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Low-frequency vibrations in a model glass
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Previous simulation studies of localized low-frequency vibrational modes in a soft sphere glass are extended
to larger samples. We find a boson peak in the spectral density and a maximum in the specific heat divided by
T2 similar to experiment. These maxima are causeddoys)localized vibrations. For finite frequencies these
interact strongly with each other and with the extended phonons. This leads to an overdamping of the phonons
around the boson peak and to a delocalization of the localized modes. A procedure to split the resulting modes
into their bare constituents is presented. The bare localized modes are found to have a low-dimensional
structure. The description in terms of the soft potential model is essentially verified.

[. INTRODUCTION the frequency spectrum of the excess vibrations increases as
Z(v)><v* at low frequencies. The neutron scattering struc-
Glasses and amorphous materials in many respects réire factor is consistent with excess vibrations localized to a
semble their ordered counterparts the crystals. The densitiéew atoms (“localized vibrations”). Due to their interaction
in both forms are normally similar. The elastic constants ofwith the extended sound waves, this localization cannot be
the amorphous state are isotropic but otherwise of the samexponential and the modes should more exactly be called
magnitude as in the crystal. Also the vibrational densities ofesonant or quasilocalized.
state resemble each other. However, taking a closer look one At higher frequencie€(v)/v? goes through a maximum
finds a much richer dynamics in the disordered state, whictiboson peak.” A corresponding maximum is observed in
is particularly obvious at low temperaturk$At low fre- cp(T)/T3. Around the boson peak the extended phonons be-
guencies one observes the usual long-wavelength phonogsme overdamped and the distinction between localized and
(sound wavesin accordance with the elastic constants. Atextended modes vanishes.
higher frequencies these phonons are strongly damped, and Additionally to these periodic excitations relaxations
at some frequency, typically around 1 THz, the damping will(aperiodic rearrangementare observed in ultrasonic and di-
exceed the loffe-Regel limit: The mean free path of theelectric relaxation experimerifsalready at low temperatures
phonons diminishes below their wavelengths; the phononéT>5 K). Depending on temperature and structure these can
are overdamped. This can be understood considering thaée envisaged as thermally activated incoherent tunneling or
whereas the long-wavelength phonons average over large ras hopping over some barrier. There will be a smooth tran-
gions of the glass the shorter-wavelength ones see the disaition from anharmonic vibrations to relaxations.
der on the scale of a few atomic distances. The vibrations can The above behavior can be described by the soft potential
still be understood by harmonic theory but their eigenvectorsnodel (SPM), an extension of the standard tunneling
will have a complicated structure reflecting the disorder.  model*''2 In this model it is assumed that one has in the
Striking differences between the dynamics of glasses andlass some typical soft structure whose dynamics can be de-
amorphous materials are observed at low temperatures. Theeribed by soft potentials. Due to the randomness of their
heat capacity is significantly larger than the value expectedbcal environment in the glass, the parameters of the poten-
from the sound wave velocities. At temperatures below 1 Ktials will be distributed according to some probability law.
it increases linearly withT instead of«T® as given by the The resulting potentials can be single or double wells. The
Debye modef (In metallic solids there is an additional term first describe soft vibrations whereas the latter ones, depend-
«T due to electronic excitationsThis anomaly in glasses ing on barrier height, give additional tunneling states and
has been explained by the standard tunneling model assunrelaxations. By fitting this model to the experimental data,
ing a constant distribution of two-level tunneling stat@#t  one finds effective masses of 20-100 atomic masses for the
somewhat higher temperatures the excess specific heat iantities moving in these effective soft potenti&is?
creases approximately T°. The frequency domain, corre- The general behavior predicted by the SPM was con-
sponding to the excitations responsible, is accessible to spefirmed by a computer simulation of a soft sphere gi&SQ
troscopic methods like Ramarand neutron scatterifg. where quasilocalized modes with effective masses ranging
From the temperature dependence of the measured intensitisem ten atomic masses upwards were found, Refs. 15,16,
it has been deduced that the excitations are essentially hdater referred to as |I. The modes were centered at structural
monic vibrations which become increasingly anharmonic todrregularities with large local strains. Regions of local strain
wards the lowest frequencies. These low-frequency vibrahave also been observed in earlier computer simulatibns.
tions coexist with the long-wavelength phonons and haveSimilar effective masses have since been observed in simu-
been observed in a large variety of different glasses, e.glations of Si0,,*® Se (Ref. 19 in Ni-zr?® and Pd-Sf! in
metallic glasse8 vitreous silica’ and amorphous polyme?s. amorphous ic? and in amorphous and quasicrystalline
Corresponding to thep(T)ocT5 variation of the specific heat Al-Zn-Mg.? In an earlier simulation of amorphous silicon
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low-frequency localized vibrations have been observed at coB= —3.43x 10" 3¢ were chosen so that the potential and the
ordination defectd? force are zero at the cutoff. This form of the shifting function

