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Dynamic finite-size effect in the classical spin van der Waals model

Suhk Kun Oh, Chang No Yoon, and Jean Soo Chung
Department of Physics, Chungbuk National University, Cheongju, Korea 360-763
(Received 18 October 1995

A phenomenological dynamic scaling method is proposed and utilized to interpret finite-size effects in the
time-dependent correlation function for the classical spin van der Waals model. We claim that the equations of
motion for the classical spin van der Waals model are well defined only within a certain characteristic time.
The order of magnitude for the size-dependent maximum time interval of the time-dependent correlation
function, analytically obtained in the lard¢ limit via the method of Laplace by Dekeyser and Lee, is found
to be related to our characteristic time. As a by-product of this work, time scaling variables are found with
which we can completely collapse the time-dependent correlation functions of the classical spin van der Waals
model into one curve.

I. INTRODUCTION The equation of motion for the total spin vec®*X,_;5 is
obtained by summing the above equation overe.,
Dynamical properties of continuous-spin models are

much more intricate and richer in content than static proper- . oH
ties. The spin van der Waals motief attracted some atten- S= —izl S Xg- 2
tion, because it has the merit of having exact solutions for -
the time evolution and the time-dependent correlation func-
tion. However, the equations of motion depend explicitly on

. . the equations should have the same order of magnitude in-
the number of spind\l, and thereby the time-dependent cor- . ;
, . : : . dependent of the number of spifé, To get an estimate of
relation function also inherits the explicit dependence o

N. What this implies is that the time dependence and the si;}ehe or_de(; 0]; maﬁmtude Wetz)lchoose to exfamtl)nelthe or?ler Off

dependence of this model are not independent of each othemagmt.u e for the ensemble average of absolute value o
T . dach side of the equation. We adopt this convention because

and one has to be extremely careful in interpreting the ana:

Iytic results. Dekeyser and Leeroperly treated this aspect each variable randomly fluctuates among possible spin con-

of the problem for the time-dependent total spin correlationﬂguratlons' This is _conventional in_studying finite-size

. o . : . systems! We can determine the order of magnitude on each
function away from criticality by introducing the maximum : : : :
S . . ; side from the results of statics through either analytic calcu-
time interval without detailed analysis.

) ) o lations for some of the quantities or Monte CarlWIC)

In this work, we would like to show specifically how one . lations!! S th inal . o
can phenomenologically understand the order of magni'fud%Imu ations.” =ince the singie spin componen@si )
of the maximum time interval, where the analytical result for ajx,y,z) are independent df, the order of magnitude of
the spin van der Waals model obtained in the lakgémit  (ISi|) can be set to b©(1). Suppose that the orders of
via the method of Laplace is valid. For the sake of convemagnitude of the totaL spin cbomponerﬂ§é|>, (ISy]), and
nience in handling the equations of motion numerically, wel|S:|) are given byO(N?), O(N®), andO(N°), respectively.
have chosen the classical limit of the spin van der Waaldiereéa, b, andc are numbers to be determined. The reason

model (CSVW). why the total spin components have dependenchl andue

As we shall see below, it is precisely this piece of infor- {0 the collective effect. _ o
mation on the maximum time interval which will enable us  Next, let us consider the time derivatives. For example,
to determine the time scaling variable. By making use of this(|Si"|) has the dimensions ¢f|s’()]/[time]. Hence we pro-
time scaling variable within the scaling region, we can com-Pose to denote its order of magnitude @61/7). Here.7
pletely collapse the time-dependent correlation functions fopas the dimensions of time, and represents the change in the
different N’s into one curve. N dependence arising from taking the derivative with respect

to the time. Accordingly, (|S/)~O(N*.7), (|S[)
~O(NP.7), and{|S,|)~O(N°.7). We express th&\ de-
Il. DESCRIPTION OF THE DYNAMIC SCALING pendence of7 in the form.7~ O(N®). This numbere is to
METHOD be determined by comparing both sides of Eds.and (2),
and can be related to static critical exponents. Even away
from the critical point, we can still have nonzes@epending
upon the particular spin model under consideration.

