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Exact solutions of a nonlinear diatomic shell model are investigated in the regime where quasiharmonic and
pseudoperiodic traveling waves exist with phonon-type character. The existence regimes of these solutions are
determined by the boundary conditions and the model parameters for which especially a strong time and mass
dependence is observed. It is found that slowly propagating waves mostly show large displacement responses
which can be associated with large dipole moments, while rapidly traveling waves carry a much smaller dipole
moment, but still this is appreciably larger than that induced by bare optic-phonon modes. The case of large
anharmonicity shows the opposite effect. Here high-frequency responses carry a large dipole moment. The
large dipole moments can be associated with effective charges which induce high oscillator strengths in the
corresponding phonon modes, incompatible with results deduced from harmonic lattice dynamics. The origin
of the large dipole moments in the shell model is investigated by solving for core and shell displacements
separately, where ‘‘acoustic-type’’ periodic in-phase displacements of core and shell with different amplitudes
are observed, as well as pseudoperiodic out-of-phase ‘‘optic-type’’ displacements resulting from large anhar-
monicity, and are also found in the static limit. Besides the displacement frequency spectrum, the effective
potentials are calculated which are distinctly different fromf4-type potentials: The potential height is finite
with finite width which, in certain cases becomes very small, thus admitting for tunneling through the barrier.

I. INTRODUCTION

In a variety of recent work1–4 a nonlinear shell model for
structural instabilities related to ferro- and antiferroelectric
phase transitions and local structural anomalies has been in-
vestigated. Three-dimensional5–10 as well as pseudo-one-
dimensional versions11–14 of this model have been used to
calculate Raman spectra and infrared responses as well as the
temperature dependences of soft modes andq dependences
of the lattice modes. Excellent agreement with experimental
data was achieved which demonstrates the value of phenom-
enologically derived models such as the shell model. The
nonlinear shell model has been introduced in order to ac-
count for the highly nonlinear temperature- and volume-
dependent polarizability of the oxygen ion15 which leads to a
dynamical covalency. Clear confirmation of this phenom-
enology has been obtained recently fromab initio
methods.16,17 As the phenomenological models exhibit high
physical transparency, and since numerical calculations are
much less expedient than using other methods, we continue
here earlier work on exact solutions of the model.

The polarizability model is based on af4 potential in the
core-shell relative displacement. Using the adiabatic approxi-
mation for the shell equation of motion, it is possible to
derive an effective potential for the relative displacement
which exhibits qualitatively new features and solutions, as
compared to the usualf4 or sine-Gordon-type models.18

Various solutions of this model have already been investi-
gated in the lattice case,19–21 as well as in the continuum

limit.22,23 In the lattice case, periodic nonlinear waves have
been discovered, which have been shown to model the
antiferrodistortive-type phase transitions as observed, e.g., in
K2SeO4. In the continuum limit nonlinear traveling waves
exist, but also traveling pulses, which carry a large dipole
moment, and kink solutions are found, where the kinks de-
scribe the statics and dynamics of ferroelectric domain walls.
More recently we have addressed the existence regimes of
nonlinear periodic traveling waves, and their time and mass
dependence.23 It was shown that local structural anomalies
as, e.g., observed in cuprate superconductors can be associ-
ated with these solutions. Most importantly it was shown that
the observability of double-well potentials is crucially depen-
dent on the time scale of the observationed probe; this find-
ing may help to clarify controversial experimental results
about the existence of local double-well potentials inferred
from new experimental techniques like pulsed neutron dif-
fraction, the pair distribution function~PDF!, NMR, and ex-
tended x-ray absorption fine structure~EXAFS!. These tech-
niques can all probe local structural features, but require
investigation of time-dependent effects, as these experiments
use a different time scale as compared to more conventional
methods such as Raman, infrared, and inelastic neutron scat-
tering techniques. Interestingly a molecular dynamics simu-
lation of the two-dimensional version of the nonlinear shell
model24 also shows that there is a coexistence regime of two
different time scales in the particle displacement which obey
distinct dynamics.

