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The model for electronic transport in quasicrystals is proposed. Unlike all previous attempts to explain
unusual electronic properties of quasicrystals by impending localization due to the lack of periodicity in
defectless quasiperiodic lattices, the current theory is focused on phonon and impurity scattering in real,
“dirty” quasicrystals. The standard scattering theory cannot be applied to quasicrystals, due to their unusual
band structure, namely the fact that the Fermi surface is nearly obliterated. To solve the problem a fractional
multicomponent Fermi-surface model has been introduced: the Fermi surface has been viewed as consisting of
relatively large number of residual tiny electron and hole pockets, with impurity random potential scattering
electrons between different components. Leaving quasiperiodicity aside, the Dyson equations for the scattering
time, dc conductivity and thermopower have been solved analytically. The theory explains the nearly vanishing
conductivity, as well as strong temperature dependence of thermopower and related transport properties.

[. INTRODUCTION cohesion energy is lowered thus improving stability of the
alloy, the effect analogous to Peirles mechanism responsible
The electronic transport in quasicrystals is one of the puzfor the formation of charge-density waves. In other words,
zling problems of the modern condensed-matter physics antthe band-structure hypothesis views quasicrystals as the most
attracts a close attention of both theoreticians and experiectified Hume-Rothery alloys. In the course of this paper we
mentalists(for an extensive review see Ref). The fractal  will adopt the band-structure hypothesis, without arguing
nature of Fermi surface and interplay between localizatiorwhether or not it is a valid approach.
and delocalization of electronic states proposed by several The band-structure hypothesis assumes that although,
authors’*the extremely short mean free path of the electrortechnically, the reciprocal space is everywhere densely filled
scattering, low carrier concentration and density of states atith the Bragg planes only a few, associated with the few
the Fermi level, and strong structural and phase disorder leagirongest Fourier components of the pseudopotential, should
to the variety of speculations concerning the transport propbe taken into consideration, at least in the first approxima-
erties. Among them are semimetallic or semiconductor betion. Because of the high multiplicity of the Bragg planes
havior, analogies with metallic glasses, approaching the&esulting from high symmetry of quasicrystals the quasi-
metal-insulator transitioh. However, since the electronic Brillouin-zone boundary would have some 40 or even 90-
properties of quasicrystals exhibit still the metallic charactersomething facets, even when only two or three largest terms
(although with the features mentioned abpwany model of in the Fourier series for the pseudopotential are taken into
electronic transport should be based on a model of the metakccount. The exact number of the facets as long their shape
like electron spectrum with well-defined Fermi surface. Theand size vary from one particular quasicrytalline alloy to
main problem arising here is the effect of quasiperiodicity onanother, but one thing remains in common: the quasi-
the Fermi-liquid parameters. In the present paper we propodérillouin-zone boundary is a very good approximation of a
a simple model of electronic structure which accounts forsphere, somewhat resembling a soccer Kalt particular
transport properties largely consistent with those observedhapes, see Poon’s revidw
experimentally. In the simplest Harrison approach to the construction of
So far, there have been two rival theories of electroni¢he Fermi surface this first approximation quasi-Brillouin-
properties in quasicrystals. One approach is focused on theone boundary overlaps the Harrison sphere. As a result,
effects of quasiperiodicity, namely the failure of Bloch theo-most of the Fermi surface is obliterated, leaving only tiny
rem in the absence of periodicity and possibleelectron and hole pockets at the face centers and corners,
localization’> The other, called band-structure respectively. The number of these pockets, being denoted
hypothesi€"1® leaves localization aside but exploits high below asN, is merely the number of facets plus the number
symmetry of quasicrystals that allows for an extremely tightof corners of the quasi-Brillouin-zone boundary, and varies
matching of the Fermi surface with the Brillouin-zone from 42 to 96 for most known icosahedral quasicrystals. The
boundary. By placing the Fermi surface at the band gap theize and shape of the pockets are determined not only by
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the reciprocal-space geometry, but also by the strength of thering for intervalley transitions between tiny electron and
pseudopotential and the position of the Harrison sphere réhole pockets was mentioned in Ref. 10 in the context of
garding the quasi-Brillouin-zone boundary. The latter, infirst-principals calculations of electronic properties of model
turn, changes when the alloy composition is varied, resultingjuasicrystals.

