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The self-consistent Gaussian approximation~SCGA! for classical spin systems described by a completely
anisotropicD-component vector model is proposed, which takes into account fluctuations of the molecular
field and thus is a next step beyond the molecular field approximation. The SCGA is sensitive to the lattice
dimension and structure and to the form of spin interactions and yields rather accurate values of the field-
dependent magnetizationm(H,T) and other thermodynamic functions in the whole plane (H,T) excluding the
vicinity of the critical point (0,Tc), where the SCGA breaks down, showing a first-order phase transition. The
values ofTc themselves can be determined in the SCGA with an accuracy better than 1% for actual three-
dimensional structures. At low and high temperatures the SCGA recovers the leading terms of the spin-wave
theory, the low- and high-temperature series expansions, respectively. The accuracy of the SCGA increases
with the increase of the spin dimensionD, and in the limitD→` the exact solution for the spherical model is
recovered.

I. INTRODUCTION

The models considering spin as a classical vector variable
of a fixed length are the most studied ones in the theory of
temperature-induced phase transitions on a lattice. The rea-
son for this is that quantum effects that are always present in
real magnetic systems and can make calculations more intri-
cate play, however, a secondary role at~and above! Tc and
do not change the critical behavior. Classical models are also
a good approximation to magnetics with large spin values
S, such as, e.g., the Heisenberg systems EuO and EuS hav-
ing S57/2. Generally, for systems described by the Heisen-
berg modelH(S) with S@1 quantum effects become irrel-
evant in the temperature rangeT*Tc /S, where the whole
Brillouin zone is populated by spin waves and their occupa-
tion numbers become large. Additionally, the arbitrary-S
Ising model I (S) without a transverse field can be treated
with the same methods as classical ones, because no spin
commutators appear and quantum effects are trivial. An ad-
vantage of classical vector models is that they can be formu-
lated for an arbitrary number of spin components, as was
done by Stanley.1–3 Such a generalization is important since
some magnetics with a complicated structure possess an or-
der parameter withn.3 symmetric components~see Refs.
4, 5, and references therein!.

In the absence of an analytical solution to the phase tran-
sition problem in three dimensions such numerical methods
as low-temperature series expansions~LTSE’s! for the
I ~1/2! model6 and high-temperature series expansions
~HTSE’s! for the I ~1/2!,7–10 I (S),11,12H(S),13,14H(`),15,16

and classical plane rotator andx-y models,17 as well as for
the generaln-component vector model O(n),1,3,19–21were
successfully applied for an accurate calculation of thermody-
namic quantities in a wide temperature range including the
vicinity of Tc . It gave the results for the critical indices of
magnetic systems and favored the creation of scaling and
universality concepts. With the development of computa-
tional facilities and algorithms the series methods were per-
manently improved. As the latest benchmark the recent

calculation21 of the HTSE series for the reduced susceptibil-
ity Tx(T) of the O(n) models up to (J/T)19 can be consid-
ered. Another very efficient numerical method competing
with series expansions is based on Monte Carlo~MC! simu-
lations ~see, e.g., Refs. 22,10!. An extraction of accurate re-
sults for infinite systems from the simulation data for the
lattices with a finite linear dimensionL is based usually on
finite-size scaling.23 An alternative approach also using
simulations is the chiral perturbation theory in powers of
1/L ~see, e.g., Ref. 24 and references therein!.

Lately the ideas of the statistical theory of magnetism
together with the methods of calculation have penetrated into
the field theory. In particular, the lattice-regularized scalar
Higgs model in the chiral limit, which can be identified with
the four-component classical Heisenberg model O~4! in four
dimensions,18 was studied with the HTSE~Refs. 19,20! and
MC simulation25,26 methods. Recently Rajagopal and
Wilczek27,28have related the two-flavor quantum chromody-
namics~QCD! to the O~4! vector model in three dimensions,
the gauge coupling constantg2 determining the temperature
and the quark massmq being proportional to the applied
magnetic field. This has initiated an extensive numerical
work ~see Refs. 29–31 and references therein!.

Although HTSE’s produce the series coefficients usually
with the help of such diagram methods as the linked cluster
expansion~LCE!,32,33 the results are represented as a sum of
‘‘bare’’ ~unrenormalized! diagrams, each proportional to
some power ofJ/T. Alternatively, there were attempts start-
ing from the early years to sum up some ‘‘important’’ infi-
nite diagrams series to obtain a closed-form equation for a
magnetic system in terms of renormalized diagrams, which
should be a good analytical approximation in the whole tem-
perature range. It was shown, in particular, how the mean
field approximation~MFA! can be obtained diagrammati-
cally ~see, e.g., Refs. 34,35!. A further renormalization of
diagrams for the Ising model by Horwitz and Callen35 led to
an improvement of the MFA taking into account self-
consistently Gaussian fluctuations of the molecular field.
This important work remained seemingly unappreciated,
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since the resulting equations were not numerically investi-
gated in a satisfactory way and the real accuracy of the ap-
proximation was not recognized. Only much later was this
self-consistent Gaussian approximation~SCGA! for the Ising
systems independently rediscovered and numerically ana-
lyzed in Ref. 36.

The methods developed by Horwitz and Callen35 for the
Ising model were generalized for the quantum Heisenberg
model in the subsequent paper, Ref. 37. This first version of
the spin diagram technique~SDT! had not, however, suc-
ceeded in formulating a Gaussian approximation for the
Heisenberg systems, since due to quantum effects transverse
spin cumulants acquire a time dependence and cannot be
renormalized in a desirable way.

Later a similar diagram technique was formulated inde-
pendently in Refs. 38,39 and further developed in Refs.
40,41. Although the SDT allows one to write down diagram-
matic perturbation series for all temperatures in a regular
way and recovers the known spin-wave and LTSE results in
the ordered state, as well as the HTSE ones aboveTc , sum-
mation of nontrivial diagram sequences in all orders of a
perturbation theory~apart from the usual cases of Dyson and
vertex equations! seems to be impossible. Due to the use of
the Wick theorem for the calculation of averages of trans-
verse spin components the number and complexity of dia-
grams increase dramatically with each order and most of
diagrams are divergent atT.Tc and compensate each other
only in final expressions. The latter is not the case only for
Ising systems, where there are no problems with the non-
commutativity of different spin components and quantum ef-
fects are trivial. In the classical limitS→`, which is of a
primary importance in the theory of temperature-induced
phase transitions, the quantum SDT does not essentially sim-
plify.

In Ref. 42 an alternative diagram technique for classical
spin systems was proposed, which explicitly takes advantage
of their classical properties and is much simpler than the
quantum SDT. It allows, in particular, calculation of thermo-
dynamic quantities of a system without dealing with its dy-
namics. In the static case all spin components can be treated
similarly, and the consideration can be carried out for a gen-
eralized completely anisotropic model ofD component clas-
sical spin vectors (umu51) on a lattice:

H52H(
i
mi2

1

2(i j Ji j (
a51

D

hama ima j . ~1.1!

If the exchange interactionhaJi j is isotropic, i.e., all an-
isotropy factorsha51, this model reduces to the one pio-
neered by Stanley,1–3 who proved2 that it is in the limit
D→` equivalent to the exactly soluble spherical model.43

An important particular case of the general model~1.1! is the
so-calledn-D model,42 where n<D spin components are
coupled by the exchange interaction with an equal strength
and the restD2n ones are ‘‘free’’~i.e.,ha51 for a<n and
ha50 for a.n). The n-D model contains as particular
cases theS51/2 Ising modelI ~1/2!, for n5D51, the clas-
sical Ising modelI (`) for n51, D53, the plane rotator
model for n5D52, the classicalx-y model for n52,
D53, and the classical Heisenberg modelH(`) for
n5D53. The variablen is the number of the order param-

eter components and determines the universality class of a
system. The total number of spin components,D, enters only
such nonuniversal quantities asTc . It is clear that the expan-
sion of the critical indices for the large number of compo-
nents can be only the 1/n expansion. To the contrary, we
shall see below that the absolute values of thermodynamic
quantities are naturally developed in powers of 1/D for
D@1, which is not automatically the same as 1/n for n
ÞD.