In the soft potential model the local relaxations arewas chosen so that its effect is negligible neas=1.0.
strongly correlated with the local soft vibrations. Experimen-Quantities such as the pressure and average potential energy
tally this is supported by the similarity of the structure fac-will be changed by a few percent as a result of this trunca-
tors of both types of excitatiorlsAt temperatures above a tion, but any changes in the equilibrium structure will be
few kelvin these local relaxations can be envisaged as amall. At any rate, our interest is in the existence and char-
change of configuration by thermally activated hopping ofacterization of low-frequency localized vibrational modes in
some group of atoms over a barrier. From diffusion measuregeneral, and not in a quantitative description for any specific
ments in a metallic glass again effective masses of 10 havpotential. Without loss of generality one can set
been derived for this collective motidh Strong correlations e=o=m=1. Where we do not explicitly state the units we
between soft vibrations and hopping have been observed infer these “system units.”
molecular dynamics simulation of the SSRef. 26 and in The inverse sixth-power potential was selected because it
amorphous S&’ Both reversible and irreversible relaxations is a well-studied theoretical model that qualitatively mimics
were observed which consist of a collective hopping ofmany of the structural and thermodynamic properties of bcc-
groups of atoms. Collective hopping motions have been alséprming metals including the existence, in its bcc crystal
observed in simulations of binary Lennard-Jones and softform, of very soft shear modéé,and it was hoped that this
sphere mixtures above and below the glass-transitioproperty would be reflected in a high concentration of low-
temperatur®?® and in amorphous Ar after introduction of frequency resonant modes in the glass. As evidence of the
vacancies? Heuer and Silbe¥ systematically searched for universality of the phenomena discussed here, we also found
double-well potentials in a binary model glassTat0. They  low-frequency resonant modes in one- and two-component
found a distribution of two well potentials in qualitative Lennard-Jones systems, but at such a low concentration that
agreement with the soft potential model. The effectivethe collection of any reasonable statistics would have been
masses of the jump modes from one well into the othewery difficult.
ranged from two atomic masses upward. This low number An estimation of the glass-transition temperature was ob-
might be affected by the static search algorithm where theained in | by calculating the diffusion constabt of the
nearest neighbor shell of an atom is first displaced and thegystem at this density as a function of the reduced tempera-
allowed to relax. By this procedure and due to the smalkure using the relation
system size, more extended collective motions over lower
barriers might be broken up, particularly for the larger jump
distances. Bembenek and Laffdused the instantaneous D=1
mode techniqu¥ to study double-well potentials in the SSG. !
gfhgofrl:s ;T?gnvvt?e?r?pcgrg?fgsdvv\ﬂm {ﬁgg;;;;r?:#]gggfﬁfwhere R(t) is the time-dependent position vector of a par-
they observe a delocalization in the temperature region of thte?.Cle and(. - -) denotes a configurational average. The diffu-
glass transition Sion constant so calculated is very well fit by a fractional

) S ... power law

In the present paper we extend our earlier mveshgaﬂong
on the soft sphere glass, |, to larger systems. This enables us D=A(T—T,)" 3
to study in detail the effects of interactions of the local vi- o
brational modes with each other and with extended phonongyith A=0.191, a=1.21, andT,=0.085. That such a fitting

In the following section we give details of the computational fynction so well describes the diffusion data is consistent
procedure. The vibrational modes are calculated and prope{giin the predictions of mode-coupling theol¥y The tem-
ties connected with their spectra discussed. Analyzing theij eratureT, can be taken as a lower limit for the glass-
eigenvectors we find at low frequencies besides quas”ocaﬁansition temperature, since beldly diffusive motion is
ized and extended phononlike modes a large number Qfftectively frozen out.

modes resqltlng_ from the interaction of .these. At low fre-  \we extended our previous study of configurations of 500
quencies this mixture of modes can be disentangled and ong,q 1024 atoms to larger systems by quenching well-
thus gains “pure” extended and localized modes whos&qyilibrated liquid configurations of 5488 soft spheres pro-
properties can be studied. These modes are used to validaigced via constant-energy molecular dynan{id®) simu-

N R ,
Iﬁ;a(lR(O)—R(t)l ), (2)

—

the assumptions of the soft potential model. lation with cubic periodic boundary conditions again at a
density po®=1.0 and temperatur&T/e~0.54 (about 2.5
Il. COMPUTATIONAL DETAILS times the melting temperature at this denity For the

simulation, we used the velocity-Verlet algorithhwith a

time step of 0.04, in units ofnia®/€)2. The liquid is first

guenched within the MD simulation by velocity rescaling to

r\4 a reduced temperature of about 0.095 The quench rate

+B. (1)  was about 0.018(ma?€)Y2 After the MD quench, each
sample was heated to 0:.Dpand aged for several 1000 fur-

To simplify the computer simulation and normal-modether MD time steps to stabilize the potential energy and to

analysis, the potential is cut off atoc= 3.0, and then shifted avoid spurious minima. Each system is then quenched to

by a polynomialA(r/o)*+ B, whereA=2.54x10 °¢ and  zero temperature using a combination steepest-descent—

The soft sphere glas&SSQ is described by an inverse
sixth-power potential

6
+A

g
u(r)y=e T
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conjugate-gradient algorithifi. The resulting potential en-

|
ergy equals roughly the one of the fcc crystals of the same 3.0 \ =
density with about 1.5% Frenkel defects. Together with the /

previous work, in all, 60, 21, and 15 different configurations o5 / =

of 500, 1024, and 5488 atoms, respectively, were created in ' /!
this way and analyzed. ] /
To illustrate the glassy nature of our zero-temperature =0 !

sample and to aid comparison of this model glass to real N /

~

materials the configurationally averaged structure factor \N' 1.5 / -
S(k) for our system has been shown in I. /
To study the glasses at elevated temperatures the 10 4 / -
guenched glasses were heated in stages to 5%, 10%, and /
15% of the glass temperature. At each temperature the 05 P B
glasses were observed for 90 000 time steps, corresponding ' y
to about 5000 vibrations of an average frequency. Some re- =
sults on the relaxations have been published elsewfidre. 0.0 - T T T 1
the present investigation the resulting configurations are only 0.0 0.5 1.0 1.5 2.0
used to check for effects of annealing. v (m o?/e)l/?
IIl. SPECTRA AND LOCALIZATION OF VIBRATIONAL FIG. 1. Configurationally averaged vibrational density of states
MODES of the soft sphere glassolid line) and Debye spectrundashed
line).

