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Self-consistent Gaussian approximation for classical spin systems: Thermodynamics
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The self-consistent Gaussian approximati&CGA) for classical spin systems described by a completely
anisotropicD-component vector model is proposed, which takes into account fluctuations of the molecular
field and thus is a next step beyond the molecular field approximation. The SCGA is sensitive to the lattice
dimension and structure and to the form of spin interactions and yields rather accurate values of the field-
dependent magnetization(H,T) and other thermodynamic functions in the whole plaHgT) excluding the
vicinity of the critical point (0T.), where the SCGA breaks down, showing a first-order phase transition. The
values of T, themselves can be determined in the SCGA with an accuracy better than 1% for actual three-
dimensional structures. At low and high temperatures the SCGA recovers the leading terms of the spin-wave
theory, the low- and high-temperature series expansions, respectively. The accuracy of the SCGA increases
with the increase of the spin dimensibn and in the limitD — oo the exact solution for the spherical model is
recovered.

l. INTRODUCTION calculatiorf* of the HTSE series for the reduced susceptibil-
ity Tx(T) of the O() models up to §/T)*° can be consid-
The models considering spin as a classical vector variablered. Another very efficient numerical method competing
of a fixed length are the most studied ones in the theory ofvith series expansions is based on Monte CAW€) simu-
temperature-induced phase transitions on a lattice. The refations (see, e.g., Refs. 22,10An extraction of accurate re-
son for this is that quantum effects that are always present igults for infinite systems from the simulation data for the
real magnetic systems and can make calculations more intriattices with a finite linear dimensioh is based usually on
cate play, however, a secondary role(@nd above T, and finite-size scaling® An alternative approach also using
do not change the critical behavior. Classical models are alsgimulations is the chiral perturbation theory in powers of
a good approximation to magnetics with large spin valuesl/L (see, e.g., Ref. 24 and references therein
S, such as, e.g., the Heisenberg systems EuO and EuS hav- Lately the ideas of the statistical theory of magnetism
ing S=7/2. Generally, for systems described by the Heisentogether with the methods of calculation have penetrated into
berg modelH(S) with S>1 quantum effects become irrel- the field theory. In particular, the lattice-regularized scalar
evant in the temperature rande=T./S, where the whole Higgs model in the chiral limit, which can be identified with
Brillouin zone is populated by spin waves and their occupathe four-component classical Heisenberg modet)@n four
tion numbers become large. Additionally, the arbitr&y- dimensions® was studied with the HTSERefs. 19,20 and
Ising modell(S) without a transverse field can be treatedMC simulatiorf>?® methods. Recently Rajagopal and
with the same methods as classical ones, because no spWilczel’”-?®have related the two-flavor quantum chromody-
commutators appear and quantum effects are trivial. An adaamics(QCD) to the Q4) vector model in three dimensions,
vantage of classical vector models is that they can be formuthe gauge coupling constagt determining the temperature
lated for an arbitrary number of spin components, as waand the quark masm, being proportional to the applied
done by Stanley-3 Such a generalization is important since magnetic field. This has initiated an extensive numerical
some magnetics with a complicated structure possess an akork (see Refs. 29—31 and references therein
der parameter wittn>3 symmetric componentsee Refs. Although HTSE’s produce the series coefficients usually
4, 5, and references thergin with the help of such diagram methods as the linked cluster
In the absence of an analytical solution to the phase tranexpansionLCE),3?*3the results are represented as a sum of
sition problem in three dimensions such numerical methodsbare” (unrenormalizeyl diagrams, each proportional to
as low-temperature series expansiofisTSE’'s) for the  some power ofl/ T. Alternatively, there were attempts start-
1(1/20 modef and high-temperature series expansionsing from the early years to sum up some “important” infi-
(HTSE’9 for the 1(1/2),"7101(S),12 H(S), 1 H(),*>1®  nite diagrams series to obtain a closed-form equation for a
and classical plane rotator andy modelst’ as well as for magnetic system in terms of renormalized diagrams, which
the generaln-component vector model @J,*'°?!were  should be a good analytical approximation in the whole tem-
successfully applied for an accurate calculation of thermodyperature range. It was shown, in particular, how the mean
namic quantities in a wide temperature range including thdield approximation(MFA) can be obtained diagrammati-
vicinity of T.. It gave the results for the critical indices of cally (see, e.g., Refs. 34,R5A further renormalization of
magnetic systems and favored the creation of scaling andiagrams for the Ising model by Horwitz and Cafleted to
universality concepts. With the development of computa-an improvement of the MFA taking into account self-
tional facilities and algorithms the series methods were pereonsistently Gaussian fluctuations of the molecular field.
manently improved. As the latest benchmark the recenThis important work remained seemingly unappreciated,
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since the resulting equations were not numerically investieter components and determines the universality class of a
gated in a satisfactory way and the real accuracy of the apsystem. The total number of spin componebtsenters only
proximation was not recognized. Only much later was thissuch nonuniversal quantities &s. It is clear that the expan-
self-consistent Gaussian approximati@CGA) for the Ising  sion of the critical indices for the large number of compo-
systems independently rediscovered and numerically anaents can be only the ri/expansion. To the contrary, we
lyzed in Ref. 36. shall see below that the absolute values of thermodynamic
The methods developed by Horwitz and Caffefor the quantities are naturally developed in powers ob 1for
Ising model were generalized for the quantum Heisenber@s-1, which is not automatically the same as Ifbr n
model in the subsequent paper, Ref. 37. This first version ofD.
the spin diagram techniquésDT) had not, however, suc-  In Ref. 42 the self-consistent Gaussian approximation by
ceeded in formulating a Gaussian approximation for theHorwitz and Callen was generalized for systems with con-
Heisenberg systems, since due to quantum effects transvergguous spin symmetry and it was shown that in the limit
spin cumulants acquire a time dependence and cannot I« the SCGA becomes exact and yields the solution of
renormalized in a desirable way. the spherical model, whereas all other diagrams die out as at
Later a similar diagram technique was formulated indedeast 1D. Accordingly, the SCGA becomes more accurate
pendently in Refs. 38,39 and further developed in Refsfor high spin dimension® and works better for théi (=)
40,41. Although the SDT allows one to write down diagram-model (1=D=3) than for thel (1/2) one (=D=1). Nu-
matic perturbation series for all temperatures in a regulamerical calculations fot(S) (Ref. 39 andH(x) (Ref. 44
way and recovers the known spin-wave and LTSE results ifnodels have shown that for different three-dimensional lat-
the ordered state, as well as the HTSE ones aligyesum-  tice structures the SCGA vyields the magnetizationand
mation of nontrivial diagram sequences in all orders of agther thermodynamic quantities in the whole temperature
perturbation theoryapart from the usual cases of Dyson andrange excluding the close vicinity df. with an overall ac-
vertex equationsseems to be impossible. Due to the use ofcyracy about 1%, including the determinationTofitself.
the Wick theorem for the calculation of averages of trans- |n Refs. 36,42,44 the SCGA was only briefly described,
verse spin components the number and complexity of diagnd its analytical properties need to be explained in more
grams increase dramatically with each order and most ofietail. Principally important is to test the SCGA on models
diagrams are divergent at>T. and compensate each other wjith |attice dimensionalityd=4 (hypecubic latticesand to
only in final expressions. The latter is not the case only folcompare its results with those of thedéxpansiof™*® and
Ising systems, where there are no problems with the nomyC calculations® In this case the SCGA should be more
commutativity of different spin components and quantum ef-accurate, since nontrivial effects of the fluctuation interaction
fects are trivial. In the classical lim&—, which is of a (i.e., non-Gaussian effe()tdie out?” In view of app]ica’[ions
primary importance in the theory of temperature-inducedn the field theory mentioned above it is important to extend
phase transitions, the quantum SDT does not essentially sinda|culations to Of) models o=D) with n=4 and to make
plify. a comparison with the h/expansiorf®-%° Some other tasks
In Ref. 42 an alternative diagram technique for classicahre to perform a numerical solution of the SCGA equations
spin systems was proposed, which explicitly takes advantag@ the case of a nonzero magnetic field, to make a compari-
of their classical properties and is much simpler than theson with the experimental data on Eu chalcogenides, and to
quantum SDT. It allows, in particular, calculation of thermo- consider the lattices with the next nearest neightrom)
dynamic quantities of a system without dealing with its dy-interactions. The solution of the problems mentioned above,
namics. In the static case all spin components can be treate@ well as a detailed statement of the SCGA, is the aim of the
similarly, and the consideration can be carried out for a genpresent article.
eralized completely anisotropic model Bfcomponent clas- In Sec. Il a simple derivation and analysis of the SCGA
sical spin vectors|(|=1) on a lattice: for the Ising systems without using diagrams is given. In
Sec. Il the classical spin diagram technique and construction
of the SCGA for a general Hamiltonidf.1) are described in
more detail. In Sec. IV the analytic properties of the SCGA
in different limiting cases are investigated, including the
If the exchange interaction,J;; is isotropic, i.e., all an-  spherical limit, where the known results are generalized for
isotropy factorszn,=1, this model reduces to the one pio- the anisotropic Hamiltoniaf.1). In Sec. V the results of the
neered by Stanley;®> who proved that it is in the limit  numerical solution of the SCGA equations for different clas-
D—o equivalent to the exactly soluble spherical matfel. sical spin models on different lattices are presented and com-
An important particular case of the general model) is the  pared with the available HTSE, LTSE, MC-simulation, and
so-calledn-D model#? where n<D spin components are 1/D expansion results, as well as with the experimental data
coupled by the exchange interaction with an equal strengtbn EuO and EusS. In Sec. VI some further applications of the
and the resb —n ones are “free”(i.e., 7,=1 foras<nand SCGA and the possibilities of its generalization are dis-
7,=0 for a>n). The n-D model contains as particular cussed.
cases the&s=1/2 Ising modell (1/2), for n=D=1, the clas-
sical Ising modell(«) for n=1, D=3, the plane rotator
model for n=D=2, the classicalx-y model for n=2,
D=3, and the classical Heisenberg modedi(«) for If in (1.1 the magnetic fielcH is directed along the or-
n=D=3. The variablen is the number of the order param- dering axisz (7,=1), then thez component of the molecu-
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lar field H; acting on the spin on a siteis given by where&,=B(H+mJ) andl,=p%c,,/2. To obtain a closed
system of equations, one can calculate the spin-spin correla-
tion functionS, (q) in (2.3 in the simplest Ornstein-Zernike

