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The model for electronic transport in quasicrystals is proposed. Unlike all previous attempts to explain
unusual electronic properties of quasicrystals by impending localization due to the lack of periodicity in
defectless quasiperiodic lattices, the current theory is focused on phonon and impurity scattering in real,
‘‘dirty’’ quasicrystals. The standard scattering theory cannot be applied to quasicrystals, due to their unusual
band structure, namely the fact that the Fermi surface is nearly obliterated. To solve the problem a fractional
multicomponent Fermi-surface model has been introduced: the Fermi surface has been viewed as consisting of
relatively large number of residual tiny electron and hole pockets, with impurity random potential scattering
electrons between different components. Leaving quasiperiodicity aside, the Dyson equations for the scattering
time, dc conductivity and thermopower have been solved analytically. The theory explains the nearly vanishing
conductivity, as well as strong temperature dependence of thermopower and related transport properties.

I. INTRODUCTION

The electronic transport in quasicrystals is one of the puz-
zling problems of the modern condensed-matter physics and
attracts a close attention of both theoreticians and experi-
mentalists~for an extensive review see Ref. 1!. The fractal
nature of Fermi surface and interplay between localization
and delocalization of electronic states proposed by several
authors,2–4 the extremely short mean free path of the electron
scattering, low carrier concentration and density of states at
the Fermi level, and strong structural and phase disorder lead
to the variety of speculations concerning the transport prop-
erties. Among them are semimetallic or semiconductor be-
havior, analogies with metallic glasses, approaching the
metal-insulator transition.1 However, since the electronic
properties of quasicrystals exhibit still the metallic character
~although with the features mentioned above!, any model of
electronic transport should be based on a model of the metal-
like electron spectrum with well-defined Fermi surface. The
main problem arising here is the effect of quasiperiodicity on
the Fermi-liquid parameters. In the present paper we propose
a simple model of electronic structure which accounts for
transport properties largely consistent with those observed
experimentally.

So far, there have been two rival theories of electronic
properties in quasicrystals. One approach is focused on the
effects of quasiperiodicity, namely the failure of Bloch theo-
rem in the absence of periodicity and possible
localization.2–5 The other, called band-structure
hypothesis,6,7,1,8 leaves localization aside but exploits high
symmetry of quasicrystals that allows for an extremely tight
matching of the Fermi surface with the Brillouin-zone
boundary. By placing the Fermi surface at the band gap the

cohesion energy is lowered thus improving stability of the
alloy, the effect analogous to Peirles mechanism responsible
for the formation of charge-density waves. In other words,
the band-structure hypothesis views quasicrystals as the most
rectified Hume-Rothery alloys. In the course of this paper we
will adopt the band-structure hypothesis, without arguing
whether or not it is a valid approach.

The band-structure hypothesis assumes that although,
technically, the reciprocal space is everywhere densely filled
with the Bragg planes only a few, associated with the few
strongest Fourier components of the pseudopotential, should
be taken into consideration, at least in the first approxima-
tion. Because of the high multiplicity of the Bragg planes
resulting from high symmetry of quasicrystals the quasi-
Brillouin-zone boundary would have some 40 or even 90-
something facets, even when only two or three largest terms
in the Fourier series for the pseudopotential are taken into
account. The exact number of the facets as long their shape
and size vary from one particular quasicrytalline alloy to
another, but one thing remains in common: the quasi-
Brillouin-zone boundary is a very good approximation of a
sphere, somewhat resembling a soccer ball~for particular
shapes, see Poon’s review1!.

In the simplest Harrison approach to the construction of
the Fermi surface this first approximation quasi-Brillouin-
zone boundary overlaps the Harrison sphere. As a result,
most of the Fermi surface is obliterated, leaving only tiny
electron and hole pockets at the face centers and corners,
respectively. The number of these pockets, being denoted
below asN, is merely the number of facets plus the number
of corners of the quasi-Brillouin-zone boundary, and varies
from 42 to 96 for most known icosahedral quasicrystals. The
size and shape of the pockets are determined not only by
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the reciprocal-space geometry, but also by the strength of the
pseudopotential and the position of the Harrison sphere re-
garding the quasi-Brillouin-zone boundary. The latter, in
turn, changes when the alloy composition is varied, resulting
in experimentally observed strong dependence of electronic
properties on composition. The aim of this article is not to
calculate the transport properties of all 200 or so known
icosahedral quasicrystalline alloys, but rather provide a gen-
eral tool. Accordingly, we will consider a model Fermi sur-
face consisting ofN components~some of whom are
electron- and some holelike in character!, each component
being a tiny sphere of radiuskF