In Ref. 42 the self-consistent Gaussian approximation by
Horwitz and Callen was generalized for systems with con-
tinuous spin symmetry and it was shown that in the limit
D→` the SCGA becomes exact and yields the solution of
the spherical model, whereas all other diagrams die out as at
least 1/D. Accordingly, the SCGA becomes more accurate
for high spin dimensionsD and works better for theH(`)
model (n5D53) than for theI ~1/2! one (n5D51). Nu-
merical calculations forI (S) ~Ref. 36! andH(`) ~Ref. 44!
models have shown that for different three-dimensional lat-
tice structures the SCGA yields the magnetizationm and
other thermodynamic quantities in the whole temperature
range excluding the close vicinity ofTc with an overall ac-
curacy about 1%, including the determination ofTc itself.

In Refs. 36,42,44 the SCGA was only briefly described,
and its analytical properties need to be explained in more
detail. Principally important is to test the SCGA on models
with lattice dimensionalityd>4 ~hypecubic lattices! and to
compare its results with those of the 1/d expansion45,46 and
MC calculations.10 In this case the SCGA should be more
accurate, since nontrivial effects of the fluctuation interaction
~i.e., non-Gaussian effects! die out.47 In view of applications
in the field theory mentioned above it is important to extend
calculations to O(n) models (n5D) with n>4 and to make
a comparison with the 1/n expansion.48–50Some other tasks
are to perform a numerical solution of the SCGA equations
in the case of a nonzero magnetic field, to make a compari-
son with the experimental data on Eu chalcogenides, and to
consider the lattices with the next nearest neighbor~nnn!
interactions. The solution of the problems mentioned above,
as well as a detailed statement of the SCGA, is the aim of the
present article.

In Sec. II a simple derivation and analysis of the SCGA
for the Ising systems without using diagrams is given. In
Sec. III the classical spin diagram technique and construction
of the SCGA for a general Hamiltonian~1.1! are described in
more detail. In Sec. IV the analytic properties of the SCGA
in different limiting cases are investigated, including the
spherical limit, where the known results are generalized for
the anisotropic Hamiltonian~1.1!. In Sec. V the results of the
numerical solution of the SCGA equations for different clas-
sical spin models on different lattices are presented and com-
pared with the available HTSE, LTSE, MC-simulation, and
1/D expansion results, as well as with the experimental data
on EuO and EuS. In Sec. VI some further applications of the
SCGA and the possibilities of its generalization are dis-
cussed.

II. IDEA OF SCGA

If in ~1.1! the magnetic fieldH is directed along the or-
dering axisz (hz51), then thez component of the molecu-
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lar field H i acting on the spin on a sitei is given by

Hzi5H1(
j
Ji jmz j . ~2.1!

The MFA consists in neglecting fluctuations ofH i , which in
the spatially homogeneous case leads to the Curie-Weiss
equation for the magnetizationm[ ^mz&:

m5B~b^Hz&!, ^Hz&5H1mJ0 , ~2.2!

whereB(j) is the Langevin function,b[1/T, andJ0 is the
zero Fourier component of the exchange interaction. The
second moment of fluctuations of thea component of the
molecular fieldH i , which were neglected in the MFA, can
be expressed as

s2a5(
j j 8

Ji j Ji j 8ha
2^Dma jDma j 8&

5v0E dq

~2p!d
~haJq!

2Saa~q!, ~2.3!

whereDm[m2^mz&ez , Saa(q) is the spin-spin correlation
function, v0 is the unit cell volume, andd is the lattice di-
mensionality. If correlations of spins on different lattice sites
j , j 8 are neglected, then for systems with nearest neighbor
~equivalent neighbor! interactions the integral over the Bril-
louin zone in~2.3! is proportional to 1/z and small for a large
number of equivalent neighborsz. This is justified in the
temperature rangeT@Tc , but for T;Tc the correlations in
~2.3! should be taken into account. For low-dimensional sys-
tems (d51,2) the lattice integral in~2.3! diverges with low-
ering the temperature atq50, which invalidates the MFA.
For three-dimensional systems the magnitude of the molecu-
lar field fluctuationss2 remains finite and not very large,
which is reflected by the shift of the actual values ofTc in
about 30% downwards fromTc

MFA depending on the lattice
structure and the details of spin interactions in~1.1!. The
latter makes feasible an improvement of the MFA ind>3
dimensions, which consists in taking into account molecular
field fluctuations describedonly by the set of their second
momentss2a . This means that the averages of an arbitrary
number of molecular field components decay pairwise,
which is equivalent to the use of theGaussiandistribution
function for the molecular field fluctuations. For the Ising
model (ha50 for aÞz) this leads, in particular, to the ex-
pression for magnetizationm being given by a Langevin
function with a spreaded argument:

m5
1

~2ps2z!
1/2E

2`

`

dHz,flexpS 2
Hz,fl
2

2s2z
D

3B@b~^Hz&1Hz,fl!# ~2.4!

or

m5B̃~jz ,l z!5
1

p1/2E
2`

`

dz e2z2B~jz12l z
1/2z!, ~2.5!

wherejz[b(H1mJ0) and l z[b2s2z/2. To obtain a closed
system of equations, one can calculate the spin-spin correla-
tion functionSzz(q) in ~2.3! in the simplest Ornstein-Zernike
approximation:

Szz~q!5
B̃8~jz ,l z!

12B̃8~jz ,l z!bJq
, ~2.6!

where the derivative of the Langevin function,B8[dB/dj,
is also renormalized by Gaussian fluctuations analogously to
~2.5!. This system of nonlinear equations form and l z given
by ~2.5!, ~2.6!, and ~2.3! with a5z was obtained in a very
technical manner by Horwitz and Callen35 and was solved
numerically in Ref. 36. Note that the integral over the Bril-
louin zones2z , Eq. ~2.3!, is taken into account in~2.5! in all
orders of a perturbation theory. Such a self-consistent Gauss-
ian approximation is, like all closed-form approximations in
the theory of phase transitions, not a rigorous expansion in
some small parameter. It is an approach taking into account
some physically significant diagram structures self-
consistently in all orders of a perturbation theory and repro-
ducing the leading orders in the perturbatively treatable re-
gionsT!Tc andT@Tc . In the next section the SCGA will
be derived for a general form of the spin-vector Hamiltonian
~1.1! with the use of the classical spin diagram technique.

III. CLASSICAL SPIN DIAGRAM TECHNIQUE
AND THE SCGA

This diagram technique can be considered as a simplified
form of the quantum linked cluster expansion37 or of the
quantum SDT,38,39making use of the classical properties of
spin vectors. A perturbative expansion of the thermal aver-
age of any quantityA characterizing a classical spin system
~e.g., A5mz) can be obtained by rewriting~1.1! as
H5H01H int , whereH0 is the MFA Hamiltonian with
the molecular field̂Hz& determined by~2.2!, and expanding
the expression

^A&5
1

Z
E )

j51

N

dmjA exp~2bH!, umj u51, ~3.1!

in powers ofH int . The integration in~3.1! is carried out
with respect to the orientations of theD-dimensional unit
vectorsmj on each of the totalN lattice sites. Averages of
various spin vector components on various lattice sites with
the HamiltonianH0 can be expressed through spin cumu-
lants, or semi-invariants, which will be considered below, in
the following way:

^ma i&05La ,

^ma imb j&05Labd i j1LaLb ,
~3.2!