The harmonic vibrations of each glass configuration were
calculated from the force constant matrix of the0 mini-
mum configuration. The numerically exact minimization of
the potential energy prevents the occurrence of spurious u
stable modes. The elements of the force constant matrix are
given by

We calculated the elastic constants from the change in
r[lz)_otential energyAE, under an applied strain

2 RZ‘—>R2’+% €asRY 8
m__ n
mn_ PPUR™-RT) "
¥ IRJIRG v
Whereas for the two sets of smaller configuration a direct AE= _ZB P.g€apt 5 ;5 €4pCupys€ys
a aBy

diagonalization was possible, computer storage limitations

make this impossible for the large configurations

(N=5488). For these only the lowest vibration modes +§2 Pop€ay€yp- 9
(»v<0.2) were calculated by sparse matrix technigiléEhe By

frequency spectra are calculated from the frequencies of the ) )
3N —3 vibrational modesr as Here the first term accounts for the work done against the

forces for an ensemble which is not in equilibrium against
1 " volume changes, as is the case for the purely repulsive po-
mg S(v=v7) ), (3  tential considered heré®,,; is the virial of the forces. The
third term, present for shears only, is a correction for the
whered is the discretized function and(- - -) stands for the  volume change under a finite shear in such a lattice and the
averaging over configurations. The calculated spectra for th@;aﬁy(S are the elastic constants;(=C1111,C44= C2329.

Z(v)=

small and large configurations fit smoothly at0.2. We We find for the glass the sound velocities=4.96 and
therefore used for the highervalues the spectra calculated ¢ =1 45 in units of \/e/m. Taking the finite size of the en-
for N=500. ] semble this implies that the lowest-frequency phonon which
For comparison we calculated the Debye spectrum could be observed for the largest samples is=a0.082. The
3 elastic anisotropy of a single configuration is found to be less
Zpebye™ 3 V2, (6) than_ 1%. . . .
Vb Figure 1 shows the vibrational density of states averaged
with over all configurations together with the Debye spectrum.
One sees a clear enhancement of the glassy spectrum at low
3p |\ frequencies which reaches well beyond frequencies where
Vp :Et%—m) (7 system sizes could be of importance. The small indentation

L of the spectrum around=1.4 is a property of the if po-
and the average sound velocitygiven in terms of the lon- tential. It disappears for higher-powg¢hardej potentials
gitudinal and transverse velocities andc,. These are cal- (1/" with n~9).
culated from the elastic constants of the glass by the usual From the density of states we can calculate the vibrational
relationc,= +/cy1/p andc,= c44/p Where we employ the specific heat at constant volume. In harmonic approximation
elastic isotropy of the glass. one has per atom
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FIG. 2. Specific heat divided by® plotted against temperature FIG. 3. Participation ratios of low-frequency modes of one soft
(dotted line, values derived from the spectrum of Fig. 1; dashedPhere glass configuration witth=5488 atoms plotted against fre-

line, contributions of modes with<0.18 only; solid line, full spec- gquency. Solid circles depict those modes whose overlap with the
trum with Debye correction idealized phonons of longest permitted wavelength exceeds 0.5.

fiw\? )
(m_) /smhz(hw/ZkT)

The vibrational specific heat of a perfect crystal is at low
temperatures<T3. It is, therefore, usual practice to plot N 1
c, /T3 In_ such a plot a Debye spectrum gives a constant p(o)=<Nz |en(0_)|4> . (12)
whereas in glasses an increase above this constant is found. n=1
Figure 2 shows this behavior for the soft sphere glass. The ) o .
dotted line shows the values gained from the spectrum ofOr & translation one has=1 and for a vibration of a single
Fig. 1 and the dashed line the contribution of the low-atom with all others at resp=1/N. This scaling with IN
frequency modes only®<0.18). To correct for the finite ;hpulq hold for all localized modes. Figure 3 shows the par-
size of the simulated glass we added to the spectrum a Debyiipation ratios of the lowest-frequency modes for one con-
contribution up to a frequency below the one of the lowestfiguration of N=5488 atoms. The lowest-frequency modes
possible phonon frequency. This correction amounts to &re¢ as expected highly localized. Their participation ratio
fraction of 3x 10 # of all modes. The resulting values for Shows compared to the most localized modes of the
the specific heat are shown by the solid line. No effort wadN="500 andN=1024 configurations the expectedNlécal-
made to smooth the discontinuity due to this correction. Thdng. It corresponds to a localization to about 20 atoms in
plot shows a maximum of about twice the Debye value justérms of the effective mass. At a frequency of around
above a temperature of 0.02 in reduced units. This is com¥=0.08 one observes a slight maximumpn This corre-
parable to the usual values in glasses. This maximum i§Ponds to extended modes, the lowest-lying phonons permit-
caused by the excess low-frequency modes. ted by the system siggransversed,0,0) phononk We find
Diagona”zation of the force constant matrixy E@), 5 modes whose Overlap factors with the 12 idealized
gives besides the eigenvalues also the eigenvectors. TheBBonons exceed one-half. Between the maximally and mini-
give the structure of the vibration and can, e.g., be used tgally localized modes a large number of modes with inter-
determine the localization of the vibration. There are twomediate participation ratios is found. As we will see below
usual measures of localization, namely, the effective masthese modes are formed by interactions of localized modes
and the participation ratio which both have been calculate@nd phonons. Abover=0.1 the second group of phonons
in our previous work. The effective mass is given in terms ofcan be observed. At higher frequencies a broad band of par-

kinetic energy of the vibrational mode. This definition is lim-
Z(w). (10) ited to small system sizes when the long-range tails of the
modes are not too important. In the following we will use
mainly the participation ratio