We assert that the equations of motion for a system in the
thermodynamic limit are well defined only within this char-
§=—§X—. (1) acteristic time.7. This strongly suggests that we should

05 chooset/.7 or equivalentlytN ™€ as the finite-size time scal-

Before solving Egs(1) and(2), we note that both sides of

For a given classical spin Hamiltonidh, the equation of
motion for a single spin vectag at sitei is given by
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ing variabler. This assertion and the above proposition will ) J J

be justified below by examining the time-dependent correla- si=-— msx-‘iiij msysix 9

tion functions of the CSVW model. Consequently, the time-

dependent correlation functions for systems with differentfor the single spin components. Among the total spin com-
N will Collapse to form a universal curve within the Scaling ponentS,SZ is a constant Of motion and we obtain from Eq

region. (2
By a previously given analysis based on the order of mag-
nitude, we arrive at the finite-size scaling form for the time- ) J-7J
dependent autocorrelation function, namely, Si=— 5N ZSZS),, (10
(s'(1)s"(0))
WZ (7) € . J-],
i S,= oN S,S,. (11
for the single spin components, and
Now let us consider the time-dependent correlations of
(Sa(1)S4(0)) =G(7) (4) the model in the previously mentioned limits. All the static

(S quantities given in the following are obtained using the fac-
torization property of static correlation functions as well as

' . ) ... analytic calculations for some quantities, and Monte Carlo
versal dynamic scaling functions. As we shall see below, it i

v within th i ion that the bulk behavi £ th imulations are used to confirm some of the factorization
only within the scaling region that the bulk behavior o efroperties. We have also made use of the finite-size scaling

for the total spin components. Hekd 7) andG(7) are uni-

sys:_em ma_nlfests |tse_lf. As the ][_lme |_r|1|cl;eases beygnd th roperty of the model near the critical point. The static finite-
scaling region, corrections to scaling will be more and More;i;o gcaling?® in the spin van der Waals model was first

pronounced found by Kittel and Shoré? and later developed as a theory
by Botet, Jullien, and Pfeuty. Since we are concerned only
l1l. APPLICATION OF THE METHOD with the orders of magnitude, we make use of

The CSVW is one of a few models for which many static<|A|>%.<A2>1/2’ whereA is either a variable or a composite
of variables.

and dynamic quantities in the thermodynamic limit can be
obtained exactly, and which have a phase transition. The

CSVW model is an infinite-range version of the anisotropic A. Total spin correlations
Helsen_berg model, and is a microscopic realization of the Fj st of all, we study the time-dependent total spin corre-
mean-field theory. _ o lations. Since all the total spin components are constants of
The CSVW model is defined by the Hamiltonian motion in the Heisenberg limit, we consider the Ising and
] ] XY limits only. Furthermores, is a constant of motion, and
H=— — (S's*+sVsY) — ~z 2 §is?, (5) thus only the time evolutions i8, andS, are nontrivial.
AN & i i N = i3
1. Ising limit

wheres" denotes thex component of a classical Heisenberg i o

spin at sitei; J andJ, are the positive coupling constants. ~ L€t US consider the Ising limit in three separate tempera-
Note that the sums run over all pair§ of sites in the sys- (Ure regimes, namely, high temperaturé>T,), critical
tem. Below we shall distinguish three different limits of the ('_I'%TC),Zand |3W temperature'g(<Tc) regimes. AtT>T,,
model, namely, the Ising limit il=0 but J,#0, the XYy  since (S)=(S))=N/3 and (S,)=2N/(6—-J,), we get
limit if J#0 butJ,=0, and the Heisenberg limit #=J, {(|SH)=(SH¥*~O(N"?), (IS[)~(S))**~O(N"?), and
#0. The critical temperature is obtained frgfad,=6.0 in  (|S,|)~(S2)*?>~O(NY3. Consequently, we havé|S,|)

the Ising limit, and fromB.J=6.0 in theXY and Heisenberg =(|Sy|>~o(N1/2/,;7/j, (|sty| ~(|SZ|>(|SY|)~O(N), and

limits, where8,=1/kgT,.? (1S,S)=(|S,){|S,|)~O(N).? Then comparing both sides
In terms of total spin componens,, we can recast Eq. of Egs. (10) and (11) yields the maximum time interval
(5) in the form 7~0(NY?) where the analytic result, obtained in the large

N limit, should be valid. Apart from% and the coupling
J J constant, this result is in good agreement wijth, given by
Y 22y T2 ) x
H= 4N(SX+SV) 4NSZ’ 6) Dekeyser and Leglt follows from the analysis given in the

