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We study the exchange interactions between ferromagnetic grains dispersed in a paramagnetic amorphous
matrix. This interaction becomes very important for high-density packing of the grains and also when the
amorphous matrix is near its Curie temperature. We obtain analytical results based on a mean-field approxi-
mation and also perform a Monte Carlo simulation. We use both procedures to estimate the ordering tempera-
ture as a function of the effective intergrain separation. The theoretical predictions are compared with experi-
mental results for the Fe77B18Nb4Cu nanocrystalline alloy.

I. INTRODUCTION

Magnetic nanocrystalline materials are heterogeneous
systems composed of different magnetic and structural
phases. We are mainly interested in magnetic materials con-
sisting in nanocrystallites randomly nucleated in an amor-
phous magnetic matrix. A good example are Fe-rich
nanocrystals.1 They present outstanding technical properties
and constitute some of the most promising magnetic materi-
als.

These materials show excellent soft magnetic properties,
which arise from the fact that the nanocrystallites are
strongly exchange coupled via the amorphous interphase re-
gion. This coupling leads to an averaging out of the magnetic
anisotropy of the individual crystalline grains.2 Over the past
few years, many groups have carried out experimental stud-
ies of soft nanocrystals of differing compositions in an at-
tempt to characterize and understand their magnetic and
structural properties.3–6

In this paper, we are particurlarly interested in under-
standing the following two recent experimental results.

~i! The Curie temperature of the matrix,TC
a , is smaller

than the Curie temperature of thea-Fe nanocrystalline
grains, and, at sufficiently high tempertures, the system be-
haves as an assembly of isolated single-domain particles.
However, the thermal dependence of the coercive force7 in-
dicates that thea-Fe grains strongly interact in a wide range
of temperatures aboveTC

a . Coupling is observed even 100
°C aboveTC

a .8

~ii ! Recently, it has been observed that the Curie tempera-
ture of the intergranular amorphous region is greatly en-
hanced with respect to that of amorphous ribbons of the
same composition, this enhancement reaching a value of 125
°C.9

These experimental results have led us to study the inter-
grain exchange interactions mediated by the amorphous ma-
trix. We show that the predicted ordering temperature of the
grains is the right order of magnitude to explain the experi-
mental results on the nanocrystalline Fe77B18Nb4Cu alloy.10

We use two different methods, an analytical mean-field ap-

proach and a direct numerical simulation, to obtain the effec-
tive intergrain exchange. In both approaches, we assume a
single exchange interactionJ between atoms of the amor-
phous matrix. The amorphous structure is simulated by a
simple cubic lattice. We consider only nearest neighbor in-
teractions, and calculateJ from the transition temperature of
the amorphous matrix. The presence of nanocrystalline fer-
romagnetic grains is modeled by ferromagnetic boundaries
where the matrix spin are forced to be fully aligned.

II. MEAN-FIELD APPROACH

In the mean-field approximation, we assume that the
atomic magnetic moment at siter is proportional to the sum
of the magnetic moments of its nearest neighbor~NN! atoms:

m~r !5
xpa

z (
NN

m~r 8!5
TC
zT(NN m~r 8!, ~1!

wherexp is the paramagnetic susceptibilty of the material, in
the absence of interactions between atoms,a is the propor-
tionality constant of the molecular-field approximation, and
z is the coordination number. We restrict the analysis to a
simple cubic lattice for whichz56. We assumed that the
paramagnetic susceptibility in the absence of interactions fol-
lows the Curies’ lawxp}1/T and so the final susceptibility
~considering interactions in the mean-field approximation!
follows the Curie-Weiss lawx5xp /(12TC /T), whereTC
is the Curie temperature.

Above the Curie temperature, if there is no applied mag-
netic field and no ferromagnetic boundary, the self-consistent
solution of Eq.~1! is m(r )50 for all r . The presence of a
ferromagnetic boundary induces a finite magnetization near
the boundary even aboveTC , and it is this magnetization
that we wish to calculate.

A. Single-plane problem
Let us first consider aY-Z plane boundary where the

atomic magnetic moments are equal to 1~see Fig. 1!. By
symmetry, the magnetic momentmi of an atom in thei th
layer, with respect to the surface, only depends on the dis-
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tance to the surface. Equation~1!, therefore, leads to the
following recurrence relation between magnetic moments of
adjacent layers:

Ami5mi211mi11 , ~2!

whereA5(zT/TC)2z12. This expression is subjected to
the boundary conditionm051. Its solution, which must tend
to zero when we move away from the ferromagnetic surface,
is of the formmi5smi21 , wheres is a constant between 0
and 1, to ensure convergence. Substituting this expression in
Eq. ~2! and consideringz56, we find thats is given by

s5~3t22!2A~3t22!221, ~3!

where t is the reduced temperature, defined as the ratio
t5T/TC .

