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The transient four-wave mixing signal from a three-level system coupled to a bath of harmonic oscillators is
calculated in the short-pulse limit. This allows an examination of the non-Markovian effects on the relaxation
processes in the excited levels between which beating occurs. In particular, it is possible to distinguish between
oscillations which are due to oscillatory dephasing, a consequence of the memory effects, and oscillations due
to the quantum beats. This also allows one to analyze how these two kinds of oscillations are mixed together.
We show that we not only have an amplitude modulation of the beats as in the Markovian case but also
deformations of the beats for short delays between the exciting light pulses. These deformations are a conse-
quence of the nonequilibrium motion of the surroundings of the system under optical excitation.

I. INTRODUCTION

These last years have seen an important development in
the use of femtosecond light pulses to study induced nuclear
vibrational motion in molecules.1–3 The motion induced by
an ultrashort light pulse gives rise to an oscillatory modula-
tion in the transient absorption of the molecule, which can be
measured by pump-probe techniques.4,5 These oscillations or
quantum beats have also been observed in transient four-
wave mixing ~TFWM! experiments such as photon-echo
experiments.3,6,7They result from a quantum-mechanical co-
herent superposition of several discrete but close-lying
states. It has been shown that it is possible to determine
homogeneous linewidths of vibrational transitions in either
the ground or the excited electronic state from such data.4,5

From the theoretical standpoint, it is generally assumed that
the relaxation processes of the media under investigation can
be described by time-independent constants which are then
extracted from the oscillations in the detected signal by fit-
ting them with the predictions from an appropriate level
scheme. Even recently, it has been proposed to improve on
this basic approach by considering the possibility of correla-
tions in the inhomogeneous broadening of the close-lying
transitions, while keeping the basic concept of relaxation
constants.8

With the recent progress in ultrafast optical techniques,
ever shorter light pulses are being used in these nonlinear
experiments. On such ultrashort time scales, phase relaxation
can no longer be properly descibed by a time-independant
dephasing timeT2 .

9–11 It is now well established that non-
Markovian effects due to thermal reservoir memory have an
important bearing on the analysis of TFWM experi-
ments.12–18 As shown in Aihara’s work,15 non-Markovian
relaxation is not only characterized by a nonexponential de-
cay of the signal intensity but also by an oscillatory dephas-
ing. These oscillations are not quantum beats. They are due
to the dynamics of the reservoir motion and this phenomena
should be interpreted as a non-Markovian effect.18 In this
context one question becomes important: What happens if
we consider a TFWM experiment in a short-time regime
where non-Markovian effects play a role while the excited
material should exhibit quantum beats in such experiments.

This is the goal of this paper. This point seems crucial be-
cause, as already mentioned, quantum beats result from a
quantum-mechanical coherent superposition of discrete
states. But this coherent superposition depends on the
dephasing processes of the involved states. If these dephas-
ing processes present also an oscillatory behavior, it is im-
portant to know how quantum beats will be affected by these
non-Markovian effects.

From a theoretical standpoint, non-Markovian effects
have been the subject of a number of works.19–23The theo-
retical approaches can be divided into two groups. One is
called the stochastic model24,25and the other the microscopic
model.26 The stochastic model has been widely used to de-
scribe TFWM experiments in molecules in solution. It con-
siders that the surroundings of the studied material can be
modeled by a frequency modulation of the material levels.
This modulation is treated as a stationary random process. In
this approach, the reservoir does not appear explicitly but the
situation being described corresponds implicitly to that of a
thermal bath remaining in the same state of dynamical equi-
librium throughout the experiment. The nonequilibrium mo-
tion of the surroundings of the system under optical excita-
tion cannot be describe by this approach, whereas for our
purpose, it will be essential to find out whether non-
Markovian effects will affect the beat frequency by, for ex-
ample, making it change over time. This would correspond
to an identifiable nonequilibrium situation and therefore the
microscopic approach has been chosen to describe the sur-
roundings.

II. THEORY

We consider the simplest system for which quantum beats
appear, namely, a three-level system as shown schematically
in Fig. 1. The excited state is assumed to consist of two
sublevels 2 and 3. Optical transitions from the ground-state
level 1 to both levels 2 and 3 are allowed. This system is in
interaction with its surroundings~bath! which is described by
a set of harmonic oscillators. This model is typically used in
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the description of a localized-electron–phonon system.27–31

We shall use this terminology in the following but it must be
kept in mind that this approach is quite general and can be
applied to various kinds of systems. The full Hamiltonian
can be written as

H05H11u1&^1u1H22u2&^2u1H33u3&^3u, ~2.1!

with

H115(
k

\vk~bk
†bk1

1
2 !, ~2.2!