in experimentally observed strong dependence of electronic The paper is organized as follows. In Sec. I, we examine
properties on composition. The aim of this article is not tothe electron relaxation time in quasicrystal and discuss dif-
calculate the transport properties of all 200 or so knowrferent scattering mechanisms. In Sec. Ill, we consider the
icosahedral quasicrystalline alloys, but rather provide a gemature of electrical conductivity, within our model. In Sec.
eral tool. Accordingly, we will consider a model Fermi sur- IV, we evaluate thermopower in a quasicrystal taking into
face consisting ofN components(some of whom are account both electron-impurity and electron-phonon scatter-
electron- and some holelike in charagtezach component ing processes. Finally, in Sec. V, we summarize and discuss
being a tiny sphere of radiug! . It is worth keeping in mind  our results comparing them with the experimental data. We
that for a given quasicrystalline alldgt’ could change with ~ use units wherebji =kg=c=1.

the composition and could even turn zero. Technically, there

might exist quasicrystalline alloys where all th,@ turn zero Il. RELAXATION TIMES IN QUASICRYSTALS
simultaneously, thus making the quasicrystal a multivalley | del of th -ocket Fermi surf i
semiconductor. There are experimental indications that such N our mode! ot the many-pocket mermi surtace, we con
quasicrystals do existin this paper we will focus on quasi- S|_de_r the set Oﬂ.\l electron and hole pockets d'SF“.b“ted
crystals that are still on the metallic side of the metal-Within the Brillouin zone. At zero temperature the finite re-

semiconductor transition, though very close to the transitior%axfit'on. time is solely dge to structural or chemlcal dlsorder.
Doint. while with temperature increase the scattering on the quasi-

The subsequent Harrison approximations lead to the sypattice vibrations contributes to the electron relaxation. Intro-

sequent splitting of these pockets into smaller ones and S%uce the effective chemical potential in each pocket:

on. Because of icosahedrical symmetry and quasiperiodicity
of the lattice this splitting procedure continues indefinitely.
As a result the volume of quasi-Brillouin zone as well as the
size of each pocket tend to zero, while the number of pockets ) ) 0 )
goes to infinity. In the limit the fractal structure appears andVherei=1...N is the pocket numbek;" is the radius of a
the notion of the density of states in the rigorous understandorresponding pocket and is the effective mass of a charge
ing loses its sense. This situation takes place in an idearrier. Since the distance between the pockets in the mo-
quasicrystal, namely with no electron scattering processe®entum space is of the order of reciprocal Angstrom and the
and at zero temperature. In real quasicrystal one has to talockets are rather small, we may assume that the distance
into account smearing of the electron states in momenturR€tween the pockets is much greater than pocket radii as well
space. Since the energy of quasiparticle is defined with iRS the broa_demng of Fermi surface due to both temperature
accuracy of its uncertainitge~maxT,7 1} (T is tempera- and scattering. . .
ture, 7 is the electron relaxation timethe splitting of Fermi Flrst_, consider the sca_tterlng of electron on structu_ral im-
surface within Harrison procedure makes sense as long as tRérfections. One can define the electron Green function as a
characteristic size of pockets is greater that As a result, N>XN matrix:
we argue, that electronic structure of a quasicrystal can be D Y
modeled by a set of electron and hole pocketsvalleys Gij(r,r',t,t") = =(T(ghi(r,0 g (r',t")), 2
i e Al S o YT 0 MR SO0 er, and e cecton fld oprtrs for s an
Harrison procedure should be stopped are defined by eithéf? valleys. In the absence of scattering ematrix is di-
temperature or inverse electronic relaxation time. The sym@donal with
metry of such multipocket electronic structure reflects the
guasicrystal symmetry, but it is unimportant for transport (0) - 1

: . . . Gii (k,wn) : 2 . (3)
properties which are integral characteristics. i wn+ ui— (k/2m)

In this paper we show that the electronic structure deter- . . . .
mines the main features of transport in quasicrystals. In th cattering of electrons by structural imperfections results in

model of the many-valley Fermi surface, two kinds of elec- oth the renormalization of diagonal elements and the ap-

tronic elementary scattering processes are possible. The firggarance of nonzero nondiagonal elements of3treatrix."

