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Previous simulation studies of localized low-frequency vibrational modes in a soft sphere glass are extended
to larger samples. We find a boson peak in the spectral density and a maximum in the specific heat divided by
T3 similar to experiment. These maxima are caused by~quasi!localized vibrations. For finite frequencies these
interact strongly with each other and with the extended phonons. This leads to an overdamping of the phonons
around the boson peak and to a delocalization of the localized modes. A procedure to split the resulting modes
into their bare constituents is presented. The bare localized modes are found to have a low-dimensional
structure. The description in terms of the soft potential model is essentially verified.

I. INTRODUCTION

Glasses and amorphous materials in many respects re-
semble their ordered counterparts the crystals. The densities
in both forms are normally similar. The elastic constants of
the amorphous state are isotropic but otherwise of the same
magnitude as in the crystal. Also the vibrational densities of
state resemble each other. However, taking a closer look one
finds a much richer dynamics in the disordered state, which
is particularly obvious at low temperatures.1,2 At low fre-
quencies one observes the usual long-wavelength phonons
~sound waves! in accordance with the elastic constants. At
higher frequencies these phonons are strongly damped, and
at some frequency, typically around 1 THz, the damping will
exceed the Ioffe-Regel limit: The mean free path of the
phonons diminishes below their wavelengths; the phonons
are overdamped. This can be understood considering that
whereas the long-wavelength phonons average over large re-
gions of the glass the shorter-wavelength ones see the disor-
der on the scale of a few atomic distances. The vibrations can
still be understood by harmonic theory but their eigenvectors
will have a complicated structure reflecting the disorder.

Striking differences between the dynamics of glasses and
amorphous materials are observed at low temperatures. The
heat capacity is significantly larger than the value expected
from the sound wave velocities. At temperatures below 1 K
it increases linearly withT instead of}T3 as given by the
Debye model.3 ~In metallic solids there is an additional term
}T due to electronic excitations.! This anomaly in glasses
has been explained by the standard tunneling model assum-
ing a constant distribution of two-level tunneling states.4,5 At
somewhat higher temperatures the excess specific heat in-
creases approximately}T5. The frequency domain, corre-
sponding to the excitations responsible, is accessible to spec-
troscopic methods like Raman6 and neutron scattering.7

From the temperature dependence of the measured intensities
it has been deduced that the excitations are essentially har-
monic vibrations which become increasingly anharmonic to-
wards the lowest frequencies. These low-frequency vibra-
tions coexist with the long-wavelength phonons and have
been observed in a large variety of different glasses, e.g.,
metallic glasses,8 vitreous silica,7 and amorphous polymers.9

Corresponding to thecp(T)}T
5 variation of the specific heat

the frequency spectrum of the excess vibrations increases as
Z(n)}n4 at low frequencies. The neutron scattering struc-
ture factor is consistent with excess vibrations localized to a
few atoms7 ~‘‘localized vibrations’’!. Due to their interaction
with the extended sound waves, this localization cannot be
exponential and the modes should more exactly be called
resonant or quasilocalized.

At higher frequenciesZ(n)/n2 goes through a maximum
‘‘boson peak.’’ A corresponding maximum is observed in
cp(T)/T

3. Around the boson peak the extended phonons be-
come overdamped and the distinction between localized and
extended modes vanishes.

Additionally to these periodic excitations relaxations
~aperiodic rearrangements! are observed in ultrasonic and di-
electric relaxation experiments10 already at low temperatures
(T.5 K!. Depending on temperature and structure these can
be envisaged as thermally activated incoherent tunneling or
as hopping over some barrier. There will be a smooth tran-
sition from anharmonic vibrations to relaxations.

The above behavior can be described by the soft potential
model ~SPM!, an extension of the standard tunneling
model.11,12 In this model it is assumed that one has in the
glass some typical soft structure whose dynamics can be de-
scribed by soft potentials. Due to the randomness of their
local environment in the glass, the parameters of the poten-
tials will be distributed according to some probability law.
The resulting potentials can be single or double wells. The
first describe soft vibrations whereas the latter ones, depend-
ing on barrier height, give additional tunneling states and
relaxations. By fitting this model to the experimental data,
one finds effective masses of 20–100 atomic masses for the
entities moving in these effective soft potentials.13,14

The general behavior predicted by the SPM was con-
firmed by a computer simulation of a soft sphere glass~SSG!
where quasilocalized modes with effective masses ranging
from ten atomic masses upwards were found, Refs. 15,16,
later referred to as I. The modes were centered at structural
irregularities with large local strains. Regions of local strain
have also been observed in earlier computer simulations.17

Similar effective masses have since been observed in simu-
lations of SiO2 ,

18 Se ~Ref. 19! in Ni-Zr20 and Pd-Si,21 in
amorphous ice,22 and in amorphous and quasicrystalline
Al-Zn-Mg.23 In an earlier simulation of amorphous silicon
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low-frequency localized vibrations have been observed at co-
ordination defects.24

In the soft potential model the local relaxations are
strongly correlated with the local soft vibrations. Experimen-
tally this is supported by the similarity of the structure fac-
tors of both types of excitations.7 At temperatures above a
few kelvin these local relaxations can be envisaged as a
change of configuration by thermally activated hopping of
some group of atoms over a barrier. From diffusion measure-
ments in a metallic glass again effective masses of 10 have
been derived for this collective motion.25 Strong correlations
between soft vibrations and hopping have been observed in
molecular dynamics simulation of the SSG~Ref. 26! and in
amorphous Se.27 Both reversible and irreversible relaxations
were observed which consist of a collective hopping of
groups of atoms. Collective hopping motions have been also
observed in simulations of binary Lennard-Jones and soft-
sphere mixtures above and below the glass-transition
temperature28,29 and in amorphous Ar after introduction of
vacancies.30 Heuer and Silbey31 systematically searched for
double-well potentials in a binary model glass atT50. They
found a distribution of two well potentials in qualitative
agreement with the soft potential model. The effective
masses of the jump modes from one well into the other
ranged from two atomic masses upward. This low number
might be affected by the static search algorithm where the
nearest neighbor shell of an atom is first displaced and then
allowed to relax. By this procedure and due to the small
system size, more extended collective motions over lower
barriers might be broken up, particularly for the larger jump
distances. Bembenek and Laird32 used the instantaneous
mode technique33 to study double-well potentials in the SSG.
They find them to be connected with jumps of small numbers
of atoms at low temperatures. With increasing temperatures
they observe a delocalization in the temperature region of the
glass transition.