Hzi=H+2 Jijm,;. (2.2 approximation:
j
o . . . B'(&;.12)
The MFA consists in neglecting fluctuationstaf, which in S, Q)= - , (2.6)
the spatially homogeneous case leads to the Curie-Weiss 1-B'(&.12)Bq
equation for the magnetizatian= (m,): where the derivative of the Langevin functidd,=dB/d¢,
is also renormalized by Gaussian fluctuations analogously to
m=B(B(H,)), (Hpy=H+mJ,, (2.2 (2.5. This system of nonlinear equations forandl, given

by (2.5), (2.6), and(2.3) with =2z was obtained in a very
whereB(¢) is the Langevin function3=1/T, andJ, is the  technical manner by Horwitz and Calférand was solved
zero Fourier component of the exchange interaction. Th@umerically in Ref. 36. Note that the integral over the Bril-
second moment of fluctuations of the component of the louin zones,,, Eq.(2.3), is taken into account if2.5) in all
molecular fieldH;, which were neglected in the MFA, can orders of a perturbation theory. Such a self-consistent Gauss-
be expressed as ian approximation is, like all closed-form approximations in
the theory of phase transitions, not a rigorous expansion in
some small parameter. It is an approach taking into account
Taa= 2 Jijdij nA(AMAm,, ) some physically significant diagram structures self-
i’ consistently in all orders of a perturbation theory and repro-
dq , ducing the leading orders in the perturbatively treatable re-
Zvof (2—7T)c{(7/a~3q) Seal(d), (2.3  gionsT<T,andT>T,. In the next section the SCGA will
be derived for a general form of the spin-vector Hamiltonian

whereAm=m-—(m,)e,, S..(q) is the spin-spin correlation (1.2) with the use of the classical spin diagram technique.

function, v, is the unit cell volume, and is the lattice di-
mensionality. If correlations of spins on different lattice sites IIl. CLASSICAL SPIN DIAGRAM TECHNIQUE
j,j' are neglected, then for systems with nearest neighbor AND THE SCGA

(equivalent neighbgrinteractions the integral over the Bril- This diagram technique can be considered as a simplified
louin zone in(2.3) is proportional to 17 and small for alarge  form of the quantum linked cluster expansibror of the
number of equivalent neighbom This is justified in the  guantum SDT3° making use of the classical properties of
temperature rang&>T,, but for T~ T, the correlations in  spin vectors. A perturbative expansion of the thermal aver-
(2.3) should be taken into account. For low-dimensional SYSage of any quantityZ characterizing a classical spin system
tems @d=1,2) the lattice integral i1i2.3) diverges with low- (e.g., .#=m,) can be obtained by rewritingl.1) as
ering the temperature af=0, which invalidates the MFA. T= g+ Him, Where 7, is the MFA Hamiltonian with

For three-dimensional systems the magnitude of the molecyne molecular fieldH,) determined by(2.2), and expanding
lar field fluctuationso, remains finite and not very large, the expression

which is reflected by the shift of the actual valuesTgfin

about 30% downwards frofit” depending on the lattice o1 N ’

structure and the details of spin interactions(inl). The ()= gf _Hl dm;. 7 exp(— B7), |mj|=1, (3.1
latter makes feasible an improvement of the MFAdie 3 =

dimensions, which consists in taking into account moleculain powers of 7%;,. The integration in(3.1) is carried out
field fluctuations describednly by the set of their second with respect to the orientations of tH2-dimensional unit
momentso,, . This means that the averages of an arbitraryvectorsm; on each of the totaN lattice sites. Averages of
number of molecular field components decay pairwiseyarious spin vector components on various lattice sites with
which is equivalent to the use of th@aussiandistribution  the Hamiltonian.7Z, can be expressed through spin cumu-
function for the molecular field fluctuations. For the Ising lants, or semi-invariants, which will be considered below, in
model (,=0 for a# z) this leads, in particular, to the ex- the following way:

pression for magnetizatiom being given by a Langevin

function with a spreaded argument: (Myi)o=Ay,
1 . HZ, (MeiMgo=A g8+ A Apg,
m= (2wczz)1;2fwdHZ'f'eXp( - 202) (MMM 0= A g, B+ Augh 5 +Aﬁ7Aa5jk(3'2)
XB[B({(H)+Hzp)] (2.9 T A Apdiit AgAgh,,

etc., wheres;;, &, etc., are the site Kronecker symbols
equal to 1 for all site indices coinciding with each other and
1 to zero in all other cases. For the one-site averages
= * _ 52 i=i=k=... - -
m=B(¢&,,|,)= _mf dz e ZB(¢,+21Y%), (2.5 (.| i=k ) (3.2 reduces to 'the vyell known representa
T e tion of moments through semi-invariants, generalized for a

or
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FIG. 1. Self-consistent Gaussian approximati@&CGA) for
classical spin systemg&) and(c) Block summations for the renor-
malized magnetization and pair spin cumulant averag<Dyson
equation for the renormalized interaction line.