Here we continue former investigations on the exact so-
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lutions of the nonlinear polarizability model using the con-
tinuum approximation. Again time- and mass-dependent ef-
fects are investigated in addition to effects caused by
anharmonicity and the potential barrier height. Instead of
solving for nonlinear periodic wave solutions, we concen-
trate here on the existence regime of~pseudo!harmonic peri-
odic waves with phonon-type character in order to explore
the origin of anomalously large dipole moments and oscilla-
tor strengths observed in certain systems.

It should be mentioned that a huge amount of effort has
been devoted to solving electron-phonon interaction models.
These models are usually based on the Fro¨hlich25 or Holstein
model26 for which it can be shown that double-well poten-
tials in the phonon displacement coordinates can be gener-
ated by sufficiently strong electron-phonon coupling.27 Also
models combining inter- and intrasite electron-phonon cou-
plings have been investigated in detail and ‘‘soliton’’ solu-
tions carrying fractional charges have been discovered.28 The
possibility for structural instability has been included in a
Peierls system by considering explicitly anharmonic mode-
mode coupling, which crucially influences the order of the
structural phase transition.29 Models of these types find a
variety of applications in quasi-one-dimensional crystals
with a Peierls or spin-Peierls instability.30–32 Even though
the nonlinear shell polarizability model is phenomenologi-
cally derived, it has a variety of features in common with the
above-mentioned approaches as it represents in its quantum-
mechanical analog an electron-phonon interaction model
with on-site and intersite electron-phonon coupling and an-
harmonic lattice potentials33,34 similar to the case discussed
in Ref. 29. But, in addition, electron-mediated mode-mode
coupling is considered and multi-phonon-electron density in-
teractions are obtained, which can model, e.g.,c-axis-related
effects in high-Tc superconductors.

35–37

The paper is organized in the following way: In the first
section we introduce the model and briefly review results
from earlier work. In the second section the effects of chang-
ing the double-well potential height on the dipole moment
and the core and shell displacements are discussed together
with the resulting displacement frequency spectra which re-
veal mode softening as expected for, e.g., ferroelectrics. It is
also found that an ‘‘acoustic-mode’’-type dipole moment in-
creases with decreasing frequency and huge oscillator
strengths, incompatible with harmonic lattice dynamics, re-
sult. In the third, fourth, and fifth sections the same quantities
as functions of anharmonicity, mass, and time are investi-
gated. Increasing the anharmonicity up to the existence limit
of pseudoharmonic periodic traveling waves yields strongly
nonlinear but periodic waves for the individual core and shell
motions, which show multiphonon contributions in the fre-
quency spectrum and large oscillator strengths at high fre-
quencies. Similar effects are also found with increasing mass
ratio of the two sublattices, even though the mass ratio acts
in a similar way on the effective potential as the barrier
height. Beyond a certain critical mass ratio~pseudo!har-
monic periodic waves no longer exist as the shape of the
potential is reversed. As has been stressed recently in
detail,23 the time scale plays a very important role for par-
ticle dynamics. Here, huge optic-mode-type dipole moments
develop in the low-velocity regime which are due to out-of-

phase motions of core and shell which admit for charge
transfer or local ionization processes.

II. MODEL

The Hamiltonian of the nonlinear polarizability shell
model in the diatomic linear chain version consists of a local
on-site double-well potential in the relative core-shell dis-
placementW with harmonic force constantg2 and fourth-
order constantg4, where the relative displacement refers to
the difference in displacement coordinateU1 of the core with
massm1 and its surrounding shell with displacement coordi-
nateV1,V. Mode-mode coupling is provided through the
shells only with harmonic couplingf which couples the non-
polarizable massm2 to the shells ofm1. Lattice stability is
provided through next-nearest-neighbor core-core coupling
f 8 at m1. In the continuum limit the displacement coordi-
nates are expanded with respect to timet52a/v, wherea is
the lattice constant andv the phase velocity. The equations
of motion using the adiabatic approximation for the shell
motion read

m1Ü1n5 f 8t2Ü1n1g2W1n1g4W1n
3 , ~1a!

m2~Ü2n1Ü2n11!522g2W1n22g4W1n
3 1 f t2Ẅ1n

1 f t2Ü1n , ~1b!
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The coupled equations~1! can be reduced to a single equa-
tion inW1n[W which is of Bernoulli type, i.e.,

AẄ1BẄW21CWẆ21DW1EW350, ~2!
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Equation~2! can be integrated and yields an effective poten-
tial in W ~see Refs. 22, 23!.