The magnetic moment of an atom located at thei th layer
is then equal to

mi5si . ~4!

Expression~4! presents an exponential decrease with the dis-
tance to the ferromagnetic interface and its analogous con-
tinuous form is

m~x!5
e2x/l

a3
, ~5!

wherex is the distance to the interface,a is the separation
between nearest neighbor atoms, andl52a/ ln(s) is the
penetration length of the interaction, which only depends on
the reduced temperaturet. This continuous approximation is
useful for the calculation of the magnetization in the pres-
ence of spherical ferromagnetic boundaries, and is well jus-
tified when the magnetization does not decrease too drasti-
cally, which is precisely the regime where the exchange
interaction is important. It is to be noted that a similar phe-
nomenological dependence was introduced by Hernando
et al.11 to account for the exchange coupling between grains
aboveTC

a .
The total magnetic exchange energy per unit area is equal

to

E~1p!52
J

a2(i51

`

~2mi
21mimi21!52

J

a2
2s21s

12s2
. ~6!

The corresponding quantity in the continuous formulation is
given by

E~1p!523Ja3E
a8

`

m~x!2dx52
3Jl

2a3
e22a8/l. ~7!

The continuous and discrete procedures give very similar
values for the exchange energy, in the temperature range of
interest (1.1,t,3), if a850.36a is chosen as the lower
integration limit.

B. Two-plane problem
We study the interaction energy between ferromagnetic

plane surfaces through the magnetization induced in the
paramagnetic matrix between them. We consider that the
magnetizations of the two boundaries lie in the plane surface,
either parallel or antiparallel between them. The results of
this problem are useful for understanding the interaction be-
tween ferromagnetic grains in nanocrystalline materials, and
have an intrinsic interest for the explanation of experimental
results about multilayer systems.12

Let us assume that our paramagnetic system is now in
contact with two ferromagnetic parallel plane surfaces, at
x50 and x5L ~interphase thickness!. The magnetic mo-
ment of each atom is the sum of two contributions of the
form given by Eq.~5!, due to the two boundary conditions of
the system. The sign of these components depends on
whether the surface magnetization is parallel or antiparallel.
The total exchange energy, per unit area, of the intephase
medium is then equal to

E~2p!52
3Jl

a3
~e22a8/l2e22~L2a8!/l!7

6JL

a3
e2L/l. ~8!

The2(1) sign corresponds to parallel~antiparallel! magne-
tization of the boundary surfaces. The first term in this equa-
tion is twice the energy of one isolated ferromagnetic inter-
face, cut atx5L. The second term is due to the interaction
between the magnetic moments induced by different planes,
and represents the effective coupling between the two ferro-
magnetic planes through the paramagnetic interphase. This
coupling has an exponential dependence on the ratio between
the effective intergrain separationL and the penetration
lengthl, and is propotional to the number of atoms between
the planes.

C. Two-sphere problem
We can now estimate the effective exchange coupling be-

tween two spherical ferromagnetic grains through the para-
magnetic medium between them. We assume that this cou-
pling is equal to the product of the exchange coupling per
surface unit for the two planes and an effective surface of the
grains, which takes into account the area of each grain that is
closest to another.

Let us callL the minimum separation between grains.
Our effective surface is equal to the area of a grain located at
a distance smaller thanL1l from the other grain, as is
shown in Fig. 2. We assume that only atoms separated by

FIG. 1. Simplified scheme of the single-plane problem geom-
etry.

53 11 657FERROMAGNETIC INTERACTIONS IN NANOSTRUCTURED . . .



distances betweenL and L1l interact appreciably. The
number of atoms in the effective surface ranges between 50
and 200 for a typical crystalline volume fraction and in the
temperature range of interest.

The effective coupling between grains is then equal to

Jeff
~sph!52

12JLR2

a3
arcsinSAl212lL

R D e2L/l, ~9!

whereR is the sphere radius. This exchange interaction en-
ergy is the product of the number of atoms between the ef-
fective surfaces and an exponential factor. This number of
atoms is fairly independent of temperature and of the order
of 500. The exponential factor is very sensitive to the effec-
tive intergrain separationL and to the reduced temperature
t.