multiple-component case. In the graphical
(see Fig. 1the decompositiori3.2) corresponds to all pos-
sible groupings of small circlespin componenjsinto oval
blocks (cumulant averagesThe circles coming from7,
(the “inner” circles) are connected pairwise by the wavy
interaction lines representing the quantity8J;; in (1.1). In
diagram expressions summations over site indicesnd
component indicese of inner circles are carried out. One
should not take into account disconnectg@ohlinked dia-

grams [i.e., those containing disconnected parts with no

“outer” circles belonging to.Z in (3.1)], since these dia-

grams are compensated for by the expansion of the partition

function £ in the denominator of3.1). Consideration of
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more generah-component$* model. For several lowest-
order cumulants differentiation i{3.3) leads to the following
expressions:

A (H=Bo(§)E,=B(§ELE,
Aop(§)=Bo(€)8uptBi1(§)Enép, (3.5
A op () =B1(E) (405, T ESyat Ey0ap) +BaE)EaEREy,

A opys(€) =B13A(8,56,5) + B26AE,E50,)
+ B3§a§,8§'y§51

where §,4 is the spin component Kronecker symbet, is
the symmetrization operator,

languageand

_(19\"B&)
Bu(£)= M) = (3.6
B(&§)=dA(&§)/dé=1p(&)/1pp-1(&) (3.7

is the Langevin function oD-component classical spins,
which can be expressed through elementary functions for
odd values oD:

tanh( &) D=1,
coth(&)—1/¢ D=3,
1N coth(¢)—1/£]—-3/¢, D=5,

B(¢)= (3.8

etc. The small- and large-argument expansions of the Lange-

combinatorial numbers shows that each diagram contains thdn functionB(¢) have the form

factor 1hg, whereng is the number of symmetry group ele- £ 25

ments of a diagram. The symmetry operations do not con-g(¢)= = — > + =

cern outer circles, which serve as a distinguishable “root” to D D%D+2) D*D+2)(D+4)

build up more complicated or renormalized diagrams. Such 5¢7
D*D+2)(D+4)(D+6)

combinatorial factors are present, in particular, in the formu-
las (3.15 and(3.16. For practical calculations it is usually
more convenient to use the Fourier representation and to
calculate integrals over the Brillouin zone rather than lattice
sums. As due to the Kronecker symbolg(®2) lattice sums ~a@nd
are subject to the constraint that the coordinates of the circles
belonging to the same block coincide with each other, in the
Fourier representation the sum of wave vectors coming to or
going out of any block along interaction lines is zero. The
cumulant spin averages (8.2) can be obtained by differen-
tiating the generating functioA (&) over appropriate com-
ponents of the dimensionless fiefe: BH:*

1

F.o.

" 5D12)
3.9

D-1 (D-1)(D-3)
2¢ T 8

respectively. One can see froif3.9) that the functions
B,(¢), Eg. (3.6, are all finite at £=0: By(0)=1/D,
B,(0)=—-2[D?*D+2)], B,=16[{D3(D+2)(D+4)], etc.
Accordingly, the spin cumulanta ... in (3.5 with an even
number of coinsiding indices are given in this case by their

B(é)=1-

(3.10

dPA(£)

s LA —Ina first terms:
Mager el 0= 355 gg, MO=Zo(®),
(33) Aaa:BO(O)v AaaﬁB:Bl(o)(l+25aﬁ)a (311)
where¢=| & etc., whereas all other cumulants turn to zero. At large argu-
ments from(3.6) and(3.10) follows B,(&) <&~ (12 |n this
Zo(é)=constc ¢ P21 (&) (3.4 limit all terms of (3.5) yield comparable contributions into

A ..., and ak-spin cumulant decays generally A%laz--ak

is the partition function of &-component classical spin, and =&~ &=L If, however, the field¢ is directed along some
I,(€) is the modified Bessel function. A similar technique axis z, then in the cumulant averages containmgompo-
was applied by [sher and Weis? to generate HTSE’s fora nents of spins the leading terms can cancel each other. In
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particular, the two-spin cumulait,, ; in (3.5), which plays a  acting on a given spin from its neighbors, which implies the
big role in the following, can be rewritten explicitly as Gaussian statistics of molecular field fluctuations. The corre-
sponding diagram sequence is represented in Fig. 1 and is
B(§) £abp £aép

_ B , equivalent to the following closed system of nonlinear equa-
Aap(8)= £ (5“ﬁ & +B(§) P2 312 ions for magnetizatiom=(m;,) and the normalized second

td .= B%0,,/2! [cf. (2.3 and(2.5)] of th lecul
For &= ¢e, this expression simplifies ta\,,=B’(£) and :‘?ecl’énﬁgctuaatifngza [cf. (2.3 and(2.5)] of the molecular
A ,a=B(&)/ ¢ (a#2). Now from (3.10 one can see that, for '

&1, A& 2, whereash ,, <& L. m=A,,
The simplification of spin cumulants foé= e, men-
tioned above takes place in the unrenormalized diagrams 1 dq 7aBJq
generated initially by the expansion ¢.1) in powers of la=57v0 2m9 1=A, 7.3 @=12,...D
Fine SiNce there is only one nonzero component of the mo- ' aallalPq (3.15

lecular field: §,=¢é=B(H+mJy). The complete form of _

spin cumulant€3.5), (3.12 is needed, however, for the con- Here the spin cumulants. .. renormalized by Gaussian fluc-

struction of the SCGA, which allows for both longitudinal tuations of the molecular field are given according to Figs.

andtransversefluctuations of the molecular field. The latter 1(a), 1(c) by the series

is the essense of the diagram technique for the multiple-

component classical spin systems presented here. In the Ising

case the classical spin diagram technique coincides with the

“Ising part” of the standard quantum SD{Refs. 38,39,51

and can be used with Brillouin functiofs of a general spin

S. In the Refs. 39,51 the reader can find more technical +§5aﬁ)A-~aaﬁﬁl odpt oo (3.18

details concerning the construction of the SDT for Ising sys- _ _

tems, which play the same role in the present classical SDhere the “bare™ spin cumulantd ... are given by(3.3) or
Before proceeding to the construction of the SCGA we(3.5. T_h|s series describing the influence of palr—correlated

should make a remark about the numerical calculation of thductuations of different components of the molecular field

generalized Langevin functioB(&) (3.7) for arbitrary D. ~ Can be rewritten as

One can see fron3.8) that for D>1 the functionB(¢£)

D
K”.:A...‘F 2 A---aa|a+
a=1

@ 1

D
1-45,
) ’

D o n
contains terms divergent &0, althoughB(¢) itself is well A = H 2 i(| ‘9_2) aA )
behaved. This hampers numerical calculations, and the situ- T aZ1 =0 ng! “ﬁ§i
ation is aggravated for the derivatiB (¢) and for the func- b ,
tions B,,(£) (3.6) entering the spin cumulant8.5), as well B 2 | (9_ A 31
as for higher spin dimensionaliti€3. The best way of cal- —eX = “agi (8. (3.1
culatingB(¢) is based on using thieackwardrecursion re- o ] ]
lation with respect t®: Such exponential differential operators were considered by
Horwitz and Callef® for the Ising model. A generalization
£ of their results for the multiple-component case yields the
B(D,§)= D+éB(D+28)’ (313 closed formula

which can be derived fror(8.7) and the three-term recursion ~ 1 2
relation for the modified Bessel functions(&). This for- A-”:W_D’?f d®re™"A..(2), (3.18

mula yields the proper small-argument behavior of ] ] )
B(D,£), Eq. (3.9, to leading order even for an inaccurate WhereZ is the spreaded molecular field given by