) ) o previous section that we can set the time scaling variable as
where we have ignored terms which vanish in the thermody-—{N~1/2,

namic limit. For the CSVW model, from Eql), we obtain At T~T., since <S)f>=(S§>=N/3, we have

3 3 <|3><|>=<|3Y|>~0(N1/2)- Also since (S2)~N?0?, where
§'=— > S,8+ s, (77 o~O(N"*) denotes the long-range ordér,we get
2N 2N (|S])~O(N¥%.  Hence, we obtain (|S/])=(|S,|)

Ia (S s e e cauatons o

Sy 7 V7 o X A~ ~O(N>"). Therefore the equations o

=N SS TN SS ®  fotion lead ta7~O(NY, and r=tN~ 4
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TABLE I. Time scaling variables for the time-dependent total

spin correlation functions in the Ising andy limits of the CSVW
model.
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TABLE Il. Time scaling variables for the time-dependent single
spin correlation functions in the IsinkY, and Heisenberg limits of
the CSVW model.

Time scaling variabler

Time scaling variabler

T>T, T=T, T<T, T>T, T~T, T<T,
Ising tN~Y2 tN~4 t Ising tN~Y2 tNTY4 t
XY thlIZ tN*l/Z tN*l/Z XY thl/Z tN*l/4 t
Heisenberg tN~1?2 tN~Y4 t
At T<T,, (SH=(S)= 2N/BJZ, and  thus

(Isdy=(IS[)~O(N"?. since (S})~N?¢? where o
~0(1), we have (|S|)~O(N).2 Thereby, we ge{|S,|)

=(IS)~O(N"4.7), and (|S;S])=(|S,Sd)~O(N*?).
Hence7~0O(1), andr=t.

2. XY limit

At T>T,, (SH= (Sy> 2N/(6—pB8J), and thus

(ISd)=(|S,))~O(N¥?). Similarly, (S7)=N/3 implies that
(IS])~O(N*3. Using the above, we find that
(ISH=(IS,I)~O(N¥%.7), (|S,S,)~ <|Sz|><|sy|>~O(N)

and|<\||szsxl> ~(|S,])(|SJ)~O(N). Then.7~O(N*3, and
7=tN"

At T=~T;, (S)=(S))~N20? where ¢~O(N~ l’4) im-
plies that (|S/)=(|S,[)~O(N*4. Similarly, (SZ)=N/3
leads to (|S,|)~O(NY?. Therefore we have(|S)
=(|S,|)~O(N*.7), <|sty|Z‘) (IS1)(ISy[)~O(N*%, and

<|Ssz|> <|Sz|><|Sx|>~O(N5 Accordingly, we get
~O(NY?), andr=tN~Y

At T<T,, from (S)= <S§)~N202 wherea~0(1), we
have(|S,/)=(|S,|)~O(N). Similarly, from (S2)=2N/gJ,
we get (|S[)~O(NY).2 Thereby (|S|)=(|S|)

~O(NL.7), (IS =(ISIN|S/[)~O(N*?), and (|S,S)
~<[[?\IZI_)<|SX|>~O(N32) Then 7~O(NY?, and

Table | summarizes the results of our method applied to

the total spin case.

B. Single spin correlations

We now proceed to the problem of the time-dependent At

time scaling variable is given by=tN~?,

At T=T., (ISs!)=(IS/)Is!l)~O(N*%)  and
(1SS =S ){Is[y~O(N®%. Then we get in a similar
manner7~O(NY4), and r=tN~ 4,

At T<T., (|Ss!)=(IS|){Is[)~O(N) and (|Ssi])
~(|S,){|s{[)~O(N). Thus the maximum time interval is of
the order7~0O(1) and the time scaling variable is given by
T=t.

2. XY limit

In the XY limit, s/ is not a constant of motion, and thus
we have to consider the equations of motion for all three spin
components, i.e., Eq$7) through(9) with J,=0.

At T>T, (|SJ)=(|S,|)~O(N¥?. Then using the fac-
torization property along with|s{*|)~O(1/7), we obtain
from the equations of motion that|S,sf|)~(|S,|){|s])
~O(NY3), (IS;si)=(ISd)(Is{[)~O(N?), and (|S,s|)
~(IS,I){Is)~O(N*®),  (ISs/[)~=(ISd)(Is!l)~O(N*?).
Then  similar  reasoning  gives .7~O(N?),
and r=tN~%2,

At T=T., (|S{])= <|31v|>~O(N3/4) Followmg the same
reasoning gives” ~O(NY4) and r

At T<T., (|SI)=(IS)[)~O(N). Thereby we again ob-
tain.7~0(1) andr=t.

