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Exact solutions of a nonlinear diatomic shell model are investigated in the regime where quasiharmonic and
pseudoperiodic traveling waves exist with phonon-type character. The existence regimes of these solutions are
determined by the boundary conditions and the model parameters for which especially a strong time and mass
dependence is observed. It is found that slowly propagating waves mostly show large displacement responses
which can be associated with large dipole moments, while rapidly traveling waves carry a much smaller dipole
moment, but still this is appreciably larger than that induced by bare optic-phonon modes. The case of large
anharmonicity shows the opposite effect. Here high-frequency responses carry a large dipole moment. The
large dipole moments can be associated with effective charges which induce high oscillator strengths in the
corresponding phonon modes, incompatible with results deduced from harmonic lattice dynamics. The origin
of the large dipole moments in the shell model is investigated by solving for core and shell displacements
separately, where “acoustic-type” periodic in-phase displacements of core and shell with different amplitudes
are observed, as well as pseudoperiodic out-of-phase “optic-type” displacements resulting from large anhar-
monicity, and are also found in the static limit. Besides the displacement frequency spectrum, the effective
potentials are calculated which are distinctly different fremtype potentials: The potential height is finite
with finite width which, in certain cases becomes very small, thus admitting for tunneling through the barrier.

. INTRODUCTION limit.?22% In the lattice case, periodic nonlinear waves have
been discovered, which have been shown to model the
In a variety of recent work“ a nonlinear shell model for antiferrodistortive-type phase transitions as observed, e.g., in
structural instabilities related to ferro- and antiferroelectricK,SeQ,. In the continuum limit nonlinear traveling waves
phase transitions and local structural anomalies has been iexist, but also traveling pulses, which carry a large dipole
vestigated. Three-dimensiofal® as well as pseudo-one- moment, and kink solutions are found, where the kinks de-
dimensional versiortd~1* of this model have been used to scribe the statics and dynamics of ferroelectric domain walls.
calculate Raman spectra and infrared responses as well as th®re recently we have addressed the existence regimes of
temperature dependences of soft modes @mitpendences nonlinear periodic traveling waves, and their time and mass
of the lattice modes. Excellent agreement with experimentatiependencé® It was shown that local structural anomalies
data was achieved which demonstrates the value of phenoras, e.g., observed in cuprate superconductors can be associ-
enologically derived models such as the shell model. Thated with these solutions. Most importantly it was shown that
nonlinear shell model has been introduced in order to acthe observability of double-well potentials is crucially depen-
count for the highly nonlinear temperature- and volume-dent on the time scale of the observationed probe; this find-
dependent polarizability of the oxygen fSmwhich leads to a  ing may help to clarify controversial experimental results
dynamical covalency. Clear confirmation of this phenom-about the existence of local double-well potentials inferred
enology has been obtained recently fromb initio  from new experimental techniques like pulsed neutron dif-
methodst®'’ As the phenomenological models exhibit high fraction, the pair distribution functiotPDF), NMR, and ex-
physical transparency, and since numerical calculations arended x-ray absorption fine struct(EeXAFS). These tech-
much less expedient than using other methods, we continugiques can all probe local structural features, but require
here earlier work on exact solutions of the model. investigation of time-dependent effects, as these experiments
The polarizability model is based on¢g potential in the  use a different time scale as compared to more conventional
core-shell relative displacement. Using the adiabatic approximethods such as Raman, infrared, and inelastic neutron scat-
mation for the shell equation of motion, it is possible to tering techniques. Interestingly a molecular dynamics simu-
derive an effective potential for the relative displacementiation of the two-dimensional version of the nonlinear shell
which exhibits qualitatively new features and solutions, asmodef* also shows that there is a coexistence regime of two
compared to the usuap, or sine-Gordon-type model§. different time scales in the particle displacement which obey
Various solutions of this model have already been investidistinct dynamics.
gated in the lattice cas&,?! as well as in the continuum Here we continue former investigations on the exact so-
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lutions of the nonlinear polarizability model using the con- phase motions of core and shell which admit for charge
tinuum approximation. Again time- and mass-dependent eftransfer or local ionization processes.

fects are investigated in addition to effects caused by

anharmonicity and the potential barrier height. Instead of Il. MODEL

solving for nonlinear periodic wave solutions, we concen-

trate here on the existence regim eudgharmonic peri- . : o . . ;
gime(o gn P emodel in the diatomic linear chain version consists of a local

odic waves with phonon-type character in order to explor ) L . )
P yP P on-site double-well potential in the relative core-shell dis-

the origin of anomalouslly Iarge.dlpole moments and OSC'”a'pIacementW with harmonic force constarg, and fourth-
tor strengths observed in certain systems.