kind is the intravalley process which begins and ends in th&Ve consider the scattering to be isotropic and the corre-
same valley. The second kind are intervalley processes dugponding amplitudeJ (which also is presented bMXxN

ing which electron is scattered from one valley to anothermatrix) to be independent of the transfer momentum. Under
We find that due to different momentum transfer involved inthese assumptions, the amplitudes of electron scattering be-
intra- and intervalley scattering, different types of conductiv-tween different valleys are the same, ¥e=UqK, where

ity are realized. Namely, intravalley processes result in dJ, is the amplitude for Born scattering of electron by impu-
nonmetallic character of conductivity reminiscent of one ob-rity center andK;;=1 for all i and].

served in the vicinity of metal-insulator transition, while in-  For the Green function averaged over the configuration of
tervalley scattering can be described within the Drude modelscattering centers we can write down the matrix Dyson equa-
Notice, that the importance of both elastic and inelastic scattion:

kg)z
M=o 1
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G l=[GO]1-% (4) relaxation rates due to different contributing scattering

N mechanisms. In doing so, we will avoid a narrow tempera-

with 2 being the matrix self-energy. The matrix equation for ture interval where the interference of electron-impurity and
the self-energy is electron-phonon interactions occurs.

K The difference between scattering by impurities and

S _ % NE AT ! honons lies in the fact that electron-phonon interaction is

2(k’w)_nimpf (277)3U(k’k )Gk @)Uk k). () gble to change the electron momentum only by a small

Here njy,, is the concentration of scattering centers. Substi-amoum' of the order off/u, whereu is the velocity of

. . X sound, while scattering on the structural disorder provides
tutlng Eq. (4) in Eq. (5) after strmghtfo_rward algebra one the transfer momentum of the order of the reciprocal Ang-
obtains thatX has the same matrix structure ad:

P A . X strom. Note, that the momentum transfer that large is neces-
2=_20K(.0)In (g)value}tmgio we take into account that the gary for intervalley scattering. In this manner there exists a
ratiosGj;’/Gj;”’ for i #] are of ordefT/u and could be ne-  characteristic temperatur@* ~u/a (a is the average inter-

glected. Finally, we obtain atomic distance below which the phonons are unable to
N scatter electrons from one pocket to another, thus permitting
s _Z RNITAL: only intravalley processes. Accordingly, for temperatures

07 & impl~0 T<T* the effective relaxation time is given by
d3k 1 1 N . 1 10
X ’ — i — —,
(2m)° G 1=3o(1-2; (G| IG{Y)) Tt 7o Tpr(T)

N d3k 1 with 7,(T) being the electron relaxation time due to
:E nimp|U0|Zf 3 > . (6 electron-phonon scattering. We believe that in this tempera-
i=1 (2m)” fwn+ ui—k¥2m=2X, ture range the total electron relaxation is dominated by scat-

The electron relaxation time is conditioned by the imaginany!€"iNg On impurities even in pure samples, due to large value

part of the self-energy. Integrating ovemwe obtain an ana- of N. Qn the other hand, if, the temperatL_Jre gxce‘étisthe
lytic solution for the Dyson equation, in a form of a simple scattering by phonpns provides the effective .|ntervalley elec-
algebraic equation for the imaginary part: tron processes with the essential shortening of electron-

phonon time. As a result, for>T* we have

N ReVato—ilmS,
0T T 2, TG, & p - — === (11

Tot 70 7'ph( T

(7
If all valleys had the same sizg; = uq for all i, the solution
further simplifies:
1) N |2
ol

Mo 4poTo

It is important that atT~T* the sharp decrease of the
electron-phonon scattering time should be observed with the
corresponding change in the character of conductivity. The
2 interplay between impurity and phonon scattering mecha-

(8)  nisms is governed by the purity of a sample. In sufficiently
clean samples electron-phonon scattering would dominate
over impurity scattering in the entire temperature range
aboveT*.