CU=3kf do

the eigenvector as ticipation ratios is formed which slowly rises to an average
value of about 0.6 as shown earlier for the smaller systems.
Me( ) =m/|e*(o)|2. (12) There is a number of effects which contribute to this

spread of participation ratios, all connected with interaction
Here we have assumed that the-8Bimensional unit vector between “pure” vibrational modes. First the participation
of mode o is normalized andt"(o) stands for the vector ratio of degenerate modes is not well defined. Let us take the
formed from the three components on atomAtom No. 1is  group of lowest transverse phonons in our simulation. Their
taken as the atom with the largest displacememi;/mis a  wave vectors are=(gm»0,0) whereqy,,=2m/L with L
measure for the number of atoms which effectively carry thehe periodicity length. There are 12 phonons of this type,
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given, e.g., by sin and cos in the three spatial directions and
the two transverse polarizations. If these 12 modes are de-
generate, any superposition of these modes is again an eigen- .
mode. By suitably superimposing the six phonons one can so 6 *
vary the participation ratigp between 0.44 and 1. E.g., a
superposition (1,0,0)cog(inRy) +(0,1,0)sinGminR,) gives ' oo 2
p=1. In a disordered medium the degeneracy is lifted by e
scattering at disorder and on “extra vibrational modes.” The
resulting phonon eigenvectors will have participation ratios
in the above range, always assuming that the scattering is not
too strong.

In amorphous materials and glasses one finds at low fre- 2 7 , &
guencies besides the phonons additional modes. For the soft Qe
sphere glass this is evident from Fig. 1. In | we have shown o e, 1 %‘g&o
that these modes are localized, although not in the strict ° o g B e 08%% 87
sense of this term. It is well known from lattice dynamics, 0 . T T T
e.g. Ref. 40, that the interaction between local vibrations and 0 .05 .10 15 .20
phonons prevents true localization of harmonic vibrations v (m o?/e)l/?
with frequencies inside the band of phonon frequencies. The
local vibration will be dressed by a cloud of phonons and  FiG. 4. Participation ratios of low-frequency modes after demix-
becomes a quasilocalized or resonant vibrational mode. Th@g for the soft sphere glass configuration of Fig. 3. Solid circles
phonons will be broadengdamped by the scattering at the depict those modes whose overlap with the idealized phonons of
defects. In crystals it has been shown that the interactiofongest permitted wavelength exceeds 0.5.
between defect vibrations and host phonons can be so strong
as to destroy the phononic character already for dé¢féat  pation ratiosp of these modes, we can use a minimum con-
cal vibration™) concentrations of order 16.4* dition in p to extract the modes from the exag@hixed

If we take the low-frequency behavior of the glass asmodese. We start with the most localized mode, eigenvector
constituted from extended phonons and local vibrations, thig(v,), and cycle over all modes it can interact with and
has the following consequences. The phonons will be broadyhich have a higher participation ratio. We rotate the basis
ened in addition to the scattering at the static disorder byf eigenvectors in pairsifv,) such that the participation
their interaction with the local vibrations. The admixture of ratio of the rotated mode is minimal,
the local vibrations will tend to reduce their participation

p(v)

o

ratio. Since the concentration of local vibrations increases €' (v})=Ry&(v1)+ Ry 1),
with frequency, the phonons will eventually lose their char-
acter. The local vibrations on the other hand will delocalize €' (1)) =Ry v1) + Rys( ). (14)

and their participation ratio will tend to increase. The delo-
calization in turn causes local vibrations of similar energy toThe new frequencies’ are defined by the expectation value
interact. Depending on the strength of interaction, the twaof the dynamical matrix4) with the new eigenvectore'.
combined modes will have participation ratios somewhererhese rotations are done for all pairs of modes, less than
between the single ones and their sum. For a finite concerp09, apart in frequency, until all modes wifh< 0.4 have
tration, c, of interacting modes the scaling factoNlih Eq.  been dealt with. This limit has been chosen to prevent ex-
(11) will be replaced byc. tended phonons from being forced to localize. The above
We have used the above picture to approximately disenprocedure ensures the separation of phonon tails from the
tangle the exact low-frequency modes into their constituentdocal modes and the breakup of interacting local modes into
local vibrations and extended phonons. We assume that thfeir constituents.
constituentlunmixed modese’ modes can interact with all At any stage the modes form a complete orthogonal
modes of frequencies of 20%. The resulting eigenmodes basis. To avoid an artificial breakup of modes we apply this
e will be linear combinations of the extended or localized method only to the lowest 1% of all modes. The low density
“unmixed” modes, of states in this region together with thet 20% cutoff in
the allowed interaction causes then each mode to interact
_ P only with a small number of neighboring modes. This would
e(V)_O.8V<§<1.2V a(v,v)e'(v'), 13 1o longer be the case for modes in the middle of the spec-
trum. For the low-frequency tail of the spectrum we expect
where we labeled the modes by their frequencies and theur method to give a fairly good representation of the under-
a(v,v') are the expansion coefficients. To invert Ef§i3)  lying modes. Of course the orthogonality condition will burn
approximately, we use that tlee modes are either localized, small holes into the extended modes. Due to the small mode
with a small participation ratio, or extended, with participa- densities, these will have negligible effect. In Fig. 4 we show
tion ratiosp>0.4. We restrict ourselves to low frequenciesthe resulting participation ratios after having processed the
where the density of localized modes is low and we carmodes used for Fig. 3. Comparing the two figures one sees
neglect the overlap between the unmixed localized modethat the modes have been divided into localized ones
e'. Since the mixing of the modes will increase the partici-(p<0.1) and extended onep¥0.4). The rapid increase of
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FIG. 5. Ensemble-averaged participation ratios for the soft FIG. 6. Low-frequency part of the spectrum divided #y(solid