In the present paper we extend our earlier investigations
on the soft sphere glass, I, to larger systems. This enables us
to study in detail the effects of interactions of the local vi-
brational modes with each other and with extended phonons.
In the following section we give details of the computational
procedure. The vibrational modes are calculated and proper-
ties connected with their spectra discussed. Analyzing their
eigenvectors we find at low frequencies besides quasilocal-
ized and extended phononlike modes a large number of
modes resulting from the interaction of these. At low fre-
quencies this mixture of modes can be disentangled and one
thus gains ‘‘pure’’ extended and localized modes whose
properties can be studied. These modes are used to validate
the assumptions of the soft potential model.

II. COMPUTATIONAL DETAILS

The soft sphere glass~SSG! is described by an inverse
sixth-power potential

u~r !5eS s

r D
6

1AS rs D 41B. ~1!

To simplify the computer simulation and normal-mode
analysis, the potential is cut off atr /s53.0, and then shifted
by a polynomialA(r /s)41B, whereA52.5431025e and

B523.4331023e were chosen so that the potential and the
force are zero at the cutoff. This form of the shifting function
was chosen so that its effect is negligible nearr /s51.0.
Quantities such as the pressure and average potential energy
will be changed by a few percent as a result of this trunca-
tion, but any changes in the equilibrium structure will be
small. At any rate, our interest is in the existence and char-
acterization of low-frequency localized vibrational modes in
general, and not in a quantitative description for any specific
potential. Without loss of generality one can set
e5s5m51. Where we do not explicitly state the units we
infer these ‘‘system units.’’

The inverse sixth-power potential was selected because it
is a well-studied theoretical model that qualitatively mimics
many of the structural and thermodynamic properties of bcc-
forming metals including the existence, in its bcc crystal
form, of very soft shear modes,34 and it was hoped that this
property would be reflected in a high concentration of low-
frequency resonant modes in the glass. As evidence of the
universality of the phenomena discussed here, we also found
low-frequency resonant modes in one- and two-component
Lennard-Jones systems, but at such a low concentration that
the collection of any reasonable statistics would have been
very difficult.

An estimation of the glass-transition temperature was ob-
tained in I by calculating the diffusion constantD of the
system at this density as a function of the reduced tempera-
ture using the relation

D5 lim
t→`

1

6t
^uRW ~0!2RW ~ t !u2&, ~2!

whereRW (t) is the time-dependent position vector of a par-
ticle and^•••& denotes a configurational average. The diffu-
sion constant so calculated is very well fit by a fractional
power law

D5A~T2T0!
a, ~3!

with A50.191,a51.21, andT050.085. That such a fitting
function so well describes the diffusion data is consistent
with the predictions of mode-coupling theory.35 The tem-
peratureT0 can be taken as a lower limit for the glass-
transition temperature, since belowT0 diffusive motion is
effectively frozen out.

We extended our previous study of configurations of 500
and 1024 atoms to larger systems by quenching well-
equilibrated liquid configurations of 5488 soft spheres pro-
duced via constant-energy molecular dynamics~MD! simu-
lation with cubic periodic boundary conditions again at a
density rs351.0 and temperaturekT/e'0.54 ~about 2.5
times the melting temperature at this density36!. For the
simulation, we used the velocity-Verlet algorithm37 with a
time step of 0.04, in units of (ms2/e)1/2. The liquid is first
quenched within the MD simulation by velocity rescaling to
a reduced temperature of about 0.005Tg . The quench rate
was about 0.015k/(ms2e)1/2. After the MD quench, each
sample was heated to 0.05Tg and aged for several 1000 fur-
ther MD time steps to stabilize the potential energy and to
avoid spurious minima. Each system is then quenched to
zero temperature using a combination steepest-descent–
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conjugate-gradient algorithm.38 The resulting potential en-
ergy equals roughly the one of the fcc crystals of the same
density with about 1.5% Frenkel defects. Together with the
previous work, in all, 60, 21, and 15 different configurations
of 500, 1024, and 5488 atoms, respectively, were created in
this way and analyzed.

To illustrate the glassy nature of our zero-temperature
sample and to aid comparison of this model glass to real
materials the configurationally averaged structure factor
S(k) for our system has been shown in I.

To study the glasses at elevated temperatures the
quenched glasses were heated in stages to 5%, 10%, and
15% of the glass temperature. At each temperature the
glasses were observed for 90 000 time steps, corresponding
to about 5000 vibrations of an average frequency. Some re-
sults on the relaxations have been published elsewhere.27 In
the present investigation the resulting configurations are only
used to check for effects of annealing.

III. SPECTRA AND LOCALIZATION OF VIBRATIONAL
MODES

The harmonic vibrations of each glass configuration were
calculated from the force constant matrix of theT50 mini-
mum configuration. The numerically exact minimization of
the potential energy prevents the occurrence of spurious un-
stable modes. The elements of the force constant matrix are
given by

Dab
mn5

]2u~ uRm2Rnu!
]Ra

m]Rb
n . ~4!

Whereas for the two sets of smaller configuration a direct
diagonalization was possible, computer storage limitations
make this impossible for the large configurations
(N55488). For these only the lowest vibration modes
(n,0.2) were calculated by sparse matrix techniques.39 The
frequency spectra are calculated from the frequencies of the
3N23 vibrational modess as

Z~n!5K 1

3N23(s d~n2ns!L , ~5!

whered is the discretizedd function and̂ •••& stands for the
averaging over configurations. The calculated spectra for the
small and large configurations fit smoothly atn50.2. We
therefore used for the highern values the spectra calculated
for N5500.

For comparison we calculated the Debye spectrum

ZDebye5
3

nD
3 n2, ~6!

with

nD5 c̄S 3r

4pmD 1/3 ~7!

and the average sound velocityc̄ given in terms of the lon-
gitudinal and transverse velocitiescl andct . These are cal-
culated from the elastic constants of the glass by the usual
relation cl 5Ac11/r and ct5Ac44/r where we employ the
elastic isotropy of the glass.

We calculated the elastic constants from the change in
potential energy,DE, under an applied strain

Ra
m→Ra

m1(
b

eabRb
m , ~8!

DE52(
ab

Pabeab1
V

2 (
abgd

eabCabgdegd

1
1

2(abg
Pabeagegb . ~9!

Here the first term accounts for the work done against the
forces for an ensemble which is not in equilibrium against
volume changes, as is the case for the purely repulsive po-
tential considered here.Pab is the virial of the forces. The
third term, present for shears only, is a correction for the
volume change under a finite shear in such a lattice and the
Cabgd are the elastic constants (c115C1111,c445C2323).