^ma imb jmgk&05Labgd i jk1LabLgd i j1LbgLad jk

1LgaLbdki1LaLbLg ,

etc., whered i j , d i jk , etc., are the site Kronecker symbols
equal to 1 for all site indices coinciding with each other and
to zero in all other cases. For the one-site averages
( i5 j5k5•••) ~3.2! reduces to the well-known representa-
tion of moments through semi-invariants, generalized for a
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multiple-component case. In the graphical language
~see Fig. 1! the decomposition~3.2! corresponds to all pos-
sible groupings of small circles~spin components! into oval
blocks ~cumulant averages!. The circles coming fromH int
~the ‘‘inner’’ circles! are connected pairwise by the wavy
interaction lines representing the quantityhabJi j in ~1.1!. In
diagram expressions summations over site indicesi and
component indicesa of inner circles are carried out. One
should not take into account disconnected~unlinked! dia-
grams @i.e., those containing disconnected parts with no
‘‘outer’’ circles belonging toA in ~3.1!#, since these dia-
grams are compensated for by the expansion of the partition
function Z in the denominator of~3.1!. Consideration of
combinatorial numbers shows that each diagram contains the
factor 1/ns , wherens is the number of symmetry group ele-
ments of a diagram. The symmetry operations do not con-
cern outer circles, which serve as a distinguishable ‘‘root’’ to
build up more complicated or renormalized diagrams. Such
combinatorial factors are present, in particular, in the formu-
las ~3.15! and ~3.16!. For practical calculations it is usually
more convenient to use the Fourier representation and to
calculate integrals over the Brillouin zone rather than lattice
sums. As due to the Kronecker symbols in~3.2! lattice sums
are subject to the constraint that the coordinates of the circles
belonging to the same block coincide with each other, in the
Fourier representation the sum of wave vectors coming to or
going out of any block along interaction lines is zero. The
cumulant spin averages in~3.2! can be obtained by differen-
tiating the generating functionL(j) over appropriate com-
ponents of the dimensionless fieldj[bH:42

La1a2•••ap
~j!5

]pL~j!

]ja1
]ja2

•••]jap

, L~j!5 lnZ0~j!,

~3.3!

wherej[uju,

Z0~j!5const3j2~D/221!I D/221~j! ~3.4!

is the partition function of aD-component classical spin, and
I n(j) is the modified Bessel function. A similar technique
was applied by Lu¨sher and Weisz20 to generate HTSE’s for a

more generaln-componentf4 model. For several lowest-
order cumulants differentiation in~3.3! leads to the following
expressions:

La~j!5B0~j!ja5B~j!ja /j,

Lab~j!5B0~j!dab1B1~j!jajb , ~3.5!

Labg~j!5B1~j!~jadbg1jbdga1jgdab!1B2~j!jajbjg ,

Labgd~j!5B13P ~dabdgd!1B26P ~jajbdgd!

1B3jajbjgjd ,

wheredab is the spin component Kronecker symbol,P is
the symmetrization operator,

Bn~j![S 1j ]

]j D n B~j!

j
, ~3.6!

and

B~j!5dL~j!/dj5I D/2~j!/I D/221~j! ~3.7!

is the Langevin function ofD-component classical spins,
which can be expressed through elementary functions for
odd values ofD:

B~j!5H tanh~j! D51,

coth~j!21/j D53,

1/@coth~j!21/j#23/j, D55,

~3.8!

etc. The small- and large-argument expansions of the Lange-
vin functionB(j) have the form

B~j!>
j

D
2

j3

D2~D12!
1

2j5

D3~D12!~D14!

2
5j7

D4~D12!~D14!~D16! S 11
2

5~D12! D1•••

~3.9!

and

B~j!>12
D21

2j
1

~D21!~D23!

8j2
1•••, ~3.10!

respectively. One can see from~3.9! that the functions
Bn(j), Eq. ~3.6!, are all finite at j50: B0(0)51/D,
B1(0)522/@D2(D12)#, B2516/@D3(D12)(D14)#, etc.
Accordingly, the spin cumulantsL

•••

in ~3.5! with an even
number of coinsiding indices are given in this case by their
first terms:

Laa5B0~0!, Laabb5B1~0!~112dab!, ~3.11!

etc., whereas all other cumulants turn to zero. At large argu-
ments from~3.6! and~3.10! follows Bn(j)}j2(112n). In this
limit all terms of ~3.5! yield comparable contributions into
L
•••

, and ak-spin cumulant decays generally asLa1a2 ..ak
}j2(k21). If, however, the fieldj is directed along some
axis z, then in the cumulant averages containingz compo-
nents of spins the leading terms can cancel each other. In

FIG. 1. Self-consistent Gaussian approximation~SCGA! for
classical spin systems.~a! and~c! Block summations for the renor-
malized magnetization and pair spin cumulant averages;~b! Dyson
equation for the renormalized interaction line.
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particular, the two-spin cumulantLab in ~3.5!, which plays a
big role in the following, can be rewritten explicitly as

Lab~j!5
B~j!

j S dab2
jajb

j2 D1B8~j!
jajb

j2
. ~3.12!

For j5jez this expression simplifies toLzz5B8(j) and
Laa5B(j)/j (aÞz). Now from ~3.10! one can see that, for
j@1, Lzz}j22, whereasLaa}j21.

The simplification of spin cumulants forj5jez men-
tioned above takes place in the unrenormalized diagrams
generated initially by the expansion of~3.1! in powers of
H int since there is only one nonzero component of the mo-
lecular field: jz5j5b(H1mJ0). The complete form of
spin cumulants~3.5!, ~3.12! is needed, however, for the con-
struction of the SCGA, which allows for both longitudinal
and transversefluctuations of the molecular field. The latter
is the essense of the diagram technique for the multiple-
component classical spin systems presented here. In the Ising
case the classical spin diagram technique coincides with the
‘‘Ising part’’ of the standard quantum SDT~Refs. 38,39,51!
and can be used with Brillouin functionsBS of a general spin
S. In the Refs. 39,51 the reader can find more technical
details concerning the construction of the SDT for Ising sys-
tems, which play the same role in the present classical SDT.

Before proceeding to the construction of the SCGA we
should make a remark about the numerical calculation of the
generalized Langevin functionB(j) ~3.7! for arbitrary D.
One can see from~3.8! that for D.1 the functionB(j)
contains terms divergent atj→0, althoughB(j) itself is well
behaved. This hampers numerical calculations, and the situ-
ation is aggravated for the derivativeB8(j) and for the func-
tionsBn(j) ~3.6! entering the spin cumulants~3.5!, as well
as for higher spin dimensionalitiesD. The best way of cal-
culatingB(j) is based on using thebackwardrecursion re-
lation with respect toD:

B~D,j!5
j

D1jB~D12,j!
, ~3.13!

which can be derived from~3.7! and the three-term recursion
relation for the modified Bessel functionsI n(j). This for-
mula yields the proper small-argument behavior of
B(D,j), Eq. ~3.9!, to leading order even for an inaccurate
B(D12,j), and the proper behavior atj@1 to leading order
described by~3.10! can be guaranteed, if we choose the first
two terms of the large-D expansion52

B~j!> f ~x!1
1

D

x

11x2
f 2~x!1OS 1

D2D ,
x[2j/D, f ~x![

x

11~11x2!1/2
~3.14!

as an initial condition for the recurrence formula~3.13!. This
procedure proves to be extremely good: Already one appli-
cation of~3.13! yieldsB(j) with an accuracy not worse than
0.6% forD51, 0.35% forD52, and 0.25% forD53 in the
whole range ofj, and the process converges fast with the
increase of the iterations number.