( i ) . It is worth keeping in mind
that for a given quasicrystalline alloykF

( i ) could change with
the composition and could even turn zero. Technically, there
might exist quasicrystalline alloys where all thekF

( i ) turn zero
simultaneously, thus making the quasicrystal a multivalley
semiconductor. There are experimental indications that such
quasicrystals do exist.9 In this paper we will focus on quasi-
crystals that are still on the metallic side of the metal-
semiconductor transition, though very close to the transition
point.

The subsequent Harrison approximations lead to the sub-
sequent splitting of these pockets into smaller ones and so
on. Because of icosahedrical symmetry and quasiperiodicity
of the lattice this splitting procedure continues indefinitely.
As a result the volume of quasi-Brillouin zone as well as the
size of each pocket tend to zero, while the number of pockets
goes to infinity. In the limit the fractal structure appears and
the notion of the density of states in the rigorous understand-
ing loses its sense. This situation takes place in an ideal
quasicrystal, namely with no electron scattering processes
and at zero temperature. In real quasicrystal one has to take
into account smearing of the electron states in momentum
space. Since the energy of quasiparticle is defined with in
accuracy of its uncertainityde;max$T,t21% (T is tempera-
ture,t is the electron relaxation time!, the splitting of Fermi
surface within Harrison procedure makes sense as long as the
characteristic size of pockets is greater thatde. As a result,
we argue, that electronic structure of a quasicrystal can be
modeled by a set of electron and hole pockets~or valleys!
with the characteristic size of order ofde. Within this model
both the number of valleysN and the stage at which the
Harrison procedure should be stopped are defined by either
temperature or inverse electronic relaxation time. The sym-
metry of such multipocket electronic structure reflects the
quasicrystal symmetry, but it is unimportant for transport
properties which are integral characteristics.

In this paper we show that the electronic structure deter-
mines the main features of transport in quasicrystals. In the
model of the many-valley Fermi surface, two kinds of elec-
tronic elementary scattering processes are possible. The first
kind is the intravalley process which begins and ends in the
same valley. The second kind are intervalley processes dur-
ing which electron is scattered from one valley to another.
We find that due to different momentum transfer involved in
intra- and intervalley scattering, different types of conductiv-
ity are realized. Namely, intravalley processes result in a
nonmetallic character of conductivity reminiscent of one ob-
served in the vicinity of metal-insulator transition, while in-
tervalley scattering can be described within the Drude model.
Notice, that the importance of both elastic and inelastic scat-

tering for intervalley transitions between tiny electron and
hole pockets was mentioned in Ref. 10 in the context of
first-principals calculations of electronic properties of model
quasicrystals.

The paper is organized as follows. In Sec. II, we examine
the electron relaxation time in quasicrystal and discuss dif-
ferent scattering mechanisms. In Sec. III, we consider the
nature of electrical conductivity, within our model. In Sec.
IV, we evaluate thermopower in a quasicrystal taking into
account both electron-impurity and electron-phonon scatter-
ing processes. Finally, in Sec. V, we summarize and discuss
our results comparing them with the experimental data. We
use units whereby\5kB5c51.

II. RELAXATION TIMES IN QUASICRYSTALS

In our model of the many-pocket Fermi surface, we con-
sider the set ofN electron and hole pockets distributed
within the Brillouin zone. At zero temperature the finite re-
laxation time is solely due to structural or chemical disorder
while with temperature increase the scattering on the quasi-
lattice vibrations contributes to the electron relaxation. Intro-
duce the effective chemical potential in each pocket:

m i5
kF

~ i !2

2m
, ~1!

where i51...N is the pocket number,kF
( i ) is the radius of a

corresponding pocket andm is the effective mass of a charge
carrier. Since the distance between the pockets in the mo-
mentum space is of the order of reciprocal Angstrom and the
pockets are rather small, we may assume that the distance
between the pockets is much greater than pocket radii as well
as the broadening of Fermi surface due to both temperature
and scattering.

First, consider the scattering of electron on structural im-
perfections. One can define the electron Green function as a
N3N matrix:

Gi j ~r ,r 8,t,t8!52^T~c i~r ,t !c j
†~r 8,t8!&, ~2!

wherec i andc j
† are electron field operators for thei th and

j th valleys. In the absence of scattering theĜ matrix is di-
agonal with

Gii
~0!~k,vn!5

1

ivn1m i2~k2/2m!
. ~3!