1 N

) 7o

In the last equation we introduced timer,®
= r‘imp| U0|2m3/2(2,“«0) Yo = nimp| UO|2V(MO)/2771 where
v( o) is the density of states at the Fermi level. If the metal
had only one tiny valleyr, would be its relaxation time.

For most quasicrystals one should not expect too close a ] ] )
proximity to the metal-semiconductor transition, i.e., though A successful model of electronic transport in quasicrystals
4o is much smaller than in most normal metals it is still far should be able to find a reasonable explanation for the main

from being vanishingly small. In that case, Ef) becomes features in the conductive properties of these materials. The

Ill. MECHANISMS OF ELECTRICAL CONDUCTIVITY

simply distinctive transport features of quasicrystals @geThe ex-
tremely low values of electrical conductivity at zero tempera-
To ture; (2) the increase of conductivity with temperature; and
N’ €) (3) unusually strong thermopower temperature dependence

sometimes leading to a sign change. In the beginning of this
where timer, refers to intravalley scattering. The effective section we present the quantitative analisys of the mecha-
time given by Eqs(8,9) governs the electronic transport at nisms of electrical conductivity based on the model intro-
low temperatures, i.e., in the region of residual resistivity. duced above and then perform some calculations. As it was
As temperature increases, the number of electrons scatentioned above one has to distinguish between the trans-
tered by quasilattice vibrations increases with the correport properties associated with the intravalley and intervalley
sponding reduction in total relaxation time. Below we studyprocesses whose competition results in a number of interest-
the effect of phonon scattering on the electron relaxatioring issues.
time. For simplicity we present only the semiquantitative Consider the case of icosahedrical phase with weak struc-
consideration assuming the validity of the Mattisen rule,tural disorder at low temperature thus ignoring scattering by
which implies that the total relaxation rate is a sum of thephonons. To understand the character of electrical conductiv-
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ity one has to consider the paramet§P| ~ 1,7 in compari- o(T=0)~eN?m?n;p,|Uol?, (14)
i?mng al;;:;y etgelrsgtg\? e?rl]ic\t,\r,ﬂgt? ee;atr;] ;riﬁn%ajgicietyvﬂlau: meWvhat describes the variation of residual conductivity with the

tallic or nonmetallic character. One has disorder streng_th. .
Now let us discuss the nonzero, but still low temperatures.

(0) In this case the intervalley scattering contribution is given by
k<F0>| ~ % (12 the same temperature-independent @@). Intravalley pro-
m nimp|U0| cesses, however, will contribute to conductivity in the same

. f hi L hich b £ the f manner as temperature-dependent conductivity in the vicin-
It is seen from this estimation, which because of the rac-lw of metal-insulator transition. It is well establish&dthat

- - 0
tional nature of theo Fermi surfad_é:) could be extremely near metal-insulator transition conductivity goes to zero ac-
small, that impliek{®| <1, at least in the case of not too low ¢ording with T2 law. Considering this contribution as a

concentration of scattering centers. The case of the highlgmall correction to temperature-independent conductivity

ordered phase with the very weak structural disordefrom intervalley processes, at low temperatures, we can write
(70—, Nimp— 0) requires a more detailed consideration. At

a first glance, in this limit the paramet€t2) rises and the a(T)=a(0)+aﬁ, (15
condition of localizationuy7~1 is no longer valid. Closer . . :
examinations, however, shows that, as was mentioned eatvr\{lth a being the temperature-independent factor. When the

X . X ) - emperature further increases, the electron relaxation time
lier, the size of the pocket is defined by the uncertainity of . . )

) will decrease due to scattering by phonons according to Egs.
the electron energy, that #§ * at zero temperature. It means

that the condition of strong localization is fulfilled indepen- (10) and (11). In this temperature range the contribution

dently upon the disorder strength. This leads to the nonm from intervalley processes begins to depend upon tempera-

. L . L . eture, and total conductivity will be dominated by this contri-
tallic (localization regime of conductivity conditioned by ; ' .
) . ; . ution. In this case Eq13) can be rewritten as
intravalley scattering even in the case of weak disorder. Le?
us note, that the physical reason for this phenomenon is the m
small momentum transfek®) involved in intravalley pro- o(T)~Ne? T (16)
cesses. tot