The self-consistent Gaussian approximation consists in
taking into accountpair correlations of the molecular field

acting on a given spin from its neighbors, which implies the
Gaussian statistics of molecular field fluctuations. The corre-
sponding diagram sequence is represented in Fig. 1 and is
equivalent to the following closed system of nonlinear equa-
tions for magnetizationm[^mz& and the normalized second
momentsl a[b2s2a/2! @cf. ~2.3! and~2.5!# of the molecular
field fluctuations:

m5L̃z,

l a5
1

2!
v0E dq

~2p!d
habJq

12L̃aahabJq
, a51,2, . . . ,D.

~3.15!

Here the spin cumulantsL̃
•••

renormalized by Gaussian fluc-
tuations of the molecular field are given according to Figs.
1~a!, 1~c! by the series

L̃
•••

5L
•••

1 (
a51

D

L
•••aal a1 (

a,b51

D S 12dab

1
1

2!
dabDL

•••aabbl al b1•••, ~3.16!

where the ‘‘bare’’ spin cumulantsL
•••

are given by~3.3! or
~3.5!. This series describing the influence of pair-correlated
fluctuations of different components of the molecular field
can be rewritten as

L̃
•••

5 )
a51

D

(
na50

`
1

na!
S l a ]2

]ja
2 D na

L
•••

~j!

5expF (
a51

D

l a
]2

]ja
2 GL

•••
~j!. ~3.17!

Such exponential differential operators were considered by
Horwitz and Callen35 for the Ising model. A generalization
of their results for the multiple-component case yields the
closed formula

L̃
•••

5
1

pD/2E dDre2r2L
•••

~z!, ~3.18!

wherez is the spreaded molecular field given by

z[b~H1mJ0!ez12(
a51

D

l a
1/2r aea , ~3.19!

ea is the unit vector in the directiona, and the integration in
~3.18! is performed with respect to theD-component vector
variable r[$r a%. It can be seen that the renormalized spin
cumulantsL̃

•••

are functions ofm and all l a . In the Ising
case the SCGA system of equations~3.15! reduces to the one
obtained by Horwitz and Callen,35 which was described in
the preceding section, since here onlyl z in ~3.15! is nonzero
and L̃zz5B̃8(m,l z). The expression forl a in ~3.15! differs
from ~2.3! in that a zero term of the type*dqJq;Jii50 was
added for convenience, which allows one to formulate the
diagram technique in terms of renormalized interactions.

The number of unknown variables in the nonlinear system
of SCGA equations~3.15! is for a general form of the Hamil-
tonian ~1.1! equal toD11. Thus, for example, for a com-
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pletely anisotropic Heisenberg model there are four unknown
variablesm, l x , l y , andl z . In a more complicated case with
the magnetic field transverse to the ordering axisz, which is
not considered here, one should take into account different
magnetization components and nondiagonal moments of mo-
lecular field fluctuations,l ab with aÞb, and the number of
unknowns increases considerably. Similar takes place for an-
tiferromagnets in magnetic field and for multiple-sublattice
structures. Of a practical interest is the case when in the
Hamiltonian ~1.1! there are groups of equivalent transverse
(aÞz) spin components having anisotropy factorsha , and
hence the momentsl a , equal to each other. In this case the
number of unknowns in~3.15! diminishes; denoting such a
group with the indexx and introducingr x

2[(aPxr a
2 andnx

as the number of equivalent components in the group, one
can simplify theD-dimensional integral in~3.18! with the
help of the identity

1

pnx/2E dnxr aPxe
2r x

2
•••5

2

G~nx/2!
E drxr x

nx21e2r x
2
•••

~3.20!

and make a replacementja
2⇒jx

2/nx , wherejx[2l x
1/2r x and

l x[ l aPx , in the pair spin cumulantsLaa, Eq. ~3.12!, enter-
ing ~3.18!. Thus, in particular, for the O(n) model all com-
ponents withaÞz are equivalent, and there are three inde-
pendent variables in the SCGA equations~3.15!: m, l z , and
l x5 l a . The Gaussian integrals~3.18! reduce in this case to
two-dimensional ones overr z and r x , and in ~3.20!
nx5n21. Above Tc in the absence of a magnetic field
m50 and all spin components are equivalent; there is only
one unknown variablel z5 l a in ~3.15!, and the intergal
L̃aa, Eq. ~3.18!, becomes one dimensional.

The SCGA system of equations~3.15! determines the
equation of state of a magnetic system, i.e., the magnetiza-
tion as a function of temperature and magnetic field,
m(T,H). The caloric properties of a magnetic system in the
SCGA can also be determined. In particular, the energy of a
spin systemU[ ^H& can be obtained by averaging the
Hamiltonian~1.1! and using the expression for the renormal-
ized spin correlation functionSaa(q) determined by~2.3! in
the form

Saa~q!5
L̃aa

12L̃aahabJq
~3.21!

@cf. ~2.6!#. Using the definition ofl a in ~3.15! one gets

U52Hm2
1

2
J0m

22
1

2
v0E dq

~2p!d
Jq(

a51

D

haSaa~q!

52Hm2
1

2
J0m

22T(
a51

D

l aL̃aa ; ~3.22!

i.e., the energy can be obtained as a by-product of the nu-
merical solution of the SCGA equations~3.15!. Now the heat
capacityCH5]U(T,H)/]T can be obtained by the differen-
tion of ~3.22!. The most strong result is, however, that for the
free energyF52TlnZ of a system. Its diagrammatic deri-
vation, which was accomplished by Horwitz and Callen35 for
the Ising model, is a rather complicated combinatorial prob-

lem, since the free-energy diagrams have no distinguishable
outer circles, which could be used as a root for building
renormalized diagrams. But the generalization of the corre-
sponding results for the multiple-component case is straight-
forward and yields

bF5
b

2
J0m

22L̃2 (
a51

D

La1 (
a51

D

l aL̃aa , ~3.23!

whereL̃ is the generating function of spin cumulants~3.3!
renormalized by Gaussian fluctuations@see~3.18!# and

La52
1

2!
v0E dq

~2p!d
ln~12L̃aahabJq!. ~3.24!

Considering in ~3.23! m and l a as free parameters, i.e.,
F5F(T,H,m,$ l a%), and using the identities
]L̃

•••

/]ja5L̃
•••a and ]L̃

•••

/] l a5L̃
•••aa , one can obtain

the SCGA system of equations~3.15! from the requirement
that F be stationary with respect tom and l a : ]F/]m50
and]F/] l a50. The expression for the energyU, Eq. ~3.22!,
can be also obtained from~3.23!: U5](bF)/]b.

IV. ANALYTICAL PROPERTIES OF THE SCGA AND
THE SPHERICAL LIMIT

In this section the behavior of the SCGA solution for
classical spin systems is analyzed in the regions of high and
low temperatures, in the spherical limit (D→`), and in the
vicinity of the critical point. It is convenient to choose the
dimensionless temperature variableu[T/Tc

MFA , where
Tc
MFA5J0 /D, and the dimensionless magnetic field

h[H/J0 , and susceptibilityx̃[J0x. Then the~unspreaded!
molecular field in ~3.19! is written as
jz5b(H1mJ0)5(D/u)(h1m), and the quantitiesl a, Eq.
~3.15!, transform to

l a5
D

2uG̃a
@P~haG̃a!21#, G̃a[

D

u
L̃aa ,

P~X![v0E dq

~2p!d
1

12Xlq
, ~4.1!

wherelq[Jq /J0 satisfies 12lq}k
2 for a0k!1; a0 is the

lattice spacing. The lattice integralP(X) has the following
properties:

P~X!>H 11X2/z, X!1,

W2c~dX!1/2, dX!1, d53,

W2cdXln~c8/dX!, dX!1, d54,

~4.2!

wheredX[12X, z is the number of equivalent neighbors,
andW ~the Watson integral! andc,c8 are lattice-dependent
constants. For low-dimensional systems (d51,2) the func-
tion P(X) diverges forX→1; for d>5 the leading term of
the expansion ofP(X) aboutX51 is nonsingular. The val-
ues of the Watson integralW are 1.344 66 for the fcc lattice
(z512), 1.393 20 for the bcc lattice (z58), 1.516 39 for the
simple cubic~sc! lattice (z56), 1.792 88 for the diamond
lattice (z54), 1.239 65 for thed54 hypercubic~hpc! lattice
(z58), and 1.156 31 for thed55 hpc one (z510). For
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hypecubic lattices withd@1 one hasW>111/z with
z52d. The differenceW21 measures in the SCGA devia-
tions from the molecular field behavior and tends to zero if
z→`.