Scattering of electrons by structural imperfections results in
both the renormalization of diagonal elements and the ap-
pearance of nonzero nondiagonal elements of theĜ matrix.11

We consider the scattering to be isotropic and the corre-
sponding amplitudeÛ ~which also is presented byN3N
matrix! to be independent of the transfer momentum. Under
these assumptions, the amplitudes of electron scattering be-
tween different valleys are the same, soÛ5U0K̂ , where
U0 is the amplitude for Born scattering of electron by impu-
rity center andKi j51 for all i and j .

For the Green function averaged over the configuration of
scattering centers we can write down the matrix Dyson equa-
tion:
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Ĝ215@Ĝ~0!#212Ŝ ~4!

with Ŝ being the matrix self-energy. The matrix equation for
the self-energy is

Ŝ~k,v!5nimpE d3k8

~2p!3
Û~k,k8!Ĝ~k8,v!Û~k8,k!. ~5!

Herenimp is the concentration of scattering centers. Substi-
tuting Eq. ~4! in Eq. ~5! after straightforward algebra one
obtains that Ŝ has the same matrix structure asÛ:
Ŝ5S0K̂ . In evaluatingS0 we take into account that the
ratiosGii

(0)/Gj j
(0) for iÞ j are of orderT/m and could be ne-

glected. Finally, we obtain

S05(
i51

N

nimpuU0u2

3E d3k

~2p!3
1

Gii
~0!212S0„12( jÞ i~Gj j

~0!/Gii
~0!!…

,

.(
i51

N

nimpuU0u2E d3k

~2p!3
1

ivn1m i2k2/2m2S0
. ~6!

The electron relaxation time is conditioned by the imaginary
part of the self-energy. Integrating overk we obtain an ana-
lytic solution for the Dyson equation, in a form of a simple
algebraic equation for the imaginary part:

ImS052
p

23/2m3/2nimpuU0u2
(
i51

N
ReAm i1v2 i ImS0

m i
.

~7!

If all valleys had the same size:m i5m0 for all i , the solution
further simplifies:

1

t~v!
5
N

t0
F11

v

m0
1S N

4m0t0
D 2G1/2. ~8!

In the last equation we introduced timet0
21

5nimpuU0u2m3/2(2m0)
1/2/p5nimpuU0u2n(m0)/2p, where

n(m0) is the density of states at the Fermi level. If the metal
had only one tiny valleyt0 would be its relaxation time.

For most quasicrystals one should not expect too close a
proximity to the metal-semiconductor transition, i.e., though
m0 is much smaller than in most normal metals it is still far
from being vanishingly small. In that case, Eq.~8! becomes
simply

t5
t0
N
, ~9!

where timet0 refers to intravalley scattering. The effective
time given by Eqs.~8,9! governs the electronic transport at
low temperatures, i.e., in the region of residual resistivity.

As temperature increases, the number of electrons scat-
tered by quasilattice vibrations increases with the corre-
sponding reduction in total relaxation time. Below we study
the effect of phonon scattering on the electron relaxation
time. For simplicity we present only the semiquantitative
consideration assuming the validity of the Mattisen rule,
which implies that the total relaxation rate is a sum of the

relaxation rates due to different contributing scattering
mechanisms. In doing so, we will avoid a narrow tempera-
ture interval where the interference of electron-impurity and
electron-phonon interactions occurs.

The difference between scattering by impurities and
phonons lies in the fact that electron-phonon interaction is
able to change the electron momentum only by a small
amount, of the order ofT/u, where u is the velocity of
sound, while scattering on the structural disorder provides
the transfer momentum of the order of the reciprocal Ang-
strom. Note, that the momentum transfer that large is neces-
sary for intervalley scattering. In this manner there exists a
characteristic temperature:T*;u/a (a is the average inter-
atomic distance! below which the phonons are unable to
scatter electrons from one pocket to another, thus permitting
only intravalley processes. Accordingly, for temperatures
T,T* the effective relaxation time is given by

1

t tot
5
N

t0
1

1

tph~T!
, ~10!

with tph(T) being the electron relaxation time due to
electron-phonon scattering. We believe that in this tempera-
ture range the total electron relaxation is dominated by scat-
tering on impurities even in pure samples, due to large value
of N. On the other hand, if the temperature exceedsT* the
scattering by phonons provides the effective intervalley elec-
tron processes with the essential shortening of electron-
phonon time. As a result, forT.T* we have

1

t tot
5
N

t0
1

N

tph~T!
. ~11!