H225H111\v21V2 , ~2.3!

H335H111\v31V3 , ~2.4!

wherebk (bk
†) is the annihilation~creation! operator for the

kth phonon mode with frequencyvk , and where\v2 and
\v3 are the electronic excitation energies. The electron-
phonon interaction HamiltoniansVi , for i5 2,3 are ex-
pressed as15

Vi5(
k
hk

~ i !vk~bk1bk
†!1

1

2(k (
q

hk,q
~ i ! Avkvq~bk1bk

†!

3~bq1bq
†!. ~2.5!

The first and second terms in Eq.~2.5! describe the linear
and quadratic interactions, andhk

( i ) andhk,q
( i ) are their dimen-

sionless interaction constants. We assume that they are inde-
pendent of the modes. Therefore we write

;k, hk
~ i !5hL

~ i ! , and ;k,q, hk,q
~ i ! 5hQ

~ i ! , ~2.6!

where the constant indicesL andQ indicate the linear part or
the quadratic part of the interaction. In this theoretical model,
these interaction constants depend only on sublevel 2 or 3.

This system is in interaction with an electric field and the
matter-radiation interaction Hamiltonian is given in the di-
pole approximation by

H1~r,t !52m•E~r,t !, ~2.7!

wherem is the dipole-moment operator which can be written
as

m5S 0 m12 m13

m21 0 0

m31 0 0
D . ~2.8!

We assume for simplicity that

m125m215m2 and m135m315m3 , ~2.9!

and thatm is independent of bath variables. FinallyE(r,t) is
the electric field in the material and takes the general form

E~r,t !5(
a

$Ea~ t !exp@ i ~vt2ka•r!#1c.c.%. ~2.10!

Starting from the master equation for the density matrixr,

dr

dt
52

i

\
@H01H1~r,t !,r#, ~2.11!

the equations of motion for the elements of the density ma-
trix are obtained by using a perturbative approach up to the
third order. We assume that the initial conditions correspond
to

r~2`!5u1&^1urR , ~2.12!

where

rR5exp~2bH11!/Tr@exp~2bH11!#. ~2.13!

It is important to note thatr in Eq. ~2.11! represents the total
density matrix of the material-bath system. The induced po-
larizationP which is the source term in Maxwell’s equations
for the radiated field is

P5Trmaterial@Trbath@mr## ~2.14!

5Trmaterial@ms# ~2.15!

5m2s211m3s311c.c., ~2.16!

wheres is the reduced density matrix obtained by

s5Trbath@r#. ~2.17!

Then the third-order perturbative solution of Eq.~2.11! com-
bined with Eq.~2.17! leads to the following expressions for
the nondiagonal elementss12:

FIG. 1. Three-level system.
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s12
~3!~r,t !5

im2
3

\3 E
2`

t

dt1E
2`

t1
dt2E

2`

t2
dt3E~r,t1!E~r,t2!E~r,t3!TrbathH FexpS 2

i

\
H0
11~ t2t1! DexpS 2

i

\
H0
22~ t12t3! D rR

3expS i\ H0
11~ t22t3! DexpS i\ H0

22~ t2t2! D G1FexpS 2
i

\
H0
11~ t2t1! DexpS 2

i

\
H0
22~ t12t2! D

3expS 2
i

\
H0
11~ t22t3! D rRexpS i\ H0

22~ t2t3! D G1FexpS 2
i

\
H0
11~ t2t2! DexpS 2

i

\
H0
22~ t22t3! D rR

3expS i\ H0
11~ t12t3! DexpS i\ H0

22~ t2t1! D G1FexpS 2
i

\
H0
11~ t2t3! D rRexpS i\ H0

22~ t22t3! DexpS i\ H0
11~ t12t2! D

3expS i\ H0
22~ t2t1! D G J 1

im2m3
2

\3 E
2`

t

dt1E
2`

t1
dt2E

2`

t2
dt3E~r,t1!E~r,t2!E~r,t3!TrbathH FexpS 2

i

\
H0
11~ t2t2! D

3expS 2
i

\
H0
33~ t22t3! D rRexpS i\ H0

11~ t12t3! DexpS i\ H0
22~ t2t1! D G1FexpS 2

i

\
H0
11~ t2t3! D rR

3expS i\ H0
33~ t22t3! DexpS i\ H0

11~ t12t2! DexpS i\ H0
22~ t2t1! D G1FexpS 2

i

\
H0
11~ t2t1! DexpS 2

i

\
H0
33~ t12t2! D

3expS 2
i

\
H0
11~ t22t3! D rRexpS i\ H0

22~ t2t3! D G1FexpS 2
i

\
H0
11~ t2t1! DexpS 2

i

\
H0
33~ t12t3! D rR

3expS i\ H0
11~ t22t3! DexpS i\ H0

22~ t2t2! D G J . ~2.18!