B(D +2,£), and the proper behavior &1 to leading order D
described by3.10 can be guaranteed, if we choose the first — B(H+md)e +2 1Y% o 31
two terms of the larg® expansior? =A( b)e; ;1 @ e (319
1 1 e, is the unit vector in the directioa, and the integration in
BO=TX)+ 5 15 f2(x)+0 F) (3.18 is performed with respect to tH2-component vector

variabler={r,}. It can be seen that the renormalized spin
X cumulantsA. .. are functions ofm and alll,. In the Ising
x=2¢/D, f(x)= [ENEEvaL: (3.19 case the SCGA system of equatidBsl5) reduces to the one
obtained by Horwitz and Calleit, which was described in
as an initial condition for the recurrence form&13. This  the preceding section, since here ohlyn (3.19 is nonzero
procedure proves to be extremely good: Already one appliand A,,=B’(m,l,). The expression fof, in (3.195 differs
cation of(3.13 yields B(£) with an accuracy not worse than from (2.3) in that a zero term of the typedgJ,~J;; =0 was
0.6% forD=1, 0.35% forD=2, and 0.25% foD=3 inthe = added for convenience, which allows one to formulate the
whole range of¢, and the process converges fast with thediagram technique in terms of renormalized interactions.
increase of the iterations number. The number of unknown variables in the nonlinear system
The self-consistent Gaussian approximation consists inf SCGA equation$3.15 is for a general form of the Hamil-
taking into accounpair correlations of the molecular field tonian(1.1) equal toD+1. Thus, for example, for a com-
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pletely anisotropic Heisenberg model there are four unknowihem, since the free-energy diagrams have no distinguishable
variablesm, I, I, andl,. In a more complicated case with outer circles, which could be used as a root for building
the magnetic field transverse to the ordering axisvhich is  renormalized diagrams. But the generalization of the corre-
not considered here, one should take into account differergponding results for the multiple-component case is straight-
magnetization components and nondiagonal moments of mderward and yields

lecular field fluctuationsl,,; with a# g8, and the number of 5 5 5

unknowns increases considerably. Similar takes place for an- ~ ~

tiferromagnets in magnetic field and for multiple-sublattice BF= E‘]OmZ_A_azl La+;1 loAaas (323
structures. Of a practical interest is the case when in the -

Hamiltonian (1.1) there are groups of equivalent transversewhere A is the generating function of spin cumularig?3)
(a+#z) spin components having anisotropy factags, and  renormalized by Gaussian fluctuatioisee(3.18] and

hence the moments,, equal to each other. In this case the
number of unknowns ir§3.15 diminishes; denoting such a
group with the index and introducing2=3 ,_,r2 andn,

as the number of equivalent components in the group, on
can simplify theD-dimensional integral i(3.18 with the
help of the identity

1 dg ~
La‘_EUOJ 2myd N AwaaBly). (3.24

Eonsidering in(3.23 m and |, as free parameters, i.e.,
F=F(T,H,m{l.}), and using the identities
ON . [9€,=A. .., anddA. /il ,=A. ,,, one can obtain
1 . 2 2 . the SCGA system of equatiori8.15 from the requirement
Wf AP ex@ = T(nd2) dr,r,c e that F be stationary with respect tm andl,: JF/dm=0
X (3.20 anddF/dl ,=0. The expression for the enerty Eq. (3.22),
can be also obtained fro3.23: U= d(BF)/Jp.

and make a replaceme#f= £2/n,, where&,=21%, and

Ix=I4cx, in the pair spin cumulanta ,,, Eq.(3.12), enter- IV. ANALYTICAL PROPERTIES OF THE SCGA AND

ing (3.18. Thus, in particular, for the @) model all com- THE SPHERICAL LIMIT

ponents witha# z are equivalent, and there are three inde- ) ) ) )
pendent variables in the SCGA equatid8sl5: m, |,, and In this section the behavior of the SCGA solution for

|.=I,. The Gaussian integral8.18 reduce in this case to classical spin systems is analy;ed ip the regions of high and

two-dimensional ones over, and r., and in (3.20 IO_V\_/ t_emperature_s_, in the_ spherlcal Ilmﬁ)@oo), and in the

nc=n—1. Above T, in the absence of a magnetic field V|_C|n|ty _of the critical point. It is gonvementMtF(l choose the

m=0 and all spin components are equivalent; there is onllimensionless  temperature variablé=T/T;™", where

one unknown variabld, =1, in (3.19, and the intergal Tc =Jo/D, and the dimensionless magnetic field

A,., Eq.(3.18, becomes one dimensional. h=H/J,, and susceptibility=Jox. Then the(unspreaded
The SCGA system of equation®.15 determines the Mmolecular  field in (319 is  written  as

equation of state of a magnetic system, i.e., the magnetiz&==B8(H+mJ)=(D/6)(h+m), and the quantities,, Eq.

tion as a function of temperature and magnetic field,(3.19, transform to

m(T,H). The caloric properties of a magnetic system in the

SCGA can also be determined. In particular, the energy of a | :_[L_[p(n G )—1] G = EK

spin systemU= (.7%) can be obtained by averaging the “ 260G, e Y

Hamiltonian(1.1) and using the expression for the renormal-

ized spin correlation functio8,,(q) determined by2.3) in - dqg 1
the form P(X)=v, 2m® =Xy’ 4.9

aq

where\q=J,/J, satisfies 1—)\qock2 for agk<<1; a, is the

aa

Seal@)= (3.2)  lattice spacing. The lattice integr&(X) has the following
1_Aaa7’a:3‘-]q ieg:
properties:
f. (2.6)]. Using the definiti f,in (3.1 t
[cf. (2.6)]. Using the definition of , in (3.195 one gets 14 X2z, <1,
P(X)={ W—c(sX)*? oX<1, d=3, (4.2

U=-H 1J 2 1 J—dqui S
M= 20om = 2v0 | Zmyalag, TaSel W—coXIn(c'/8X), oX<1, d=4,
1 b where §X=1-X, z is the number of equivalent neighbors,
=—Hm-— §Jom2—T21 laAas (322 andW (the Watson integralandc,c’ are lattice-dependent
“ constants. For low-dimensional systents=(1,2) the func-
i.e., the energy can be obtained as a by-product of the ndion P(X) diverges forX—1; for d=5 the leading term of
merical solution of the SCGA equatiof@.15. Now the heat the expansion oP(X) aboutX=1 is nonsingular. The val-
capacityCp=dU(T,H)/dT can be obtained by the differen- ues of the Watson integr&lV are 1.344 66 for the fcc lattice
tion of (3.22. The most strong result is, however, that for the (z=12), 1.393 20 for the bcc lattice € 8), 1.516 39 for the
free energyF = —TInZ of a system. Its diagrammatic deri- simple cubic(sg lattice (z=6), 1.792 88 for the diamond
vation, which was accomplished by Horwitz and Caifdior  lattice (z=4), 1.239 65 for thel=4 hypercubidhpg lattice
the Ising model, is a rather complicated combinatorial prob{z=8), and 1.156 31 for thel=5 hpc one ¢=10). For
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hypecubic lattices withd>1 one hasW=1+1/z with &=(D/9)m=D/#, one can estimate different terms of the
z=2d. The differenceW—1 measures in the SCGA devia- low-temperature expansiori3.16 for the magnetization
tions from the molecular field behavior and tends to zero ifm=A,. One gets &+ 2)