) rder constany,, where the relative displacement refer
It should be mentioned that a huge amount of effort halrder constang,, where the relative displacement refers to

. : . Ihe difference in displacement coordinate of the core with
been devoted to solving electron-phonon interaction model§T1assml and its surrounding shell with displacement coordi-

These6m0dels _are_usually based on thehficb? or Holstein nate V,2V. Mode-mode coupling is provided through the
modef® for which it can be shown that double-well poten- ghelis only with harmonic couplinwhich couples the non-
tials in the phonon displacement coordinates can be genefplarizable massn, to the shells ofm, . Lattice stability is
ated by sufficiently strong electron-phonon coupfifigiso  provided through next-nearest-neighbor core-core coupling
models combining inter- and intrasite electron-phonon couf’ at m,. In the continuum limit the displacement coordi-
plings have been investigated in detail and “soliton” solu- nates are expanded with respect to time2a/v, wherea is
tions carrying fractional charges have been discovét@the  the lattice constant and the phase velocity. The equations
possibility for structural instability has been included in aof motion using the adiabatic approximation for the shell
Peierls system by considering explicitly anharmonic modeimotion read

mode coupling, which crucially influences the order of the

The Hamiltonian of the nonlinear polarizability shell

structural phase transitidi.Models of these types find a MU= 1" 720 10+ Wi+ ga Wi, (13
variety of applications in quasi-one-dimensional crystals ) } }
with a Peierls or spin-Peierls instabilit{=*? Even though My(Uzn+ Usnys 1) = — 29,Win— 29,W5  + f 72W5 ,

the nonlinear shell polarizability model is phenomenologi-
cally derived, it has a variety of features in common with the
above-mentioned approaches as it represents in its quantum-
mechanical analog an electron-phonon interaction model [ _ (j _9 W+ % Wo W2+ % W2 W
. . . . . 2n 2n+1— 1In InYVin 1nVV1ln
with on-site and intersite electron-phonon coupling and an- f f f
harmonic lattice potential$3 similar to the case discussed
in Ref. 29. But, in addition, electron-mediated mode-mode
coupling is considered and multi-phonon-electron density in-The coupled equationd) can be reduced to a single equa-
teractions are obtained, which can model, eceaxis-related  tion in W,;,=W which is of Bernoulli type, i.e.,
effects in highT, superconductor&>’ o .
The paper is organized in the following way: In the first AW+ BWW?+ CWW+DW+EWS=0, 2
section we introduce the model and briefly review results
from earlier work. In the second section the effects of changW't
ing the double-well potential height on the dipole moment

+f720,, (1b)

+2U 4+ 2Wy, . (10)

and the core and shell displacements are discussed together A=1+ M292 (39)

with the resulting displacement frequency spectra which re- 2M,f’

veal mode softening as expected for, e.g., ferroelectrics. It is

also found that an “acoustic-mode”-type dipole moment in- ~ 3g4m;

creases with decreasing frequency and huge oscillator C 2M,f (30)

strengths, incompatible with harmonic lattice dynamics, re-

sult. In the third, fourth, and fifth sections the same quantities 3g,m,

as functions of anharmonicity, mass, and time are investi- =ML €]

gated. Increasing the anharmonicity up to the existence limit 2

of pseudoharmonic periodic traveling waves yields strongly 1 1

nonlinear but periodic waves for the individual core and shell D=go| — + —]|, (3d)