Slowly oscillating nonlinear periodic solutions exist for
small v, which become standing periodic waves in the limit
v→0. These types of solutions can be interpreted as model-
ing structural anomalies. If the particle dynamics are con-
fined to a single well, traveling kink solutions are obtained
which also exist in the static limit, where they correspond to
ferroelectric domain walls. Large velocity solutions exist for
certain values of the mass ratio andg2 being positive and
have either kink or pulse-exciton character. The pulse-
exciton solutions, in particular, admit, in the static limit, lo-
cal ionization processes or charge transfer processes which
carry an integrated dipole moment. Huge polarization waves
and large amounts of energy are associated with them, which
might be important in understanding the dynamics of
biomolecules.38 Solutions which have been obtained in the
lattice case exist also in the continuum limit, where besides
the ferro- and antiferroelectric solutions, also commensurate
periodic wave solutions are found with periods 3, 4, 5, and 6.

It is important to note that the solutions discussed above
critically depend on the parameter regime and consequently
have a restricted existence area. It should also be noted that
they are not obtained, except for the first case discussed, by
solving Eq. ~2! directly, but by investigating the effective
potential. In the following, Eq.~2! is, as in Ref. 23, solved
exactly numerically. As has already been pointed out before,
only harmonic periodic or quasiperiodic traveling-wave so-
lutions are addressed as these can be interpreted in terms of
phonon-type excitations. These solutions exist in certain pa-
rameter regimes only, which will be discussed below and
obey all the same boundary conditions, i.e., maximum veloc-
ity at W[0. In no case are they really fully periodic and
harmonic, due to the highly anharmonic character of the po-
tential, but always only quasiperiodic and quasiharmonic. In
addition, only waves are considered which cross the origin
and have two equivalent~or nearly equivalent! turning
points. The local on-site potential is in all investigated cases
of f4 type, i.e.,g2,0, g4.0, which, not necessarily, is true
for the effective potential. Also we associate, in analogy to
Ref. 22, with the relative core-shell displacement coordinate,
an effective dipole moment as core and shell are oppositely
charged. The origin of the dipole moment is then discussed
in terms of individual core and shell displacements. In all
cases investigated the harmonic next-nearest and second-
nearest-neighbor couplings have been kept constant as well
as the rigid massm2 and are the same throughout the paper
~see Figs. 1–15!.

III. VARIATION OF THE DOUBLE-WELL POTENTIAL
DEPTH

The depth of the local double well is determined through
g2 which is taken as a variable in this section. As the struc-
tural transition temperatureTc is directly proportional tog2,
increasing ug2u corresponds to an increase inTc . The
displacement-velocity dependence for various values ofg2 is
shown in Fig. 1. For smallg2 the displacement at zero ve-

locity is large and decreases systematically with increasing
ug2u. g2 being very small corresponds to the fact that the
system is close to the phase transition where the anharmo-
nicity dominates the dynamics. This is evident from Fig. 1 as
the particle motion clearly starts deviating from quasihar-
monic behavior to freeze in statically. ConsequentlyW be-
comes a multivalued function of the velocityẆ correspond-
ing to the increasing time. The multivalued solutions are in
this case a consequence of the proximity to the phase transi-
tion, where nonlinear effects dominate the particle dynamics.
With increasingug2u the displacement-velocity dependence
reveals strong amplitude reductions and increasing frequen-
cies. This becomes more evident by examining at the time
development ofW ~Fig. 2!. It is clearly seen that the dynam-
ics slow down when approaching the phase transition and
huge increases in the oscillating dipole are observed, which
can be associated with mode softening. With decreasingg2
the dipole moment increases, and huge oscillator strengths
are expected to be associated with low-frequency modes,
while the frequency shifts to zero. The variation of the po-
tential depth thus clearly simulates temperature effects on the
system dynamics. The effective potential as a function ofW
andg2 is shown in Fig. 3. Here the potential seems to be-