Z—0,
In the high-temperature regiord%¥ 1) the second mo- A,=B=1-(D-1)/(2§)=1-6(D—-1)/(2D),

ments of the molecular field fluctuations,,, Eq. (2.3),

should be temperature independent and, correspondingly, A,,=BlE=0ID, 4.9

| ,=PB%0,,/21c 6~ 2. In this case the renormalized spin cu- o o o 5
mulantsA. .., Eq. (3.18, are given forl ,<1 by the expan- Azz=B'=(D~-1)/(26%)=6"(D—~1)/(2D%),

sion (3.16, where the first order terms written out corre- _ — p2In2 — 3 3

spond to diagrams with one integration loop in Figéa),l Azaa=(9106)(BI§)==0°ID%, Az °(D~1)/D%,

1(c). Now using(3.11) one can calculate the quanti@y, in etc., the first of these formulas being the MFA expression for
(4.1) in the lowest Order’éag 9~ 1<1. Then from(4.1) and magnetizatiorm up to first order ing. Now it can be seen
(4.2 follows | ,= 2D/(26°Z)<1, which justifies the initial that in the low-temperature rangg,=(D/6)A > 6, (4.1)
assumption. The latter can be used to find a more accurabéGldSlZ"“C()nSt, and the contribution of |Ongitudinal fluctua-
value ofG,, up to 2 from the first two terms of3.16 and  tions intom given by A;,J, in (3.16 is small as¢®. The
(3.11). This allows one to determine the reduced susceptibililéading contribution tan comes from transverse fluctuations
ties 6x,(q)=DS,.(q) [see (3.21)] in the SCGA up to (spin wavep since G,=1 and |,=[P(7,)—1]D/

6~ 2. For a particular case of the-D model (,=1 for a (26)> 1. For the absolute value of the second moment of the
<n and 7,=0 for a> n) we write down th&:omp|eteex_ molecular field fluctuation31-2a= 272 « EQ. (2.3), the latter
pression for the longitudinala<n) reduced susceptibility Meanso,,*#<1. Now the magnetizatiom is given for

up to -3, which can be obtained with the help of the clas- #<1 by the formula

sical SDT without using the SCGA and has the form

D
0
m=1--52 P(7,) (4.5
9’”~1+1+ 1 1n+2)\1 a=2
XI= 0 zD+2] 6? of the lowest-order spin-wave theory, where the sum in-

cludes only transverse components. Forrkie model (4.5

2n+2 2 n+2 (43  simplifies t6?

E— +_
zD+2 7° (D+2)?

1
E_F”.'

+11

0
Here all terms except the last one are contained in the SCGA, m=1- E[(n_ DW+D-n] (4.6

the latter being relatively small as[Z(D +2)]. Such a situ- ) .
ation takes place in the high-temperature range for otheisee(4.2)]. Such a linear dependence replac3(/ezs for classical
thermodynamic function§e.g., the energy3.22], too, as ferromagnets the quantum Bloch lan=1-a6"*.
well as in higher orders of a perturbation theory — correc- N the next order of a perturbation theorydr< 1 with the
tions to the SCGA are determined by two small parameter§elP 0f (3.16 and (4.5 one gets
1/z and 1/O+2). It can be seen fronf4.3) that for the ~
models withn=D the dependence ofj on D comes prac- G,=1-(0/D)[P(7.)~1], 4.7
tically only from these correction terms and remains weakyhich in the casey,=1 leads for three-dimensional systems
not too close tal. In the SCGA theD dependence of the due to(4.2) to the singular negative contribution tg, Eg.
reduced susceptibility of a spin system, as well as of it54.1), and, as a consequence, tgpasitive contribution to
energy, appears only in the ordeér’ due to the last magnetization #*2in addition to the leading negative linear
1/(D+ 2)-correction term ir(3.9) and is very weak. For this term in(4.5). The latter is an artifact of the SCGA related to
reason also the values @f, determined in the SCGA from the unbalanced renormalization of spin-spin correlation func-
the divergence of susceptibility are for the models withtions. This is, however, an effect of the next order of mag-
n=D very close to each other and to the one of the sphericatitude, which is suppressed by the magnetic field or in the
model. From the expressid@.3) it can be seen that in the anisotropic casey,<1.
case of a large number of spin components the susceptibility In the spherical limitD—o, the SCGA becomes exact,
developes in a natural way in powers ofDland not of  since all other more complicated diagrams die*dtitas at
1/n, as was mentioned in the Introduction. The same is valideast 1D. The Langevin functioit3.7) simplifies in this limit
for other thermodynamic quantities as well. to the first term of the formul&3.14). The expression for the

In the low-temperature regiond1) the expansion of square of thespreadedvalue of the scaled argument
thermodynamic quantities in powers éfis more compli- x=2¢/D in (3.18 reads
cated, because the longitudinal and transverse spin compo-
nents are nonequivalent and all expressions depend on mag- , |2 1o 2 162 5
netization, which should be calculated self-consistently in x'=|g(h+m+ 5127, +§ZZ lale. (49
each order. The small-fluctuation expans{8riL6) is valid in “
the ranged<1, too, since the high-order spin cumulants di- Since, according ta4.1), |, ,<D, the spreading of the
minish as appropriate powers ofé¥ 6 [see the discussion component of the molecular field i@#.8) can be neglected,
after (3.10]. In the zero-field case, starting from whereas the transverse contributiong4d), each of them is
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small as 1D, are essential due to their number of the order

~ /
D. The renormalized cumulant,, (a#2z) entering the Oc= F(DIZ)J dr rP-le ’F(21Y7),
SCGA equationg3.19 are in the limitD—c all equal to
each other and given according(®5) by Aaa_ Bo, so that

we can introduceG=(D/6)B,. The Gaussian integrals le=D(W—=1)/(26c), (4.13
(3.18 are forD>1 easily calculated by applying the identity where[cf. (3.12]
1)\B(§) B'(§)
1 (= =1 | =224 >
F?j dxe CH@xd)=f(al2), a<l, (4.9 F(&) (1 D) ¢ "Tb .14

In the particular cas® =1 this equation reduces to the one
obtained by Horwitz and Calléhfor the Ising model. As
was stressed above by the analysis of the susceptibility
HTSE, Eq.(4.3), this 6. should be very close to that of the
spherical model, the latter underestimatifgin (5—8% for
three-dimensional systems. Equatichl3 can be solved
analytically in two limiting cases(i) for D>1 using the

m G 1/D expansion results of Ref. 52 afid) for W—1<1, when
—=— (4.10  the spreading of molecular field fluctuations (4.13 is

h small and the deviation from the spherical result is due to the
last correction term in(3.9). In these limiting case9. is

for an arbitrary functionf successivelyD—1 times. Thus,
the integration leads simply to the replacemeiﬁ:llz in
(4.8), and SCGA equation3.15 reduce after some trans-
formations to

and given by
2 (W-1)3
62 -2 WL sy,
1-m?=G—=>, P(7,0). (4.10) 1 D W(2W-1)
Da=2 f.=—X (4.19
W 2
1- ——(W-1)%, W-1<1.