It is important that atT;T* the sharp decrease of the
electron-phonon scattering time should be observed with the
corresponding change in the character of conductivity. The
interplay between impurity and phonon scattering mecha-
nisms is governed by the purity of a sample. In sufficiently
clean samples electron-phonon scattering would dominate
over impurity scattering in the entire temperature range
aboveT* .

III. MECHANISMS OF ELECTRICAL CONDUCTIVITY

A successful model of electronic transport in quasicrystals
should be able to find a reasonable explanation for the main
features in the conductive properties of these materials. The
distinctive transport features of quasicrystals are~1! The ex-
tremely low values of electrical conductivity at zero tempera-
ture; ~2! the increase of conductivity with temperature; and
~3! unusually strong thermopower temperature dependence
sometimes leading to a sign change. In the beginning of this
section we present the quantitative analisys of the mecha-
nisms of electrical conductivity based on the model intro-
duced above and then perform some calculations. As it was
mentioned above one has to distinguish between the trans-
port properties associated with the intravalley and intervalley
processes whose competition results in a number of interest-
ing issues.

Consider the case of icosahedrical phase with weak struc-
tural disorder at low temperature thus ignoring scattering by
phonons. To understand the character of electrical conductiv-

11 506 53S. E. BURKOV, A. A. VARLAMOV, AND D. V. LIVANOV



ity one has to consider the parameterkF
(0)l;m0t in compari-

son with unity (l is the electron mean free path!. The value
of this parameter governs whether the conductivity has me-
tallic or nonmetallic character. One has

kF
~0!l;

kF
~0!

m2nimpuU0u2
. ~12!

It is seen from this estimation, which because of the frac-
tional nature of the Fermi surfacekF

(0) could be extremely
small, that implieskF

(0)l<1, at least in the case of not too low
concentration of scattering centers. The case of the highly
ordered phase with the very weak structural disorder
(t0→`, nimp→0) requires a more detailed consideration. At
a first glance, in this limit the parameter~12! rises and the
condition of localizationm0t;1 is no longer valid. Closer
examinations, however, shows that, as was mentioned ear-
lier, the size of the pocket is defined by the uncertainity of
the electron energy, that ist21 at zero temperature. It means
that the condition of strong localization is fulfilled indepen-
dently upon the disorder strength. This leads to the nonme-
tallic ~localization! regime of conductivity conditioned by
intravalley scattering even in the case of weak disorder. Let
us note, that the physical reason for this phenomenon is the
small momentum transferkF

(0) involved in intravalley pro-
cesses.

Now we turn to intervalley processes. Here the momen-
tum transferDk is of order ofa21, wherea is the average
interatomic distance. In this caseDkl@1. Turning on inter-
valley scattering processes eliminates the localization situa-
tion and provides for the metallic character of conductivity.
At zero temperature, the nonzero contribution to conductiv-
ity appears as a result of intervalley processes only while the
intravalley contribution is zero. The detailed theory which
allows us to evaluate the intervalley conductivity within
Kubo formalism is given in the Appendix. To estimate the
residual conductivity one can use the Drude model with the
effective relaxation time in the form of Eq.~9!:

s~T50!5(
i51

N

s i;Ne2vF
~0!2n

t0
N

;
e2vF

~0!2

nimpuU0u2
. ~13!

The magnitude of conductivity is extremely small due to its
proportionality tovF

(0)2. It is worth discussing the variation
of s(T50) with changing the strength of structural disorder.
If the disorder is negligible conductivity tends to zero, be-
cause neither intervalley nor intravalley processes are pos-
sible. With the rise ofnimp , the nonzeros(T50) appears,
those magnitude could be calculated through Eq.~13!. Thus,
residual conductivity should rise with the structural and
phase disorder, as it is seen in experiments. The reason for
this effect is the possibility for electron to be scattered from
one valley to another with the large momentum transfer of
order ofa21. In this context Eq.~13! should be considered
only at a fixed strength of disorder~at givennimp), because
vF
(0) in Eq. ~13! is ruled bynimp . To gain greater insight into

why the above statement is valid, we write at zero tempera-
ture: mvF

(0)2;de;t21;N/t0 , which implies vF
(0)

;NmnimpuU0u2. Substituting this estimate in Eq.~13! one
gets

s~T50!;e2N2m2nimpuU0u2, ~14!

what describes the variation of residual conductivity with the
disorder strength.