FIG. 1. Displacement-velocity dependence forg2520.03
~dashed-dotted line!, 20.63~solid line!, 21.63~dotted line!, 22.63
~dashed line!. All other parameters are given in Table I which are
the same in all figures of Sec. III.g2 is given in units of 104

erg cm22.

FIG. 2. Time dependence of the relative displacementW for
g2520.03 ~dashed-dotted line!, 20.63 ~solid line!, 21.63 ~dotted
line!, 22.63 ~dashed line!.
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come infinitely large at finiteW, but beyond the scale of Fig.
3 the potential reaches a maximum atW50.65 Å for eachg2
and goes through zero again atW50.79 Å to become infi-
nitely negative. The height of the maximum varies nonlin-
early with g2 and reaches its largest value atg2520.5. In
any case, the barrier height is larger than several thousands
of eV’s, which certainly confines the particle motion to os-
cillate within the barriers, but as the barrier width is only
0.14 Å, it is possible that tunneling through the barriers may
be observed under appropriate conditions. The origin of the
huge dipole moments can be investigated by solving the
equations of motion forU1 andV5U11W[ shell displace-
ment coordinate, separately. In Fig. 4 the time dependence of
U1 is shown.V exhibits the same time dependence asU1,
but shows larger amplitudes for all values ofg2. Note that

the scale has changed as compared to Fig. 2. The amplitudes
of bothU1 andV are much larger than ofW. All displace-
ment coordinatesW, U1, andV show the same periodicity
for the sameg2 and oscillate in phase. The dipole moment is
thus only due to the different amplitudes ofU1 andV, and is
termed ‘‘acoustic type’’ to emphasize the distinction from
dipole moments originating from opposite displacements of
U1 andV. The displacement-frequency spectra ofU1 andV,
as expected, reproduce mode softening of the system with
decreasingug2u and large displacements of both core and
shell, associated with the lowest frequencies.

IV. VARIATION OF ANHARMONICITY

In this section the anharmonic core-shell coupling is var-
ied andg2 is kept constant~Table I!. The displacement ofW
as a function of velocity is shown in Fig. 5. For small anhar-
monicity the particle dynamics is highly periodic and har-
monic with large static displacements. Increasingg4 reduces
the static displacements but the motion is still nearly periodic
and quasiharmonic. Forg455 the motion becomes highly
nonlinear and the velocity as well as the displacement in-
creases rapidly with increasing time. In this caseW becomes,
again similar to Fig. 1 andg2520.03, a multivalued func-
tion of the velocity due to the fact that strong anharmonicity
dominates the dynamics and admits for new solutions with
increasing time. It should be noted here that the system is not
close to the phase transition, but the terms in Eq.~2! propor-
tional toB, C, andE dominate the nonlinear dynamics. The
stability limit to observe quasiperiodic traveling waves is
reached forg4545.0, which corresponds to an extremely
steep potential. The time development ofW strongly re-
sembles the previous case~Fig. 2! and it is not very apparent
that the particle motion is no longer periodic. The increase in
g4 clearly yields faster traveling-wave solutions with de-
creasing amplitude. In the case of largest anharmonicity the
amplitude of oscillations becomes strongly time dependent,
i.e., increasing with increasing time. The displacement-
frequency spectrum shows mode softening with decreasing
g4, but large increases in the dipole moment with increasing
g4. This means that high-frequency modes with large dipole
moments can be associated with large anharmonicity. This

FIG. 3. Effective potentialV(W) as a function ofW for
g2520.03 ~dashed-dotted line!, 20.63 ~solid line!, 21.63 ~dotted
line!, 22.63 ~dashed line!.