III. NUMERICAL SIMULATION

We have also calculated the effective coupling between
ferromagnetic nanocrystals embedded in an amorphous para-
magnetic matrix by direct numerical simulation. We assume
an Ising system in a simple cubic lattice subjected to differ-
ent boundary conditions, corresponding to the different pos-
sible magnetizations of the nanocrystals. We use a Metropo-
lis algorithm to thermalize the samples and to generate a
succession of independent configurations with a thermal dis-
tribution. The algorithm performs 300 Monte Carlo sweeps
for thermalization and 100 sweeps between successive mea-
surable configurations. For each configuration we calculate
the exchange interaction energy, which only depends on the
relative orientation between magnetic moments of nearest
neighbor atoms. The total exchange energy at each tempera-
ture is averaged over a large set of independent configura-
tions, whose number ranges between 500 and 1000.

The system consists of a cylinder of length 2R1L con-
taining two semispherical Fe grains with their corresponding
centers lying on the two bases of the cylinder, as shown in
Fig. 2. We consider a sphere radius (R) of 10 lattice spac-
ings, which corresponds to 3.5 nm, and a separation between
spheres of 3, 6, and 12 lattice spacings, corresponding to 1,
2, and 4 nm. The grains have fixed magnetizations, perpen-
dicular to the axis of the cylinder, whose relative orientation
can be either parallel or antiparallel. We apply free boundary
conditions at the lateral cylinder surface and periodic~anti-

periodic! at the bases in a parallel~antiparallel! configura-
tion. The effective exchange coupling is equal to half the
total energy difference between the configurations corre-
sponding to parallel and antiparallel boundary conditions.

In Fig. 3 we show the effective coupling between spheres
as a function of the reduced temperature for a separationL
of 1 nm, obtained by the mean-field aproach~solid line! and
Monte Carlo simulation~solid points!. We choose the value
TC54.5J/KB for the critical temperature of the three-
dimensional Ising model,13 whereKB is the Boltzmann con-
stant. The mean-field analytical results and the numerical
simulations agree fairly well in the region of interest, i.e., for
temperatures above the critical.

IV. CRITICAL TEMPERATURE

The exchange interaction studied will couple the ferro-
magnetic grains at temperatures higher than the Curie tem-
perature of the amorphous matrix and will also result in an
overall magnetization of the amorphous matrix when the
penetration length is in the order of the typical intergrain
spacing.

Thus some critical behavior associated with this exchange
interaction is to be expected at a temperatureT* proportional
to the effective coupling between nearest neighbor grains:

Jeff5gT* . ~10!

The constant of proportionalityg must be similar to that
relating the Curie temperature and the exchange interaction
of the amorphous matrix. We assume that both constants are
the same. This is justified by the fact that both the grains and
the atoms of the amorphous matrix are randomly distributed
in an effectively close-packed structure. In any case, the final
results are very insensitive to this parameter as can be seen in
the inset of Fig. 4: A change in the slope of the straight line
produces almost no modification int* .

FIG. 2. Effective surface of a ferromagnetic sphere and system
geometry of the Ising simulation.

FIG. 3. Theoretical effective exchange coupling versus the re-
duced temperature for ferromagnetic spheres of radius 3.5 nm and
L51 nm, obtained by a mean-field approach~solid line! and Monte
Carlo simulation~solid points!.
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This critical temperature can be obtained from the inter-
section point of the curveJeff /J @from Eq. ~9!# and the
straight lineJeff /J5t, when both are plotted as a function of
the reduced temperaturet. An example of this procedure is
shown in the inset of Fig. 4. To obtain the critical tempera-
ture from the numerical simulations, we fit the effective cou-
plings by an exponential function of temperature and calcu-
late its intersection point with theJeff /J5t line. The small
values of the effective couplings result in large errors in the
fitting curve, although the final error bars in the critical tem-
peratures are relatively small.

Figure 4 shows the calculated critical temperature, in re-
duced units, for the mean-field approach as a function of the
effective distance between nearest neighbor grains, for
spheres of 10 nm~solid line!, 5 nm ~long dashed line!, and
3.5 nm~short dashed line! radius. We note that the results do
not depend very much on the radius of the spheres. For this
reason we performed our numerical simulations with the
smallest realistic radius, to minimize computational effort.

