways of separating and interpreting the dif-
Ix(r,t)zJ(R,t)—J(R—éy,t), ferent contributions in Eq6), as was done in Ref. 27.

We can now rewrite the normalized dynamical equations
Iy(r,t):J(R—éx,t)—J(R,t)+|ext(t), in the temporal gauge as
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FIG. 17. Model C voltage-current characteristics for ax32 F ]
array for f=0. We show the extremex(=«) and moderate 0.47 | 3
(kp=2), type Il regime and a type | regimec(=0.1) result. . ]
0.46 3
L L ! I 1 L 1 ) 1 L 1 1 i L
dw (1) _ - o 0.5 1 1.5
d—“t=—sm\1fﬂ(r)—,<pA#><§ A YRR i
XAXW (1) +2af +E(R)i/ kpl + 8,0, E oo T4
(69 1 b ]
where we have normalized the edge fields(R)/uqa > C ]
—E(R), and the external currentz=1g,/1g. 05 L h
We note that in model A the edge fields &¢R)=0 i ]
everywhere. The first approximation of the inductance ma- - .
trix that takes the edge fields into account is in model B. In ok ]
this case the matrixe(R) reduces toE(left boundary)
=/, E(right boundary} —.#, and E(R)=0 elsewhere. 05

Model C fully takes into account the edge fields as shown in
Fig. 16.

The presence of antisymmetric magnetic edge fields has
been identified as important in understanding the experi-
ments by Leeet al. in Ref. 10. We have shown that even
with model B the edge fields can produce subharmonic Sha-
piro steps as seen in the experimefits, Sy U I

o 0.48

0.46

B. IV characteristics and vortex states

Here we calculate the average voltage droplong the FIG. 18. (a) Voltage-current characteristics for model B for a
current direction as defined in E@O) as a function of the dc  32x 32 array andc,=1.41 forf =0.5. (b) Vortex density as a func-
currenti. This defines thdV characteristics of the 1JJA. tion of current for the same case ag@). (c) Voltage-current char-
Reinelet al?® have also calculated/ curves of 1I3JA’s. Here  acteristics for model C for a 3232 array withx,=2, for f=0.5.
we complement the study of th¥ curves with a calculation (d) Vortex density as a function of current for the same parameters
of the corresponding dynamical vortex states and the historgs in(c).
dependence of the magnetic behavior of the IJJA.

When there is no external applied fielfi=0, and for  stronger in the type | regime. The dynamical vortex states
k=00, itis known that the JJA dynamics &t=0 reduces to that are induced by the edge fields in this case have been
that of a set of uncoupled one-dimensional series arraygecently studied by Hagenaaes al*® They used the same
along the current directiohThe IV characteristics can be model C as here, and their results compare very well with
reduced to that of a single Josephson junction, givingecent experiments by Lachenmaehal3! measuringlV
v=4i?—1 fori>1, andv=0 for i<1. If we neglect edge characteristics and images of vortex dynamics with a low-
fields, the same is true for the 1JJA for any value \af  temperature scanning electron microscdp@&SEM) tech-
leading tolV characteristics independent of screening fornique.
f=0. As soon as the edge fields are included, in model B or In Figs. 18a) and 1&c) we show thelV characteristics
C we find that thdV is different from that of a single junc- for the interestingf=1/2 case for models B and C, respec-
tion case. We find that in the=0 case there is a reduction tively, starting from the checkerboard ground state, in the
of the 1JJA critical current due to the presence of the edgéype Il regime. In both cases tH& curves are reversible
fields, as is shown in Fig. 17. Note that this reduction iswhen increasing and decreasing the current. However, when
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FIG. 19. Vortex structures for a model C array with=2 and 0.1 F 3
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0 1.5

we look at the corresponding vortex densities shown in Figs.
18(b) and 18d), we find that they are history dependent. In
both cases, at=0, the vortex density ig<f=1/2, as in the ) ;
equilibrium state found in Sec. IV A. After turning on the f32>< 32 array with k;=0.35 andf=0.5. (b? Vortex density as a

. . . unction of current for the same case aga@ (c) Voltage-current
current,q starts to increase and above the crltlc_al curigitt 4 2 acteristics for model C with a B2 array andk,=0.1 for
reaches the valuq=1/2. For larger currents, in the “flux =05 (d) Vortex density as a function of current for the same
flow” regime, we always find that the vortex density stays parameter values as (o).
around q=f. This regime corresponds to the region for
which thelV curves are linear. When decreasing the currentcurrent direction. But in the perpendicular direction the sym-
the vortices stay pinned by the lattice below, and the metry is broken by the Lorentz force caused by the current.