3. Heisenberg limit

Now consider the Heisenberg limit. Here again we have
to consider the equations of motion for all three spin com-
ponents, i.e., Eqg7) through(9) with J,=J.
T>To,  (SH)=(S)=(S5)=2NI/(6—BJ)

and

single spin correlations, where no finite-size dependence §S|)=(|S,|)=(|S,])~O(N". Then using the factoriza-
known at all. The factorization property of the static corre-tion property we obtain the orders of magnitude for all the

lation function still holds due to extremely widely separatedterms in the equations of motion.
peak positions of the respective probability distributions for.7~O(N?),

the variablesS, ands". This is reasonable in th&, grows
with N while ((s")2)~0(1), for (s)2+(s!)?+(s?)?=1. It
can also be shown by MC simulations.

1. Ising limit

In the Ising limit, s is a constant of motion. Hence we
consider only the andy components of the equations of the 9~ O(1),

motion for a single spin, i.e., Eq§7) and(8) with J=0.

At T>Te, (IS8 =(IS/)s!l)~O(N")  and
(1SS y=(|S,){|s|)~O(N¥?). Then comparison of both
sides of the equations of motion, wit{{s®|)~O(1/.7),
yields the characteristic timé7~O(N1’2). Again the order

of magnitude of the maximum time interval, where analytic

Hence we obtain
thus the time scaling variable is
r=tN"12

At T~T;, from (SH)=(S))=(S)~N?¢* where
o~O(N~Y9, (ISd)=~(IS,1)= (IS])~O(N**%. Therefore
we obtain.7~0O(N¥¥), and the time scaling variable is
T=tNTM

At T<T, from (S)=(S))=(S)~N?c? where
(ISh=(ISy[)=(IS,[)~O(N). Then we get
thereby.7~0(1) andr=t.

Table Il summarizes the results of our method applied to
the single spin case.

and

IV. SPIN DYNAMICS SIMULATION RESULTS

We now want to determine the order of magnitude for the

results are valid, should be comparable to this quantity. Thenaximum time interval and justify the time scaling variable
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FIG. 1. (Sd(1)Sx(0))/(S}(0)) vs corresponding time scaling FIG. 3. (sX(t)s}(0)) vs corresponding time scaling variables
variablesr at (a) 8J,= 3.0, (b) 8J,=6.0, and(c) J,=9.0, repec-  at(a) 8J,=3.0, (b) BJ,=6.0, and(c) 8J,=9.0, repectively, in the
tively, in the Ising limit. The numbers of spins are 100, 500, and|sing limit. The numbers of spins are 100, 500, and 1000.
1000.

limits in different temperature regimes. The numbers of spins
of our method. It is to be noted that the time-dependent totaire 100, 500, and 1000Sy(t)Sy(0))/<S§(O)> also shows an
spin correlation function in the critical region is not known igentical behavior due to the symmetry of the model. From
and the time-dependent single spin correlation function obthe figure, an almost perfect collapse of curves can be seen at
tained by Dekeyser and Lee is not given in a form amenablgeast up tor=<3.0 in the Ising limit andr<5.0 in theXY

to finite-size scaling analysis. Therefore we shall appeal t@imit, for all temperature regimes. Thus the data are consis-

the spin dynamics simulatidoh(SD9 of the time-dependent tent with our assertion made earlier.

correlation functions for the CSVW model. Figures 3 through 5 show the time-dependent single spin
Usual SDS’s have two types of statistical errors, namelygytocorrelation function(sX(t)s(0))/([s:(0)]? vs time

the static one coming from MC simulation and the dynamiCscajing variables, in the IsinglY, and Heisenberg limits at

one from integrating out the equations of motion. We shalljifterent temperature regimes. The numbers of spins are

use the exact time evolution obtained by Dekeyser and Lee;gg, 500, and 1000. Although our result is given only for site

(ordgguiv'alent]lcy r’:he oner obtained in Ref.d 4 with a §Iig|ht1, it is also valid for all other sitegs}(t)s¥(0)) shows an
modification of the coupling constantt reduce statistica identical behavior due to the symmetry of the model. We

errors, mst_ead of dom_g numen_cal integrations. What Weyitness here almost perfect collapse of curves at least up to
have done in the SDS is to obtain ensemble averages of the

. : . . . 7=3.0 in the Ising limit andr=2.0 in theXY and Heisen-
time-dependent correlations through MC simulation by uti-. ! Sing im! in e eisen

lizina the heat-bath algorithi® H th " berg limits, for all temperature regimes, which is consistent
1Ing the heat-bath algonithitt. Hence the errors we Commit -\ iy oyr assertion that the finite-size scaling would be main-
are of the static type only, and they do not accumulate dy;_.

