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A phenomenological dynamic scaling method is proposed and utilized to interpret finite-size effects in the
time-dependent correlation function for the classical spin van der Waals model. We claim that the equations of
motion for the classical spin van der Waals model are well defined only within a certain characteristic time.
The order of magnitude for the size-dependent maximum time interval of the time-dependent correlation
function, analytically obtained in the largeN limit via the method of Laplace by Dekeyser and Lee, is found
to be related to our characteristic time. As a by-product of this work, time scaling variables are found with
which we can completely collapse the time-dependent correlation functions of the classical spin van der Waals
model into one curve.

I. INTRODUCTION

Dynamical properties of continuous-spin models are
much more intricate and richer in content than static proper-
ties. The spin van der Waals model1–10 attracted some atten-
tion, because it has the merit of having exact solutions for
the time evolution and the time-dependent correlation func-
tion. However, the equations of motion depend explicitly on
the number of spins,N, and thereby the time-dependent cor-
relation function also inherits the explicit dependence on
N. What this implies is that the time dependence and the size
dependence of this model are not independent of each other,
and one has to be extremely careful in interpreting the ana-
lytic results. Dekeyser and Lee1 properly treated this aspect
of the problem for the time-dependent total spin correlation
function away from criticality by introducing the maximum
time interval without detailed analysis.

In this work, we would like to show specifically how one
can phenomenologically understand the order of magnitude
of the maximum time interval, where the analytical result for
the spin van der Waals model obtained in the largeN limit
via the method of Laplace is valid. For the sake of conve-
nience in handling the equations of motion numerically, we
have chosen the classical limit of the spin van der Waals
model ~CSVW!.

As we shall see below, it is precisely this piece of infor-
mation on the maximum time interval which will enable us
to determine the time scaling variable. By making use of this
time scaling variable within the scaling region, we can com-
pletely collapse the time-dependent correlation functions for
differentN’s into one curve.

II. DESCRIPTION OF THE DYNAMIC SCALING
METHOD

For a given classical spin HamiltonianH, the equation of
motion for a single spin vectorsi at sitei is given by

ṡi52si3
dH

dsi
. ~1!

The equation of motion for the total spin vectorS5( i51si is
obtained by summing the above equation overi , i.e.,

Ṡ52(
i51

si3
dH

dsi
. ~2!

Before solving Eqs.~1! and~2!, we note that both sides of
the equations should have the same order of magnitude in-
dependent of the number of spins,N. To get an estimate of
the order of magnitude we choose to examine the order of
magnitude for the ensemble average of absolute value of
each side of the equation. We adopt this convention because
each variable randomly fluctuates among possible spin con-
figurations. This is conventional in studying finite-size
systems.11We can determine the order of magnitude on each
side from the results of statics through either analytic calcu-
lations for some of the quantities or Monte Carlo~MC!
simulations.11 Since the single spin componentŝusi

au&
(a5x,y,z) are independent ofN, the order of magnitude of
^usi

au& can be set to beO(1). Suppose that the orders of
magnitude of the total spin components^uSxu&, ^uSyu&, and
^uSzu& are given byO(Na), O(Nb), andO(Nc), respectively.
Herea, b, andc are numbers to be determined. The reason
why the total spin components have dependence onN is due
to the collective effect.

Next, let us consider the time derivatives. For example,
^uṡi

au& has the dimensions of@^usi
au&#/@ time#. Hence we pro-

pose to denote its order of magnitude asO(1/T ). HereT
has the dimensions of time, and represents the change in the
N dependence arising from taking the derivative with respect
to the time. Accordingly, ^uṠxu&;O(Na/T ), ^uṠyu&
;O(Nb/T ), and ^uṠzu&;O(Nc/T ). We express theN de-
pendence ofT in the formT ;O(Ne). This numbere is to
be determined by comparing both sides of Eqs.~1! and ~2!,
and can be related to static critical exponents. Even away
from the critical point, we can still have nonzeroe depending
upon the particular spin model under consideration.

We assert that the equations of motion for a system in the
thermodynamic limit are well defined only within this char-
acteristic timeT . This strongly suggests that we should
chooset/T or equivalentlytN2e as the finite-size time scal-
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ing variablet. This assertion and the above proposition will
be justified below by examining the time-dependent correla-
tion functions of the CSVW model. Consequently, the time-
dependent correlation functions for systems with different
N will collapse to form a universal curve within the scaling
region.