motions, which show multiphonon contributions in the fre- M; M,

guency spectrum and large oscillator strengths at high fre-

guencies. Similar effects are also found with increasing mass E— i n i (39

ratio of the two sublattices, even though the mass ratio acts —9a M; M)’

in a similar way on the effective potential as the barrier

height. Beyond a certain critical mass ratipseudghar- and

monic periodic waves no longer exist as the shape of the B ) 2

potential is reversed. As has been stressed recently in My=my— "7, (4a)

detail?® the time scale plays a very important role for par-

ticle dynamics. Here, huge optic-mode-type dipole moments Mo=m i 2 (4b)
: ; : : 2 2 ,

develop in the low-velocity regime which are due to out-of- 2
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1 1 1
MM, + M, (40
Equation(2) can be integrated and yields an effective poten-
tial in W (see Refs. 22, 23

Slowly oscillating nonlinear periodic solutions exist for
smallv, which become standing periodic waves in the limit
v—0. These types of solutions can be interpreted as model-
ing structural anomalies. If the particle dynamics are con-
fined to a single well, traveling kink solutions are obtained
which also exist in the static limit, where they correspond to
ferroelectric domain walls. Large velocity solutions exist for
certain values of the mass ratio agd being positive and
have either kink or pulse-exciton character. The pulse-
exciton solutions, in particular, admit, in the static limit, lo-
cal ionization processes or charge transfer processes which FIG. 1. Displacement-velocity dependence fgp=-0.03
carry an integrated dipole moment. Huge polarization waveédashed-dotted ling—0.63(solid line), —1.63(dotted ling, —2.63
and large amounts of energy are associated with them, WhiCQQashed I|n_¢ All o_ther parameters are given in _Table_ | which are
might be important in understanding the dynamics ofthe sa[rzle in all figures of Sec. Iy, is given in units of 16
biomolecules® Solutions which have been obtained in the €9 ¢™M ™
lattice case exist also in the continuum limit, where besides
the ferro- and antiferroelectric solutions, also commensuratocity is large and decreases systematically with increasing
periodic wave solutions are found with periods 3, 4, 5, and 6/92|. g, being very small corresponds to the fact that the

It is important to note that the solutions discussed abovéystem is close to the phase transition where the anharmo-
critically depend on the parameter regime and consequentljicity dominates the dynamics. This is evident from Fig. 1 as
have a restricted existence area. It should also be noted théte particle motion clearly starts deviating from quasihar-
they are not obtained, except for the first case discussed, dponic behavior to freeze in statically. Consequemlybe-
solving Eq.(2) directly, but by investigating the effective comes a multivalued function of the velochy correspond-
potential. In the following, Eq(2) is, as in Ref. 23, solved ing to the increasing time. The multivalued solutions are in
exactly numerically. As has already been pointed out beforethis case a consequence of the proximity to the phase transi-
only harmonic periodic or quasiperiodic traveling-wave so-tion, where nonlinear effects dominate the particle dynamics.
lutions are addressed as these can be interpreted in terms \8fith increasing|g,| the displacement-velocity dependence
phonon-type excitations. These solutions exist in certain pateveals strong amplitude reductions and increasing frequen-
rameter regimes only, which will be discussed below anccies. This becomes more evident by examining at the time
obey all the same boundary conditions, i.e., maximum velocdevelopment ofV (Fig. 2). Itis clearly seen that the dynam-
ity at W=0. In no case are they really fully periodic and ics slow down when approaching the phase transition and
harmonic, due to the highly anharmonic character of the pohuge increases in the oscillating dipole are observed, which
tential, but always only quasiperiodic and quasiharmonic. Ircan be associated with mode softening. With decreagjng
addition, only waves are considered which cross the origirihe dipole moment increases, and huge oscillator strengths
and have two equivalentor nearly equivalent turning are expected to be associated with low-frequency modes,
points. The local on-site potential is in all investigated casegvhile the frequency shifts to zero. The variation of the po-
of ¢, type, i.e.,0,<0, g,>0, which, not necessarily, is true tential depth thus clearly simulates temperature effects on the
for the effective potential. Also we associate, in analogy tosystem dynamics. The effective potential as a functiokiVof
Ref. 22, with the relative core-shell displacement coordinateand g, is shown in Fig. 3. Here the potential seems to be-
an effective dipole moment as core and shell are oppositely
charged. The origin of the dipole moment is then discussed
in terms of individual core and shell displacements. In all
cases investigated the harmonic next-nearest and second-
nearest-neighbor couplings have been kept constant as well
as the rigid mass, and are the same throughout the paper
(see Figs. 1-15