sphere glass witlN=5488 atoms plotted against frequensplid line, spectrum of Fig. 1; dash-dotted line, spectrum after demixing;
line, original modes, dashed lines, localized and extended modedashed line, spectrum of local modes after demixing; dotted line,
after demixing. Debye spectrum

p nearv=0.2 is an artifact of the cutoff of the modes used in dotted line, and the one of the localized modes by the dashed
the procedure, Eq13). Only the modes up t#=0.15 have line. There is only a slight change of the spectrum due to the
been treated properly. The lowest two groups of extendedemixing. The part of the spectrum shown contains about
modes (phonon3 can be discerned. There are ten modes8x 10 2 of all modes. About 4% of the original modes in
whose overlap factor with the idealized transverged{0) this frequency range have been shifted by the demixing to
phonons of maximal wavelength exceeds 0.5. Ideally onérequencies above the shown limit af=0.16. Around
should have 12 such modes. The deficiency can be attributeg=0.08 there is a maximum iB(v)/v?, the so-called boson
to the overlap between the phonons; see below. Comparingeak. The excess over the Debye contribution is about 1.5 of
the frequencies of the modes in Figs. 3 and 4 we find smalihe latter. We cannot locate the boson peak exactly due to
shifts of a few percent between the two sets of modes.  statistics. Furthermore, for the given system size it lies very
The ensemble averages of the participation ratios of thelose to the first group of extended modes. To avoid the
localized and extended modes are shown in Fig. 5. The soligroblems in the spectrum of extended modes due to system
line depicts the overall average of the participation ratios okize, one can define a spectrum of noninteracting modes by
the original modes. The minimum aroune=0.9 corre- adding the Debye and the local mode spectra. The boson
sponds to the gap between the two lowest phonons which iseak for this spectrum would be at=0.15. This means that
an effect of the finite size. Above=0.1 the values increase by softening some localized modes the interaction between
slowly towardp~ 0.55 which is reached outside the range ofmodes shifts the boson peak to lower frequencies.
this plot. The dashed lines depict the participation ratios of The increase in the localized mode density of states at low
the localized and extended modes, respectively, which wergequencies is at least»® and is compatible with th&,,,
obtained by the decoupling procedure. There is a slight ins1* behavior predicted by the soft potential modewe
crease with frequency qf of the localized modes accompa- will discuss our results concerning this model below.
nied with a decrease for the extended ones. This might be
due to an incomplete demixing of the modes. The average
effective mass, Eq(11), is around 20 in units ofn and
increases slightly to 40 for=0.16. As for the correspond-
ing increase irp, it is not clear how much of this increase is

IV. STRUCTURE OF VIBRATIONAL MODES

To get insight into the structure of the extended modes as
g1ey would be seen by neutron Brillouin scattering we define

with the ones previously published for tHg¢=500 and a structure factor for a giveq as

N=1024 systems. Particularly encouraging is the agreement N

in the frequency range where there are extended modes in the _ iq(R1—RM) s
large system and none in the small system. We can exclude S(q”’)‘g % € (€7(0)- () |8(v=v7).
size effects and major effects due to the demixing. (15)

To show the contributions of the distribution of the dif-
ferent modes we plot in Fig. 6 the spectrum dividedByIn  In a real glass alfj directions are equivalent, one observes an
such a representation the Debye spectrum is a congtant angular average. For our finite size simulation we have to
ted line. The spectrum of the original modes is given by thereplace this average by a sum over @livectors of length
solid line, the one of the modes after demixing by the dashgq, allowed by periodicity,
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FIG. 7. Structure factor for the two lowest-frequency phonon FIG. 8. Fraction of the kinetic energy of the low-frequency vi-
groups 4= (dmin,0,0) and d=(dmin,9min,0) as function of fre-  brational modes contained in a sphere of radiysolid line, aver-
quency(solid line, original modes; dashed line, modes after demix-age over all original modes; dash-dotted line, average over extended
ing). The phonon frequencies calculated from the sound velocity arenodes after demixing; dashed line, average over localized modes
vr=0.082 andv=0.116, respectively. after demixing; dotted line, average over all modes after demjxing

R/, denotes half the periodicity length.

S(q,v)= ; S(q,v). (16)  local modes is nearly constant, this means an increase of the
lal=a coupling to the local modesg?. This q dependence of the
In Fig. 7 we showS(qg,») for the two lowestq values al- Phonon damping is observed in crystals for resonant scatter-
lowed, corresponding to phonons with the wave vectordNd by resonant vibrations of even symmetry. An example is
9= (Gmins0,0) andg= (qrin+qmins0), respectively. the self-interstitial in Cu or Al where one atom is replaced by

The solid and dashed lines show the structure factors fo Pair of atoms(dumbbell configuration and where the
the original and modified modes, respectivedyq, ) peaks transverse phonons are strongly damped by the librations of
at the frequencies of the transverse phonons as calculatddese dumbbell$:
from the elastic constantsy€0.082 andv=0.116). The It has been argued befdfethat at the boson peak the
corresponding longitudinal frequencies are outside the freloffé-Regel limit is reached for the phonons; i.e., their mean
quency range of the figure. The demixing does not shift thdre€ path decreases to their wavelengthr(/2~v). This
peak positions significantly. The apparent shift of the secondMit is reached for our first phonon group which approxi-
peak is caused by the finite size of the chosen frequency birfately coincides with the boson peak; see Fig. 6. In the
and the shoulders on the high-frequency side. These are &pSence of scattering between soft modes and extended
artifact of the procedure. In those frequency ranges wherBhonons the loffe-Regel limit would be reached only for
different phonon groups overlap the long-range tails of theligher frequencies. _ _
localized modes can get attached to the “wrong” extended A measure for the spatial extent of the modes is the de-

modes, thus feigning an increased interaction of the extendedf€€ of localization of the kinetic energy. Defining the cen-
modes. No effort was taken to reduce these shoulders.  tral atom(atom J as the atom that has for a given mode the