Now let us discuss the nonzero, but still low temperatures.
In this case the intervalley scattering contribution is given by
the same temperature-independent Eq.~13!. Intravalley pro-
cesses, however, will contribute to conductivity in the same
manner as temperature-dependent conductivity in the vicin-
ity of metal-insulator transition. It is well established,12 that
near metal-insulator transition conductivity goes to zero ac-
cording with T1/2 law. Considering this contribution as a
small correction to temperature-independent conductivity
from intervalley processes, at low temperatures, we can write

s~T!5s~0!1aAT, ~15!

with a being the temperature-independent factor. When the
temperature further increases, the electron relaxation time
will decrease due to scattering by phonons according to Eqs.
~10! and ~11!. In this temperature range the contribution
from intervalley processes begins to depend upon tempera-
ture, and total conductivity will be dominated by this contri-
bution. In this case Eq.~13! can be rewritten as

s~T!;Ne2A m

t tot~T!
, ~16!

where we have again used the relationmvF
(0)2;t tot

21 assum-
inq t tot

21.T. It is seen that conductivity increases with the
rise of temperature due to scattering by quasilattice vibra-
tions. Note that then temperature exceedst tot

21 thevF
(0) in Eq.

~13! will be defined asmvF
(0)2;T. The intervalley contribu-

tion to conductivity in this case is s(T)
;Ne2m1/2T3/2t tot(T).

The phonon-induced crossover in relaxation time at tem-
peratureT* results in the corresponding changes in conduc-
tivity behavior. Note, that unlike ordinary metallic systems,
in quasicrystals this phonon crossover temperature is less
than Debye temperature.

IV. FEATURES IN THERMOPOWER

The thermoelectric coefficientb(T) of a quasicrystal can
be calculated by analogy with Eq.~13!. In this consideration
we restrict ourselves for the case of not too low temperature,
where the thermoelectric coefficient quickly tends to zero.
So, we consider only intervalley scattering:

b5(
i51

N

b i , b i52
1

9
p2eT

d

dm i
S v i~0!2n~m i !

t0
N D . ~17!

A simple estimate shows that

b;2eTkF
~0!t0 , S52

b

s
;

T

em0
, ~18!

whereS(T) is thermopower~or Seebeck coefficient!. With
m0 much smaller than the typical value of Fermi energies in
metals, one concludes that diffusion thermopower in quasic-
rystals is much larger than in ordinary metals. Apart from the
large absolute value of diffusion thermopower, the possible
sign change with the temperature is also the characteristic
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feature of quasicrystals. Note, that similar behavior was ob-
served in a number of metallic systems like metallic glasses,
Chevrel phases, and high-temperature superconducting
cuprates.13,14Usually the thermopower sign change is attrib-
uted to the phonon processes~like phonon drag or electron-
phonon-impurity interference! which can account for the
contributions opposite in sign to the diffusion
thermopower.15 These phonon contributions dominate diffu-
sion thermopower at temperaturesT!Q (Q is Debye tem-
perature!, but are substantially reduced atT>Q due to
phonon-phonon scattering, leaving the diffusion component
as the leading contribution. To take into account the influ-
ence of electron-phonon interaction on thermopower one has
to replace in Eq.~18! t0 by t tot given by Eqs.~10! and~11!.
As the drag effect is concerned, it will affect thermopower at
the temperature range betweenQ2/m0 andQ. In this case,

b;2eS TQ D 2m0kF
~0!t tot , S;2

T2

eQ2 . ~19!

Equations~18! and ~19! together with Eqs.~10! and ~11!
provide a quite complex temperature dependence of ther-
mopower in the entire temperature range belowQ. It is im-
portant to mention that the phonon-drag contribution can be
of any sign depending on whether normal or Umklapp pro-
cesses dominate.15 Another interesting feature of the ther-
mopower in the model of fractional Fermi surface is the low
value of degeneration temperature of electron gas. Indeed,
electron gas could be considered a Fermi gas if the tempera-
ture is less thanTdeg, which is of order of magnitudem0 and
in result can reach a hundred of Kelvins. It means that at
T.Tdegone has to consider electron gas as a Boltzmann gas.
In this case thermopower is nearly temperature independent
and rather large in magnitude:S;1/e.16 This effect also re-
sults in an unusually large absolute value of thermopower at
high temperatures. The situation is complicated by the exist-
ence of two kinds of charge carriers. If the degeneration
temperatures for electrons and holes differ, it is easy to imag-
ine that at some temperature betweenTdeg

(e) and Tdeg
(h) ther-

mopower would change a sign.