W [10%m]

Ill. VARIATION OF THE DOUBLE-WELL POTENTIAL
DEPTH

The depth of the local double well is determined through
0, which is taken as a variable in this section. As the struc-
tural transition temperatur€; is directly proportional tay,,
increasing |g,| corresponds to an increase ifi;. The FIG. 2. Time dependence of the relative displacemantor
displacement-velocity dependence for various valueg, &  g,=-—0.03 (dashed-dotted line —0.63 (solid line), —1.63 (dotted
shown in Fig. 1. For smalfj, the displacement at zero ve- line), —2.63 (dashed ling
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FIG. 5. Displacement-velocity dependence ¢gr=0.01 (dashed
-10-+ . line), 1.2 (dotted ling, 5.0 (solid ling). All other parameters are
given in Table | and are the same in all figures of Sec.dYis
given in units of 162 erg cm .

FIG. 3. Effective potentialV(W) as a function ofW for
g,=—0.03 (dashed-dotted line —0.63 (solid line), —1.63 (dotted

line), —2.63 (dashed ling the scale has changed as compared to Fig. 2. The amplitudes

of bothU; andV are much larger than diV. All displace-
ment coordinate®V, U,, andV show the same periodicity

come infinitely large at finit&V, but beyond the scale of Fig. ¢y the samey, and oscillate in phase. The dipole moment is

3 the potential reaches a quimunWt:CI)&.GS Aforeactt,  thys only due to the different amplitudesof andV, and is
and goes through zero again\&t=0.79 A to become infi- {ermed “acoustic type” to emphasize the distinction from

nitely negative. The height of the maximum varies nonlin-ginole moments originating from opposite displacements of
early with g, and reaches its largest valuegy=—0.5. In ;. andv. The displacement-frequency spectragfandV,
any case, the barrier height is larger than several thousandg expected, reproduce mode softening of the system with

of eV's, which certainly confines the particle motion {0 0S- yecreasing|g,| and large displacements of both core and
cillate within the barriers, but as the barrier width is only ghai associated with the lowest frequencies.

0.14 A, it is possible that tunneling through the barriers may
be observed under appropriate conditions. The origin of the
huge dipole moments can be investigated by solving the IV. VARIATION OF ANHARMONICITY

equations of motion folJ; andV=U, +W= shell displace- In this section the anharmonic core-shell coupling is var-
mer_1t coordinate, sgpgrately. In F|g._4 the time dependence gfy andg, is kept constantTable ). The displacement oV
U, is shown.V exhibits the same time dependencelss s a function of velocity is shown in Fig. 5. For small anhar-
but shows larger amplitudes for all values@f. Note that  opjcity the particle dynamics is highly periodic and har-
monic with large static displacements. Increasingeduces
. the static displacements but the motion is still nearly periodic
and quasiharmonic. Fag,=5 the motion becomes highly
nonlinear and the velocity as well as the displacement in-
creases rapidly with increasing time. In this cééd&ecomes,
again similar to Fig. 1 and,=—0.03, a multivalued func-
tion of the velocity due to the fact that strong anharmonicity
dominates the dynamics and admits for new solutions with
increasing time. It should be noted here that the system is not
close to the phase transition, but the terms in @y propor-
tional toB, C, andE dominate the nonlinear dynamics. The
stability limit to observe quasiperiodic traveling waves is
reached forg,=45.0, which corresponds to an extremely
steep potential. The time development W strongly re-
sembles the previous cafigig. 2) and it is not very apparent
that the particle motion is no longer periodic. The increase in
g4 clearly yields faster traveling-wave solutions with de-
creasing amplitude. In the case of largest anharmonicity the
oL amplitude of oscillations becomes strongly time dependent,
i.e., increasing with increasing time. The displacement-
frequency spectrum shows mode softening with decreasing
FIG. 4. Time dependence of the core displacement coordinat8s, but large increases in the dipole moment with increasing
U, for g,=—0.03 (dashed-dotted line —0.63 (solid line), —1.63  g4. This means that high-frequency modes with large dipole
(dotted ling, —2.63 (dashed ling moments can be associated with large anharmonicity. This