Taking an approximate Lorentzian line shape largest amplitude we can calculate the fraction of the kinetic
energy residing within a sphere of radiusaround this cen-
Av 1 tral atom as
S = P (A2 17 .
Ein(r) S e
we find Av=0.018 for the first phonon and 0.036 for the n _|Rm—R1|<r |€"(o)]. (18)

second one. The widths are strongly reduced by the demix-
ing to A»=0.012 andA »~0.025. The last value was taken Ther=0 value in such a plot isn/mg; of Eq. (11). For an
from the low-frequency side only. extended modexcos@-R), EZ,(r) should increase as’.

The widthA v is caused by two effects, the scattering onThis behavior is shown in Fig. 8 for both the average of all
the static disorder and the scattering between soft modes amadodes up tor=0.16 (solid line) and the extended modes
extended phonons. If we assume complete demixing, thefter demixing(dash-dotted ling
dashed lines show the broadening due to the static disorder In | the same behavior was reported for the average over
only. Both effects contribute equally taA@)?. The total all modes. The energy distribution does not distinguish be-
width Av increases<v?, i.e., «g°. Since in the frequency tween the pure extended modes and the mixture of extended
range of the two phonon groups considered the density ofind localized modes. The periodicity length of the simulation
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was 17.6, whence the radius of the inscribed sphere is
R;»=28.82. The fraction of kinetic energy inside this sphere
is about 0.56, compared tw/6~0.52 for a constant ampli-
tude. Contrary to this the “noninteracting” localized modes
(dashed lingshow a steeper than linear increase compatible
with one-dimensional structures with amplitudes falling off
with distance from the center. About 83% of the kinetic en-
ergy lies within the inscribed sphere and it takes a sphere
with r=4.4 to include half of the kinetic energy. The latter
implies chain lengths of eight nearest neighbor distances. As
to be expected the average over localized and extended non-
interacting modegdotted ling lies in between. It shows the
strong dependence &j;,(r) on the base used to describe the
vibrational modes.

The large contributions t&,;, from long distances make
an assignment of dimensionality to the modes difficult. We
define a tensor

,le(o)[“(RY— RE™) (R}~ RE™
2n|en(o')|p' ,

Guplo)= (19
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FIG. 9. Ensemble-averaged mode participation number for a
where we take the exponenis=2 andu =4, corresponding soft sphere glass dfi=5488 atoms after demixing plotted against

to the effective mass and participation ratio, respectivelyreauency(localized modes>, extended modes).

R®™ is the corresponding center-of-mass coordinate of the

mode: acting localized modes we obta@y,(2)20.9,d_(2)=1.5

3, [e(o)|R"
- En|en(0')|'u .

DiagonalizingG we obtain three eigenvalugs(o,x) and
from these an average gyration radfts

c.m.

andRy,(4)=0.7, d(4)=1.5. Concentrating on the core of
(20) the modes the values corresponding to participation and ef-
fective mass become similar. The central atoms of the modes
form low-dimensional structures which are dressed by the
long-range parts of higher dimension. In average the above-
defined core of a local mode comprises 12 atoms.
The interaction pattern of the “pure” local modes is very

/1 _
Roy( o, ) = 52 p'(o,um). (21 complicated and with rising frequency the number of modes

which interact to form the observable modes increases rap-
If a mode is localized on a single atoiRgy,=0, and for an idly. As a measure we introduce, in analogy with the partici-

extended mode it is the root-mean-square distance with theation ratio, Eq(12), a mode participation number

weight determined byw. An effective dimension of the
mode can be defined as

d(o,u)=2 p'(o,p) / maxp'(a, ). (22)

Averaging over all modes with<<0.16 we get for the effec-
tive massR,,(2)=4.8 andd(2)=2.5 and slightly smaller
values for the participation ratioRy,(4)=4.4 and

m(v')=

-1

> a(vv)t (23)

14

where thea(v,v’) are the expansion coefficients, E3). If
a mode v’ participates equally inn modes, one has
Pm(7")=n. This number is not normalized with the system
sizeN. From Fig. 9 one sees that filr=5488 one has below
v~0.05 essentially isolated local moddsircles with

d(4)=2.3. These values imply that the modes extend ovep,,(»')~1. For the higher frequencieBy,(»') increases
the whole simulation volume in accordance with Fig. 8. Thisrapidly and atv=0.15 a local mode contributes essentially to
in turn renders the so-defined dimension meaningless singg/er 40 modes. The corresponding number for the extended
the periodic boundary conditions fold the modes back intomodes is much lower. It has, however, to be kept in mind
the periodicity volume. The values for the participation ratiothat we did not resolve the interaction between “pure

are always smaller than the effective mass values due to thghonons” and theé®,,(»') value therefore accounts only for
stronger weight on the central atoms. After the demixing ofthe interactions with local modes.

the modes we find the same values for the extended modes. This figure illustrates the effect of increasing the system
For the localized modes we find smaller valuessize in the simulation. Let us consider, e.g., the modes with

Rgy(2)=3.6, d(2)=2.6 andRy,(4)=1.3, d(4)=2.0. Due

frequencies around=0.08. At this frequency for the con-

to the weighting withR?, these values are strongly influ- sidered system wittN=5488 we have extended modes in-
enced by the long-range tails of the modes. To get an estieracting with localized modes. The mode participation num-
mate of the effects of these tails we recalculated the valuelser is for the local mode®y,~10 and is mainly due to
for the core of the modes, only including the atoms withinteractions between the local modes. If we would double the
|€"2>0.2 maje"|? in the sums. This does not markedly system size, we would not change the number of extended
change the values for the extended modes. For the nonintephonons at this frequency. They would merely extend over
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the doubled volume. The concentration of localized modes
would stay approximately constant; their number would

double which in turn means an approximate doubling of the
mode participation. The values in the figure would shift to

the left and the occurrence of isolated localized modes re-
stricted to lowerv values.