By a previously given analysis based on the order of mag-
nitude, we arrive at the finite-size scaling form for the time-
dependent autocorrelation function, namely,

^si
a~ t !si

a~0!&

^~si
a!2&

5F~t! ~3!

for the single spin components, and

^Sa~ t !Sa~0!&

^Sa
2&

5G~t! ~4!

for the total spin components. HereF(t) andG(t) are uni-
versal dynamic scaling functions. As we shall see below, it is
only within the scaling region that the bulk behavior of the
system manifests itself. As the time increases beyond the
scaling region, corrections to scaling will be more and more
pronounced

III. APPLICATION OF THE METHOD

The CSVW is one of a few models for which many static
and dynamic quantities in the thermodynamic limit can be
obtained exactly, and which have a phase transition. The
CSVW model is an infinite-range version of the anisotropic
Heisenberg model, and is a microscopic realization of the
mean-field theory.

The CSVW model is defined by the Hamiltonian

H52
J

4N (
iÞ j

~si
xsj

x1si
ysj

y!2
Jz
4N (

iÞ j
si
zsj
z , ~5!

wheresi
a denotes thea component of a classical Heisenberg

spin at sitei ; J and Jz are the positive coupling constants.
Note that the sums run over all pairsi , j of sites in the sys-
tem. Below we shall distinguish three different limits of the
model, namely, the Ising limit ifJ50 but JzÞ0, the XY
limit if JÞ0 but Jz50, and the Heisenberg limit ifJ5Jz
Þ0. The critical temperature is obtained frombcJz56.0 in
the Ising limit, and frombcJ56.0 in theXY and Heisenberg
limits, wherebc51/kBTc .

12

In terms of total spin componentsSa , we can recast Eq.
~5! in the form

H52
J

4N
~Sx

21Sy
2!2

Jz
4N

Sz
2 , ~6!

where we have ignored terms which vanish in the thermody-
namic limit. For the CSVW model, from Eq.~1!, we obtain

ṡi
x52

J

2N
Sysi

z1
Jz
2N

Szsi
y , ~7!

ṡi
y5

J

2N
Sxsi

z2
Jz
2N

Szsi
x , ~8!

ṡi
z52

J

2N
Sxsi

y1
J

2N
Sysi

x ~9!

for the single spin components. Among the total spin com-
ponents,Sz is a constant of motion and we obtain from Eq.
~2!

Ṡx52
J2Jz
2N

SzSy , ~10!

Ṡy5
J2Jz
2N

SzSx . ~11!

Now let us consider the time-dependent correlations of
the model in the previously mentioned limits. All the static
quantities given in the following are obtained using the fac-
torization property of static correlation functions as well as
analytic calculations for some quantities, and Monte Carlo
simulations are used to confirm some of the factorization
properties. We have also made use of the finite-size scaling
property of the model near the critical point. The static finite-
size scaling13 in the spin van der Waals model was first
found by Kittel and Shore,14 and later developed as a theory
by Botet, Jullien, and Pfeuty.15 Since we are concerned only
with the orders of magnitude, we make use of
^uAu&'^A2&1/2, whereA is either a variable or a composite
of variables.

A. Total spin correlations

First of all, we study the time-dependent total spin corre-
lations. Since all the total spin components are constants of
motion in the Heisenberg limit, we consider the Ising and
XY limits only. Furthermore,Sz is a constant of motion, and
thus only the time evolutions inSx andSy are nontrivial.

1. Ising limit

Let us consider the Ising limit in three separate tempera-
ture regimes, namely, high temperature (T@Tc), critical
(T'Tc), and low temperature (T!Tc) regimes. AtT@Tc ,
since ^Sx

2&5^Sy
2&5N/3 and ^Sz

2&52N/(62bJz), we get
^uSxu&'^Sx

2&1/2;O(N1/2), ^uSyu&'^Sy
2&1/2;O(N1/2), and

^uSzu&'^Sz
2&1/2;O(N1/2). Consequently, we havê uṠxu&

5^uṠyu&;O(N1/2/T ), ^uSzSyu&'^uSzu&^uSyu&;O(N), and
^uSzSxu&'^uSzu&^uSxu&;O(N).2 Then comparing both sides
of Eqs. ~10! and ~11! yields the maximum time interval
T ;O(N1/2) where the analytic result, obtained in the large
N limit, should be valid. Apart from\ and the coupling
constant, this result is in good agreement withtmax given by
Dekeyser and Lee.1 It follows from the analysis given in the
previous section that we can set the time scaling variable as
t5tN21/2.