Now we turn to intervalley processes. Here the momenwhere we have again used the relatron{"?~ 7.} assum-
tum transferAk is of order ofa™*, wherea is the average inq 7,,'>T. It is seen that conductivity increases with the
interatomic distance. In this cagsk|>1. Turnlng on inter- rise of temperature due to Scattering by quas“attice vibra-

valley scattering processes eliminates the localization situgions. Note that then temperature excee@ﬁ theu(FO) in Eq.

tion and provides for the metallic character of conductivity. (13) will be defined asny(®2~T. The intervalley contribu-
At zero temperature, the nonzero contribution to conductiv-. to conductivityF in this case is o(T)
ity appears as a result of intervalley processes only while the_ NemY2T32 (T)

tot .

intravalley contribution is zero. The detailed theory which

E”%‘st us tlc_) e"?'“a%te th_e ;Qtez\/alley dpon_tl_juctl\/tl_ty \;V'ﬂt]r']n peratureT* results in the corresponding changes in conduc-
ubo formalism IS given in theé Appendix. To estmate etivity behavior. Note, that unlike ordinary metallic systems,

resudgal conduc_tlwty'one. can use the Drude model with thei'n guasicrystals this phonon crossover temperature is less
effective relaxation time in the form of E¢9): than Debye temperature

The phonon-induced crossover in relaxation time at tem-

N 2,,(0)2
) e v
o(T=0)=2, oi~New©P2p >~ —F (13 IV. FEATURES IN THERMOPOWER
i=1 N Nimp|Ugl

The thermoelectric coefficiem®(T) of a quasicrystal can
The magnitude of conductivity is extremely small due to itsbe calculated by analogy with EGL3). In this consideration
proportionality tov (92, It is worth discussing the variation We restrict ourselves for the case of not too low temperature,
of o(T=0) with changing the strength of structural disorder. Where the thermoelectric coefficient quickly tends to zero.
If the disorder is negligible conductivity tends to zero, be-SO, We consider only intervalley scattering:
cause neither intervalley nor intravalley processes are pos- N
sible. With the rise oh;,,, the nonzerar(T=0) appears, ﬁ=2 B, Bi=-— szeTi
those magnitude could be calculated through @&8§). Thus, = ! 9 du;
residual conductivity should rise with the structural and
phase disorder, as it is seen in experiments. The reason fi

vi“”szi)%). 17)

{y simple estimate shows that

this effect is the possibility for electron to be scattered from g T
one valley to another with the large momentum transfer of B~ _eﬂé%-o, S=— "~ —, (18
order ofa™ 2. In this context Eq(13) should be considered o €U

onoly_at a fixed strength of disordéat givenn;y,), because  where S(T) is thermopower(or Seebeck coefficient With
v,(:) in Eq. (13) is ruled byn_imp. To gain gr_eater insight into ., much smaller than the typical value of Fermi energies in
why the above statement is valid, we write at zero temperametals, one concludes that diffusion thermopower in quasic-

ture: mo (F°)2~ Se~71"1~Nl7y, which implies v,(:o) rystals is much larger than in ordinary metals. Apart from the