We find for the glass the sound velocitiescl 54.96 and
ct51.45 in units ofAe/m. Taking the finite size of the en-
semble this implies that the lowest-frequency phonon which
could be observed for the largest samples is atn50.082. The
elastic anisotropy of a single configuration is found to be less
than 1%.

Figure 1 shows the vibrational density of states averaged
over all configurations together with the Debye spectrum.
One sees a clear enhancement of the glassy spectrum at low
frequencies which reaches well beyond frequencies where
system sizes could be of importance. The small indentation
of the spectrum aroundn51.4 is a property of the 1/r 6 po-
tential. It disappears for higher-power~harder! potentials
(1/r n with n'9).

From the density of states we can calculate the vibrational
specific heat at constant volume. In harmonic approximation
one has per atom

FIG. 1. Configurationally averaged vibrational density of states
of the soft sphere glass~solid line! and Debye spectrum~dashed
line!.
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cv53kE dvF S \v

2kTD
2 Ysinh2~\v/2kT!GZ~v!. ~10!

The vibrational specific heat of a perfect crystal is at low
temperatures}T3. It is, therefore, usual practice to plot
cv /T

3. In such a plot a Debye spectrum gives a constant
whereas in glasses an increase above this constant is found.
Figure 2 shows this behavior for the soft sphere glass. The
dotted line shows the values gained from the spectrum of
Fig. 1 and the dashed line the contribution of the low-
frequency modes only (n,0.18). To correct for the finite
size of the simulated glass we added to the spectrum a Debye
contribution up to a frequency below the one of the lowest
possible phonon frequency. This correction amounts to a
fraction of 331024 of all modes. The resulting values for
the specific heat are shown by the solid line. No effort was
made to smooth the discontinuity due to this correction. The
plot shows a maximum of about twice the Debye value just
above a temperature of 0.02 in reduced units. This is com-
parable to the usual values in glasses. This maximum is
caused by the excess low-frequency modes.

Diagonalization of the force constant matrix, Eq.~4!,
gives besides the eigenvalues also the eigenvectors. These
give the structure of the vibration and can, e.g., be used to
determine the localization of the vibration. There are two
usual measures of localization, namely, the effective mass
and the participation ratio which both have been calculated
in our previous work. The effective mass is given in terms of
the eigenvector as

meff~s!5m/ue1~s!u2. ~11!

Here we have assumed that the 3N-dimensional unit vector
of modes is normalized anden(s) stands for the vector
formed from the three components on atomn. Atom No. 1 is
taken as the atom with the largest displacement.meff /m is a
measure for the number of atoms which effectively carry the

kinetic energy of the vibrational mode. This definition is lim-
ited to small system sizes when the long-range tails of the
modes are not too important. In the following we will use
mainly the participation ratio

p~s!5SN(
n51

N

uen~s!u4D 21

. ~12!

For a translation one hasp51 and for a vibration of a single
atom with all others at restp51/N. This scaling with 1/N
should hold for all localized modes. Figure 3 shows the par-
ticipation ratios of the lowest-frequency modes for one con-
figuration ofN55488 atoms. The lowest-frequency modes
are as expected highly localized. Their participation ratio
shows compared to the most localized modes of the
N5500 andN51024 configurations the expected 1/N scal-
ing. It corresponds to a localization to about 20 atoms in
terms of the effective mass. At a frequency of around
n50.08 one observes a slight maximum inp. This corre-
sponds to extended modes, the lowest-lying phonons permit-
ted by the system size@transverse (q,0,0) phonons#. We find
5 modes whose overlap factors with the 12 idealized
phonons exceed one-half. Between the maximally and mini-
mally localized modes a large number of modes with inter-
mediate participation ratios is found. As we will see below
these modes are formed by interactions of localized modes
and phonons. Aboven50.1 the second group of phonons
can be observed. At higher frequencies a broad band of par-
ticipation ratios is formed which slowly rises to an average
value of about 0.6 as shown earlier for the smaller systems.

There is a number of effects which contribute to this
spread of participation ratios, all connected with interaction
between ‘‘pure’’ vibrational modes. First the participation
ratio of degenerate modes is not well defined. Let us take the
group of lowest transverse phonons in our simulation. Their
wave vectors areq5(qmin,0,0) whereqmin52p/L with L
the periodicity length. There are 12 phonons of this type,

FIG. 2. Specific heat divided byT3 plotted against temperature
~dotted line, values derived from the spectrum of Fig. 1; dashed
line, contributions of modes withn,0.18 only; solid line, full spec-
trum with Debye correction!.

FIG. 3. Participation ratios of low-frequency modes of one soft
sphere glass configuration withN55488 atoms plotted against fre-
quency. Solid circles depict those modes whose overlap with the
idealized phonons of longest permitted wavelength exceeds 0.5.
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given, e.g., by sin and cos in the three spatial directions and
the two transverse polarizations. If these 12 modes are de-
generate, any superposition of these modes is again an eigen-
mode. By suitably superimposing the six phonons one can so
vary the participation ratiop between 0.44 and 1. E.g., a
superposition (1,0,0)cos(qminRx)1(0,1,0)sin(qminRy) gives
p51. In a disordered medium the degeneracy is lifted by
scattering at disorder and on ‘‘extra vibrational modes.’’ The
resulting phonon eigenvectors will have participation ratios
in the above range, always assuming that the scattering is not
too strong.

In amorphous materials and glasses one finds at low fre-
quencies besides the phonons additional modes. For the soft
sphere glass this is evident from Fig. 1. In I we have shown
that these modes are localized, although not in the strict
sense of this term. It is well known from lattice dynamics,
e.g. Ref. 40, that the interaction between local vibrations and
phonons prevents true localization of harmonic vibrations
with frequencies inside the band of phonon frequencies. The
local vibration will be dressed by a cloud of phonons and
becomes a quasilocalized or resonant vibrational mode. The
phonons will be broadened~damped! by the scattering at the
defects. In crystals it has been shown that the interaction
between defect vibrations and host phonons can be so strong
as to destroy the phononic character already for defect~‘‘lo-
cal vibration’’! concentrations of order 1023.41

If we take the low-frequency behavior of the glass as
constituted from extended phonons and local vibrations, this
has the following consequences. The phonons will be broad-
ened in addition to the scattering at the static disorder by
their interaction with the local vibrations. The admixture of
the local vibrations will tend to reduce their participation
ratio. Since the concentration of local vibrations increases
with frequency, the phonons will eventually lose their char-
acter. The local vibrations on the other hand will delocalize
and their participation ratio will tend to increase. The delo-
calization in turn causes local vibrations of similar energy to
interact. Depending on the strength of interaction, the two
combined modes will have participation ratios somewhere
between the single ones and their sum. For a finite concen-
tration,c, of interacting modes the scaling factor 1/N in Eq.
~11! will be replaced byc.