53 QUASIHARMONIC PERIODIC TRAVELING-WAVE SOLUTIONS . .. 11525

FIG. 6. Effective potentiaV(W) as a function oW for g,=0.01 (dashed ling 1.2 (dotted ling, 5.0 (solid line).

result is certainly important for structurally stable systemspseudoharmonic and periodic. The frequency spectrd ;of
with negligible mode softening, as, e.g., high-supercon- andV show for all values ofg, multifrequency responses
ductors, where very large oscillator strengths of certain latwhich shift to the higher-frequency side with increasmg

tice modes have been obsen’&d® The variation of the ef-  With increasingg, the response of); becomes smaller as
fective potential withg, is shown in Fig. 6. For the smallest compared to the very small anharmonicity case, while the
g4 (=0.0)) the potential has deep broad double-well charac-opposite happens for the shell displacement. These large di-
ter (this is beyond the scope of the figur&Vith increasing pole moments observed for high frequencies originate from
04 the potential narrows and again seems to become urihe large shell displacements; those displace opposite to the
bounded at smalNV. But again it is found that the barrier is cores which behave highly anharmonic with very small am-
finite, the maximum now being dependent gp, like the  plitudes.

width of the barrier. With increasing, the maximum shifts

to sm_aller valu_es ofV and the Wldth decr_eases rapidly, _thus V. VARIATION OF THE MASS RATIO m,/m,

favoring tunneling through the barrier which would admit for

hugeW and charge transfer processes. The origin of the large The mass ratio is varied by varying the polarizable sub-
dipole moments associated with high-frequency modes caldttice mass. The double-well potential-defining parameters
be deduced from the individual core and shell displacementare kept constant and are given in Table I. The displacement
(Figs. 7 and & For very smallg, slow oscillations of core Vvelocity dependency is shown in Fig. 9. As should be ex-
and shell with moderate amplitudes are found, which ardoected the static displacement decreases, with increasing
periodic but already strongly nonlinear. Also the individual b€ing less than half as compared to the smallest mass. The
displacements are out of phase but have the same periodicitifmne dependence ol is shown in Fig. 10. Interestingly and
With increasing anharmonicity the core displacement beOppositeto harmonic lattice dynamics, the heavy mass leads
comes much smaller, strongly nonlinear, and clearly aperito rapid small amplitude oscillations in the dipole moment,
odic while the shell disp|acement amp“tude remains apWhICh increase in amplitude but decrease in Velocity with

proximately the same for allg, and seems to be decreasing mass. The frequency spectrum in Fig. 11 shows
mode softening with decreasing masg and large dipole

U, [10°%cm]
[w]

'
e

FIG. 7. Time dependence of the core displacement coordinate FIG. 8. Time dependence of the shell displacement coordhate
U, for g4,=0.01(dashed ling 1.2 (dotted ling, 5.0 (solid line). for g,=0.01 (dashed ling 1.2 (dotted ling, 5.0 (solid line).
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TABLE I. Model parameters used in Sec. Ill. 1

m;=0.5x10"%? ¢
m, = 1.46xX10 %2 g
f = 14.41x10* erg cm 2
f' = 1.27x10* erg cm 2
g, = —0.63x10% erg cni2, ® —2.63x10% erg cn 2 ©
g4 = 0.904x10?% erg cni* ¢

T=1THZ '*® 1
8Jsed in Figs. 1, 5, and 15.
bUsed in Fig. 5 only. FIG. 10. Time dependence of the relative displacement coordi-
Used in Figs. 9 and 15. nateW for m;=0.2 (dashed-dotted line0.8(solid line), 1.1 (dotted
dUsed in Figs. 1, 9, and 15. line).