~Nmr\mp|Uo|2. Substituting this estimate in Eq13) one large absolute value of diffusion thermopower, the possible
gets sign change with the temperature is also the characteristic
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feature of quasicrystals. Note, that similar behavior was ob1Q) cm in system Al-Pd-Ré&8 which increases with increas-
served in a number of metallic systems like metallic glassesng strength of structural order. It is quite obvious that these
Chevrel phases, and high-temperature superconductinghases cannot be considered by analogy with metallic
cuprates>**Usually the thermopower sign change is attrib- glasses where structural disorder is the intrinsic property. Be-
uted to the phonon processiike phonon drag or electron- havior of resistivity of highly ordered icosahedrical phases
phonon-impurity interferengewhich can account for the seems to be the inherent feature of these materials.
COﬂtI’IbUtIOhSS opposite in sign to the diffusion  pierent theoretical models have been proposed to ac-
thermopowe?. These phonon contributions dominate diffu- coynt for an unusual electron transport in quasicrystals but
sion thermopower at temperaturés<® (O is Debye tem- 5| of them considered ideal, defectless quasicrystals with the
peratur¢, but are substantially reduced =0 due t0  gyception of Ref. 5, which treated the structural disorder in
phonon-phonon scattering, leaving the diffusion componeng aqjcrystals in terms of random phasons. As we pointed out
as the leading contribution. To take into account the influpefore in the defectless case the Fermi surface has an infinite
ence of ele_ctron—phonon mterac_:tlon on thermopower one has,mper of zero-area pockets. Moreover, because of the spe-
to replace in Eq(18) 7o by 7o given by Eqs(10) and(11). g type of order, the electron wave functions cannot be
As the drag effect is concerned, it will affect thermopower atpresented in the Bloch form. As a result, these thebtRds
the temperature range betwe®ri/u, and©. In this case, predict either zero or infinite conductivity at zero tempera-
ture. Our model, developed for real, dirty quasicrystals, pro-
vides the natural explanation for a low value of conductivity.
The reason is the smearing of electronic states by both tem-
perature and scattering which result in the existence of a
Equations(18) and (19) together with Eqs(10) and (11)  Fermi surface with a finite number of valleys whose number
provide a quite complex temperature dependence of thegepends on the strength of disorder. Because the characteris-
mopower in the entire temperature range be®wlt is im-  tjc size of a valley is conditioned by the uncertainity of elec-
portant to mention that the phonon-drag contribution can beron energy, the localization of electronic states occurs in the
of any sign depending on whether normal or Umklapp prodimit of ordered(defectless phase resulting in zero conduc-
cesses dominafé.Another interesting feature of the ther- tivity at zero temperature. The deviation from ordering leads
mopower in the model of fractional Fermi surface is the lowto a possibility of intervalley scattering which provides the
value of degeneration temperature of electron gas. Indee#onzero, but small value of zero-temperature conductivity.
electron gas could be considered a Fermi gas if the tempera- Apart from conductivity, the thermopower of quasicrys-
ture is less thaf 4e4, Which is of order of magnitudg, and  tals exhibits enormously large absolute magnitude, which
in result can reach a hundred of Kelvins. It means that ahlso can be considered as a unique property. Even ignoring
T>Tgeg0ne has to consider electron gas as a Boltzmann gagossible phonon contributions, the large magnitude of diffu-
In this case thermopower is nearly temperature independesion thermopower has also found explanation within our
and rather large in magnitud&:~ 1/e.® This effect also re- model due to two possible factors: the small size of the val-
sults in an unusually large absolute value of thermopower akys and extremely low degeneration temperature. It is also
high temperatures. The situation is complicated by the existeasy to understand the experimentally obser¢eteducing
ence of two kinds of charge carriers. If the degeneratiorof density of states at the Fermi level with respect to the
temperatures for electrons and holes differ, it is easy to imagerdinary metals, which is proportional to the Fermi momen-
ine that at some temperature betweBfY; and T{), ther-  tum. The model of fractional Fermi surface also provides the
mopower would change a sign. dependence of electronic properties upon the strength of dis-
order, because the effective Fermi energy is governed by the
inverse electron relaxation time.

It is interesting to compare the results of the present paper

Comparing our theory with experiment, it is important to with first-principals calculations of the band structdfeand
keep two things in mind. Firstly, the existing experimentaltransport properties in a crystalline approximant based on the
data are quite controversial, and, secondly, our model is afwo-dimensional Penrose lattit® Reference 10 treated the
rather general character, so, it is able to describe only conrandom phasons as centers of elastic scattering providing
mon features of quasicrystals distinctive from properties osmall value of conductivity at zero temperature. Contrary to
usual metallic systems. Thus when discussing experimentdhis theory, our model exploits only very common features of
data the main problem is to reveal the properties unique tguasicrystals, but describes three-dimensional systems at fi-
guasicrystals. nite temperature. Although two-dimensional calculations of