Comparing these results witth.5) one can identify the D+2
spherical model as a model which is described in the whol&onsidering the values of the Watson integidisted after
temperature range by an effective lowest-order spin-wave4.2), one can see that, indeed, the correction termd.it5
theory. In a zero magnetic fielch&0) the magnetization  are typically small.
m disappears abové&;, and the quantityG, which can be An attempt to simplify the SCGA equatiori3.15 about
determined fron(4.11), increases from 0 to 1 with lowering such a defined transition temperatueand to calculate the
temperature frome to T.. Below T; for h=0 from (4.10  spontaneous magnetizatiamjust below 6, shows that, is
follows G=1, andm?® determined from(4.11) is a linear  actually the lower spinodal boundary of a fictitious first order
function of temperature. It turns to zero at the critical point phase transition occurring in the SCGA due to its inaccuracy
in a close critical region; i.e., the magnetization jumps to a
finite value by crossing, from above. This instability is due
to the singular behavior of the functid?(X) nearX=1 [see
' (4.12 (4.2]. The decrease o6, from 1 below 6, related to the
increase of magnetization leads to a sharp decrease of mo-
) i) . lecular field fluctuations and hence to a further increase of
which reduces to the well-known restiltg; *=1W in the  \5gnetization and so on. Analytically the absence of a con-
isotropic casen,=1 considered by StanléyThe corre-  in ous solutiorm(#) below 6, can be shown the most eas-

sponding result for ther-D model (/D=cons&1) was i for the Ising model, where in the vicinity of, the SCGA
obtained in Ref. 42. The general formula 12, as well as simplifies to a system of equations

the whole equation of statd.10, (4.11), shows a crossover
to MFA behavior in the casey,—0, 7,=1, i.e., for the
“spherical Ising model”; se€1.1). In the anisotropic case,
i.e., for anyn,<1, the singularity of the functiofP(X) at
X=1 [see(4.2)] is suppressed, and the critical indices of the 8G,+[1/(D+2)](D/6)*B"m2=0. (4.16
spherical model coincide with those of the MFA.

Now we proceed to the investigation of the behavior ofHere the spread derivative8!" are calculated with
the SCGA solution for classical spin systems in the crltlcal|zc—D(W 1)/(26;)  and 61, is_ determined as
region. The first step is to search fog as a point at which  6l,=1,.—D[P(1-6G,) — 1]/[20(1 5G 21>0. Below 6.
the longitudinal correlation function given b§8.21) with the right part of the first of Eq94.16 is positive, and this
a=1z diverges ay=0 for h=0. This leads to the condition equation has no solution since the negative singular term

=(D/6)A,,=1, which in the isotropic casey,=1) with ~ with 51, (B”<0) dominates over the positive one with
the use of the symmetrizatiof3.20 can be transformed to 6G,. This is the case for lattice dimensiods-3,4; for d
the following nonlinear equation fof : *? =5 the situation depends on the numerical factor&ting),

-1

M‘{ 2 P(7,)

5G,+(2D/6)B" 8l,=2[(D/9)B' —1],
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and if (4.16 has a solution, then the MFA behavior of the m
spontaneous magnetization with the critical inggx 1/2 is 1
reproduced. The latter is consistent with the renormalization

group analysis of Larkin and Khmelnitski. 0.8 1
The breakdown of the SCGA in the close critical region 2

shows that this approximation is more sensitive to critical 0.6 3 1

effects than other closed-form approximations always repro- 4

ducing the MFA behavior. In the next section it will be

shown that thaupperspinodal boundary of the phase transi- 0-4 10

tion determined from the temperature dependence of magne- SCGA for O(n) models

tization yields a much better approximation f6¢ than the 021 on the s.c. lattice, 00 XA
lower one. It is so because the inverse susceptibility turns to n=1,2,3,4,10 and co

zero atT; with zero derivative, and even small inaccuracies 0 0.2 0.4 0.6 0.8 1
in determination of the susceptibility can exert a great effect T/TMFA

on determination ofT.. On the contrary, inaccuracies in
magnetization produce a smaller effect Bndue to the in-

- FIG. 2. Temperature dependences of spontaneous magnetization
finite slope ofm at T.. P P P 9

and zero-field susceptibility of the @ models on the sc lattice in
the SCGA.
V. NUMERICAL RESULTS AND COMPARISONS

The SCGA system of nonlinear equatiof.19 was o gl models. The latter could be expected from the analysis

solved for different lattices and different types of the spings e susceptibility HTSE, Eq4.3), and of the lower spin-
Hamiltonan(1.1) by the Newton-Raphson iterative method. o4z boundary of the SCGA equayltiom.13). For then-D

For the fcc, bee, sc, and diamond lattices the analytic express,ogels with increasing and D = const[I (=) = classical
sions Jor the lattice integral®(X), Eq. (4.1), given by v — ()] the deviations from the MFA are increasing
Joyce® were used. For hypercubic latticé¥(X) was re- stronger than for Q) ones. This feature is in accordance
duced to one-dimensional integrals with the modified Besseiih the functional form of the susceptibility HTSE Eq.
function 1o(x) and calculated numerically. In other cases 4 3

P(X) was calculated by a direct integration over the Bril- e temperature dependences of magnetization and other
louin zone k.,,,€[0,7]) with the use of three-dimensional thermodynamic quantities calculated with increasing tem-
product quadratures composed of five- or ten-point oneperatyre are smooth functions Bfup to some “upper spin-
dimensional Gaussian quadratures. The accuracy of theggg boundary” after which in a zero magnetic field the
quadratures is so high that one does not need to analyticallyagnetization jumps to zero. This feature results from the
separate the divergence of the integranédird) atq—0 for jnaccuracy of the SCGA in a close critical region and was
X=1. The Gaussian integra(8.18 were calculated for the gjiscyssed in more detail at the end of Sec. IV. The disconti-
Ising model with the use of five-, six-, or eight-point Gauss-njities of thermodynamic functions in the SCGA diminish
Hermite quadratures, for the-y, plane rotator, and com- yith the increase of the number of interacting neighbers,
pletely anisotropic Heisenberg models, with the use of thenq the number of spin componenis, as well as with the
corresponding product quadratures. For the models Withjocrease of the number of interacting spin components,

equivalent spin components, such asnpith n=3, the  pqr the quantities which are less singular at the critical point
symmetrized integrals of the typi8.20 were approximated (¢ g the energy; see Ref. Mifiese discontinuities are essen-
by five-, six- or eight-point generalized Gauss-Hermite

guadratures corresponding to the weight function

|x|*exp(—x?) with a=1,2,3 (Ref. 54 and a=2,4,6,8(Ref. L '
55). The latter was sufficient to calculate i(models up to
n=10. The relative accuracy of calculations is not worse 0.8 SCGA for I{1/2)-model:

than 0.1%, which exceeds the intrinsic accuracy of the hypercubic lattices,
SCGA. 0.6 4=3,4,5

The results represented in Table I, Fig. 2, and Fig. 3 show
that the deviations from the MFA due to molecular field 04l 3-d=3 3
fluctuations increase with the inverse of the number of inter- 4- g 2‘51 D
acting neighborsz, or, rather, with the differenc&/—1 [see p - Pade appr. ford =3 3
(4.2)] depending on the lattice structure. Among the three- 0.2} Circles:
dimensional lattices considered here the extreme cases are end-points of m(T)-curves
the diamqnd lattice z(=.4) and the equivalent 'neighbor 00 0.2 0.4 0.6 0.8 1 1.2
fcc-sc lattice ¢=18) with 12 face-centered-cubic nearest T/TMFA

neighbors and 6 simple cubic next nearest ones. For the
O(n) models (=D) the deviations of the magnetization  FiG. 3. Temperature dependences of spontaneous magnetization
m from the MFA solutions increase with the increasenof and zero-field susceptibility of theS=1/2 Ising model on

(see Fig. 2 1(1/2) = plane rotator= H(*) = spherical d-dimensional hypercubic lattices in the SCGA, compared with
model, whereas the susceptibilitigsare practically the same Padeapproximations of Refs. 6,8 fat= 3.
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TABLE I. The values of reduced Curie temperatlﬂ(ge&TC/TQ"FA calculated for different classical spin models on different lattices from
the upper spinodal boundary of the SCGA equations. The results of other methods are placed below for comparison.