At T'Tc , since ^Sx
2&5^Sy

2&5N/3, we have
^uSxu&5^uSyu&;O(N1/2). Also since ^Sz

2&'N2s2, where
s;O(N21/4) denotes the long-range order,15 we get
^uSzu&;O(N3/4). Hence, we obtain ^uṠxu&5^uṠyu&
;O(N1/2/T ), ^uSzSyu&'^uSzu&^uSyu&;O(N5/4), and
^uSzSxu&'^uSzu&^uSxu&;O(N5/4). Therefore the equations of
motion lead toT ;O(N1/4), andt5tN21/4.
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At T!Tc , ^Sx
2&5^Sy

2&52N/bJz , and thus
^uSxu&5^uSyu&;O(N1/2). Since ^Sz

2&'N2s2, where s
;O(1), we have ^uSzu&;O(N).2 Thereby, we get̂ uṠxu&
5^uṠyu&;O(N1/2/T ), and ^uSzSyu&5^uSzSxu&;O(N3/2).
HenceT ;O(1), andt5t.

2. XY limit

At T@Tc , ^Sx
2&5^Sy

2&52N/(62bJ), and thus
^uSxu&5^uSyu&;O(N1/2). Similarly, ^Sz

2&5N/3 implies that
^uSzu&;O(N1/2). Using the above, we find that
^uṠxu&5^uṠyu&;O(N1/2/T ), ^uSzSyu&'^uSzu&^uSyu&;O(N),
and ^uSzSxu&'^uSzu&^uSxu&;O(N). Then T ;O(N1/2), and
t5tN21/2.

At T'Tc , ^Sx
2&5^Sy

2&'N2s2 where s;O(N21/4) im-
plies that ^uSxu&5^uSyu&;O(N3/4). Similarly, ^Sz

2&5N/3
leads to ^uSzu&;O(N1/2). Therefore we have ^uṠxu&
5^uṠyu&;O(N3/4/T ), ^uSzSyu&'^uSzu&^uSyu&;O(N5/4), and
^uSzSxu&'^uSzu&^uSxu&;O(N5/4). Accordingly, we get
T ;O(N1/2), andt5tN21/2.

At T!Tc , from ^Sx
2&5^Sy

2&'N2s2 wheres;O(1), we
have^uSxu&5^uSyu&;O(N). Similarly, from ^Sz

2&52N/bJ,
we get ^uSzu&;O(N1/2).2 Thereby ^uṠxu&5^uṠyu&
;O(N/T ), ^uSzSyu&'^uSzu&^uSyu&;O(N3/2), and ^uSzSxu&
'^uSzu&^uSxu&;O(N3/2). Then T ;O(N1/2), and
t5tN21/2.

Table I summarizes the results of our method applied to
the total spin case.

B. Single spin correlations

We now proceed to the problem of the time-dependent
single spin correlations, where no finite-size dependence is
known at all. The factorization property of the static corre-
lation function still holds due to extremely widely separated
peak positions of the respective probability distributions for
the variablesSa andsi

a . This is reasonable in thatSa grows
with N while ^(si

a)2&;O(1), for (si
x)21(si

y)21(si
z)251. It

can also be shown by MC simulations.

1. Ising limit

In the Ising limit, si
z is a constant of motion. Hence we

consider only thex andy components of the equations of the
motion for a single spin, i.e., Eqs.~7! and ~8! with J50.

At T@Tc , ^uSzsi
yu&'^uSzu&^usi

yu&;O(N1/2) and
^uSzsi

xu&'^uSzu&^usi
xu&;O(N1/2). Then comparison of both

sides of the equations of motion, witĥuṡi
au&;O(1/T ),

yields the characteristic timeT ;O(N1/2). Again the order
of magnitude of the maximum time interval, where analytic
results are valid, should be comparable to this quantity. The

time scaling variable is given byt5tN21/2.
At T'Tc , ^uSzsi

yu&'^uSzu&^usi
yu&;O(N3/4) and

^uSzsi
xu&'^uSzu&^usi

xu&;O(N3/4). Then we get in a similar
mannerT ;O(N1/4), andt5tN21/4.

At T!Tc , ^uSzsi
yu&'^uSzu&^usi

yu&;O(N) and ^uSzsi
xu&

'^uSzu&^usi
xu&;O(N). Thus the maximum time interval is of

the orderT ;O(1) and the time scaling variable is given by
t5t.

2. XY limit

In theXY limit, si
z is not a constant of motion, and thus

we have to consider the equations of motion for all three spin
components, i.e., Eqs.~7! through~9! with Jz50.

At T@Tc , ^uSxu&5^uSyu&;O(N1/2). Then using the fac-
torization property along witĥ uṡi

au&;O(1/T ), we obtain
from the equations of motion that̂uSysi

zu&'^uSyu&^usi
zu&

;O(N1/2), ^uSxsi
zu&'^uSxu&^usi

zu&;O(N1/2), and ^uSysi
xu&

'^uSyu&^usi
xu&;O(N1/2), ^uSxsi

yu&'^uSxu&^usi
yu&;O(N1/2).