FIG. 20. (a) Voltage-current characteristics for model B for a

vortex density formed is maintained arouge f. Therefore In the Ohmic regime above the critical curreri., the
the magnetic behavior of the array is irreversible even wherstationary moving vortex state hgs=f (and therefore zero
the IV characteristics are reversible. magnetization The vortex structure in this case does not

In Fig. 19a) we show the vortex distribution for currents correspond to the checkerboard pattern; it has a high density
i<i. for model C(nearly the same kind of vortex distribu- of domain walls and defects, as can be seen in Figh)19
tions are seen for model)BThis corresponds to the station- This situation is similar to the one seen in JJA’s without
ary state starting with zero vorticity as initial condition, i.e., screening by Falet al.’ for large currents.
to turning on the field only after the current is on. We note In the type Il regime, with high concentration of vortices,
that the vortex distributions are different from the ones pro-the edge field effects are very weak. In fact, we find nearly
duced af =0, even when the vortex density is approximatelythe samelV characteristics and the same kind of vortex
the same. Notice that there is a reflection symmetry along thstructures when doing the simulations of model A.
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: i B. We note that the vortices are distributed in parallel
60 l I "" " I I I “stripes” of constant vorticity along the external current di-
{ (2) rection. For this field we find alternating stripes of vorticity
I zero and 1, consistent with a vortex densitygef 0.5. This
state with stripes also has domain walls as can be seen in the
| figure. The stripes are due to the attractive vortex-vortex in-
teraction in the type | regime, as shown in Sec. IVC. In
I I"!- | particglar, this vortex state is reminiscent of the intermediate
I state in type | superconductors, if we interpret the stripes of
vorticity 1 as “normal” material. Note, however, that this
20 | state is dynamically generated by the driving current. See
also that this vortex state corresponds to the one found to
I oscillate in the fractional giant Shapiro steps in the type |
regime'®l’ We note that a similar dynamical vortex state
0 I I "" ] was obtained in Ref. 28, in the row-switched state of an
= ‘ - underdamped 1JJA. In Fig. &4) we show the distribution of
0 20 40 60 vorticity for the same case as above, but for model C. Here,
the edge fields effect are strong and they affect the vorticity
(b) close to the boundaries. However, in the center of the array
we see the same kind of vortex structure formed by stripes as
seen in model B.
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", | Among the main results of this paper is that there is a
/\/\/\\ y qualitative change of behavior in the response of a JJA when
going from weak to strong screening effects. This change is
' manifested in the magnetic and transport properties of IJJA’'s
for both local and long-range inductances. Thisa regime
-2 loosely resembles that of type | superconductors in that the
effective vortex interactions are attractive. Also, it can be
- thought of as a regime in which pinning dominates, and the
* \ — magnetic behavior for high fields can be understood in terms
* = - of Bean’s model. We note that even in superconducting
RS quantum interference devicéSQUID’s) there is a qualita-
tive change in behavior when increasing the self-inductance
FIG. 21. (8 Vortex distributions for a model B array with ~Z Such that 2r1o/®,>1.% In this case the change is
=0.5 andf=0.5 and external curremt= 1.5. Black squares rep- from a reversible to an irreversible magnetic behavior. The
resent vorticityn(R) = 1. (b) Surface plot ofn(R) for a model C  1JJA’s always show irreversibility in their magnetic response
array withk,=0.1, f=0.5, andi=1.5. (as shown in Sec. IV since there is always a loop of
radiusR and inductance”g~ ugR such that 2r %yl /P
We now move on to discuss the type | regime. In Figs.>1 [in the case of model A, it should b&r~L,(R/a)?
20(a) and 2@c) we show thdV curves for models B and C, instead. Then the characteristic radius above which there is
respectively, for the same field=1/2. In this regime the irreversible behavior i®.~® /27 uglo=\p, and the cross-
critical current is much higher than in the type Il regime. over to type | behavior occurs for the smallest possible
This is consistent with the fact that there is stronger pinnindength scale, i.e.R.~a.
in this case. We show the vortex density as a function of We should mention that our magnetization studies have
currents in Figs. 2®) and 2@d). Again, we find that the essentially considered vortex penetration from the bound-
vortex densities formed are irreversible even when the 1V’saries. A different, and also interesting, problem to study is
are reversible while increasing and decreasing the currenthat of vortex nucleation inside the arrays. This, of course,
The difference in this type | regime is that the initial state atwill lead to different critical fields and magnetic responses,
i=0 is the Meissner state. When increasing the current, thin particular in thex=<a regime. We leave this issue for
array remains in the Meissner statg<0). Then the vortices future studies.
start to penetrate the arrag#0) as the current approaches  From our results, it would seem at first sight that there are
i from below. Finally, in the “flux flow” regime the vortex no significant differences between a local or the full induc-
density equals the external fieldj€f). Again, when de- tance matrix approximations. There is in fact an important
creasing the current from this state, vortices remain pinnedifference that relates to the long-range nature of the vortex-
inside the array below., making its magnetic response his- vortex interactions as already shown in Ref. 26. The differ-
tory dependent. ence was discussed in Sec. Il B, and it is relevant at low
It is interesting to see the vortex distribution in this case.vortex densities in the arrayg&1). It affects the quantita-
This is shown in Fig. 2(B) for a current = 1.5>i. for model tive value of the critical field for vortex nucleation as shown
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by Phillips et al.. It is not so important for the microscopic ditions. The solutions have the same response under a sym-
vortex configurations in which the vortex densities are highmetry transformatiorf —f +n only if the initial conditions
(g~1), as was the case for the systems analyzed here. satisfy the same symmetry. For example, if we study the
In this paper we concentrated on the zero temperaturtJJA under a frustration f with initial condition
regime. It will be interesting to study finite temperature ef-®(R,t=0)=0 for all R we get the same physical response
fects in IJJA’s by adding a Langevin current noise to @9..  for a frustration f+n after an initial condition
In particular, there is the question of stability against thermakb (R,t=0)=n®d, for all R.
fluctuations, in particular foh<a. Our preliminary results
show that this regime is stable. APPENDIX B: ALGORITHMS
ACKNOWLEDGMENTS In this appendix we sketch the algorithms we used to
) ) ) calculate the dynamical behavior of the inductive Josephson
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“stiff” problems in ordinary differential equations, which
APPENDIX A: HAMILTONIAN AND SYMMETRIES are notoriously difficult to treat numerically and even ana-