In Fig. 10 we illustrate three typical mode structures.
Shown are always all atoms which have at least 20% of the
maximal squared amplitude of an atom for the considered
mode. The cubes are the periodicity volume(dhwe show
a mode withy=0.061, p=0.21, andmys= 148 which can
easily be envisaged mainly as a superposition of four local
modes. This is verified by the above demixing procedure.
We find that four local modes contribute 80% to the squared
amplitude. In(b) one of these four constituent local modes is
shown,»=0.062,p=0.028, andng=21. One sees that the
increase in participation ratio and effective mass caused by
the mode interaction is even larger than the expected factor
of 4. At higher frequencies the density of interacting modes
increases strongly so that a visual decomposition is no longer ;
possible. An example of a mainly extended mode \‘N“N
(v=0.079, p=0.52, andm.z=545) is illustrated in(c). !
About half of its squared amplitude is given by the ideal |
undistorted(1,0,0 phonons. The rest is due to static scatter- |
ing and interaction with local modes. E

!
|
{
|
i

V. SOFT POTENTIAL MODEL j] (ﬁ}
In the soft potential mod&t*? one describes the anoma- 8 * f
lous behavior of glasses at low temperatures in terms of soft /\ e (

modes which coexist with the long-wavelength phonons. The
dynamics of the soft modes is described by anharmonic po- /
tentials for their dimensionless displacemant

VSRX) = S 7SR/ o) 2+ 1SR X/ o) 3+ (X 0)4].  (29)

Here we have used the length scaleof the potential, Eq.
(1), instead of the usual scale factor® The displacement of (b)
a single atomn, is given byXc€". To follow the usual

presentation we change to the displacement of a single atom,

the center of the mode, by settingnesx=X:
VSAx) = €S 55 (xl o) 2+ t5(x/ 0)3+ (X1 0)*].  (25)

In this formulation of the model the energy scale faetdtis
equal to the value for the potential of a single atofﬁ?,
times the number of atoms participating in the modg,

€SP=Nqes". (26)

This potential can either describe a single well or a double
well. In the latter case there are three equivalent sets of pa-
rametersy°F and t5". For uniqueness and to ensure an ex-
pansion around the maximum®® has to be restricted to
7°P< 3(t5H)2. With this restriction°™>0 implies a single-
well potential andzS"<0 a double-well potential. One ex-
pects that the parametesrs”, #°F, andt will occur in a glass
with probabilitiesP(e59), P(%59), andP(t5%). The soft po- () _ o
tential model is based on the assumption that there is basi- FIG. 10. Most active atoms in vibrational modes. Shown are all atoms
whose squared amplitude is at least 20% of the maximal one. Bonds show
Ca”y one type of soft structure, whence thgp should be nearest neighbors. The cubes depict the periodicity volu@eOriginal
given by a narrow distribution. For simplicim;lgP is usually  mode withy=0.061,p=0.21, andm.s= 148.(b) Local mode contributing
taken as a constant. The valuespt andtS® are then de- to () after demixing ¢=0.062, p=0.028, andmes=21). (c) Original
termined by random variations of the surroundings of theMode with large phonon parv¢0.079, p=0.52, andme;=545).
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FIG. 11. Distribution function of the atomic anharmoniciy” FIG. 12. Distribution function of the curvature parametéf in
in the soft potential model gained from the demixed modes. the soft potential model gained from the demixed modes.

structures causing the soft modes. This implies ®&4>)  of Eq. (24) we have neglected all anharmonic terms bar the
agg P(t>) are mdepgndentsof each other. For low values ofgne i the harmonic mode coordinate itself. In reality there is
7~ one I'ans P(7*)=|7*, the go-called Sseagull a large number of anharmonic couplings between the differ-
singularity:? By symmetry one ha®(t>)=P(—t>). ent modes. In simulations of defect diffusion in crystals one
We have calculated for each of the local soft modes thgyardly ever finds the two minima and the saddle point lying
three parameter and their distribution functions normalizegy, gne line. The minimal energy path has to be described by
to all localized modes withv<0.16. We find fore;” an  curved coordinates. A linear extrapolation from the mini-
average value of 4.0 and a reasonably narrow distributiofinum along the soft direction in general misses the saddle
P(e3), Fig. 11, with a half width at half height of 1.5. point. In a glass with the much more complicated mode
The corresponding averages for the vibrations of a singl&tructure this effect would be much larger. It is, therefore,
atom with all others at regEinstein vibration are for the  understandable why much larger numbers of double-well po-
given potential in ideal fcc and bcc crystals of the sametentials are observed if a special algorithm is dSed if one
density 60 and 70, respectively. There one has very broadxtrapolates from near the saddle pdmte have reported
distributions of the atomic anharmonicity parameter. Theearlier correlations of around 0.6 between relaxations and
soft mode values correspond to the lowest values in the bdecalized vibrationg’
lattice.
The distributionP (%), Fig. 12, shows a seagull behav-
ior for »SP<0.01 and is nearly constant above. 20 ' ' '
The small range of values included in our investigation
does not allow a determination of the shapeR{f°") at
large » values. The end of the seagull singularity corre-
sponds to a frequency of about=0.05. It has been shown
that due to the seagull singularity the spectrum of local
modes should b&,.v*. This is observed for in Fig. 6 for
v<0.04. The change over td,,.>v> outside the seagull
singularity is washed out by statistics and the finite width of
P(7°9).
P(t5h), Fig. 13, has a maximum faP"=0 from where it
rapidly falls off. We find no significant variation d®(tSP)
with 7SF. Shown are also distributions fopS"<0.1 and
775P>0.1.
The adopted quench procedure, Sec. Il, ensures that con-
figurations are always in a minimum. A fit of the soft poten- 0 05 10 15 .20
tials will, therefore, sometimes produce double-well poten- 5P
tials (757> 3tSF). We find this for less than 1% of the soft
modes, in seeming contradiction with the distribution of Fig.  FIG. 13. Distribution function of the asymmetry parametét
12 which should continue to negatiw". The reason for in the soft potential model gained from the demixed modes. Solid
this discrepancy between the model assumptions and our fite, all local modes withy<0.16ye/ma?; dashed line, only modes
is inherent in the anharmonicity. In deriving the parameterswith »<0.1; dotted line, only modes witly>0.1.