Then similar reasoning gives T ;O(N1/2),
andt5tN21/2.

At T'Tc , ^uSxu&5^uSyu&;O(N3/4). Following the same
reasoning givesT ;O(N1/4) andt5tN21/4.

At T!Tc , ^uSxu&5^uSyu&;O(N). Thereby we again ob-
tain T ;O(1) andt5t.

3. Heisenberg limit

Now consider the Heisenberg limit. Here again we have
to consider the equations of motion for all three spin com-
ponents, i.e., Eqs.~7! through~9! with Jz5J.

At T@Tc , ^Sx
2&5^Sy

2&5^Sz
2&52N/(62bJ) and

^uSxu&5^uSyu&5^uSzu&;O(N1/2). Then using the factoriza-
tion property we obtain the orders of magnitude for all the
terms in the equations of motion. Hence we obtain
T ;O(N1/2), and thus the time scaling variable is
t5tN21/2.

At T'Tc , from ^Sx
2&5^Sy

2&5^Sz
2&'N2s2 where

s;O(N21/4), ^uSxu&5^uSyu&5^uSzu&;O(N3/4). Therefore
we obtain T ;O(N1/4), and the time scaling variable is
t5tN21/4.

At T!Tc , from ^Sx
2&5^Sy

2&5^Sz
2&'N2s2 where

s;O(1), ^uSxu&5^uSyu&5^uSzu&;O(N). Then we get
therebyT ;O(1) andt5t.

Table II summarizes the results of our method applied to
the single spin case.

IV. SPIN DYNAMICS SIMULATION RESULTS

We now want to determine the order of magnitude for the
maximum time interval and justify the time scaling variable

TABLE I. Time scaling variables for the time-dependent total
spin correlation functions in the Ising andXY limits of the CSVW
model.

Time scaling variablet
T@Tc T'Tc T!Tc

Ising tN21/2 tN21/4 t
XY tN21/2 tN21/2 tN21/2

TABLE II. Time scaling variables for the time-dependent single
spin correlation functions in the Ising,XY, and Heisenberg limits of
the CSVW model.

Time scaling variablet
T@Tc T'Tc T!Tc

Ising tN21/2 tN21/4 t
XY tN21/2 tN21/4 t
Heisenberg tN21/2 tN21/4 t
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of our method. It is to be noted that the time-dependent total
spin correlation function in the critical region is not known
and the time-dependent single spin correlation function ob-
tained by Dekeyser and Lee is not given in a form amenable
to finite-size scaling analysis. Therefore we shall appeal to
the spin dynamics simulation17 ~SDS! of the time-dependent
correlation functions for the CSVW model.

Usual SDS’s have two types of statistical errors, namely,
the static one coming from MC simulation and the dynamic
one from integrating out the equations of motion. We shall
use the exact time evolution obtained by Dekeyser and Lee3

~or equivalently the one obtained in Ref. 4 with a slight
modification of the coupling constants! to reduce statistical
errors, instead of doing numerical integrations. What we
have done in the SDS is to obtain ensemble averages of the
time-dependent correlations through MC simulation by uti-
lizing the heat-bath algorithm.16 Hence the errors we commit
are of the static type only, and they do not accumulate dy-
namically. Therefore our results should be quite reliable even
for a long time interval without burdening the computer
heavily.

In our simulations, we have discarded the first 4000
Monte Carlo steps per spin~MCS! for the equilibration of
the system. Ensemble averaging has been carried out by col-
lecting three sets of 100 000 to 200 000 configurations,
where successive configurations are separated by 10 to 20
MCS to assure independence between the configurations.
The error in our calculation is estimated to be less than 2%.

Figures 1 and 2 show the time-dependent total spin cor-
relation functionŝSx(t)Sx(0)&/^Sx

2(0)& vs time scaling vari-
ables, which were given in Table I, in the Ising andXY

limits in different temperature regimes. The numbers of spins
are 100, 500, and 1000.^Sy(t)Sy(0)&/^Sy

2(0)& also shows an
identical behavior due to the symmetry of the model. From
the figure, an almost perfect collapse of curves can be seen at
least up tot&3.0 in the Ising limit andt&5.0 in theXY
limit, for all temperature regimes. Thus the data are consis-
tent with our assertion made earlier.