€Used in Figs. 1, 5, and 9. o o
same holds for the minima when,;>m,. As the variation

of masses mainly reflects itself in a change of the potential
arrier it should consequently lead to a change in the struc-
II_ural phase transition temperature when a system is alloyed,
iluted, or mixed with another system. For instance, in
KTa; _«Nb,O; it is observed thal ;. systematically increases
with increasingx (see, e.g., Ref.)8As in the present model
, refers to the polarizable clust®&0O,; of ABO; perovs-
ites, the large increases . are readily attributable to the
mass differences of Ta and Nb ions and obey the finding

magnitude, thus nearly leading to cancellations. The fref th del calculati Note that thi cid ith
qguency spectrum fdd, (Fig. 13 also shows mode softening rom the model caicuiations. Note that this coincides wi
frozen-phonon local density approximatigbhDA) calcula-

with increasing mass, but very large displacement contribu:., s wher mooth double well is observed for bur
tions at various frequencies with increasing mass underlinin%O S ere a smoo ouble WEIl IS ObSETVed Tor pure

1,42 H
the increasing anharmonicity. The shell displacement and th TaG; and a deep double V\_’e” for KNQd _AISO_ in
a; _,Sr,CuQ, the above rule is obeyed where in this case

shell displacement frequency spectrum are very similar t to i ied by chanai With i g L
the corresponding core dynamics, as already outlined abO\}Qe Mass ralio IS varied by changing. With increasing L.a

(see Figs. 12 and 1&nd have been omitted here. The massﬁ?metnt’ t"e"l ?ecre_?sm%pl/mz, -It—c’ W.h'Ch ;:é)gg:srpr)]onds to
dependence of the effective potentigig. 14 shows that the e struc ur? rar:rsll lon eTpera ufr(ter,] Increase f'ﬁ € COlr(lj-
decrease in magss; deepens the potential wells drastically seéquences from the Importance ot the mass ratio ocou

and steepens the potential which corresponds to increasi per |_mental_ly b_e used in optimizing mate_nal properties for
anharmonicity. The stability limit for quasiharmonic periodic ecmc_ appllcano.ns. As the potential barriers are very h|gh
waves is reached when the two sublattice masses are a nd their width being much larger than observed in the varia-

proximately the same. This case is especially interesting fot" Of da. it is unlikely that tunneling and strongly nonlinear

observing nonlinear traveling waves where huge dipole mosolutions are obtained if the critical ratio is not exceeded.

ments have been found. Beyond the stability limit of theNOte th_at the mass rat_io also p.l‘"?‘y%a crucial role to observe
guasiharmonic solutions, i.em;>m,, the potential shape order-disorder, displacive transitioffs.

reversegsee Fig. 1and the wells decrease with increasing

mass. Note that also here the height is not infinite but mass 4 |-
dependent and of the order of several hundred eV’s. The

moments associated with low-frequency modes. For the lar
est massn; multiphonon contributions are observed, indicat-
ing that the system becomes more anharmonic if the pola
izable sublattice mass is increased. Altogether the dipol
moment is rather small as compared to the previously inve
tigated cases. This is dy€ig. 12 to the fact that core and

shell displacements are in phase, both being extremely lar
(note that the scale has changeout of the same order of

3 —
W [10%m] 2 b
14 £ 1L
O
o]
o e
hat 10 w[THZz]
; |
w 2 !
»
83
]
_1—-{- -4 + I|l Ill'
b
FIG. 9. Displacement-velocity dependence fio/=0.2 (dashed- -5 Y
dotted ling, 0.8 (solid line), 1.1 (dotted ling. All other parameters
are given in Table | and are the same in all figures of Seen)is FIG. 11. Displacement-frequency dependent#w) for m;

given in units of 1022 g. =0.2 (dashed ling 0.8 (solid line), 1.1 (dotted line.
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time

U, [10%m]

FIG. 12. Time dependence of the core displacement coordinate
U, for m;=0.2 (dashed ling 0.8 (solid line), 1.1 (dotted ling.