V. DISCUSSION

Comparing our theory with experiment, it is important to
keep two things in mind. Firstly, the existing experimental
data are quite controversial, and, secondly, our model is of
rather general character, so, it is able to describe only com-
mon features of quasicrystals distinctive from properties of
usual metallic systems. Thus when discussing experimental
data the main problem is to reveal the properties unique to
quasicrystals.

Initial experimental studies of electron transport in the
icosahedral phase indicated metalliclike behavior with large
residual resistivities~of order 100mV cm!, with the mono-
tonic decrease of resistivity with temperature increasing up
to room temperature.1 Together with the strong temperature
dependences of thermopower and Hall coefficient, these ob-
servations were reminiscent of metallic-glass behavior.13

However, further studies of Al-Cu-Fe~Ru! compounds that
form stable, nearly defect-free icosahedral phases, showed
enormally large resistivity up to 0.1V cm ~Ref. 17! and even

1V cm in system Al-Pd-Re,18 which increases with increas-
ing strength of structural order. It is quite obvious that these
phases cannot be considered by analogy with metallic
glasses where structural disorder is the intrinsic property. Be-
havior of resistivity of highly ordered icosahedrical phases
seems to be the inherent feature of these materials.

Different theoretical models have been proposed to ac-
count for an unusual electron transport in quasicrystals but
all of them considered ideal, defectless quasicrystals with the
exception of Ref. 5, which treated the structural disorder in
quasicrystals in terms of random phasons. As we pointed out
before, in the defectless case the Fermi surface has an infinite
number of zero-area pockets. Moreover, because of the spe-
cial type of order, the electron wave functions cannot be
presented in the Bloch form. As a result, these theories19,20

predict either zero or infinite conductivity at zero tempera-
ture. Our model, developed for real, dirty quasicrystals, pro-
vides the natural explanation for a low value of conductivity.
The reason is the smearing of electronic states by both tem-
perature and scattering which result in the existence of a
Fermi surface with a finite number of valleys whose number
depends on the strength of disorder. Because the characteris-
tic size of a valley is conditioned by the uncertainity of elec-
tron energy, the localization of electronic states occurs in the
limit of ordered~defectless! phase resulting in zero conduc-
tivity at zero temperature. The deviation from ordering leads
to a possibility of intervalley scattering which provides the
nonzero, but small value of zero-temperature conductivity.

Apart from conductivity, the thermopower of quasicrys-
tals exhibits enormously large absolute magnitude, which
also can be considered as a unique property. Even ignoring
possible phonon contributions, the large magnitude of diffu-
sion thermopower has also found explanation within our
model due to two possible factors: the small size of the val-
leys and extremely low degeneration temperature. It is also
easy to understand the experimentally observed1,21 reducing
of density of states at the Fermi level with respect to the
ordinary metals, which is proportional to the Fermi momen-
tum. The model of fractional Fermi surface also provides the
dependence of electronic properties upon the strength of dis-
order, because the effective Fermi energy is governed by the
inverse electron relaxation time.

It is interesting to compare the results of the present paper
with first-principals calculations of the band structures22 and
transport properties in a crystalline approximant based on the
two-dimensional Penrose lattice.10 Reference 10 treated the
random phasons as centers of elastic scattering providing
small value of conductivity at zero temperature. Contrary to
this theory, our model exploits only very common features of
quasicrystals, but describes three-dimensional systems at fi-
nite temperature. Although two-dimensional calculations of
Ref. 10 cannot be directly applied to realistic three-
dimensional icosahedral phases, both theories demonstrate
the remarkable agreement which concerns the effect of ran-
domness on the transport properties of quasicrystalline
phases. We notice that although calculations of band struc-
tures in the realistic model structures of quasicrystals pro-
duce electron and hole pockets not only at the Brillouin-zone
surface, but at many other points in the Brillouin zone,10 it
does not essentially affect our model. Really, the only as-
sumption neccessary for the model validity is the separation
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of pockets in the momentum space on the distances compa-
rable with thepF or evenpF /N

a wherea is between 1/2 and
1/3 depending on the surface or volume distribution of the
pockets.