Figures 3 through 5 show the time-dependent single spin
autocorrelation function^s1

x(t)s1
x(0)&/^@s1

x(0)#2& vs time
scaling variables, in the Ising,XY, and Heisenberg limits at
different temperature regimes. The numbers of spins are
100, 500, and 1000. Although our result is given only for site
1, it is also valid for all other sites.̂s1

y(t)s1
y(0)& shows an

identical behavior due to the symmetry of the model. We
witness here almost perfect collapse of curves at least up to
t&3.0 in the Ising limit andt&2.0 in theXY and Heisen-
berg limits, for all temperature regimes, which is consistent
with our assertion that the finite-size scaling would be main-
tained fort;O(1).

V. DISCUSSION

In this work, we studied the finite-size effect in the time-
dependent correlations for the CSVW model with the aim to
interpret the maximum time interval given by Dekeyser and
Lee. In order to do so, we introduced a phenomenological
dynamic scaling method, and determined the order of mag-
nitude for the maximum time interval. It is only within this
interval that the largeN limit analytic calculation for CSVW
is valid. At the same time, we found that there is a time
scaling variablet for the time-dependent correlation func-
tion. We adopted SDS to test our method. The SDS results
reveal perfect collapse of the curves into a universal scaling

FIG. 4. ^s1
x(t)s1

x(0)& vs corresponding time scaling variablest
at ~a! bJ53.0, ~b! bJ56.0, and~c! bJ59.0, repectively, in the
XY limit. The numbers of spins are 100, 500, and 1000.

FIG. 1. ^Sx(t)Sx(0)&/^Sx
2(0)& vs corresponding time scaling

variablest at ~a! bJz53.0, ~b! bJz56.0, and~c! bJz59.0, repec-
tively, in the Ising limit. The numbers of spins are 100, 500, and
1000.

FIG. 2. ^Sx(t)Sx(0)&/^Sx
2(0)& vs corresponding time scaling

variablest at ~a! bJ53.0, ~b! bJ56.0, and~c! bJ59.0, repec-
tively, in the XY limit. The numbers of spins are 100, 500, and
1000.

FIG. 3. ^s1
x(t)s1

x(0)& vs corresponding time scaling variablest
at ~a! bJz53.0, ~b! bJz56.0, and~c! bJz59.0, repectively, in the
Ising limit. The numbers of spins are 100, 500, and 1000.
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curve within the given time range, showing that our method
works quite well. This implies that there is a dynamic scaling
phenomenon in the CSVW model, i.e., the characteristic
time diverges in the thermodynamic limit. Contrary to stat-
ics, the characteristic time can diverge even away from the
critical region. Why is it happening? Unlike the nearest
neighbor coupled spin models, all the spins are coupled to
each other in the CSVW model. Hence correlation in time
can be maintained in any physical regime. This induces vari-
ous dynamic scaling behavior in the CSVW model. Another
interesting subject is to explore the relation between our
method and the dynamic scaling theory of Halperin and
Hohenberg.18 Presently we do not see any clue for this sub-
ject.

Finally, we discuss the reason why our phenomenological
method works. Let us from the outset assume Eqs.~3! and
~4! as dynamic scaling hypotheses. In order to get the expo-
nente in the time scaling variable, we make use of the iden-
tity ^Ḃ(t)A(0)&52^B(t)Ȧ(0)&. Thereby we obtain

^~ ṡi
a!2&

^~si
a!2&

52
^s̈i

asi
a&

^~si
a!2&

5N22eF̈~0! ~12!

for the single spin components, and

^~Ṡa!2&

^Sa
2&

52
^S̈aSa&

^Sa
2&

5N22e8G̈~0! ~13!

for the total spin components. From the above equations,
noting ^uAu&'^A2&1/2,

^uṡi
au&

^usi
au&

'S ^~ ṡi
a!2&

^~si
a!2& D

1/2

5N2e@ F̈~0!#1/2, ~14!

and

^uṠau&
^uSau&

'S ^~Ṡa!2&

^Sa
2& D 1/25N2e8@G̈~0!#1/2. ~15!

We can recast Eq.~14! as

^uṡi
au&5N2e@ F̈~0!#1/2^usi

au&, ~16!

and Eq.~15! as

^uṠau&5N2e8@G̈~0!#1/2^uSau&. ~17!

Taking a closer look at Eqs.~16! and~17! and comparing
with Eqs. ~7! through~11! reveal that the orders of magni-
tude are equivalent if we relate the inner factor like
(J/N)Sb or (Jz /N)Sb (bÞa) with N2e orN2e8, depending
on the limits. Therefore, it is equivalent to comparing the
magnitude of both sides of the equations of motion, and re-
trieving theN dependence from them. This places our phe-
nomenological dynamic scaling theory on a firm basis.
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