VI. TIME-DEPENDENT EFFECTS FIG. 14. Effective potentia¥/(w) as a function ofV for m;=0.2
(dashed ling 0.8 (solid line), 1.1 (dotted ling, 1.55(reversed po-
The time dependence has been addressed recentiyntial, dashed line 3.1 (long-dashed ling
already?® by solving Eq.(2) for nonlinear traveling-wave so-
lutions. The critical influence of the time scale has been eMmoment becomes clear from investigating the individual dis-
phasized in detail and we continue this former work by in-placements of core and shell. Fersmall core and shell
cluding here time effects on phonon-type solutions. Thegisplace in phase, both being of the same order of magni-
displacement-velocity dependence is shown in Fig. 15tyde. With decreasing velocity they displace in opposite di-
While on the phonon time scale moderate static dipole morections where specifically the shell displacement becomes
ments are observed Iarge increases are obtained with ianeaﬁ;ry |arge indicating Charge transfer or local ionization pro-
ing time. This becomes more obvious from Fig. 16 where thesessegFigs. 18 and 19 Simultaneously the dynamics is no
traveling waves are shown as a function of time. While thelonger quasiharmonic but becomes increasingly nonlinear
expected fast velocity solutions exist fersmall, they dra-
matically slow down with increasing and show large in- 9
creases in the amplitudes. The corresponding frequency W [10%cm]
spectrum(Fig. 17 shows huge dipole moments at zero fre-
qguency for large times. With decreasing time these are still
present but a response at the optic mode emerges at higher
frequency. For small- only a moderate dipole moment is e RN
observed which could also be caused by ordinary optic- P AN
phonon modes. The reason for the huge increases in dipole iy NG

\iV[103cm/s]

£
©
o 0 /.. } P N .“ T /I,-
e : -~ “i10 w[THz] N /i
- 1L 5 AN S
D H \\\\ ,’,/
-2+ _2-__—
o S T s
-4 -
S FIG. 15. Displacement-velocity dependence for0.75 (solid

line), 2.5 (dashed ling 4 (dotted ling. All other parameters are the
FIG. 13. Displacement-frequency dependenth(w) for same in all figures of Sec. VI and are given in Table is given in
m;=0.2 (dashed ling 0.8 (solid line), 1.1 (dotted ling. units of THZ %,
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time

FIG. 18. Time dependence of the core displacement coordinate
U, for 7=0.75(solid line), 2.5 (dashed ling 4 (dotted ling.

) character. Again, as previously, the potential is not infinitely
2 - high but has a maximum which has-alependent height and
width at ~dependent values &. The stability limit to ob-
serve pseudoharmonic periodic traveling waves is reached
FIG. 16. Time dependence of the relative displacement coordifor 7=0.6%107*? s, where the potential reverses shape and

pulse solutions exist in this regime, which have been dis-

cussed in Ref. 22. The time scale clearly influences the dy-
namics in a crucial way, as the development of local double-

and slows down significantly. The frequency spectruny of
andV shows moderate responses in the high-velocity regimevell potentials critically depends on it.

for bothU; andV. With decreasing velocity a static compo-
nent develops which is huge for the shell displacement but of VIl CONCLUSIONS

moderate values for the core displacement coordinate. While
We have carried out a systematic investigation of particle

at intermediater a response of the system at the original
frequency is still observed, this vanishes nearly Comp|ete|ﬂynamics in anharmonic potentia|s arising in a one-

in the static case. The time dependence of the potential igimensional nonlinear shell model. The boundary conditions
shown in Fig. 20. In the static and intermediate velocity caseind the parameter space have been chosen such as to admit
a broad single minimum potential is observed which narrowgor (pseudy harmonic pseudoperiodic traveling-wave solu-

with increasing velocity and develops gradually double-welltions only. These solutions are of special interest as phonon-
type excitations can be associated with them, and the depen-