We have used the above picture to approximately disen-
tangle the exact low-frequency modes into their constituents:
local vibrations and extended phonons. We assume that the
constituent~unmixed! modese8 modes can interact with all
modes of frequencies of620%. The resulting eigenmodes
e will be linear combinations of the extended or localized
‘‘unmixed’’ modes,

e~n!5 (
0.8n,n8,1.2n

a~n,n8!e8~n8!, ~13!

where we labeled the modes by their frequencies and the
a(n,n8) are the expansion coefficients. To invert Eq.~13!
approximately, we use that thee8 modes are either localized,
with a small participation ratio, or extended, with participa-
tion ratiosp.0.4. We restrict ourselves to low frequencies
where the density of localized modes is low and we can
neglect the overlap between the unmixed localized modes
e8. Since the mixing of the modes will increase the partici-

pation ratiosp of these modes, we can use a minimum con-
dition in p to extract the modes from the exact~mixed!
modese. We start with the most localized mode, eigenvector
e(n1), and cycle over all modes it can interact with and
which have a higher participation ratio. We rotate the basis
of eigenvectors in pairs (n1n2) such that the participation
ratio of the rotated mode is minimal,

e8~n18!5R11e~n1!1R12e~n2!,

e8~n28!5R12e~n1!1R22e~n2!. ~14!

The new frequenciesn8 are defined by the expectation value
of the dynamical matrix~4! with the new eigenvectorse8.
These rotations are done for all pairs of modes, less than
20% apart in frequency, until all modes withp,0.4 have
been dealt with. This limit has been chosen to prevent ex-
tended phonons from being forced to localize. The above
procedure ensures the separation of phonon tails from the
local modes and the breakup of interacting local modes into
their constituents.

At any stage the modese8 form a complete orthogonal
basis. To avoid an artificial breakup of modes we apply this
method only to the lowest 1% of all modes. The low density
of states in this region together with then620% cutoff in
the allowed interaction causes then each mode to interact
only with a small number of neighboring modes. This would
no longer be the case for modes in the middle of the spec-
trum. For the low-frequency tail of the spectrum we expect
our method to give a fairly good representation of the under-
lying modes. Of course the orthogonality condition will burn
small holes into the extended modes. Due to the small mode
densities, these will have negligible effect. In Fig. 4 we show
the resulting participation ratios after having processed the
modes used for Fig. 3. Comparing the two figures one sees
that the modes have been divided into localized ones
(p,0.1) and extended ones (p.0.4). The rapid increase of

FIG. 4. Participation ratios of low-frequency modes after demix-
ing for the soft sphere glass configuration of Fig. 3. Solid circles
depict those modes whose overlap with the idealized phonons of
longest permitted wavelength exceeds 0.5.
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p nearn50.2 is an artifact of the cutoff of the modes used in
the procedure, Eq.~13!. Only the modes up ton50.15 have
been treated properly. The lowest two groups of extended
modes ~phonons! can be discerned. There are ten modes
whose overlap factor with the idealized transverse (q,0,0)
phonons of maximal wavelength exceeds 0.5. Ideally one
should have 12 such modes. The deficiency can be attributed
to the overlap between the phonons; see below. Comparing
the frequencies of the modes in Figs. 3 and 4 we find small
shifts of a few percent between the two sets of modes.

The ensemble averages of the participation ratios of the
localized and extended modes are shown in Fig. 5. The solid
line depicts the overall average of the participation ratios of
the original modes. The minimum aroundn50.9 corre-
sponds to the gap between the two lowest phonons which is
an effect of the finite size. Aboven50.1 the values increase
slowly towardp'0.55 which is reached outside the range of
this plot. The dashed lines depict the participation ratios of
the localized and extended modes, respectively, which were
obtained by the decoupling procedure. There is a slight in-
crease with frequency ofp of the localized modes accompa-
nied with a decrease for the extended ones. This might be
due to an incomplete demixing of the modes. The average
effective mass, Eq.~11!, is around 20 in units ofm and
increases slightly to 40 forn50.16. As for the correspond-
ing increase inp, it is not clear how much of this increase is
an artifact of an incomplete decoupling. The numbers agree
with the ones previously published for theN5500 and
N51024 systems. Particularly encouraging is the agreement
in the frequency range where there are extended modes in the
large system and none in the small system. We can exclude
size effects and major effects due to the demixing.

To show the contributions of the distribution of the dif-
ferent modes we plot in Fig. 6 the spectrum divided byn2. In
such a representation the Debye spectrum is a constant~dot-
ted line!. The spectrum of the original modes is given by the
solid line, the one of the modes after demixing by the dash-

dotted line, and the one of the localized modes by the dashed
line. There is only a slight change of the spectrum due to the
demixing. The part of the spectrum shown contains about
831023 of all modes. About 4% of the original modes in
this frequency range have been shifted by the demixing to
frequencies above the shown limit ofn50.16. Around
n50.08 there is a maximum inZ(n)/n2, the so-called boson
peak. The excess over the Debye contribution is about 1.5 of
the latter. We cannot locate the boson peak exactly due to
statistics. Furthermore, for the given system size it lies very
close to the first group of extended modes. To avoid the
problems in the spectrum of extended modes due to system
size, one can define a spectrum of noninteracting modes by
adding the Debye and the local mode spectra. The boson
peak for this spectrum would be atn'0.15. This means that
by softening some localized modes the interaction between
modes shifts the boson peak to lower frequencies.

The increase in the localized mode density of states at low
frequencies is at least}n3 and is compatible with theZloc
}n4 behavior predicted by the soft potential model.13 We
will discuss our results concerning this model below.

IV. STRUCTURE OF VIBRATIONAL MODES

To get insight into the structure of the extended modes as
they would be seen by neutron Brillouin scattering we define
a structure factor for a givenq as

S~q,n!5(
s

F(
m,n

N

eiq~Rn2Rm!~em~s!•en~s!!Gd~n2ns!.

~15!

In a real glass allq directions are equivalent, one observes an
angular average. For our finite size simulation we have to
replace this average by a sum over allq vectors of length
q, allowed by periodicity,

FIG. 5. Ensemble-averaged participation ratios for the soft
sphere glass withN55488 atoms plotted against frequency~solid
line, original modes, dashed lines, localized and extended modes
after demixing!.