; . . tained forr~0O(1).
namically. Therefore our results should be quite reliable even
for a long time interval without burdening the computer
heavily. V. DISCUSSION

In our simulations, we have discarded the first 4000 |n this work, we studied the finite-size effect in the time-
Monte Carlo steps per spifMCS) for the equilibration of  dependent correlations for the CSVW model with the aim to
the system. Ensemble averaging has been carried out by cghterpret the maximum time interval given by Dekeyser and
lecting three sets of 100000 to 200000 configurations| ee. In order to do so, we introduced a phenomenological
where successive configurations are separated by 10 to Zynamic scaling method, and determined the order of mag-
MCS to assure independence between the configurationgitude for the maximum time interval. It is only within this
The error in our calculation is estimated to be less than 2%interval that the largé\ limit analytic calculation for CSVW

Figures 1 and 2 show the time-dependent total spin cors valid. At the same time, we found that there is a time
relation functiong S,(t) S,(0))/(S;(0)) vs time scaling vari-  scaling variabler for the time-dependent correlation func-
ables, which were given in Table I, in the Ising aXd&  tion. We adopted SDS to test our method. The SDS results

reveal perfect collapse of the curves into a universal scaling
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FIG. 2. (S(t)S(0))/(S2(0)) vs corresponding time scaling
variablesr at (a) 8J=3.0, (b) BJ=6.0, and(c) BJ=9.0, repec- FIG. 4. (s}(t)s}(0)) vs corresponding time scaling variables
tively, in the XY limit. The numbers of spins are 100, 500, and at (a) 8J=3.0, (b) BJ=6.0, and(c) B8J=9.0, repectively, in the
1000. XY limit. The numbers of spins are 100, 500, and 1000.
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for the single spin components, and
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e of L S for the total spin components. From the above equations,
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FIG. 5. (s}(t)s}(0)) vs corresponding time scaling variables d
at (@) BJ=3.0, (b) BJ=6.0, and(c) BJ=9.0, repectively, in the an
Heisenberg limit. The numbers of spins are 100, 500, and 1000.

(1S.0) ~(<<sa>2>
- 2

curve within the given time range, showing that our method (IS:) (Sa)

works quite well. This implies that there is a dynamic scaling e can recast Eq14) as

phenomenon in the CSVW model, i.e., the characteristic .

time diverges in the thermodynamic limit. Contrary to stat- (|s7)=N"[F(0)]Y¥]s"]), (16)

ics, the characteristic time can diverge even away from th

critical region. Why is it happening? Unlike the nearest%lnd Ea.(19) as

neighbor coupled spin models, all the spins are coupled to <|Sa|>:N_EI[G(O)]1/2<|SQ|>' (17)

each other in the CSVW model. Hence correlation in time

can be maintained in any physical regime. This induces vari- Taking a closer look at Eq$16) and(17) and comparing

ous dynamic scaling behavior in the CSVW model. Anotherwith Egs. (7) through(11) reveal that the orders of magni-

interesting subject is to explore the relation between outude are equivalent if we relate the inner factor like

method and the dynamic scaling theory of Halperin aﬂOKJ/N)SB or (J,/N)Sg (B+# a) with N~ €orN~¢, depending

Hohenberd? Presently we do not see any clue for this sub-on the limits. Therefore, it is equivalent to comparing the

ject. magnitude of both sides of the equations of motion, and re-
Finally, we discuss the reason why our phenomenologicafrieving theN dependence from them. This places our phe-

method works. Let us from the outset assume E&sand  nomenological dynamic scaling theory on a firm basis.
(4) as dynamic scaling hypotheses. In order to get the expo-

nente in the time scaling variable, we make use of the iden- ACKNOWLEDGMENTS
tity (B(t)A(0))=—(B(t)A(0)). Thereby we obtain
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