In Fig. 5 we compare the theoretical critical temperatures
obtained by the two procedures we used. The solid line cor-
responds to the mean-field results and the solid points to the
numerical simulation. Both results are relatively similar, al-
though the numerical simulation predicts smaller critical
temperatures for small grain separations.

V. DISCUSSION

As we can see from Fig. 4, the exchange coupling be-
tween Fe grains through the paramagnetic interphase
strongly depends on effective intergrain separation and can
be effective at temperatures well above the interphase Curie
temperature.

Magnetic interactions between ferromagnetic grains
through a paramagnetic medium have been observed by

measuring the thermal dependence of the coercive force, in
Fe-rich soft nanocrystals, which present two Curie
temperatures.8,10 At room temperature, the soft magnetic be-
havior is mainly due to the exchange coupling between Fe
grains through the amorphous ferromagnetic medium. The
gradual hardening observed when temperature increases is a
consequence of the decrease in exchange coupling between
Fe grains that takes place simultaneously with the loss of the
amorphous interphase magnetic moment. The coercive force
reaches a maximun value at a temperature (Tp). At tempera-
tures above this maximum the coercive force decreases as a
consequence of the decrease in the magnetocrystalline an-
isotropy of the Fe grains. The coercive force maximum oc-
curs at temperatures close to the Curie temperature of the
amorphous interphase for a small crystalline volume frac-
tion, but at temperatures well aboveTC

a for larger crystalline
fraction. For a Fe77B18Nb4Cu nanocrystalline alloy with 40%
of Fe crystallized (L about 1 nm!, the temperature peak
occurs 100 °C aboveTC

a .10

According to the previous discussion, we take the tem-
perature of the coercive force maximun as the critical experi-
mental temperature to be compared with our theoretical pre-
diction for the onset of an alignment of the grains magnetic
moments. For temperatures above (Tp), the decrease of the
coercive force points out that magnetic intergrain interac-
tions become sufficiently small to be cancelled by thermal
energies. The ratio between the temperature of the coercive
force maximum and the Curie temperature of the amorphous
material,Tp /TC

a , plays the role of the reduced experimental
critical temperature. In Fig. 5 we compare our theoretical
critical temperatures with the experimental results for the
Fe77B18Nb4Cu nanocrystalline alloy, as a function of the ef-
fective intergrain separation. We calculate the effective in-
tergrain separation from the experimental crystalline volume
fraction v and the average grain sized obtained by x-ray
diffraction and Mössbauer spectroscopy techniques. Assum-
ing a spherical shape for the grains and a single cubic distri-
bution geometry,L is implicitly given by

FIG. 4. Dependence of the theoretical critical temperature, in
reduced units, on the effective intergrain separation for ferromag-
netic spheres with a radius of 10 nm~solid line!, 5 nm~long dashed
line!, and 3.5 nm~short dashed line!. The inset shows an example
of the procedure followed to calculate the critical temperature.

FIG. 5. Enhancement of the experimental temperature of the
coercive force maximum versus the amorphous interphase Curie
temperature in the Fe77B18Nb4Cu nanocrystalline alloy~open
points! and theoretical critical temperatures, obtained by a mean-
field approach~solid line! and Ising simulation~solid points!, plot-
ted as a function of the effective intergrain separation.
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v5
pd3

6~d1L!3
. ~11!

As shown in Fig. 5, the interaction mechanism proposed can
explain the magnitude of the critical temperature enhance-
ment observed and its dependence on the effective intergrain
separation.

VI. CONCLUSION

The induction of magnetization by a ferromagnetic inter-
face in a medium above its Curie temperature was calculated
on the basis of a mean-molecular-field approximation and by
Monte Carlo simulation. It was found that ferromagnetic
spheres embedded in a paramagnetic medium are exchange
coupled via the induced magnetization at the interphase. The
analytically calculated exchange interaction energy is the
product of the number of atoms between the effective sur-
faces and an exponential factor, which depends on the ratio
between the effective intergrain separation and the interac-

tion penetration length. In Fe-rich nanocrystalline materials,
the small grain size and the high-density packing result in
effective intergrain separation of a few nanometers. Under
these conditions, the calculated exchange interaction energy
must be relevant, even at temperatures well above the Curie
temperature of the amorphous matrix.

A theoretical critical temperature proportional to the ef-
fective coupling between nearest neighbor grains was esti-
mated and compared with the experimental critical tempera-
tures. It was found that the interaction mechanism proposed
can explain the temperature values corresponding to the
maximum coercive force in a Fe77B18Nb4Cu nanocrystalline
alloy.
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