FIG. 4. Time dependence of the core displacement coordinate
U1 for g2520.03 ~dashed-dotted line!, 20.63 ~solid line!, 21.63
~dotted line!, 22.63 ~dashed line!.

FIG. 5. Displacement-velocity dependence forg450.01~dashed
line!, 1.2 ~dotted line!, 5.0 ~solid line!. All other parameters are
given in Table I and are the same in all figures of Sec. IV.g4 is
given in units of 1022 erg cm24.
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result is certainly important for structurally stable systems
with negligible mode softening, as, e.g., high-Tc supercon-
ductors, where very large oscillator strengths of certain lat-
tice modes have been observed.39,40 The variation of the ef-
fective potential withg4 is shown in Fig. 6. For the smallest
g4 ~50.01! the potential has deep broad double-well charac-
ter ~this is beyond the scope of the figure!. With increasing
g4 the potential narrows and again seems to become un-
bounded at smallW. But again it is found that the barrier is
finite, the maximum now being dependent ong4, like the
width of the barrier. With increasingg4 the maximum shifts
to smaller values ofW and the width decreases rapidly, thus
favoring tunneling through the barrier which would admit for
hugeW and charge transfer processes. The origin of the large
dipole moments associated with high-frequency modes can
be deduced from the individual core and shell displacements
~Figs. 7 and 8!. For very smallg4 slow oscillations of core
and shell with moderate amplitudes are found, which are
periodic but already strongly nonlinear. Also the individual
displacements are out of phase but have the same periodicity.
With increasing anharmonicity the core displacement be-
comes much smaller, strongly nonlinear, and clearly aperi-
odic while the shell displacement amplitude remains ap-
proximately the same for allg4 and seems to be

pseudoharmonic and periodic. The frequency spectra ofU1
and V show for all values ofg4 multifrequency responses
which shift to the higher-frequency side with increasingg4.
With increasingg4 the response ofU1 becomes smaller as
compared to the very small anharmonicity case, while the
opposite happens for the shell displacement. These large di-
pole moments observed for high frequencies originate from
the large shell displacements; those displace opposite to the
cores which behave highly anharmonic with very small am-
plitudes.

V. VARIATION OF THE MASS RATIO m1/m2

The mass ratio is varied by varying the polarizable sub-
lattice mass. The double-well potential-defining parameters
are kept constant and are given in Table I. The displacement
velocity dependency is shown in Fig. 9. As should be ex-
pected the static displacement decreases, with increasingm1,
being less than half as compared to the smallest mass. The
time dependence ofW is shown in Fig. 10. Interestingly and
oppositeto harmonic lattice dynamics, the heavy mass leads
to rapid small amplitude oscillations in the dipole moment,
which increase in amplitude but decrease in velocity with
decreasing mass. The frequency spectrum in Fig. 11 shows
mode softening with decreasing massm1 and large dipole

FIG. 6. Effective potentialV(W) as a function ofW for g450.01 ~dashed line!, 1.2 ~dotted line!, 5.0 ~solid line!.

FIG. 7. Time dependence of the core displacement coordinate
U1 for g450.01 ~dashed line!, 1.2 ~dotted line!, 5.0 ~solid line!.