FIG. 6. Low-frequency part of the spectrum divided byn2 ~solid
line, spectrum of Fig. 1; dash-dotted line, spectrum after demixing;
dashed line, spectrum of local modes after demixing; dotted line,
Debye spectrum!.
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S~q,n!5 (
uqu5q

S~q,n!. ~16!

In Fig. 7 we showS(q,n) for the two lowestq values al-
lowed, corresponding to phonons with the wave vectors
q5(qmin,0,0) andq5(qmin ,qmin,0), respectively.

The solid and dashed lines show the structure factors for
the original and modified modes, respectively.S(q,n) peaks
at the frequencies of the transverse phonons as calculated
from the elastic constants (n50.082 andn50.116). The
corresponding longitudinal frequencies are outside the fre-
quency range of the figure. The demixing does not shift the
peak positions significantly. The apparent shift of the second
peak is caused by the finite size of the chosen frequency bins
and the shoulders on the high-frequency side. These are an
artifact of the procedure. In those frequency ranges where
different phonon groups overlap the long-range tails of the
localized modes can get attached to the ‘‘wrong’’ extended
modes, thus feigning an increased interaction of the extended
modes. No effort was taken to reduce these shoulders.

Taking an approximate Lorentzian line shape

S~q,n!5
Dn

p

1

~n2n0!
21~Dn/2!2

, ~17!

we find Dn50.018 for the first phonon and 0.036 for the
second one. The widths are strongly reduced by the demix-
ing to Dn50.012 andDn'0.025. The last value was taken
from the low-frequency side only.

The widthDn is caused by two effects, the scattering on
the static disorder and the scattering between soft modes and
extended phonons. If we assume complete demixing, the
dashed lines show the broadening due to the static disorder
only. Both effects contribute equally to (Dn)2. The total
width Dn increases}n2, i.e., }q2. Since in the frequency
range of the two phonon groups considered the density of

local modes is nearly constant, this means an increase of the
coupling to the local modes}q2. This q dependence of the
phonon damping is observed in crystals for resonant scatter-
ing by resonant vibrations of even symmetry. An example is
the self-interstitial in Cu or Al where one atom is replaced by
a pair of atoms~dumbbell configuration! and where the
transverse phonons are strongly damped by the librations of
these dumbbells.41

It has been argued before42 that at the boson peak the
Ioffe-Regel limit is reached for the phonons; i.e., their mean
free path decreases to their wavelength (2pDn/2'n). This
limit is reached for our first phonon group which approxi-
mately coincides with the boson peak; see Fig. 6. In the
absence of scattering between soft modes and extended
phonons the Ioffe-Regel limit would be reached only for
higher frequencies.

A measure for the spatial extent of the modes is the de-
gree of localization of the kinetic energy. Defining the cen-
tral atom~atom 1! as the atom that has for a given mode the
largest amplitude we can calculate the fraction of the kinetic
energy residing within a sphere of radiusr around this cen-
tral atom as

Ekin
s ~r !

Ekin
s 5 (

uRm2R1u,r

uem~s!u. ~18!

The r50 value in such a plot ism/meff of Eq. ~11!. For an
extended mode,}cos(q–R!, Ekin

s (r ) should increase asr 2.
This behavior is shown in Fig. 8 for both the average of all
modes up ton50.16 ~solid line! and the extended modes
after demixing~dash-dotted line!.

In I the same behavior was reported for the average over
all modes. The energy distribution does not distinguish be-
tween the pure extended modes and the mixture of extended
and localized modes. The periodicity length of the simulation

FIG. 7. Structure factor for the two lowest-frequency phonon
groups q5(qmin ,0,0) andq5(qmin ,qmin ,0) as function of fre-
quency~solid line, original modes; dashed line, modes after demix-
ing!. The phonon frequencies calculated from the sound velocity are
n50.082 andn50.116, respectively.

FIG. 8. Fraction of the kinetic energy of the low-frequency vi-
brational modes contained in a sphere of radiusr ~solid line, aver-
age over all original modes; dash-dotted line, average over extended
modes after demixing; dashed line, average over localized modes
after demixing; dotted line, average over all modes after demixing!.
R1/2 denotes half the periodicity length.
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was 17.6, whence the radius of the inscribed sphere is
R1/258.82. The fraction of kinetic energy inside this sphere
is about 0.56, compared top/6'0.52 for a constant ampli-
tude. Contrary to this the ‘‘noninteracting’’ localized modes
~dashed line! show a steeper than linear increase compatible
with one-dimensional structures with amplitudes falling off
with distance from the center. About 83% of the kinetic en-
ergy lies within the inscribed sphere and it takes a sphere
with r54.4 to include half of the kinetic energy. The latter
implies chain lengths of eight nearest neighbor distances. As
to be expected the average over localized and extended non-
interacting modes~dotted line! lies in between. It shows the
strong dependence ofEkin(r ) on the base used to describe the
vibrational modes.

The large contributions toEkin from long distances make
an assignment of dimensionality to the modes difficult. We
define a tensor

Gab~s!5
(nuen~s!um~Ra

n2Ra
c.m.!~Rb

n2Rb
c.m.!

(nuen~s!um
, ~19!

where we take the exponentsm52 andm54, corresponding
to the effective mass and participation ratio, respectively.
Rc.m. is the corresponding center-of-mass coordinate of the
mode:

Rc.m.5
(nuen~s!umRn

(nuen~s!um
. ~20!

DiagonalizingG we obtain three eigenvaluesr i(s,m) and
from these an average gyration radius18,43

Rgyr~s,m!5A1

3(i r i~s,m!. ~21!

If a mode is localized on a single atom,Rgyr50, and for an
extended mode it is the root-mean-square distance with the
weight determined bym. An effective dimension of the
mode can be defined as

d~s,m!5(
i

r i~s,m! Ymaxr i~s,m!. ~22!