Notice thats13
(3)(r,t) is obtained by exchanging the indices 2 and 3 in the above expression. Here,E(r,t) appears as a scalar

quantity because we have assumed that the exciting fields are all linearly polarized. Therefore, the vector nature ofE(r,t),
m1 , andm2 can be omitted. In other respects, the termsH0

i i represent the element^ i uH0u i & which is an operator in the bath
space. At this step of the calculation it is necessary to evaluate the different trace operations which appear in the expressions.
All the trace operations which appear in expression~2.18! can be performed provided that one can evaluate the general term

TrbathFexpS i\ H0
11t1DexpS i\ H0

mmt2DexpS i\ H0
11t3DexpS 2

i

\
H0
nn~t11t21t3! D rRG , ~2.19!

for m andn varying between 2 and 3.
After some straightforward algebra, such an expression can be expressed as

exp~ ivmmt2!exp$2@ ivnn~t11t21t3!#%exp@Kmn~t1 ,t2 ,t3!#, ~2.20!

whereKmn(t1 ,t2 ,t3) is simply evaluated by the cumulant expansion method up to the second order. We obtain

Kmn~t1 ,t2 ,t3!52
i

\
^Vnn&~t11t21t3!1

i

\
^Vmm&t22

1

\2E
0

t11t21t3
ds1E

0

s1
ds2$^Vnn~s1!Vnn~s2!&2^Vnn&

2%

1
1

\2E
0

t2
ds1E

0

t11t21t3
ds2$^Vmm~s11t1!Vnn~s2!&2^VmmVnn&%2

1

\2E
0

t2
ds1E

0

s1
ds2$^Vmm~s2!Vmm~s1!&

2^Vmm&2% ~2.21!

52
i

\
^Vnn&~t11t21t3!1

i

\
^Vmm&t21Qmn~t1 ,t2 ,t3!, ~2.22!

where^•••& denotes Trbath@•••rR#. Vnn(s) corresponds toVnn in the interaction picture. Using Eq.~2.5!, Qmn(t1 ,t2 ,t3) can
be written as

Qmn~t1 ,t2 ,t3!5Rmn~t1 ,t2 ,t3!1 i I mn~t1 ,t2 ,t3!, ~2.23!

where
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Rmn~t1 ,t2 ,t3!52@hL
~n!#2gL~t11t21t3!2@hL

~m!#2gL~t2!1hL
~m!hL

~n!@gL~t11t2!1gL~t21t3!2gL~t3!2gL~t1!#

2
1

2
@hQ

~n!#2gQ~t11t21t3!2
1

2
@hQ

~m!#2gQ~t2!1
1

2
hQ

~m!hQ
~n!@gQ~t11t2!1gQ~t21t3!2gQ~t3!2gQ~t1!#

~2.24!

and

I mn~t1 ,t2 ,t3!5@hL
~n!#2gL8~t11t21t3!2@hL

~m!#2gL8~t2!1hL
~m!hL

~n!@gL8~t21t3!1gL8~t1!2gL8~t3!2gL8~t11t2!#

1
1

2
@hQ

~n!#2gQ8 ~t11t21t3!2
1

2
@hQ

~m!#2gQ8 ~t2!1
1

2
hQ

~m!hQ
~n!@gQ8 ~t21t3!1gQ8 ~t1!2gQ8 ~t3!2gQ8 ~t11t2!#.

~2.25!

The functionsgL(t), gQ(t), gL8(t), andgQ8 (t) verify the relations

gL~t!5(
k

@112n~vk!#@12cosvkt#, ~2.26!

gQ~t!5(
k

(
q

H $@11n~vk!#@11n~vq!#1n~vk!n~vq!%
vkvq

~vk1vq!
2 $12cos@~vk1vq!t#%

12n~vk!@11n~vq!#
vkvq

~vk2vq!
2 $12cos@~vk2vq!t#%J , ~2.27!

gL8~t!5(
k

@vkt2sinvkt#, ~2.28!

gQ8 ~t!5(
k

(
q

H @11n~vk!1n~vq!#
vkvq

~vk1vq!
2 $~vk1vq!t2sin@~vk1vq!t#%

22n~vk!@11n~vq!#
vkvq

~vk2vq!
2 $~vk2vq!t2sin@~vk2vq!t#%J , ~2.29!