In the high-temperature region (u@1) the second mo-
ments of the molecular field fluctuations,s2a, Eq. ~2.3!,
should be temperature independent and, correspondingly,
l a[b2s2a/2!}u22. In this case the renormalized spin cu-
mulantsL̃

•••

, Eq. ~3.18!, are given forl a!1 by the expan-
sion ~3.16!, where the first order terms written out corre-
spond to diagrams with one integration loop in Figs. 1~a!,
1~c!. Now using~3.11! one can calculate the quantityG̃a in
~4.1! in the lowest order:G̃a>u21!1. Then from~4.1! and
~4.2! follows l a>ha

2D/(2u2z)!1, which justifies the initial
assumption. The latter can be used to find a more accurate
value ofG̃a up tou23 from the first two terms of~3.16! and
~3.11!. This allows one to determine the reduced susceptibili-
ties ux̃a(q)5DSaa(q) @see ~3.21!# in the SCGA up to
u23. For a particular case of then-D model (ha51 for a
<n andha50 for a.n) we write down thecompleteex-
pression for the longitudinal (a<n) reduced susceptibility
up to u23, which can be obtained with the help of the clas-
sical SDT without using the SCGA and has the form

ux̃ i>11
1

u
1S 12

1

z

n12

D12D 1

u2

1S 12
2

z

n12

D12
1

2

z2
n12

~D12!2D 1

u3
1•••. ~4.3!

Here all terms except the last one are contained in the SCGA,
the latter being relatively small as 1/@z(D12)#. Such a situ-
ation takes place in the high-temperature range for other
thermodynamic functions@e.g., the energy~3.22!#, too, as
well as in higher orders of a perturbation theory — correc-
tions to the SCGA are determined by two small parameters
1/z and 1/(D12). It can be seen from~4.3! that for the
models withn5D the dependence ofx i on D comes prac-
tically only from these correction terms and remains weak
not too close toTc . In the SCGA theD dependence of the
reduced susceptibility of a spin system, as well as of its
energy, appears only in the orderu27 due to the last
1/(D12)-correction term in~3.9! and is very weak. For this
reason also the values ofTc determined in the SCGA from
the divergence of susceptibility are for the models with
n5D very close to each other and to the one of the spherical
model. From the expression~4.3! it can be seen that in the
case of a large number of spin components the susceptibility
developes in a natural way in powers of 1/D and not of
1/n, as was mentioned in the Introduction. The same is valid
for other thermodynamic quantities as well.

In the low-temperature region (u!1) the expansion of
thermodynamic quantities in powers ofu is more compli-
cated, because the longitudinal and transverse spin compo-
nents are nonequivalent and all expressions depend on mag-
netization, which should be calculated self-consistently in
each order. The small-fluctuation expansion~3.16! is valid in
the rangeu!1, too, since the high-order spin cumulants di-
minish as appropriate powers of 1/j}u @see the discussion
after ~3.11!#. In the zero-field case, starting from

j5(D/u)m>D/u, one can estimate different terms of the
low-temperature expansion~3.16! for the magnetization
m5L̃z . One gets (aÞz)

Lz5B>12~D21!/~2j!>12u~D21!/~2D !,

Laa5B/j>u/D, ~4.4!

Lzz5B8>~D21!/~2j2!>u2~D21!/~2D2!,

Lzaa5~]/]j!~B/j!>2u2/D2, Lzzz>u3~D21!/D3,

etc., the first of these formulas being the MFA expression for
magnetizationm up to first order inu. Now it can be seen
that in the low-temperature rangeG̃z>(D/u)Lzz}u, ~4.1!
yields l z;const, and the contribution of longitudinal fluctua-
tions intom given byLzzzl z in ~3.16! is small asu3. The
leading contribution tom comes from transverse fluctuations
~spin waves!, since G̃a>1 and l a>@P(ha)21#D/
(2u)@1. For the absolute value of the second moment of the
molecular field fluctuations,s2a52T2l a, Eq. ~2.3!, the latter
meanss2a}u!1. Now the magnetizationm is given for
u!1 by the formula

m>12
u

2D(
a52

D

P~ha! ~4.5!

of the lowest-order spin-wave theory, where the sum in-
cludes only transverse components. For then-D model~4.5!
simplifies to42

m>12
u

2D
@~n21!W1D2n# ~4.6!

@see~4.2!#. Such a linear dependence replaces for classical
ferromagnets the quantum Bloch lawm>12au3/2.

In the next order of a perturbation theory inu!1 with the
help of ~3.16! and ~4.5! one gets

G̃a>12~u/D !@P~ha!21#, ~4.7!

which in the caseha51 leads for three-dimensional systems
due to~4.2! to the singular negative contribution tol a, Eq.
~4.1!, and, as a consequence, to apositive contribution to
magnetization}u3/2 in addition to the leading negative linear
term in ~4.5!. The latter is an artifact of the SCGA related to
the unbalanced renormalization of spin-spin correlation func-
tions. This is, however, an effect of the next order of mag-
nitude, which is suppressed by the magnetic field or in the
anisotropic caseha,1.

In the spherical limitD→`, the SCGA becomes exact,
since all other more complicated diagrams die out42,52 as at
least 1/D. The Langevin function~3.7! simplifies in this limit
to the first term of the formula~3.14!. The expression for the
square of thespreaded value of the scaled argument
x52z/D in ~3.18! reads

x25F2u ~h1m!1
4

D
l z
1/2r zG21 16

D2(
a52

D

l ar a
2 . ~4.8!

Since, according to~4.1!, l a,z}D, the spreading of thez
component of the molecular field in~4.8! can be neglected,
whereas the transverse contributions to~4.8!, each of them is
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small as 1/D, are essential due to their number of the order
D. The renormalized cumulantsL̃aa (aÞz) entering the
SCGA equations~3.15! are in the limitD→` all equal to
each other and given according to~3.5! by L̃aa>B̃0 , so that
we can introduceG5(D/u)B̃0 . The Gaussian integrals
~3.18! are forD@1 easily calculated by applying the identity

1

p1/2E
2`

`

dxe2x2f ~ax2!> f ~a/2!, a!1, ~4.9!

for an arbitrary functionf successivelyD21 times. Thus,
the integration leads simply to the replacementr a

2⇒1/2 in
~4.8!, and SCGA equations~3.15! reduce after some trans-
formations to

m

h
5

G

12G
~4.10!

and

12m25G
u

D(
a52

D

P~haG!. ~4.11!