P(tSP)
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V1. DISCUSSION AND CONCLUSION tion domains seems inadequéteAlso an explanation in
Our calculations were done on a one-atom model glass Iterms of coord|_nat|0n defectsis not appropriate for a close-
. S . ' Backed metal-like glass as considered here.
view of the similarities between the different glasses we Our investigation shows that the low-frequency vibrations
think them to be of general relevance for glasses. __in glasses can be understood in terms of interacting local and
The concentrations of localized modes and the positioRyiendedphonon modes. Localization has to be understood
and strength of the boson peak will of course vary for dif-j, the sense of resonant low-frequency molfeBhis means
ferent materials and different histories of the glass. To checlat there is always an interaction between localized modes
the dependence of the low-frequency dynamics on glasgnd phonons and in the absence of local symmetry between
preparation we heated our samples to 10% of the glass tenpcalized modes of similar frequencies. For low frequencies
perature, kept them at this temperature for a duration oflow densitie$ the interaction joins the local modes into
about 5000 average vibration periods, and subsequentinultiple-centered modes. Due to the low concentration of
guenched them again t6=0. We find for the tempered localized modes, the interaction between them will be weak
glasses a volume reduction of order £Q taken at constant and the dynamics becomes similar to the one in orientational
external pressure. Their spectra are slightly harder due to aglasses as discussed by Randeria and SéthRar higher
increase of the transverse sound velocity by about 1%. Th&#equencies when the densities of the underlying local modes
number of soft modes withv<<0.16 decreases by approxi- and phonons are sufficiently high the resulting mixed modes
mately 6%. Half of this decrease can be attributed to thecan no longer be distinguished as basically localized or ex-
general hardening of the frequencies due to the increasdénded. We find that near the boson peak the mean free path
sound velocity. The other half indicates a reduction in theof the extended phonons has decreased to their wavelength.
number of excess soft modes. The character of the modes, We have developed a method to deconvolute the exact
e.g., their participation ratio distribution, does not, however low-frequency modes into their localized and extended parts.
change markedly. The same holds after a tempering at 15%or the localized modes we find as in earlier investigations
of the glass temperature. effective masses of20. The cores of these modes are low
The reduction in the number of modes with tempering isdimensional, chains with side branches. The backbones are
consistent with the previous finding that the modes are cergiven by close-packed directions. The localized vibrations
tered at “defects” in the glas$'® In tempering the most are strongly correlated with local relaxatiofis.’
unstable of these defects will be annealed. In a one-atom By calculating the anharmonicities of the local modes we
glass such annihilation processes will be especially efficientjerived the distribution functions of the parameters of the
eventually leading to crystallization. It is well known that soft potential model. These are in agreement with the as-
most defects cause some volume expansion. This excess vedmptions and results of this model. The atomic fourth-order
ume can be used to monitor the number of defects. The voterm is reasonably well defined. It corresponds to the values
ume expansion by a defect need not, however, be localized fund for the softest directions in the ordered structure. The
the defect. In a crystal lattice the creation of both vacancieslistribution of the harmonic parameter increases as pre-
and interstitials causes a volume expansion of the order dfictede| 7| which means an increase of the local mode spec-
one atomic volume. To create a vacancy one can imagine anum =« v* and of the specific heat above the tunneling regime
atom from the bulk being placed on the surface, thus expand<T° as observed in experiment; see Ref. 13 for references.
ing the crystal by one atomic volume. After relaxation thereThe distribution functions of the different parameters, anhar-
remains localized at the vacancy a reduction in the densitynonicity, curvature, and asymmetry, are independent. This is
In the case of an interstitial atom one imagines an atom fronin agreement with the findings for two-well systefis.
the surface inserted in an interstitial site. Unrelaxed one Our results predict large mean square displacements of
would have a volume reduction and a strong local compresthe atoms participating in the soft vibrations. This was re-
sion at the interstitial site. The relaxation of the lattice in-cently observed in neutron scattering experiments on amor-
creases the volume, even creating an excess volume, bphous polymef¥ at and above the boson peak frequency,
some of the local compression remains. The excess volumensistent with a vibrational localization to about ten mono-
is smeared out over a large region. In our case such a locaters.
compression was observed at the centers of the soft modes.
This is compatible with an intersticialcy mod¥l. The
changed local environment will cause local internal stresses
as observed earlier for another syst€rdn the other hand a We are grateful for many stimulating discussions with U.
description of the dynamics by scattering at density fluctuaBuchenau and B.B. Laird.
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