wheren(v) is the Bose-Einstein distribution function. An
examination of relation~2.23! shows that the coupling be-
tween the bath and the three-level sytem introduces not only
a time-dependent dephasing but also a time-dependent fre-
quency shift of sublevels 2 and 3. At this point of the calcu-
lation, we have not made any assumptions about the exciting
fields and our theory can be applied to various experimental
situations. In this paper, our purpose is to describe a TFWM
experiment as represented in Fig. 2. Then, instead of the
general electric field given by relation~2.10!, we may use

E~r,t !5E1~ t2t!exp@ i ~vt2k1•r!#

1E2~ t !exp@ i ~vt2k2•r!#1c.c., ~2.30!

wheret is the delay between the pump pulseE1(t) and the
proble pulseE2(t). In the following, we shall only consider
the case wheret>0. We shall also assume that these non-
Markovian frequency drifts are small with respect to the
transition frequenciesv2 andv3 so that we can apply the
rotating wave approximation. On the other hand, we shall
also assume that the time variations of the field envelopes
E1(t) andE2(t) are fast compared to the dynamics of the
system. Then we can apply the approximation ofd pulses
and perform all the integrations in relation~2.18! to calculate

the macroscopic polarization by using relation~2.16!. In the
total expression of the polarization, only the terms with the
wave vector 2k12k2 need to be considered. This particular
contribution can be written as

P~3!~ t !5P ~3!~ t !exp$ i @vt2~2k12k2!•r#%1c.c.,
~2.31!

whereP (3)(t), aside from unimportant multiplicative fac-
tors, takes the form

FIG. 2. Experimental configuration of a TFWM experiment.
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P ~3!~ t !5m2
4exp@ iD2~ t22t!#exp@Q22~2t,t,t2t!/\2#1m3

4exp@ iD3~ t22t!#exp@Q33~2t,t,t2t!/\2#

1m3
2m2

2exp@ iD3~ t2t!#exp@2 iD2t#exp@Q23~2t,t,t2t!/\2#1m3
2m2

2exp@ iD2~ t2t!#exp@2 iD3t#

3exp@Q32~2t,t,t2t!/\2#. ~2.32!

Here, the quantities D i , i52,3, are equal to
v2v i2^Vii &/\. Finally the intensity of radiation emitted in
the direction 2k12k2 is given by

I ~t!5E
2`

`

uP ~3!~ t !u2dt. ~2.33!

III. SIMULATION

Before proceeding to simulations with our theoretical
model, it is important to note that in the particular case
where the sublevels have the same interaction constants,

hL
~2!5hL

~3!, hQ
~2!5hQ

~3! , ~3.1!

all the quantitiesQi j (2t,t,t2t) are equal and can be fac-
tored out from expression~2.32!. In this case, only the real
part ofQ contributes to the signal and we are left with an
amplitude modulation of the beats. In the case where the
interaction constants are different, the imaginary part ofQ
play also a role and the variation of the detected signal with
respect tot will be different. To study these effects, the
integration which appears in relation~2.33! has been per-
formed numerically and we have assumed that the phonon
density of states has a Gaussian profile with maximum at
vp and with width gp .

15 Then all the summations in the
expressions~2.26! to ~2.29! become standard integrations
which are also evaluated numerically.

All the curves which will be presented represent the inte-
grated intensity detected in the TFWM experiment for vari-
ous parameters. The insets appearing on each plot display the

amplitude modulation envelope; i.e., the amplitude of the
quantum beats of the three-level system is modulated by the
function sketched in the inset. Notice that the curves of the
main graphs as well as of the insets have all arbitrarily been
normalized to 1. The first simulation corresponds to Fig. 3
and Fig. 4. The difference between these curves lies in the
energy gap between the two sublevels 2 and 3. Otherwise all
the parameters are identical and correspond to the numerical
simulation in Aihara’s work.15 As can be seen in the corre-
sponding insets, the oscillations of the dephasing are not too
important for this set of parameters. We have only one non-
Markovian oscillation but it is useful, for now, to distinguish
clearly the non-Markovian and Markovian parts of the inte-
grated signal. Curves~a! correspond to same interaction con-
stants~i.e., hL

(2)5hL
(3) andhQ

(2)5hQ
(3)). In curves~b! and~c!,

we increasehL
(3) andhQ

(3) with respect tohL
(2) andhQ

(2) while
the ratiohL /hQ is being held fixed.