FIG. 8. Time dependence of the shell displacement coordinateV
for g450.01 ~dashed line!, 1.2 ~dotted line!, 5.0 ~solid line!.
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moments associated with low-frequency modes. For the larg-
est massm1 multiphonon contributions are observed, indicat-
ing that the system becomes more anharmonic if the polar-
izable sublattice mass is increased. Altogether the dipole
moment is rather small as compared to the previously inves-
tigated cases. This is due~Fig. 12! to the fact that core and
shell displacements are in phase, both being extremely large
~note that the scale has changed!, but of the same order of
magnitude, thus nearly leading to cancellations. The fre-
quency spectrum forU1 ~Fig. 13! also shows mode softening
with increasing mass, but very large displacement contribu-
tions at various frequencies with increasing mass underlining
the increasing anharmonicity. The shell displacement and the
shell displacement frequency spectrum are very similar to
the corresponding core dynamics, as already outlined above
~see Figs. 12 and 13! and have been omitted here. The mass
dependence of the effective potential~Fig. 14! shows that the
decrease in massm1 deepens the potential wells drastically
and steepens the potential which corresponds to increasing
anharmonicity. The stability limit for quasiharmonic periodic
waves is reached when the two sublattice masses are ap-
proximately the same. This case is especially interesting for
observing nonlinear traveling waves where huge dipole mo-
ments have been found. Beyond the stability limit of the
quasiharmonic solutions, i.e.,m1.m2 , the potential shape
reverses~see Fig. 14! and the wells decrease with increasing
mass. Note that also here the height is not infinite but mass
dependent and of the order of several hundred eV’s. The

same holds for the minima whenm1.m2 . As the variation
of masses mainly reflects itself in a change of the potential
barrier it should consequently lead to a change in the struc-
tural phase transition temperature when a system is alloyed,
diluted, or mixed with another system. For instance, in
KTa12xNbxO3 it is observed thatTc systematically increases
with increasingx ~see, e.g., Ref. 8!. As in the present model
m1 refers to the polarizable clusterBO3 of ABO3 perovs-
kites, the large increases inTc are readily attributable to the
mass differences of Ta and Nb ions and obey the finding
from the model calculations. Note that this coincides with
frozen-phonon local density approximation~LDA ! calcula-
tions where a smooth double well is observed for pure
KTaO3 and a deep double well for KNbO3.

41,42 Also in
La12xSrxCuO4 the above rule is obeyed where in this case
the mass ratio is varied by changingm2. With increasing La
content, i.e., decreasingm1/m2 , Tc , which corresponds to
the structural transition temperature, increases.43–46The con-
sequences from the importance of the mass ratio onTc could
experimentally be used in optimizing material properties for
specific applications. As the potential barriers are very high
and their width being much larger than observed in the varia-
tion of g4, it is unlikely that tunneling and strongly nonlinear
solutions are obtained if the critical ratio is not exceeded.
Note that the mass ratio also plays a crucial role to observe
order-disorder, displacive transitions.47

FIG. 9. Displacement-velocity dependence form150.2 ~dashed-
dotted line!, 0.8 ~solid line!, 1.1 ~dotted line!. All other parameters
are given in Table I and are the same in all figures of Sec. V.m1 is
given in units of 10222 g.

FIG. 10. Time dependence of the relative displacement coordi-
nateW for m150.2 ~dashed-dotted line!, 0.8~solid line!, 1.1~dotted
line!.

FIG. 11. Displacement-frequency dependenceW~v! for m1
50.2 ~dashed line!, 0.8 ~solid line!, 1.1 ~dotted line!.

TABLE I. Model parameters used in Sec. III.

m150.5310222 ga

m2 5 1.46310222 g
f 5 14.413104 erg cm22

f 8 5 1.273104 erg cm22

g2 5 20.633104 erg cm22, b 22.633104 erg cm22 c

g4 5 0.90431022 erg cm24 d

t 5 1 THz21 e

aUsed in Figs. 1, 5, and 15.
bUsed in Fig. 5 only.
cUsed in Figs. 9 and 15.
dUsed in Figs. 1, 9, and 15.
eUsed in Figs. 1, 5, and 9.
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VI. TIME-DEPENDENT EFFECTS