In summary, we have proposed a model of multiple-
valley fractional Fermi surface for electronic structure of
quasicrystals which provides a natural explanation for a
number of physical properties of these materials. The Dyson
equations for the electron Green function and a couple of
vertices have been solved analytically. The interplay be-
tween intravalley and intervalley scattering processes in
combination with the suggestion about the localization re-
gime in each valley accounts for a small value, of zero-
temperature electrical conductivity and square-root tempera-
ture dependence at low temperatures, large absolute value,
and strong temperature dependence of thermopower. The de-
veloped formalism could be used for a detailed calculation of
transport properties of particular quasicrystalline alloys.
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APPENDIX

For rigorous evaluation of kinetic coefficients we have to
know not only diaganol but all elements of the matrixĜ.
The Dyson equation is

Ĝ5~Ĝ~0!21
2S0K̂ !21. ~A1!

HereS052 i /2t(v) with t(v) given by Eq.~8! Taking into
account the following property of theK̂ matrix:
K̂ ÂK̂5K̂( i , j

N Ai j , whereÂ is anyN3N matrix, we have

Ĝ5Ĝ~0!1S0F11S0(
i , j

N

Gi j
~0!1S S0(

i , j

N

Gi j
~0!D 21•••G

3Ĝ~0!K̂ Ĝ~0!

5Ĝ~0!1
S0

12S0( i , j
N Gi j

~0! Ĝ
~0!K̂ Ĝ~0!. ~A2!

Finally, we use the fact thatĜ(0) has only diagonal elements:
Gi j
(0)5Gii

(0)d i j ( d̂ is a unity matrix!. As a result, components
of the Ĝ matrix become

Gi j5Gii
~0!d i j1

S0

12S0SpĜ
~0!
Gii

~0!Gj j
~0! . ~A3!

@Note that there is no summation over the repeating indexes
in Eq. ~A3!.#

Now we turn to evaluation of electrical conductivity and
thermoelectric coefficient. Within Kubo formalism, kinetic

coefficients can be calculated in terms of correlators which
refer to fermion loops with the corresponding vector
vertices.11 Namely

Fsab

bab
G5 lim

V→0

1

2 iV(
vn

E d3k

~2p!3
SpH Ĝa

~E!Ĝ~vn1Vk ,k!

3F Ĝb
~E!

Ĝb
~H !GĜ~vn ,k!J . ~A4!

HereĜa
(E) andĜa

(H) are the vertices associated with the elec-
tric and heat current operators, respectively, averaged upon
the configuration of scattering centers. Without scattering the
corresponding vertices would beĝa

(E)5evad̂, ĝa
(H)

52 ivnvad̂, wherev is the electron velocity~we again con-
sider the model of uniform valleys!. The renormalized vertex
obeys the equation

Ĝ5ĝ1nimpE d3k8

~2p!3
Û~k,k8!Ĝ~k8,v!ĜĜ~k8,v!Û~k8,k!.

~A5!

Straightforward calculations show that renormalization cor-
rection to the bare vertex is proportional to the integral con-
taining matrixv̂, which is zero as a result of averaging over
angles of vectork. Finally renormalization of the vector ver-
tex ĝ is absent as in the case of isotropic metal with a one-
valley Fermi surface. Under these conditions Eq.~A4! re-
duces to

Fsab

bab
G5 lim

V→0

e

2 iV(
vn

F e
2 ivn

G
3E d3k

~2p!3
vavbSp$Ĝ~vn1Vk ,k!Ĝ~vn ,k!%.

~A6!

Then we evaluate the trace over valley indices using Eq.
~A3!. Here we use the same reasoning for terms like
Gii
(0)/Gj j

(0) at iÞ j in denominators as when calculating the
relaxation time. Transforming the sum over fermion fre-
quency into contour integral and making analytical continu-
ation (iVn→V) we finally obtain

Fsab

bab
G5 e

4pT2m2(
i51

N E
2`

` F2eT2v G dv

cosh2~v/2T!
E d3k

~2p!3

3
kakbt22~v!

$@v1m i2~k2/2m!#21@1/4t2~v!#%
. ~A7!

The last equation results in Eqs.~12! and ~17! after integra-
tion overv and summation over valleys, under the condition
of uniformity of valleys.
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