Averaging over all modes withn,0.16 we get for the effec-
tive massR̄gyr(2)54.8 andd̄(2)52.5 and slightly smaller
values for the participation ratioR̄gyr(4)54.4 and

d̄ (4)52.3. These values imply that the modes extend over
the whole simulation volume in accordance with Fig. 8. This
in turn renders the so-defined dimension meaningless since
the periodic boundary conditions fold the modes back into
the periodicity volume. The values for the participation ratio
are always smaller than the effective mass values due to the
stronger weight on the central atoms. After the demixing of
the modes we find the same values for the extended modes.
For the localized modes we find smaller values

R̄gyr(2)53.6, d̄(2)52.6 andR̄gyr(4)51.3, d̄(4)52.0. Due
to the weighting withR2, these values are strongly influ-
enced by the long-range tails of the modes. To get an esti-
mate of the effects of these tails we recalculated the values
for the core of the modes, only including the atoms with
uenu2.0.2 maxuenu2 in the sums. This does not markedly
change the values for the extended modes. For the noninter-

acting localized modes we obtainR̄gyr(2)50.9, d̄(2)51.5
and R̄gyr(4)50.7, d̄(4)51.5. Concentrating on the core of
the modes the values corresponding to participation and ef-
fective mass become similar. The central atoms of the modes
form low-dimensional structures which are dressed by the
long-range parts of higher dimension. In average the above-
defined core of a local mode comprises 12 atoms.

The interaction pattern of the ‘‘pure’’ local modes is very
complicated and with rising frequency the number of modes
which interact to form the observable modes increases rap-
idly. As a measure we introduce, in analogy with the partici-
pation ratio, Eq.~12!, a mode participation number

PM~n8!5F(
n

a~n,n8!4G21

, ~23!

where thea(n,n8) are the expansion coefficients, Eq.~13!. If
a mode n8 participates equally inn modes, one has
PM(n8)5n. This number is not normalized with the system
sizeN. From Fig. 9 one sees that forN55488 one has below
n'0.05 essentially isolated local modes~circles! with
PM(n8)'1. For the higher frequenciesPM(n8) increases
rapidly and atn50.15 a local mode contributes essentially to
over 40 modes. The corresponding number for the extended
modes is much lower. It has, however, to be kept in mind
that we did not resolve the interaction between ‘‘pure
phonons’’ and thePM(n8) value therefore accounts only for
the interactions with local modes.

This figure illustrates the effect of increasing the system
size in the simulation. Let us consider, e.g., the modes with
frequencies aroundn50.08. At this frequency for the con-
sidered system withN55488 we have extended modes in-
teracting with localized modes. The mode participation num-
ber is for the local modesPM'10 and is mainly due to
interactions between the local modes. If we would double the
system size, we would not change the number of extended
phonons at this frequency. They would merely extend over

FIG. 9. Ensemble-averaged mode participation number for a
soft sphere glass ofN55488 atoms after demixing plotted against
frequency~localized modess, extended modes3).
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the doubled volume. The concentration of localized modes
would stay approximately constant; their number would
double which in turn means an approximate doubling of the
mode participation. The values in the figure would shift to
the left and the occurrence of isolated localized modes re-
stricted to lowern values.

In Fig. 10 we illustrate three typical mode structures.
Shown are always all atoms which have at least 20% of the
maximal squared amplitude of an atom for the considered
mode. The cubes are the periodicity volume. In~a! we show
a mode withn50.061, p50.21, andmeff5148 which can
easily be envisaged mainly as a superposition of four local
modes. This is verified by the above demixing procedure.
We find that four local modes contribute 80% to the squared
amplitude. In~b! one of these four constituent local modes is
shown,n50.062,p50.028, andmeff521. One sees that the
increase in participation ratio and effective mass caused by
the mode interaction is even larger than the expected factor
of 4. At higher frequencies the density of interacting modes
increases strongly so that a visual decomposition is no longer
possible. An example of a mainly extended mode
(n50.079, p50.52, andmeff5545) is illustrated in~c!.
About half of its squared amplitude is given by the ideal
undistorted~1,0,0! phonons. The rest is due to static scatter-
ing and interaction with local modes.

V. SOFT POTENTIAL MODEL

In the soft potential model11,12 one describes the anoma-
lous behavior of glasses at low temperatures in terms of soft
modes which coexist with the long-wavelength phonons. The
dynamics of the soft modes is described by anharmonic po-
tentials for their dimensionless displacementx̂,

V̂SP~ x̂!5 êSP@ĥSP~ x̂/s!21 t̂SP~ x̂/s!31~ x̂/s!4#. ~24!

Here we have used the length scales of the potential, Eq.
~1!, instead of the usual scale factora.13 The displacement of
a single atom,n, is given by x̂sen. To follow the usual
presentation we change to the displacement of a single atom,
the center of the mode, by settingAmeffx5 x̂:

VSP~x!5eSP@hSP~x/s!21tSP~x/s!31~x/s!4#. ~25!

In this formulation of the model the energy scale factoreSPis
equal to the value for the potential of a single atom,ea

SP,
times the number of atoms participating in the mode,Ns ,

eSP5Nsea
SP. ~26!

This potential can either describe a single well or a double
well. In the latter case there are three equivalent sets of pa-
rametershSP and tSP. For uniqueness and to ensure an ex-
pansion around the maximum,hSP has to be restricted to
hSP, 9

32(t
SP)2. With this restrictionhSP.0 implies a single-

well potential andhSP,0 a double-well potential. One ex-
pects that the parameterseSP, hSP, andt will occur in a glass
with probabilitiesP(ea

SP), P(hSP), andP(tSP). The soft po-
tential model is based on the assumption that there is basi-
cally one type of soft structure, whence theea

SP should be
given by a narrow distribution. For simplicityea

SP is usually
taken as a constant. The values ofhSP and tSP are then de-
termined by random variations of the surroundings of the

FIG. 10. Most active atoms in vibrational modes. Shown are all atoms
whose squared amplitude is at least 20% of the maximal one. Bonds show
nearest neighbors. The cubes depict the periodicity volume.~a! Original
mode withn50.061,p50.21, andmeff5148. ~b! Local mode contributing
to ~a! after demixing (n50.062, p50.028, andmeff521). ~c! Original
mode with large phonon part (n50.079,p50.52, andmeff5545).
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structures causing the soft modes. This implies thatP(hSP)
andP(tSP) are independent of each other. For low values of
hSP one finds P(hSP)}uhSPu, the so-called ‘‘seagull’’
singularity.12 By symmetry one hasP(tSP)5P(2tSP).

We have calculated for each of the local soft modes the
three parameter and their distribution functions normalized
to all localized modes withn,0.16. We find forea

SP an
average value of 4.0 and a reasonably narrow distribution
P(ea

SP), Fig. 11, with a half width at half height of 1.5.
The corresponding averages for the vibrations of a single

atom with all others at rest~Einstein vibration! are for the
given potential in ideal fcc and bcc crystals of the same
density 60 and 70, respectively. There one has very broad
distributions of the atomic anharmonicity parameter. The
soft mode values correspond to the lowest values in the bcc
lattice.