: : . 49,50
The physical properties of JJA's without screening arevtically, for they lead to singular perturbatiof$>° On the

invariant under the changeb—f+n and f——f, with other hand, since the equations of motion are gauge invariant

f=d,/d, andn an integef. These symmetries, which are we have used this symmetry to find the most appropriate

manifestations of flux quantization in JJA's, have beendaude fo solve the equations._ I? turns out that one specific
widely tested experimentaliy ' gauge does not allow us to efficiently solve the problem for

The Hamiltonian for a JJA with screening, and without all valu_e_s Ofcp. In the KP»l."m't the stifiness F’mb'e”_‘ IS
external currents, is very difficult to overcome S|nce-(p—>0_as k—o. In this
case, a convenient gauge to choose is the Coulomb gauge,
Eqgs.(12) and(14), because the variablésand®d are almost
T= EJE 1-cogA, 0(r)—A,r)] separated. We have implemented an algorithm that works in
hu this case. However, our discussion in this paper concentrates
1 on the intermediate regime Gslc,= 10, where the stiffness
+ 52 [®(R)— D, JL YR,R)[P(R)—D,], problem is less severe. Within this parameter range it is more
R,R’ convenient to use the temporal gauge, &§), to efficiently
(A1) solve the problem. In this gauge, we used a fourth order
Runge-Kutta algorithm to integrate the dynamical equations.
with E;=®gl /27 the Josephson energy. It is not obvious Typical integration time steps wetkt/ 7,,,= 0.02—0.1 with
that this Hamiltonian preserves these symmetries. We note . — min(r,, 7).
that the “true” dynamical magnetic variable is the induced ~The second step is to efficiently evaluate the right hand
magnetic field and not the total field. We write side of Eq.(20). Let us first write these equations in a di-
D(R)=D'(R)+®, and A,(r)=A,(r)+AZ{(r), with mensionless form. We normalize the currents by,
d'(R) andA'ﬂ(r) the induced flux and vector potential, re- | —|/l,, time by 7,, t—t/7,, inductance byuoa, A
spectively. =L/pea, and fluxes by®,, f=d,/®,. Then Eq.(20)
For example, in the Landau gauge the external vector poreads
tential AfLXt(r)=27ran5M'ey, wherer=(n,a,n,a), and we
get dw ()
dt

=—sin¥ ,(r)—kpl,

H=E; 2, {2—co§ A,0(r)—AL(r)]—cog A, 6(r)—Aj(r)
r X2 AYRR[A,W,(r")+27f].
R!