Comparing these results with~4.5! one can identify the
spherical model as a model which is described in the whole
temperature range by an effective lowest-order spin-wave
theory. In a zero magnetic field (h50) the magnetization
m disappears aboveTc , and the quantityG, which can be
determined from~4.11!, increases from 0 to 1 with lowering
temperature from̀ to Tc . Below Tc for h50 from ~4.10!
follows G51, andm2 determined from~4.11! is a linear
function of temperature. It turns to zero at the critical point

uc
~`!5F 1D(

a52

D

P~ha!G21

, ~4.12!

which reduces to the well-known result43 uc
(`)51/W in the

isotropic caseha51 considered by Stanley.2 The corre-
sponding result for then-D model (n/D5const<1) was
obtained in Ref. 42. The general formula~4.12!, as well as
the whole equation of state~4.10!, ~4.11!, shows a crossover
to MFA behavior in the caseha→0, hz51, i.e., for the
‘‘spherical Ising model’’; see~1.1!. In the anisotropic case,
i.e., for anyha,1, the singularity of the functionP(X) at
X51 @see~4.2!# is suppressed, and the critical indices of the
spherical model coincide with those of the MFA.

Now we proceed to the investigation of the behavior of
the SCGA solution for classical spin systems in the critical
region. The first step is to search forTc as a point at which
the longitudinal correlation function given by~3.21! with
a5z diverges atq50 for h50. This leads to the condition
G̃z[(D/u)L̃zz51, which in the isotropic case (ha51) with
the use of the symmetrization~3.20! can be transformed to
the following nonlinear equation foruc :

42

uc5
2D

G~D/2!
E
0

`

dr r D21e2r2F~2l c
1/2r !,

l c5D~W21!/~2uc!, ~4.13!

where@cf. ~3.12!#

F~j!5S 12
1

D D B~j!

j
1
B8~j!

D
. ~4.14!

In the particular caseD51 this equation reduces to the one
obtained by Horwitz and Callen35 for the Ising model. As
was stressed above by the analysis of the susceptibility
HTSE, Eq.~4.3!, this uc should be very close to that of the
spherical model, the latter underestimatingTc in ~5–8!% for
three-dimensional systems. Equation~4.13! can be solved
analytically in two limiting cases:~i! for D@1 using the
1/D expansion results of Ref. 52 and~ii ! forW21!1, when
the spreading of molecular field fluctuations in~4.13! is
small and the deviation from the spherical result is due to the
last correction term in~3.9!. In these limiting casesuc is
given by

uc>
1

W
3H 12

2

D

~W21!3

W~2W21!2
, D@1,

12
2

D12
~W21!3, W21!1.

~4.15!

Considering the values of the Watson integralsW listed after
~4.2!, one can see that, indeed, the correction terms in~4.15!
are typically small.

An attempt to simplify the SCGA equations~3.15! about
such a defined transition temperatureuc and to calculate the
spontaneous magnetizationm just belowuc shows thatuc is
actually the lower spinodal boundary of a fictitious first order
phase transition occurring in the SCGA due to its inaccuracy
in a close critical region; i.e., the magnetization jumps to a
finite value by crossinguc from above. This instability is due
to the singular behavior of the functionP(X) nearX51 @see
~4.2!#. The decrease ofG̃z from 1 belowuc related to the
increase of magnetization leads to a sharp decrease of mo-
lecular field fluctuations and hence to a further increase of
magnetization and so on. Analytically the absence of a con-
tinuous solutionm(u) belowuc can be shown the most eas-
ily for the Ising model, where in the vicinity ofuc the SCGA
simplifies to a system of equations

dG̃z1~2D/u!B̃-d l z52@~D/u!B̃821#,

dG̃z1@1/~D12!#~D/u!3B̃-m250. ~4.16!

Here the spread derivativesB̃@n# are calculated with
l zc5D(W21)/(2uc) and d l z is determined as
d l z5 l zc2D@P(12dG̃z)21#/@2u(12dG̃z)#.0. Below uc
the right part of the first of Eqs.~4.16! is positive, and this
equation has no solution since the negative singular term
with d l z (B̃-,0) dominates over the positive one with
dG̃z . This is the case for lattice dimensionsd53,4; for d
>5 the situation depends on the numerical factors in~4.16!,
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and if ~4.16! has a solution, then the MFA behavior of the
spontaneous magnetization with the critical indexb51/2 is
reproduced. The latter is consistent with the renormalization
group analysis of Larkin and Khmelnitski.47

The breakdown of the SCGA in the close critical region
shows that this approximation is more sensitive to critical
effects than other closed-form approximations always repro-
ducing the MFA behavior. In the next section it will be
shown that theupperspinodal boundary of the phase transi-
tion determined from the temperature dependence of magne-
tization yields a much better approximation forTc than the
lower one. It is so because the inverse susceptibility turns to
zero atTc with zero derivative, and even small inaccuracies
in determination of the susceptibility can exert a great effect
on determination ofTc . On the contrary, inaccuracies in
magnetization produce a smaller effect onTc due to the in-
finite slope ofm at Tc .

V. NUMERICAL RESULTS AND COMPARISONS

The SCGA system of nonlinear equations~3.15! was
solved for different lattices and different types of the spin
Hamiltonan~1.1! by the Newton-Raphson iterative method.
For the fcc, bcc, sc, and diamond lattices the analytic expres-
sions for the lattice integralsP(X), Eq. ~4.1!, given by
Joyce53 were used. For hypercubic latticesP(X) was re-
duced to one-dimensional integrals with the modified Bessel
function I 0(x) and calculated numerically. In other cases
P(X) was calculated by a direct integration over the Bril-
louin zone (kx,y,zP@0,p#) with the use of three-dimensional
product quadratures composed of five- or ten-point one-
dimensional Gaussian quadratures. The accuracy of these
quadratures is so high that one does not need to analytically
separate the divergence of the integrand in~4.1! at q→0 for
X51. The Gaussian integrals~3.18! were calculated for the
Ising model with the use of five-, six-, or eight-point Gauss-
Hermite quadratures, for thex-y, plane rotator, and com-
pletely anisotropic Heisenberg models, with the use of the
corresponding product quadratures. For the models with
equivalent spin components, such as O(n) with n>3, the
symmetrized integrals of the type~3.20! were approximated
by five-, six- or eight-point generalized Gauss-Hermite
quadratures corresponding to the weight function
uxuaexp(2x2) with a51,2,3 ~Ref. 54! anda52,4,6,8~Ref.
55!. The latter was sufficient to calculate O(n) models up to
n510. The relative accuracy of calculations is not worse
than 0.1%, which exceeds the intrinsic accuracy of the
SCGA.

The results represented in Table I, Fig. 2, and Fig. 3 show
that the deviations from the MFA due to molecular field
fluctuations increase with the inverse of the number of inter-
acting neighbors,z, or, rather, with the differenceW21 @see
~4.2!# depending on the lattice structure. Among the three-
dimensional lattices considered here the extreme cases are
the diamond lattice (z54) and the equivalent neighbor
fcc-sc lattice (z518) with 12 face-centered-cubic nearest
neighbors and 6 simple cubic next nearest ones. For the
O(n) models (n5D) the deviations of the magnetization
m from the MFA solutions increase with the increase ofn
~see Fig. 2!: I ~1/2! ⇒ plane rotator⇒ H(`) ⇒ spherical
model, whereas the susceptibilitiesx̃ are practically the same

for all models. The latter could be expected from the analysis
of the susceptibility HTSE, Eq.~4.3!, and of the lower spin-
odal boundary of the SCGA equations~4.13!. For then-D
models with increasingn andD5const @I (`) ⇒ classical
x-y ⇒ H(`)# the deviations from the MFA are increasing
stronger than for O(n) ones. This feature is in accordance
with the functional form of the susceptibility HTSE Eq.
~4.3!.

The temperature dependences of magnetization and other
thermodynamic quantities calculated with increasing tem-
perature are smooth functions ofT up to some ‘‘upper spin-
odal boundary’’ after which in a zero magnetic field the
magnetization jumps to zero. This feature results from the
inaccuracy of the SCGA in a close critical region and was
discussed in more detail at the end of Sec. IV. The disconti-
nuities of thermodynamic functions in the SCGA diminish
with the increase of the number of interacting neighbors,z,
and the number of spin components,D, as well as with the
decrease of the number of interacting spin components,n.
For the quantities which are less singular at the critical point
~e.g., the energy; see Ref. 44! these discontinuities are essen-

FIG. 2. Temperature dependences of spontaneous magnetization
and zero-field susceptibility of the O(n) models on the sc lattice in
the SCGA.