Initial experimental studies of electron transport in theRef. 10 cannot be directly applied to realistic three-
icosahedral phase indicated metalliclike behavior with largadimensional icosahedral phases, both theories demonstrate
residual resistivitiegof order 10Q.€) cm), with the mono- the remarkable agreement which concerns the effect of ran-
tonic decrease of resistivity with temperature increasing uglomness on the transport properties of quasicrystalline
to room temperaturé Together with the strong temperature phases. We notice that although calculations of band struc-
dependences of thermopower and Hall coefficient, these oltures in the realistic model structures of quasicrystals pro-
servations were reminiscent of metallic-glass behaVior. duce electron and hole pockets not only at the Brillouin-zone
However, further studies of Al-Cu-FRRu) compounds that surface, but at many other points in the Brillouin zdfé,
form stable, nearly defect-free icosahedral phases, showatbes not essentially affect our model. Really, the only as-
enormally large resistivity up to 0CL cm (Ref. 17 and even  sumption neccessary for the model validity is the separation

T 2 2
B”‘e(g) 1oKE Tt S~ o2 (19

V. DISCUSSION
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of pockets in the momentum space on the distances compaeefficients can be calculated in terms of correlators which
rable with thepg or evenpr /N* wherea is between 1/2 and refer to fermion loops with the corresponding vector
1/3 depending on the surface or volume distribution of thevertices'* Namely
pockets.

In summary, we have proposed a model of multiple-

valley fractional Fermi surface for electronic structure of o, d3k ©

quasicrystals which provides a natural explanation for a LB = lim |QE 2 )3SP{F 'G(wnt Qy k)
number of physical properties of these materials. The Dyson ' “#1 @-0

equations for the electron Green function and a couple of F(E)

vertices have been solved analytically. The interplay be- (H) G(w”’k)J (A4)
tween intravalley and intervalley scattering processes in F

combination with the suggestion about the localization re-

gime in each valley accounts for a small value, of zero-HereI® andI'™ are the vertices associated with the elec-
temperature electrical conductivity and square-root temperaric and heat current operators, respectively, averaged upon
ture dependence at low temperatures, large absolute valuge configuration of scattering centers. Without scattering the
and strong temperature dependence of thermopower. The d@orrespondmg vertices would bey®=ev,5 Y
veloped formalism could be used for a detailed calculation of_

¢ | li | —lwyw 5 wherev is the electron velocitywe again con-
transport properties of particular quasicrystalline alloys.  giqer the model of uniform valleysThe renormalized vertex

obeys the equation
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APPENDIX taining matrixv, which is zero as a result of averaging over
angles of vectok. Finally renormalization of the vector ver-
For rigorous evaluation of kinetic coefficients we have totex 3 is absent as in the case of isotropic metal with a one-
know not only diaganol but all elements of the mat@x  valley Fermi surface. Under these conditions E&4) re-

The Dyson equation is duces to

A (GO Iy gy-1

G=(G 30K) T (A1) [%ﬂ | o o
Here2 o= —i/27(w) with 7(w) given by Eq.(8) Taking into Bag _Qlino 045 | —io,

account the following property of theK matrix:

d3k N -
KAK = KE Aj; , whereA is anyNx N matrix, we have Xf - 0.0 5SPG(n+ Qi) Gl 1.
A . N 2 (A6)
G=GO+3,1+5,> G+ 202 G|+

] N Then we evaluate the trace over valley indices using Eq.
X GOKG® (A3). Here we use the same reasoning for terms like
GG ati+#] in denominators as when calculating the
:é<o>+ié(o>ké<o>_ (A2) relaxation time. Transforming the sum over fermion fre-
1-3,30G quency into contour integral and making analytical continu-

) - ) ation (iQ),— Q) we finally obtain
Finally, we use the fact tha3(®) has only diagonal elements:

G"=G{"s; (5 is a unity matriy. As a result, components

of the G matrix become o, 2eT do d3k
[Ba[,l 477T2 22 —wl —]|cost(w/2T) ) (2m)3
G, =G\¥s,+ -GG (A3) Kok 2()
e pG K272m) 12+ [ /472 a
ot m— (K2m) 2+ [a2()]}
[Note that there is no summation over the repeating indexes
in Eqg. (A3).] The last equation results in Eq4.2) and(17) after integra-

Now we turn to evaluation of electrical conductivity and tion overo and summation over valleys, under the condition
thermoelectric coefficient. Within Kubo formalism, kinetic of uniformity of valleys.
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