1 ) :
—27rfnx]}+§2 O (RIL YR,R)DP(R"). (A2 (B1)
R,R’
We studied this dynamical system in square arrays of size

It is now (_:Iear that t_he Hamiltonian is invari_ant under NX N with free boundary conditions. We solved E&1) in
f—f+n, butis not invariant undef— — f, for the induced two steps.

field changes signd'(R)— —®'(R). Therefore as soon as  The first step consists of obtaining the mesh currents

the dynamics of the magnetic field become important thQ](R) from W (r), solving the equation

“reflection” symmetry is broken. pE
When we consider the time evolution of the dynamical

system, given either by Eq€l2) and(14) or by Eq.(20), we 2 ARRNIR)=—kp[2mf+A, XV ()], (B2)

have to take into account the symmetries of the initial con- R/
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which can be simply written in matrix notation as ditions of models A and B. In the recent literattfré® the
“self-inductance approximation” has led to different results.
AJ=. (B3)  we show below that this difference arises from different
This step is the crucial part of the algorithm, and it dependgl€finitions ofJ(R) and its boundary conditions. _
on the specific model for the inductance matrix. The physically well defined quantity is the current flowing
For model A we directly evaluate in the junctions| ,(r). Current conservation states that
J(R)=—A—[2wf+A#><\If#(r)]. (B4) .
0 except at the top and bottom boundaries, where
For model B, one has to solve fd(R) from A (D)=l o (C2)
» _ One possible choice far(R), let us call it choicgi), which
AQJ(R) = #2, (REp)=—ky[2af+A X , g : .
0J(R)~. ; (R=w) Kpl 27 wX V(D] satisfies these equations is
(B5)
or I#(r)zAMxJ(R)JrﬁM,eylext, (C3
A= . (B6) with the boundary condition
We solve this equation by performing a fast sine transform J(R)=0, (CH

(the Fourier transform consistent with the boundary condi- . o
tions) in the x direction and then solving the resulting tridi- [0 R outside the array. Choicg) is the one that we have

agonal equation along the direction. This is in the same used in our previous work in inductive JJA(Refs. 16 and

spirit as the FACR(Fourier analysis and cyclic reductipn 17) and in this paper(it has also been used by Eikmans and

. . - van Himbergen in noninductive JJA$),
algorithm, typically used as a fast solver for the Poisson Another possible choice, choidi), which also satisfies

equation’’®>! The computing time needed for each fast sine e

transform is on the ordedInN and solving each tridiagonal current conservation, is

matrix is on the order oN; therefore the total computing | (N=A,XJ(R)

time varies asN?InN. K " ’
It is more complicated to solve model C. There we havewith the boundary conditions

to solve(B2) for a matrix A where all theN* elements have

to be considered. In this case we use an algorithm like the X

one introduced by Phillipgt al?® It consists of noting that J(R,0) = 'ext(E_RX)’ (C6)

A(R,R')=A(R—R’), so that we can do the matrix product

with J(R) using the fast Fourier transforfFFT). We have N,

to pad J(R) and A(R) with zeros because of the finite J(RX,Ny)=Iext<7—RX),

boundary conditions in order to adequately use the FFT tech-

nigque, thus doubling their linear dimensions tbl.2Being

able to do this matrix multiplication very fast makes it ap- JOR,)=I

propriate to solvéB2) via an iterative method, like the ones e

used to solve linear sparse matrié&s? We use the conju-

gate gradient methdll, preconditione® by the nearest- N,y

neighbor matrixAy . This means that instead of solving for J(Ny,Ry)=—1 ext o

Jin ®=AJ, we solve forY=AyJ in ®=AAyY. The

CPU time involved in this calculation varies as Clearly, since these twd(R)’'s are different they will

k(2N)2In(2N), with k the number of iterations needed by induce different magnetic flux distributions. Let us consider

the conjugate gradient method to converge. Typically, wehe magnetic flux induced by the branch curreint&r),

neededk=10 to solve the system with double precision

floating point arithmetic.