FIG. 3. Temperature dependences of spontaneous magnetization
and zero-field susceptibility of theS51/2 Ising model on
d-dimensional hypercubic lattices in the SCGA, compared with
Padéapproximations of Refs. 6,8 ford53.
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tially weaker than the corresponding deviations from the
MFA described by the SCGA.

As was mentioned at the end of the preceding section, the
SCGA upper spinodal boundary should provide a good esti-
mate of phase transition temperatures of three-dimensional
systems. Indeed, the corresponding values ofuc[Tc /Tc

MFA

listed in Table I differ from the ones obtained by HTSE and

other accurate methods generally by~1–0.5!%, which was
never achieved by some other closed-form approximation.
One can see that for the models with higher spin dimension-
alities D, the accordance with HTSE results is better than
that for the most critical for the SCGAS51/2 Ising model
(n5D51). One can see from Table I, that the SCGA yields
for the O(n) models withn,10 more accurate results than

TABLE I. The values of reduced Curie temperatureuc[Tc /Tc
MFA calculated for different classical spin models on different lattices from

the upper spinodal boundary of the SCGA equations. The results of other methods are placed below for comparison.

Model ~Lattice! fcc bcc sc Diamond fcc-sc bcc-sc hpc~4d) hpc ~5d)
(z512! (z58! (z56! (z54! (z518! (z514! (z58! (z510!

0~1! 0.808 0.785 0.744 0.673 0.854 0.824 0.812 0.864
~Ising, S51/2! 0.816 17a 0.793 85a 0.751 72a 0.676 0b 0.860 9c 0.830 7c 0.8340 1d 0.8769 4d

0.816 20e 0.751 00e

0.816 28f

O~2! 0.797 0.773 0.729 0.651 0.847 0.813 0.810 0.864
~plane rotator! 0.803 3g 0.780 2g 0.734 3g 0.831 9h 0.876 2h

0.780 19i 0.733 89i

0.733 2j

O~3! 0.790 0.766 0.719 0.637 0.842 0.807 0.808 0.864
~Heisenberg, 0.794k 0.771k 0.723k 0.850 5k 0.814 5k 0.829 2h 0.874 7h

S5`! 0.794 3l 0.770 5l 0.721 6l

0.770 32i 0.721 48i

O~4! 0.785 0.761 0.712 0.628 0.839 0.803 0.808 0.864
0.763 06i 0.712 39i 0.827 5h 0.873 7h

0.712 3m 0.821 0n,o

O~5! 0.781 0.757 0.707 0.621 0.837 0.799 0.807 0.864
0.798p 0.771p 0.728p 0.826 2h 0.873 0h

O~6! 0.778 0.754 0.704 0.616 0.835 0.797 0.807 0.864
0.789p 0.762p 0.717p 0.825 3h 0.872 4h

0.752 95i 0.700 09i

O~8! 0.774 0.749 0.698 0.608 0.832 0.793 0.807 0.864
0.778p 0.751p 0.702p 0.824 0h 0.871 7h

0.746 40i 0.692 21i

O~10! 0.771 0.746 0.694 0.603 0.830 0.790 0.806 0.864
0.771p 0.745p 0.694p 0.824 0h 0.871 1h

0.741 84i 0.686 80i

O(`) 0.743 68 0.717 77 0.659 46 0.557 76 0.813 97 0.766 56 0.806 68 0.864 82
~spherical! 0.815 0h 0.867 4h

Ising,S51 0.844 0.826 0.790 0.727 0.883 0.857 0.853 0.896
0.851q 0.798 93e

0.852 46e

0.852 64f

Ising 0.845 0.827 0.792 0.730 0.883 0.858 0.854 0.896
(n51 D52!

Ising,S5` 0.868 0.853 0.822 0.767 0.902 0.879 0.880 0.916
(n51 D53! 0.874q 0.831 95e

0.876 82e

0.876 98f

x-y, S5` 0.828 0.808 0.768 0.699 0.871 0.842 0.843 0.890
(n52 D53! 0.835 4g 0.815 6g 0.776 0g

aReference 9.
bReference 56.
cReference 57.
dReference 45.
eReference 12.
fReference 11.

gReference 17.
hReference 46.
iReference 21.
jReference 24.
kReference 14.
lReference 16.

mReference 31.
nReference 25.
oReference 19.
pReference 50.
qReference 7.
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the 1/n expansion performed for the fcc, bcc, and sc lattices
by Okabe and Masutani,50 who calculated numerically the
analytical expressions~the double integrals over the Bril-
louin zone! obtained by Abe and Hikami.48,49

The models with higher lattice dimensionalitiesd are very
important for testing the present approximation, which al-
lows for Gaussian, i.e., noninteracting, fluctuations in the
system. The interaction between fluctuations dies out in the
spherical limitD→`, as well as ford>4.47 Thus, one can
expect that the SCGA yields rather accurate results ford
>4, whereas the deviations from the MFA described by the
SCGA are still appreciable. Indeed, from Fig. 3 one can see
that for theI ~1/2! model on thed54 hypercubic lattice the
distance between upper and lower spinodal boundaries is
very small. The latter is due to the fact that the singularity of
the functionP(X) at X→1 @see~4.2!# is only logarithmic.
The discontinuity of magnetization atTc is for the I ~1/2!
model still substantial, but decreases quickly with the in-
crease of the number of spin componentsD. For d>5 dis-
continuities of thermodynamic functions in the SCGA disap-
pear. The value ofuc for the I ~1/2! model in d54
dimensions~see Table I! is over 2% less then the 1/d expan-
sion result of Fisher and Gaunt,45 and this discrepancy di-
minishes smoothly with the increase ofd. This can be seen
from the comparison with theuc values of Ref. 45 for
d55,6 and the recent high-accuracy results of Ref. 10 for
d56,7. For d56,7 the SCGA yields theuc values 0.894
@0.902 27,~Ref. 45! 0.902 90~Ref. 10!# and 0.913@0.919 22,
~Ref. 10!# respectively. These values ofuc are also very
close to those for the spherical model~see Table I!. With the
increase of the spin dimensionality the accuracy of SCGA
also increases. In Table I the SCGA results foruc for d54,5
are compared with those of the general-n 1/d expansion by
Gerber and Fisher46 terminated by the termd25. Unfortu-
nately the terminated 1/d expansion becomes less accurate
for larger values ofn and does not reproduce, unlike SCGA,
the exact results for the spherical model. It should be also
noted that for the O(n) models withd>4 the results for
uc approach with the increase ofn those for the spherical
model much faster than in three dimensions. This means that
the coefficient in the 1/n expansion foruc in Refs. 48–50
should be very small in high dimensions.

The values of the energy of three-dimensional spin sys-
tems on the upper spinodal boundary of the SCGA equations
are also rather close to the series ones. The calculated values
of the normalized energyŨ(uc)[U(uc)/U(0) of the
S51/2 Ising model are 0.276~0.25!, 0.298 ~0.27!, 0.365
~0.33! for the fcc, bcc, and sc lattices, where the HTSE re-
sults are placed in brackets for comparison. For the classical
Heisenberg model the normalized critical energies are given
by 0.237~0.245!, 0.261~0.265!, 0.315~0.325!, respectively.
For systems with higher lattice dimensionalitiesd, the ener-
gies are close to the ones for the spherical model,
Ũ(uc)512uc, especially for systems with many spin com-
ponents. The normalized critical energies in the SCGA of the
I ~1/2!, H(`), and spherical models, respectively, are 0.225,
0.198, 0.1933 ford54 and 0.143, 0.135, 0.1352 ford55.