Model (Lattice) fcc bcc sc Diamond fce-sc bce-sc hpid) hpc (5d)
(z=12 (z=98) (z=6) (z=49) (z=18) (z=19 (z=98) (z=10
0(1) 0.808 0.785 0.744 0.673 0.854 0.824 0.812 0.864
(Ising, S=1/2) 0.816 17 0.7938%8  0.75172 0.676 O 0.860 § 0.830 7 0.8340 1 0.8769 4
0.816 26 0.751 06
0.816 28
0oQ2) 0.797 0.773 0.729 0.651 0.847 0.813 0.810 0.864
(plane rotator 0.8033 0.780 2 0.734 3 0.831¢ 0.876 2
0.780 19 0.733 89
0.7332
0@3) 0.790 0.766 0.719 0.637 0.842 0.807 0.808 0.864
(Heisenberg, 0.7%4 0.77% 0.72% 0.850 & 0.814 & 0.829 2 0.874 7
S=w) 0.794 3 0.7705 0.7216
0.770 32 0.72148
0(4) 0.785 0.761 0.712 0.628 0.839 0.803 0.808 0.864
0.763 06 0.712 3% 0.827 8 0.8737
07123 0.8210°
o(5) 0.781 0.757 0.707 0.621 0.837 0.799 0.807 0.864
0.798 0.77P 0.728 0.826 & 0.873 0
0(6) 0.778 0.754 0.704 0.616 0.835 0.797 0.807 0.864
0.789 0.762 0.717 0.8253 0.872 4
0.752 9% 0.700 09
0(8) 0.774 0.749 0.698 0.608 0.832 0.793 0.807 0.864
0.778 0.75¥ 0.702 0.824 ¢ 0.871 7
0.746 40 0.692 21
O(10) 0.771 0.746 0.694 0.603 0.830 0.790 0.806 0.864
0.77P 0.74% 0.694 0.824 ¢ 0.871 1
0.741 84 0.686 80
O() 0.743 68 0.717 77 0.659 46 0.557 76 0.813 97 0.766 56 0.806 68 0.864 82
(spherical 0.815 ¢ 0.867 4
Ising, S=1 0.844 0.826 0.790 0.727 0.883 0.857 0.853 0.896
0.8510 0.798 93
0.852 46
0.852 64
Ising 0.845 0.827 0.792 0.730 0.883 0.858 0.854 0.896
(n=1D=2)
Ising, S= o 0.868 0.853 0.822 0.767 0.902 0.879 0.880 0.916
(n=1D=3) 0.874 0.831 95
0.876 82
0.876 98
X-y, S=oo 0.828 0.808 0.768 0.699 0.871 0.842 0.843 0.890
(n=2D=3) 0.8354 0.815 6 0.776 @

8Reference 9.

bReference 56.
‘Reference 57.
dReference 45.
®Reference 12.
fReference 11.

9Reference 17.
hReference 46.
iReference 21.
IReference 24.
kReference 14.
'Reference 16.

MReference 31.
"Reference 25.
%Reference 19.
PReference 50.
9Reference 7.

tially weaker than the corresponding deviations from theother accurate methods generally ty-0.5%, which was
never achieved by some other closed-form approximation.
As was mentioned at the end of the preceding section, th®ne can see that for the models with higher spin dimension-
SCGA upper spinodal boundary should provide a good estialities D, the accordance with HTSE results is better than
mate of phase transition temperatures of three-dimensionahat for the most critical for the SCG&=1/2 Ising model
(n=D=1). One can see from Table I, that the SCGA yields
listed in Table | differ from the ones obtained by HTSE andfor the O(n) models withn<<10 more accurate results than

MFA described by the SCGA.

systems. Indeed, the corresponding value®gf T /T
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the 1h expansion performed for the fcc, bec, and sc lattices 1
by Okabe and Masutanf, who calculated numerically the
analytical expressiongthe double integrals over the Bril-
louin zon@ obtained by Abe and Hikanff4°

The models with higher lattice dimensionalitiésire very
important for testing the present approximation, which al-
lows for Gaussian, i.e., noninteracting, fluctuations in the
system. The interaction between fluctuations dies out in theo.4 -
spherical limitD—o, as well as fod=4.%" Thus, one can
expect that the SCGA yields rather accurate resultsdfor  , |classical
=4, whereas the deviations from the MFA described by the Heisenberg model,
SCGA are still appreciable. Indeed, from Fig. 3 one can see Simple cubic lattice
that for thel (1/2) model on thed=4 hypercubic lattice the 0 ' '

SCGA and MC-simulations in field

m(T,H)
0.8 4

._.
o
Ay
X o+ D>
o000
WrE O

0.6

) X . 4 0.5 0.6 0.7 0.8 0.9 1
distance between upper and lower spinodal boundaries is 7,/THFA
very small. The latter is due to the fact that the singularity of
the functionP(X) at X—1 [see(4.2)] is only logarithmic. FIG. 4. Temperature dependencies of magnetization in magnetic

The discontinuity of magnetization &t, is for the 1(1/2) field m(H,T) for the classical Heisenberg model in the SCGA,
model still substantial, but decreases quickly with the in-compared with MC simulations of Ref. 58.
crease of the number of spin componebtsFor d=5 dis-
continuities of thermodynamic functions in the SCGA disap-leads to the disappearance of the fictitious first-order phase
pear. The value ofg, for the 1(1/2) model in d=4 transition in the SCGA starting from the fields, which are
dimensiongsee Table)lis over 2% less then thedexpan- much smaller than the exchange interactifie., for
sion result of Fisher and Gauftand this discrepancy di- h=H/Jy<1]. For systems with a continuous spin symmetry
minishes smoothly with the increase @f This can be seen (e.g., for the isotropic Heisenberg modéie magnetic field
from the comparison with the. values of Ref. 45 for introduces a gap in the spin-wave spectrum and suppresses
d=5,6 and the recent high-accuracy results of Ref. 10 fothe singular contribution to magnetizations®? [see (4.7)
d=6,7. Ford=6,7 the SCGA vyields th&, values 0.894 and the following discussidnwhich improves the situation
[0.902 27 (Ref. 45 0.902 90(Ref. 10] and 0.9130.919 22,  in the whole region below .. A comparison of the SCGA
(Ref. 10] respectively. These values @f, are also very results for the magnetization in magnetic fiebdH, T) of the
close to those for the spherical modste Table)l With the  classical Heisenberg model on the sc lattice with the MC-
increase of the spin dimensionality the accuracy of SCGAsimulation results of Binder and Mar-Krumbhaat® is rep-
also increases. In Table | the SCGA results éigifor d=4,5  resented in Fig. 4.
are compared with those of the genemal/d expansion by By application of the SCGA to experimentally investi-
Gerber and Fish&t terminated by the ternd~°. Unfortu- gated magnetic systems one should restrict oneself to the
nately the terminated #l/ expansion becomes less accurateones with large spin valuesS$1) and to the temperature
for larger values oh and does not reproduce, unlike SCGA, rangeT=T./S, where the whole Brillouin zone is populated
the exact results for the spherical model. It should be alsby spin waves and the system behaves classically. An at-
noted that for the Qf) models withd=4 the results for tempt to apply the SCGA to th8=1/2 Heisenberg model
0. approach with the increase of those for the spherical using the Brillouin function withS=1/2 [i.e., the Langevin
model much faster than in three dimensions. This means thétinction (3.7) with D=1], which corresponds formally to
the coefficient in the 1/ expansion foré, in Refs. 48-50 the consideration of the model with=3 andD =1, yields
should be very small in high dimensions. for the sc lattice, in addition to the wrong linear behavior of
The values of the energy of three-dimensional spin systhe magnetization at low temperatures, the phase transition
tems on the upper spinodal boundary of the SCGA equationgoint §.=0.592, being considerably higher than the HTSE
are also rather close to the series ones. The calculated valueslue 0.560"* On the other hand, for systems wis 1
of the normalized energyU(6.)=U(6;)/U(0) of the quantum effects in the range of elevated temperatures are
S=1/2 Ising model are 0.2760.25, 0.298 (0.27), 0.365 determined by a small paramefed/(zS and can be par-
(0.33 for the fcc, bee, and sc lattices, where the HTSE re-tially taken into account in the SCGA by using the Brillouin
sults are placed in brackets for comparison. For the classicéilinction Bg. In typical cases this introduces errors that are
Heisenberg model the normalized critical energies are givesmaller than the intrinsic inaccuracy of the SCGA. The
by 0.237(0.245, 0.261(0.269, 0.315(0.325, respectively. Heisenberg ferromagnets Eud & 69 K) and EuS T.=
For systems with higher lattice dimensionalitebsthe ener- 16.6 K) having S=7/2 are, perhaps, the most convenient
gies are close to the ones for the spherical modelmaterials for testing the SCGA, and they were extensively
G(QC):l— 6., especially for systems with many spin com- studied with NMR(Ref. 59 and neutron scatteriﬁ%meth-
ponents. The normalized critical energies in the SCGA of theods. EUO and EuS form fcc lattices, and the exchange inter-
1(1/2), H(=), and spherical models, respectively, are 0.225action extends up to the next nearest sc neighbors. The con-
0.198, 0.1933 fod=4 and 0.143, 0.135, 0.1352 fdr=5. tribution of dipole-dipole interactionDDI) to TM™ is®!
In a magnetic fieldH#0, the SCGA becomes more 1.7% for EUO and 4.9% for EuS. With the use of HTSE's it
accurate, because the system is driven away from the critica¥as showf¥ that DDI suppresses to some extent the reduced
point (OT,), where the SCGA breaks down. The latter transition temperatured,=T./T¥"* due to its competing
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models varying anisotropy constants. Having solved the
SCGA system of equation(8.15, one obtains all quantities