(CH

Ny

2

After obtainingJ(R) the last step is simply to evaluate q)(R):(IDX“Lr,E, TR w1 (r'). (C7)
Ny
dw (r o
th( ) = —sin¥ ,(r)+A,xJ(R) (B7) We have for choicéi)
directly. ®(R)=D,+ >, L(R,R)IR) +1E(R), (C8
R/

APPENDIX C: BOUNDARY CONDITIONS .
with L(R,R")=A, XT(R,r", ") and

There is an ambiguity in the definition of the mesh cur-E(R)=2T'(R,r’,ey). Note that the first term in this equa-
rentsJ(R). In model C this ambiguity is irrelevant, since any tion does not depend on the boundaries, since there we have
choice ofJ(R) leads to the same physical result. However,J(R) =0, while the second term gives the magnetic field in-
this ambiguity turns out to be relevant for the boundary con-duced by the external currer(@ntisymmetric edge fieldlsin
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this case, any truncation of the inductance matrix affects
both L(R,R’) and ER) as discussed in the body of the 1.5
paper.

For choice(ii) we have

®(R)=d,+ >, L(R,R)IR’). (C9)
R/

Here the external currents are considered only on the bound-
ary conditions forJ(R’). In this case a model ‘Agives only
L(R,R")=Lobgrr, and model B gives L(R,R")
=Lgdr rr—Mdg r. However, note that now the boundary
condition onJ(R) for model A' gives a magnetic flux of

®( boundariesy + Lyl N,/2 in the left and right bound-
aries. This must be compared with the absence of edge fields
[E(R)=0] in model A with choice(i). Similar consider-
ations lead to big differences between fields at the bound-
aries in models B and B But when considering model C, 0.0 e ( A
both choices(i) and (i) become equivalent. The magnetic 0 10 20 30 40 50 60
flux induced byJ(R) at the boundaries extends all over the r./a

sample and is equivalent to the edge magnetic fields.

In Fig. 22 we show the com.put.ed bra_r_mh _Cu”e'rllﬁ) FIG. 22. Distribution of branch currents in a cross section per-
fqr models A, B, and C for choice) and (i) with a small pendicular to the applied current in a 84 array. The applied
bias current [(e,=0.1 o) andf=0. We take the current cross cyrrent isi = 0.1, and f=0. (a) For choice(i) of the mesh cur-
section along the direction of the applied currepte,) at  rents, solid curve: model Cx,=2); dotted curve: model A
the middle of the arrajr =(r,,Nya/2)]. Figure 22a) shows  (x,=2); dashed curve: model Bc§=2). The inset shows the ur-
the current distributions of choide) for models A, B, and C.  rent distributions close to the edges of the array. The apparent dis-
We note that model A gives a completely uniform currentcontinuity in the dashed line is a numerical artifact due to the am-
distribution which is equal to the external current plification and the size of the current mesh). For choiceii) of the
[1y(r)=lexl. For model C, part of the current accumulatesmesh currents, solid curve: model &=2); dotted curve: model
close to the boundaries due to the edge magnetic fields, anfdl («;=2); dashed curve: model'B«;=2).
the current tends to be homogeneous at the center of the
array. Model B gives similar current distributions as modelrapidly inside the array. The only difference between models
C, but with a smaller current concentrations at the edges, dud’ and B is in the decay range of the currents from the
to the weaker edge field effects in this model. The mainedges. Choicéi) was used by Phillipst al?” when discuss-
difference between the three models appears only at thiag the effects of truncating the inductance matrix in current-
edges of the array, as shown in detail in the inset of Figdriven arrays and they obtained similar current distributions
22(a). In Fig. 2ab) we show the current distributions for as shown in Fig. 2). As seen from Fig. 2®), in this case
choice(ii) and models A, B, and C. Here we clearly see athere are very strong differences between models C and A
significant difference for the truncated models as comparednd B. Instead, we have preferred to use choide since
to choice(i). Models A" and B give current distributions models A and B give a much better approximation to model
which are rather large at the edges and then fall off venC, as is clear from Fig. 23).
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