The time dependence has been addressed recently
already23 by solving Eq.~2! for nonlinear traveling-wave so-
lutions. The critical influence of the time scale has been em-
phasized in detail and we continue this former work by in-
cluding here time effects on phonon-type solutions. The
displacement-velocity dependence is shown in Fig. 15.
While on the phonon time scale moderate static dipole mo-
ments are observed large increases are obtained with increas-
ing time. This becomes more obvious from Fig. 16 where the
traveling waves are shown as a function of time. While the
expected fast velocity solutions exist fort small, they dra-
matically slow down with increasingt and show large in-
creases in the amplitudes. The corresponding frequency
spectrum~Fig. 17! shows huge dipole moments at zero fre-
quency for large times. With decreasing time these are still
present but a response at the optic mode emerges at higher
frequency. For smallt only a moderate dipole moment is
observed which could also be caused by ordinary optic-
phonon modes. The reason for the huge increases in dipole

moment becomes clear from investigating the individual dis-
placements of core and shell. Fort small core and shell
displace in phase, both being of the same order of magni-
tude. With decreasing velocity they displace in opposite di-
rections where specifically the shell displacement becomes
very large indicating charge transfer or local ionization pro-
cesses~Figs. 18 and 19!. Simultaneously the dynamics is no
longer quasiharmonic but becomes increasingly nonlinear

FIG. 12. Time dependence of the core displacement coordinate
U1 for m150.2 ~dashed line!, 0.8 ~solid line!, 1.1 ~dotted line!.

FIG. 13. Displacement-frequency dependenceU1~v! for
m150.2 ~dashed line!, 0.8 ~solid line!, 1.1 ~dotted line!.

FIG. 14. Effective potentialV~v! as a function ofW for m150.2
~dashed line!, 0.8 ~solid line!, 1.1 ~dotted line!, 1.55 ~reversed po-
tential, dashed line!, 3.1 ~long-dashed line!.

FIG. 15. Displacement-velocity dependence fort50.75 ~solid
line!, 2.5 ~dashed line!, 4 ~dotted line!. All other parameters are the
same in all figures of Sec. VI and are given in Table I.t is given in
units of THz21.
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and slows down significantly. The frequency spectrum ofU1
andV shows moderate responses in the high-velocity regime
for bothU1 andV. With decreasing velocity a static compo-
nent develops which is huge for the shell displacement but of
moderate values for the core displacement coordinate. While
at intermediatet a response of the system at the original
frequency is still observed, this vanishes nearly completely
in the static case. The time dependence of the potential is
shown in Fig. 20. In the static and intermediate velocity case
a broad single minimum potential is observed which narrows
with increasing velocity and develops gradually double-well

character. Again, as previously, the potential is not infinitely
high but has a maximum which has at-dependent height and
width at t-dependent values ofW. The stability limit to ob-
serve pseudoharmonic periodic traveling waves is reached
for t50.6310212 s, where the potential reverses shape and
develops deep minima beyondW50.15 Å. Fast kink and
pulse solutions exist in this regime, which have been dis-
cussed in Ref. 22. The time scale clearly influences the dy-
namics in a crucial way, as the development of local double-
well potentials critically depends on it.

VII. CONCLUSIONS

We have carried out a systematic investigation of particle
dynamics in anharmonic potentials arising in a one-
dimensional nonlinear shell model. The boundary conditions
and the parameter space have been chosen such as to admit
for ~pseudo! harmonic pseudoperiodic traveling-wave solu-
tions only. These solutions are of special interest as phonon-
type excitations can be associated with them, and the depen-
dence of oscillator strengths on the model parameters can be
obtained. It is found that changing the double-well potential
barrier height reproduces the soft mode behavior observed in
ferrodistortive structural phase transitions. With decreasing

FIG. 16. Time dependence of the relative displacement coordi-
nateW for t50.75 ~solid line!, 2.5 ~dashed line!, 4 ~dotted line!.

FIG. 17. Displacement-frequency dependenceW~v! for t50.75
~solid line!, 2.5 ~dashed line!, 4 ~dotted line!.

FIG. 18. Time dependence of the core displacement coordinate
U1 for t50.75 ~solid line!, 2.5 ~dashed line!, 4 ~dotted line!.