The distributionP(hSP), Fig. 12, shows a seagull behav-
ior for hSP,0.01 and is nearly constant above.

The small range ofn values included in our investigation
does not allow a determination of the shape ofP(hSP) at
large h values. The end of the seagull singularity corre-
sponds to a frequency of aboutn50.05. It has been shown
that due to the seagull singularity the spectrum of local
modes should beZloc}n4. This is observed for in Fig. 6 for
n,0.04. The change over toZloc}n2 outside the seagull
singularity is washed out by statistics and the finite width of
P(hSP).

P(tSP), Fig. 13, has a maximum fortSP50 from where it
rapidly falls off. We find no significant variation ofP(tSP)
with hSP. Shown are also distributions forhSP,0.1 and
hSP.0.1.

The adopted quench procedure, Sec. II, ensures that con-
figurations are always in a minimum. A fit of the soft poten-
tials will, therefore, sometimes produce double-well poten-
tials (hSP. 9

32t
SP). We find this for less than 1% of the soft

modes, in seeming contradiction with the distribution of Fig.
12 which should continue to negativehSP. The reason for
this discrepancy between the model assumptions and our fit
is inherent in the anharmonicity. In deriving the parameters

of Eq. ~24! we have neglected all anharmonic terms bar the
one in the harmonic mode coordinate itself. In reality there is
a large number of anharmonic couplings between the differ-
ent modes. In simulations of defect diffusion in crystals one
hardly ever finds the two minima and the saddle point lying
on one line. The minimal energy path has to be described by
curved coordinates. A linear extrapolation from the mini-
mum along the soft direction in general misses the saddle
point. In a glass with the much more complicated mode
structure this effect would be much larger. It is, therefore,
understandable why much larger numbers of double-well po-
tentials are observed if a special algorithm is used31 or if one
extrapolates from near the saddle point.32 We have reported
earlier correlations of around 0.6 between relaxations and
localized vibrations.27

FIG. 11. Distribution function of the atomic anharmonicityea
SP

in the soft potential model gained from the demixed modes.
FIG. 12. Distribution function of the curvature parameterhSP in

the soft potential model gained from the demixed modes.

FIG. 13. Distribution function of the asymmetry parametertSP

in the soft potential model gained from the demixed modes. Solid
line, all local modes withn,0.16Ae/ms2; dashed line, only modes
with h,0.1; dotted line, only modes withh.0.1.
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VI. DISCUSSION AND CONCLUSION

Our calculations were done on a one-atom model glass. In
view of the similarities between the different glasses we
think them to be of general relevance for glasses.

The concentrations of localized modes and the position
and strength of the boson peak will of course vary for dif-
ferent materials and different histories of the glass. To check
the dependence of the low-frequency dynamics on glass
preparation we heated our samples to 10% of the glass tem-
perature, kept them at this temperature for a duration of
about 5000 average vibration periods, and subsequently
quenched them again toT50. We find for the tempered
glasses a volume reduction of order 1023, taken at constant
external pressure. Their spectra are slightly harder due to an
increase of the transverse sound velocity by about 1%. The
number of soft modes withn,0.16 decreases by approxi-
mately 6%. Half of this decrease can be attributed to the
general hardening of the frequencies due to the increased
sound velocity. The other half indicates a reduction in the
number of excess soft modes. The character of the modes,
e.g., their participation ratio distribution, does not, however,
change markedly. The same holds after a tempering at 15%
of the glass temperature.

The reduction in the number of modes with tempering is
consistent with the previous finding that the modes are cen-
tered at ‘‘defects’’ in the glass.15,16 In tempering the most
unstable of these defects will be annealed. In a one-atom
glass such annihilation processes will be especially efficient,
eventually leading to crystallization. It is well known that
most defects cause some volume expansion. This excess vol-
ume can be used to monitor the number of defects. The vol-
ume expansion by a defect need not, however, be localized at
the defect. In a crystal lattice the creation of both vacancies
and interstitials causes a volume expansion of the order of
one atomic volume. To create a vacancy one can imagine an
atom from the bulk being placed on the surface, thus expand-
ing the crystal by one atomic volume. After relaxation there
remains localized at the vacancy a reduction in the density.
In the case of an interstitial atom one imagines an atom from
the surface inserted in an interstitial site. Unrelaxed one
would have a volume reduction and a strong local compres-
sion at the interstitial site. The relaxation of the lattice in-
creases the volume, even creating an excess volume, but
some of the local compression remains. The excess volume
is smeared out over a large region. In our case such a local
compression was observed at the centers of the soft modes.
This is compatible with an intersticialcy model.44 The
changed local environment will cause local internal stresses
as observed earlier for another system.17 On the other hand a
description of the dynamics by scattering at density fluctua-

tion domains seems inadequate.45 Also an explanation in
terms of coordination defects24 is not appropriate for a close-
packed metal-like glass as considered here.

Our investigation shows that the low-frequency vibrations
in glasses can be understood in terms of interacting local and
extended~phonon! modes. Localization has to be understood
in the sense of resonant low-frequency modes.40 This means
that there is always an interaction between localized modes
and phonons and in the absence of local symmetry between
localized modes of similar frequencies. For low frequencies
~low densities! the interaction joins the local modes into
multiple-centered modes. Due to the low concentration of
localized modes, the interaction between them will be weak
and the dynamics becomes similar to the one in orientational
glasses as discussed by Randeria and Sethna.46 For higher
frequencies when the densities of the underlying local modes
and phonons are sufficiently high the resulting mixed modes
can no longer be distinguished as basically localized or ex-
tended. We find that near the boson peak the mean free path
of the extended phonons has decreased to their wavelength.

We have developed a method to deconvolute the exact
low-frequency modes into their localized and extended parts.
For the localized modes we find as in earlier investigations
effective masses of'20. The cores of these modes are low
dimensional, chains with side branches. The backbones are
given by close-packed directions. The localized vibrations
are strongly correlated with local relaxations.26,27

By calculating the anharmonicities of the local modes we
derived the distribution functions of the parameters of the
soft potential model. These are in agreement with the as-
sumptions and results of this model. The atomic fourth-order
term is reasonably well defined. It corresponds to the values
found for the softest directions in the ordered structure. The
distribution of the harmonic parameterh increases as pre-
dicted}uhu which means an increase of the local mode spec-
trum}n4 and of the specific heat above the tunneling regime
}T5 as observed in experiment; see Ref. 13 for references.
The distribution functions of the different parameters, anhar-
monicity, curvature, and asymmetry, are independent. This is
in agreement with the findings for two-well systems.31

Our results predict large mean square displacements of
the atoms participating in the soft vibrations. This was re-
cently observed in neutron scattering experiments on amor-
phous polymers47 at and above the boson peak frequency,
consistent with a vibrational localization to about ten mono-
mers.