of interest as a result of a single calculation. More serious
generalizations of the SCGA are required for consideration
of systems with DDI or with a transverse field, where non-
diagonal correlations of molecular field fluctuations should
be taken into account. For systems with many interacting
sublattices the number of variables in the SCGA equations
increases quadratically with the number of sublattices, and
calculations become cumbersome.

Consideration of ferromagnets with a transverse field or
antiferromagnets in field in the SCGA can be avoided, if one
0 1 SE— is interested only in zero-field susceptibilities. The zero-field

0 10 20 30 40 50 60 70 80 90 100 110 ferro- and antiferromagnetic susceptibilities can be calcu-
T (K) lated through the correlation functions of the simplest ferro-

FIG. 5. Temperature dependences of magnetization and zeréhagnetic model with the longitudinal field. This requires,

field susceptibility of EuO in the SCGA, compared with the neutronhowever, summation of some new diagram sequences and is
scattering data of Ref. 60. the subject of a separate work.

Possible improvements of the SCGA should include non-
nature. In the SCGA rigorous taking into account DDI re- Ornstein-Zernike effects in spin correlation functid@'s)
quires allowing for correlations between different compo-and non-Gaussian fluctuations of the molecular field. The
nents of molecular field fluctuationk,; with a# 8, which ~ fOrmer seems to be more important, since using Omstein-

leads to the complication of the formalism and goes beyon ernike CF’s leads, due to singularities of the lattice integral
the scope of this article. Instead, for a comparison with ex.(X): EQ.(4.2), to the overestimation of fluctuational effects

- : or three-dimensional systems, which results in the break-
perimental data on EuO and EuS we take DDI into accoun{ ; et ; . )
in a simplified manner, only through the renormalization ofdown of the SCGA in the critical region. The diagram tech

TMFA ioned ab Th its of ical calculati nique for classical spin systems used for the construction of
¢ _mentioned above. The results of numerical calculationype ScGA is undoubtfully the best instrument for its further

for EuO represented in Fig. 5 show the same accordance ¢fsyelopment, because it allows summation of different, more
the SCGA results with the neutron scattering data of Ref. 6@omplicated diagram series than those considered here. All
as its accordance with the HTSE and MC results demonpther perturbative schemes that do not take explicitly the
strated above. For EuS, due to the negative value of the nngdvantage of classical properties of a system fail to repro-
exchange constadb, and hence the reduction of the effec- duce the SCGA, although the physical picture of Gaussian
tive number of interacting neighbors, the level of fluctuationsfluctuations of the molecular field is quite transparent.
is greater than in EuO, the Watson integélis close to that One more possible application of the classical spin dia-
for the sc lattice, and the deviation of the results from thegram technique is that to low-dimensional and finite-size
MFA, as well as the discrepancy between the SCGA anaystems, where the level of fluctuations is large and an im-
experimental results, is somewnhat larger. provement of the SCGA is necessary. The first step in this
direction was the calculation of the energy and susceptibility
of low-dimensional antiferromagnets in the whole tempera-
ture interval? and also for a nonzero magnetic fi&ldvith

The self-consistent Gaussian approximati®@CGA) for  the use of a I) expansion. By this calculation, the results of
classical spin systems described here is a unified theory ap¢hich are rather good even f@ =3, some diagram series
plicable to a wide class of lattice models investigated curgoing beyond the SCGA were summed up. This can, in prin-
rently by different groups with different methods. The SCGA ¢iple, show how to improve the SCGA in a nonperturbative
takes into account fluctuations of the molecular field in theWay With respect td. , ,
simplest way and is sensitive to the lattice dimensionality "€ SCGA can be generalized also for inhomogeneous
and structure and to the form of spin interactions. The SCG/Atates of magnetics. It turns out, however, that interesting

yields rather accurate values of the field-dependent magnetriSESUItS can be Obta".‘ed already in the "mi{_’?o’ where the
zation m(H,T) and other thermodynamic functions in the model (1.1) is analytically soluble buhot equivalent to the

whole plane H,T) excluding the vicinity of the critical point Standard spherical model of Berlin and Kain inhomoge-

(0T.). In particular, the values of, themselves can be neous situations, even in the isotropic case. The anisotropic
slc)- 1 C

determined in the SCGA with an accuracy better than 1%§pherical model defined biL.1) in the limit D—2 was al-

which makes it already important for practical applicationsready apphed to dom"’?'” _vvaﬁ”sand to thin films’
to new lattice and spin Hamiltonian types. And, finally, of a principal importance would be to con-

Indeed, the SCGA is more flexibi@lthough less accu- struct the dynamical part of the classical spin diagram tech-

rate than series expansions, and consideration of new sugraue and to try to generalize the SCGA for dynamics.
stances reduces in the simplest case to some modifications of
the lattice integraP(X), Eq. (4.1), and of the Gaussian in-
tegrals(3.18. This can be exemplified by studying the cross- The author thanks Hartwig Schmidt for valuable com-
over between fcc, sc, and bcc lattices varying the relativenents. The financial support of Deutsche Forschungsgemein-
strength of the first and second nearest neighbor interactiorschaft under Contract No. Schm 398/5-1 is greatfully ac-
J, 13, or the crossover between Ising, Heisenberg, xayd knowledged.
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