FIG. 19. Time dependence of the shell displacement coordinate
V for t50.75 ~solid line!, 2.5 ~dashed line!, 4 ~dotted line!.
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height the frequency decreases and simultaneously an in-
crease in the dipole moment is observed, which corresponds
to increasing oscillator strengths and large effective charges.
It should be mentioned here that the hugh effective charges
associated with soft modes in ferroelectrics have also been
addressed in Refs. 48, 49 and were ascribed to the strong
anharmonicity of these systems. From the present analysis
we conclude that the anharmonicity does not lead to large
effective charges for low-frequency modes, but the attractive
harmonic interaction causes the huge oscillator strengths as-
sociated with these modes.

The large dipole moments at low frequencies result from
the in-phase motion of core and shell; i.e., they are of
‘‘acoustic type,’’ where the large difference in the respective
displacements causes the net effective moment. Both core
and shell show anomalously large displacements with de-
creasing barrier height, as compared to the other cases which
we investigated.

The variation of the anharmonicity of the potential shows
that with increasing anharmonicity the dipole response shifts
to higher frequencies and huge effective charges, i.e., oscil-
lator strengths, are observed at high frequencies. This obser-
vation is certainly relevant for systems which are structurally
stable but show anomalously large oscillator strengths in-
compatible with harmonic lattice dynamics. From the present
investigation we conclude that strong anharmonicity favors
such findings. The reason for the development of large di-
pole moments with increasing anharmonicity is the out-of-
phase motion of core and shell, where the core displacement
is confined to strongly anharmonic small amplitude motions
in the steep potential, whereas the shell undergoes large am-
plitude displacements. For both core and shell, multiphonon
responses are observed. As the outer potential barrier width
rapidly decreases with increasingg4, tunneling processes are
possible which could lead to charge transfer and local ion-
ization processes. Also highly nonlinear nonperiodic solu-

tions are to be expected to exist beyond the barriers, corre-
sponding to exciton-type solutions.

The change in the mass ratio of polarizable to rigid ion
mass shows unusual features as, opposite to harmonic cases,
mode softening with increasing dipole moment is observed
for decreasing massm1. The net dipole moment results, as in
the case of changing the barrier height, from the in-phase
displacements of core and shell, where both are large but the
shell displacement being substantially larger than the core
displacement. With increasing mass broad and strong mul-
tiphonon contributions are obtained for the core as well as
the shell displacement. The effective potential reverses its
shape at a critical mass ratio where both masses are approxi-
mately the same. The mass dependence of the dipole fre-
quency response is important in understanding the large
changes in the ferroelectric phase transition temperature
when substituting the transition metal in oxide perovskite or
the cation sublattice. From the present analysis it is predicted
thatTc increases with decreasing ratiom1/m2 ~note thatm1
refers to the polarizable cluster, transition metal surrounded
by the oxygen octahedra in perovskite, whilem2 represents
the rigid cations!. In a previous analysis it is found, in addi-
tion, that simultaneously order-disorder effects become
dominantly more important.47

The importance of the time scale on the particle dynamics
has already been addressed recently.23 In accordance with
former findings we have shown here that the observation of
double-well potentials crucially depends on the time scale. In
the static case, broad single-well potentials are observed
whereas in the high-velocity regime narrow double wells ap-
pear. Experimentally this should be important with respect to
measurements of the Debye-Weller factor, for instance,
which tests the ‘‘static limit’’ or EXAFS results which are in
the high-velocity regime. Clearly different results should be
obtained from both experiments probing the same sample.

FIG. 20. Effective potentialV(W) as a function ofW for t50.75~solid line!, 2.5 ~dashed line!, 4 ~dotted line!, 0.5 ~broken dashed line!,
0.6 ~long-dashed line!.
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Further, the development of large dipole moments with de-
creasing velocity is observed which in the static limit are
reminiscent of charge transfer processes. These large dipole
moments are of ‘‘optic type’’ and result from the out-of-

phase motion of core and shell. Even though the shell model
is phenomenologically based, anomalous experimental ob-
servations, specifically with respect to unusual large oscilla-
tor strengths, can be interpreted consistently.
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