An amplitude modulation is observed both in Fig. 3~a!
and Fig. 4~a!, but this appears more clearly in Fig. 4~a! where
the quantum beat frequency is smaller than the one of the
non-Markovian oscillation. In Fig. 3~a!, they have been cho-
sen so as to be of the same order.

The situation is different when the interaction constants
are not equal as shown in curves~b! and~c! Fig. 3 or Fig. 4.
We observe two phenomena. We notice first a difference in
beat frequency which persists even in the Markovian part of
the curves. This point is not surprising since it is due to the
fact that we increase the interaction constants of level 3 and
consequently the energy difference is also modified. The sec-
ond phenomena is the appearance of deformations of the

FIG. 3. Time-integrated intensity as a func-
tion of the pulse delayt. The time axis is nor-
malized by the phonon oscillationvp . For the
three curves, b51, gp50.4, m25m351,
hL
(2)50.4, hQ

(2)50.066, D250.5, and
D3520.5. Curve~a! is given forhL

(2)5hL
(3) and

hQ
(2)5hQ

(3) , ~b! for hL
(3)50.6 andhQ

(3)50.1, and
finally ~c! corresponds tohL

(3)50.8, hQ
(3)50.133.
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beats but only for short delays which correspond to the non-
Markovian part of the curves. The behavior is no longer
sinusoidal as in the Markovian part and this is a consequence
of the nonequilibrium motion of the bath. On a short-time
scale we have a time dependence, and also a delay depen-
dence, of the energy difference of the levels between which
beating occurs. For short delays, we observe a non-
Markovian behavior in the amplitude modulation of the beats
but also in the delay dependence of the oscillation. Of
course, for longer delays we find again a Markovian behav-
ior as shown in Fig. 3 and Fig. 4. If we continue to increase
the difference between the interaction constants, beating fi-
nally disappears.

The motivation behind the choice of the preceding set of
parameters was to obtain curves sufficiently clear to distin-
guish the main physical phenomena but it is obvious that the
oscillatory dephasing obtained in these simulated situations

is not to be confused with quantum beats. Figures 5 and 6
illustrate a situation where the non-Markovian behavior leads
to strong oscillations. Figure 5 corresponds to the same set of
parameters as Fig. 4~a! except that we have taken a sharper
phonon density to increase the oscillatory dephasing. We
have only considered in this curve the case where the inter-
actions constants are equal. Other simulations with increas-
ing hL

(3) andhQ
(3) as in Figs. 4~b! and 4~c! do not show new

phenomena and lead to very unreadable curves. Figure 5
shows clearly the modulation amplitude but, here the dephas-
ing is highly oscillatory. Figure 6 corresponds to the same set
of parameters as Fig. 3 but the phonon density is taken as in
Fig. 5. Curves~a!, ~b!, and~c! correspond to the same choice
of interaction constants as that in Figs. 3~a!, 3~b!, and 3~c!.
Here, the beating period is of the same order than the non-
Markovian oscillations. All the observed variations can be

FIG. 4. Time-integrated intensity as a func-
tion of the pulse delayt. The constants are iden-
tical to the ones taken in Fig. 3 except that here
D252 andD3522.

FIG. 5. Time-integrated intensity as a function of
the pulse delayt. The constants are identical to the
ones taken in Fig. 4~a! except that heregp50.05.
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explained with the same argument used for the situations
illustrated in Fig. 3 or Fig. 4. Nevertheless, we see here that
the surrounding nonequilibrium motion affects highly the
beating when the interaction constants are different.

IV. CONCLUSION

To summarize, we have describe a TFWM experiment in
a three-level system when quantum beats and non-
Markovian effects occur simultaneously. Our theoretical ap-
proach is based on a microscopical description of the sur-
roundings of the system under optical excitation by a set of
harmonic oscillators. This model is not restricted to the de-
scription of localized-electron–phonon system but can be ap-
plied to various kind of materials. We have considered the

case where memory effects induce an oscillatory dephasing.
These non-Markovian oscillations must not be confused with
quantum beats and we have analyzed how they affect the
oscillations due to quantum beats. We have shown that a
difference in the interaction constants between the levels and
the bath leads to a deformation of the beats which are no
longer harmonic for short delays between the light pulses.
This anharmonicity is a consequence of the nonequilibrium
motion of the surroundings. For equal interaction constants
we have again found an amplitude modulation of the beats as
in the Markovian case but the decay is not exponential for
short delays. The deformations of the beats should be ob-
servable experimentally and are significant of the coupling
difference between the bath and the levels between which
beating occurs, making it possible to study the nonequilib-
rium motion of the surroundings of the system.
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