In a magnetic fieldHÞ0, the SCGA becomes more
accurate, because the system is driven away from the critical
point (0,Tc), where the SCGA breaks down. The latter

leads to the disappearance of the fictitious first-order phase
transition in the SCGA starting from the fields, which are
much smaller than the exchange interaction@i.e., for
h[H/J0!1#. For systems with a continuous spin symmetry
~e.g., for the isotropic Heisenberg model! the magnetic field
introduces a gap in the spin-wave spectrum and suppresses
the singular contribution to magnetization}u3/2 @see ~4.7!
and the following discussion#, which improves the situation
in the whole region belowTc . A comparison of the SCGA
results for the magnetization in magnetic fieldm(H,T) of the
classical Heisenberg model on the sc lattice with the MC-
simulation results of Binder and Mu¨ller-Krumbhaar58 is rep-
resented in Fig. 4.

By application of the SCGA to experimentally investi-
gated magnetic systems one should restrict oneself to the
ones with large spin values (S@1) and to the temperature
rangeT*Tc /S, where the whole Brillouin zone is populated
by spin waves and the system behaves classically. An at-
tempt to apply the SCGA to theS51/2 Heisenberg model
using the Brillouin function withS51/2 @i.e., the Langevin
function ~3.7! with D51#, which corresponds formally to
the consideration of the model withn53 andD51, yields
for the sc lattice, in addition to the wrong linear behavior of
the magnetization at low temperatures, the phase transition
point uc50.592, being considerably higher than the HTSE
value 0.560.14 On the other hand, for systems withS@1
quantum effects in the range of elevated temperatures are
determined by a small parameter38 1/(zS) and can be par-
tially taken into account in the SCGA by using the Brillouin
function BS . In typical cases this introduces errors that are
smaller than the intrinsic inaccuracy of the SCGA. The
Heisenberg ferromagnets EuO (Tc. 69 K! and EuS (Tc.
16.6 K! having S57/2 are, perhaps, the most convenient
materials for testing the SCGA, and they were extensively
studied with NMR~Ref. 59! and neutron scattering60 meth-
ods. EuO and EuS form fcc lattices, and the exchange inter-
action extends up to the next nearest sc neighbors. The con-
tribution of dipole-dipole interaction~DDI! to Tc

MFA is61

1.7% for EuO and 4.9% for EuS. With the use of HTSE’s it
was shown62 that DDI suppresses to some extent the reduced
transition temperaturesuc[Tc /Tc

MFA due to its competing

FIG. 4. Temperature dependencies of magnetization in magnetic
field m(H,T) for the classical Heisenberg model in the SCGA,
compared with MC simulations of Ref. 58.
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nature. In the SCGA rigorous taking into account DDI re-
quires allowing for correlations between different compo-
nents of molecular field fluctuations,l ab with aÞb, which
leads to the complication of the formalism and goes beyond
the scope of this article. Instead, for a comparison with ex-
perimental data on EuO and EuS we take DDI into account
in a simplified manner, only through the renormalization of
Tc
MFA mentioned above. The results of numerical calculations

for EuO represented in Fig. 5 show the same accordance of
the SCGA results with the neutron scattering data of Ref. 60
as its accordance with the HTSE and MC results demon-
strated above. For EuS, due to the negative value of the nnn
exchange constantJ2 , and hence the reduction of the effec-
tive number of interacting neighbors, the level of fluctuations
is greater than in EuO, the Watson integralW is close to that
for the sc lattice, and the deviation of the results from the
MFA, as well as the discrepancy between the SCGA and
experimental results, is somewhat larger.

VI. DISCUSSION

The self-consistent Gaussian approximation~SCGA! for
classical spin systems described here is a unified theory ap-
plicable to a wide class of lattice models investigated cur-
rently by different groups with different methods. The SCGA
takes into account fluctuations of the molecular field in the
simplest way and is sensitive to the lattice dimensionality
and structure and to the form of spin interactions. The SCGA
yields rather accurate values of the field-dependent magneti-
zationm(H,T) and other thermodynamic functions in the
whole plane (H,T) excluding the vicinity of the critical point
(0,Tc). In particular, the values ofTc themselves can be
determined in the SCGA with an accuracy better than 1%,
which makes it already important for practical applications
to new lattice and spin Hamiltonian types.

Indeed, the SCGA is more flexible~although less accu-
rate! than series expansions, and consideration of new sub-
stances reduces in the simplest case to some modifications of
the lattice integralP(X), Eq. ~4.1!, and of the Gaussian in-
tegrals~3.18!. This can be exemplified by studying the cross-
over between fcc, sc, and bcc lattices varying the relative
strength of the first and second nearest neighbor interactions
J2 /J1 , or the crossover between Ising, Heisenberg, andx-y

models varying anisotropy constants. Having solved the
SCGA system of equations~3.15!, one obtains all quantities
of interest as a result of a single calculation. More serious
generalizations of the SCGA are required for consideration
of systems with DDI or with a transverse field, where non-
diagonal correlations of molecular field fluctuations should
be taken into account. For systems with many interacting
sublattices the number of variables in the SCGA equations
increases quadratically with the number of sublattices, and
calculations become cumbersome.

Consideration of ferromagnets with a transverse field or
antiferromagnets in field in the SCGA can be avoided, if one
is interested only in zero-field susceptibilities. The zero-field
ferro- and antiferromagnetic susceptibilities can be calcu-
lated through the correlation functions of the simplest ferro-
magnetic model with the longitudinal field. This requires,
however, summation of some new diagram sequences and is
the subject of a separate work.

Possible improvements of the SCGA should include non-
Ornstein-Zernike effects in spin correlation functions~CF’s!
and non-Gaussian fluctuations of the molecular field. The
former seems to be more important, since using Ornstein-
Zernike CF’s leads, due to singularities of the lattice integral
P(X), Eq. ~4.2!, to the overestimation of fluctuational effects
for three-dimensional systems, which results in the break-
down of the SCGA in the critical region. The diagram tech-
nique for classical spin systems used for the construction of
the SCGA is undoubtfully the best instrument for its further
development, because it allows summation of different, more
complicated diagram series than those considered here. All
other perturbative schemes that do not take explicitly the
advantage of classical properties of a system fail to repro-
duce the SCGA, although the physical picture of Gaussian
fluctuations of the molecular field is quite transparent.

One more possible application of the classical spin dia-
gram technique is that to low-dimensional and finite-size
systems, where the level of fluctuations is large and an im-
provement of the SCGA is necessary. The first step in this
direction was the calculation of the energy and susceptibility
of low-dimensional antiferromagnets in the whole tempera-
ture interval52 and also for a nonzero magnetic field63 with
the use of a 1/D expansion. By this calculation, the results of
which are rather good even forD53, some diagram series
going beyond the SCGA were summed up. This can, in prin-
ciple, show how to improve the SCGA in a nonperturbative
way with respect toD.

The SCGA can be generalized also for inhomogeneous
states of magnetics. It turns out, however, that interesting
results can be obtained already in the limitD→`, where the
model ~1.1! is analytically soluble butnot equivalent to the
standard spherical model of Berlin and Kac43 in inhomoge-
neous situations, even in the isotropic case. The anisotropic
spherical model defined by~1.1! in the limit D→` was al-
ready applied to domain walls64 and to thin films.65

And, finally, of a principal importance would be to con-
struct the dynamical part of the classical spin diagram tech-
nique and to try to generalize the SCGA for dynamics.
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FIG. 5. Temperature dependences of magnetization and zero-
field susceptibility of EuO in the SCGA, compared with the neutron
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