ACKNOWLEDGMENTS

We are grateful for many stimulating discussions with U.
Buchenau and B.B. Laird.

*Present address: Institut fu¨r Algorithmen und Wissenschaftliches
Rechnen, GMD - Forschungszentrum Informationstechnik,
D-53754 Sankt Augustin, Germany.

1Amorphous Solids: Low Temperature Properties, edited by W.A.
Phillips ~Springer-Verlag, Berlin, 1981!.

2Glassy Metals I, edited by H.-J. Gu¨nterodt and H. Beck
~Springer-Verlag, Berlin, 1981!.

3R.C. Zeller and R.O. Pohl, Phys. Rev. B4, 2029~1971!.

4P.W. Anderson, B.I. Halperin, and C.M. Varma, Philos. Mag.25,
1 ~1972!.

5W.A. Phillips, J. Low Temp. Phys.7, 351 ~1972!.
6G. Winterling, Phys. Rev. B12, 2432~1975!.
7U. Buchenau, H.M. Zhou, N. Nu¨cker, K.S. Gilroy, and W.A.
Phillips, Phys. Rev. Lett.60, 1318~1988!.

8J.-B. Suck and H. Rudin, inGlassy Metals II, edited by H. Beck
and H.-J. Gu¨nterodt~Springer-Verlag, Berlin, 1983!.

53 11 479LOW-FREQUENCY VIBRATIONS IN A MODEL GLASS



9K. Inoue, T. Kanaya, S. Ikeda, K. Kaji, K. Shibata, M. Misawa,
and Y. Kiyaanagi, J. Chem. Phys.95, 5332~1991!.

10S. Hunklinger and M. von Schickfus in Ref. 1, p. 81.
11V.G. Karpov, M.I. Klinger, and F.N. Ignatiev, Sov. Phys. JETP

57, 439 ~1983!.
12M.A. Il’in, V.G. Karpov, and D.A. Parshin, Sov. Phys. JETP65,

165 ~1987!.
13U. Buchenau, Yu.M. Galperin, V.L. Gurevich, and H.R. Schober,

Phys. Rev. B43, 5039~1991!.
14U. Buchenau, Yu.M. Galperin, V.L. Gurevich, D.A. Parshin,

M.A. Ramos, and H.R. Schober, Phys. Rev. B46, 2798~1992!.
15B.B. Laird and H.R. Schober, Phys. Rev. Lett.66, 636 ~1991!.
16H.R. Schober and B.B. Laird, Phys. Rev. B44, 6746~1991!.
17S.-P. Chen, T. Egami, and V. Vitek, Phys. Rev. B37, 2440

~1988!.
18W. Jin, P. Vashishta, R.K. Kalia, and J.P. Rino, Phys. Rev. B48,

9359 ~1993!.
19C. Oligschleger and H.R. Schober, Physica A201, 391 ~1993!.
20J. Hafner and M. Krajcˇı́, J. Phys. Condens. Matter6, 4631~1994!.
21P. Ballone and S. Rubini, Phys. Rev. B51, 14962~1995!.
22M. Cho, G.R. Fleming, S. Saito, I. Ohmine, and R.M. Stratt, J.

Chem. Phys100, 6672~1994!.
23J. Hafner and M. Krajcˇı́, J. Phys. Condens. Matter5, 2489~1993!.
24R. Biswas, A.M. Bouchard, W.A. Kamitakahara, G.S. Grest, and

C.M. Soukoulis, Phys. Rev. Lett.60, 2280~1988!.
25F. Faupel, P.W. Hu¨ppe, and K. Ra¨tzke, Phys. Rev. Lett.65, 1219

~1990!.
26H.R. Schober, C. Oligschleger, and B.B. Laird, J. Noncryst. Sol-

ids 156-158, 965 ~1993!.
27C. Oligschleger and H.R. Schober, Solid State Commun.93, 1031

~1995!.

28H. Miyagawa, Y. Hiwatari, B. Bernu, and J.P. Hansen, J. Chem.
Phys.88, 3879~1988!.

29G. Wahnstro¨m, Phys. Rev. A44, 3752~1991!.
30J.M. Delaye and Y. Limoge, J. Phys.~France! I 3, 2079~1993!.
31A. Heuer and R.J. Silbey, Phys. Rev. Lett.70, 3911~1993!.
32S.D. Bembenek and B.B. Laird, Phys. Rev. Lett.74, 936 ~1995!.
33R. Cotteril and J. Madsen, Phys. Rev. B33, 262 ~1986!.
34W.G. Hoover, S.G. Gray, and K.W. Johnson, J. Chem. Phys.55,

1129 ~1971!.
35U. Bengtzelius, W. Go¨tze, and A. Sjo¨lander, J. Phys. C17, 5915

~1984!.
36W.G. Hoover, D.A. Young, and R. Grover, J. Chem. Phys.56,

2207 ~1972!.
37W.C. Swope, H.C. Andersen, P.H. Berens, and K.R. Wilson, J.

Chem. Phys.76, 637 ~1982!.
38R. Fletcher and C.M. Reeves, Comput. J.7, 149 ~1964!.
39Harwell Subroutine Library, AERE Harwell, Didcot, UK.
40A.A. Maradudin, E.W. Montroll, G.H. Weiss, and I.P. Ipatova,

Theory of Lattice Dynamics in the Harmonic Approximation,
Solid State Physics Suppl. 3~Academic, New York, 1971!.

41H.R. Schober, V.K. Tewary, and P.H. Dederichs, Z. Phys. B21,
255 ~1975!.

42V.L. Gurevich, D.A. Parshin, J. Pelous, and H.R. Schober, Phys.
Rev. B48, 16318~1993!.

43F. Yonezawa, J. Non-Cryst. Solids35/36, 29 ~1980!.
44A.V. Granato, Phys. Rev. Lett.68, 974 ~1992!.
45S.R. Elliott, Europhys. Lett.19, 201 ~1992!.
46M. Randeria and J.S. Sethna, Phys. Rev. B38, 12607~1988!; 41,

7784 ~1990!.
47U. Buchenau, C. Pecharroma´n, and B. Frick~private communica-

tion!.

11 480 53H. R. SCHOBER AND C. OLIGSCHLEGER