dence of oscillator strengths on the model parameters can be

4 —
obtained. It is found that changing the double-well potential
3 barrier height reproduces the soft mode behavior observed in
) ferrodistortive structural phase transitions. With decreasing
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FIG. 17. Displacement-frequency dependeWdg) for ==0.75 FIG. 19. Time dependence of the shell displacement coordinate
(solid line), 2.5 (dashed ling 4 (dotted ling. V for 7=0.75(solid line), 2.5 (dashed ling 4 (dotted ling.
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height the frequency decreases and simultaneously an iions are to be expected to exist beyond the barriers, corre-
crease in the dipole moment is observed, which correspondsponding to exciton-type solutions.
to increasing oscillator strengths and large effective charges. The change in the mass ratio of polarizable to rigid ion
It should be mentioned here that the hugh effective chargegass shows unusual features as, opposite to harmonic cases,
associated with soft modes in ferroelectrics have also beefode softening with increasing dipole moment is observed
addressed in Refs. 48, 49 and were ascribed to the Stroq’gr decreasing mass; . The net d|p0|e moment results, as in
anharmonicity of these systems. From the present analysie case of changing the barrier height, from the in-phase
we conclude that the anharmonicity does not lead to larggjsplacements of core and shell, where both are large but the
effective charges for low-frequency modes, but the attractiveg) gisplacement being substantially larger than the core
harmomc interaction causes the huge oscillator strengths aﬁisplacement. With increasing mass broad and strong mul-
Soﬁlﬁte? with t.hese modes. . tiphonon contributions are obtained for the core as well as
1€ 1arge d'pOI? moments at low frequle_nCIes result fro he shell displacement. The effective potential reverses its
the in-phase motion of core and shell; i.e., they are o h t itical tio wh both .
*acoustic type,” where the large difference in the respectiveS ape at a critical mass ratio where both masses are approxi
ately the same. The mass dependence of the dipole fre-

displacements causes the net effective moment. Both co o ! .
gduency response is important in understanding the large

and shell show anomalously large displacements with d

creasing barrier height, as compared to the other cases whigjanges in the ferroelectric phase transition temperature
we investigated. when substituting the transition metal in oxide perovskite or

The variation of the anharmonicity of the potential showsthe cation sublattice. From the present analysis it is predicted

that with increasing anharmonicity the dipole response shiftéhat T¢ increases with decreasing ratin/m, (note thatm;

to higher frequencies and huge effective charges, i.e., oscirefers to the polarizable cluster, transition metal surrounded
lator strengths, are observed at high frequencies. This obsddy the oxygen octahedra in perovskite, whilg represents
vation is certainly relevant for systems which are structurallythe rigid cations In a previous analysis it is found, in addi-
stable but show anomalously large oscillator strengths intion, that simultaneously order-disorder effects become
compatible with harmonic lattice dynamics. From the presentiominantly more importarft’

investigation we conclude that strong anharmonicity favors The importance of the time scale on the particle dynamics
such findings. The reason for the development of large dihas already been addressed recefitlin accordance with
pole moments with increasing anharmonicity is the out-of-former findings we have shown here that the observation of
phase motion of core and shell, where the core displacemerdbuble-well potentials crucially depends on the time scale. In
is confined to strongly anharmonic small amplitude motionghe static case, broad single-well potentials are observed
in the steep potential, whereas the shell undergoes large amwhereas in the high-velocity regime narrow double wells ap-
plitude displacements. For both core and shell, multiphonompear. Experimentally this should be important with respect to
responses are observed. As the outer potential barrier widtimeasurements of the Debye-Weller factor, for instance,
rapidly decreases with increasigg, tunneling processes are which tests the “static limit” or EXAFS results which are in
possible which could lead to charge transfer and local ionthe high-velocity regime. Clearly different results should be
ization processes. Also highly nonlinear nonperiodic solu-obtained from both experiments probing the same sample.



11530 A. BUSSMANN-HOLDER, A. R. BISHOP, AND G. BENEDEK 53

Further, the development of large dipole moments with dephase motion of core and shell. Even though the shell model
creasing velocity is observed which in the static limit areis phenomenologically based, anomalous experimental ob-
reminiscent of charge transfer processes. These large dipodervations, specifically with respect to unusual large oscilla-

moments are of “optic type” and result from the out-of-

tor strengths, can be interpreted consistently.
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