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We present an experimental and theoretical study of the pressure dependence of the Knight shift of23Na and
133Cs in sodium and cesium metal, respectively. The sodium shift has been measured, employing the diamond-
anvil cell technique, up to about 8 GPa, and our previous discovery of a shift minimum around 1.5 GPa has
been confirmed. The temperature dependence of the shift results solely from thermal expansion. The cesium
shift, at 295 K, increases by 74% between normal pressure and 2.1 GPa. The theoretical studies of the sodium
shift are based on a self-consistent band structure calculation with the scalar-relativistic linear muffin tin orbital
method and the local density approximation. Using an appropriate description of the volume dependence of the
hyperfine field, our calculations lead to a correct prediction of the Knight shift minimum. Differences between
spin-restricted and exchange-enhanced calculations are discussed.

I. INTRODUCTION

The Knight shift, which is the displacement of the nuclear
magnetic resonance~NMR! frequency in a metal due to the
average static magnetic field produced by the conduction
electrons, provides valuable insight into the electronic struc-
ture of metals. In particular, it allows the study of energy
band structure and of electron wave functions. The Knight
shift K is defined as

K5
nm2n r

n r
U
B05const

, ~1.1!

wherenm andn r are the NMR frequencies measured in the
metal and in a nonmetallic reference compound, respec-
tively, both determined in the same external magnetic field
B0 .

If the magnetic field produced by conduction electrons
arises from the contact interaction of unpaired electrons
found in the vicinity of the Fermi energy, the shift may be
written as

K5
8p

3
xPF , ~1.2!

wherex is the atomic Pauli susceptibility andPF the density
of states at the Fermi energy. While the Knight shift usually
depends only slightly on temperature, pressure-dependent
shift measurements are of great importance since the volume
dependence ofK reveals the interplay of the trends of the
volume dependence of the electronic structure parametersx
andPF .

Such experiments were pioneered by Benedek and
Kushida,1 who determined the pressure dependence of alkali
metal Knight shifts; more accurate remeasurements of the
lithium and sodium shifts were performed by Kushida and
Murphy.2 All these experiments were done in the pressure
range below 1 GPa using conventional techniques. By em-
ploying the diamond–anvil cell~DAC! technique we have

previously extended the pressure range to about 8 GPa~Refs.
3,4! and have detected an unusual volume dependence of the
sodium shift.

In this paper we present experimental data for sodium, in
particular the pressure dependence as a function of tempera-
ture, and Knight shift measurements in cesium metal at pres-
sures above 1 GPa.5 Furthermore, we will present a detailed
theoretical study of the volume dependence of the sodium
Knight shift based on a self-consistent band structure calcu-
lation, with the scalar-relativistic linear muffin tin orbital
method and the local density approximation. Finally, we will
address the question why all previous theoretical examina-
tions of this problem established a stronger volume depen-
dence ofK than found experimentally6,7 and did not repro-
duce the minimum or found it at too low volume ratios.

The paper is organized as follows. The next section de-
scribes the experimental technique, followed by the presen-
tation of the experimental results in Sec. III. In Sec. IV we
sketch the calculations for sodium and present the numerical
results and their discussion.

II. EXPERIMENTAL TECHNIQUE

All pressure experiments were performed in a home-built
DAC in which diamonds are pressed together by a lever
mechanism allowing pressures up to 10 GPa. The DAC op-
erates in a cryostat, which fits into a 4.7 T superconducting
magnet that is part of an NMR pulse spectrometer.

The present apparatus is an improved version of our ear-
lier device4 which was designed for solid state NMR
studies.3 The improvements are in the gaskets, the optical
system for pressure measurement, and, in particular, the tem-
perature variation. The NMR radio-frequency field generated
by a special saddle coil is parallel to the gasket surface and
dips into the sample hole of 0.7 mm diameter which is
drilled into gaskets of 0.15–0.20 mm thickness. The anvil
flats are 1.1 mm2.

Since the magnetism of rhenium gaskets used in our ear-
lier studies3 caused a considerable broadening of the NMR
signals, we switched to beryllium-copper alloy Berylco gas-
kets in which pressures up to at least 7 GPa can be generated.
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The pressure measurement is performedin situ by the
ruby fluorescence method~e.g., Ref. 8! employing a small
ruby chip placed in the sample hole. For all temperatures, we
first determined, at ambient pressure, the wavelength of the
fluorescence line with respect to its ambient temperature
value. These data are in good agreement with the results of
McCumber and Sturge.9 To determine the pressure we as-
sumed the pressure-induced wavelength shift to be indepen-
dent of temperature.10,11 The linear change with a slope of
0.365 nm/GPa allows pressure measurements with a preci-
sion of about60.06 GPa.

The temperature variation is done by drawing nitrogen
gas through the cryostat which contains the DAC. A particu-
lar temperature, in the range 180 – 366 K, could be main-
tained with a precision of about60.2 K, which was suffi-
cient for the present studies.

The Na and Cs samples~99.95% purity! consist of
spheres~diameter up to about 30mm! immersed in mineral
oil which serves as pressure medium and prevents corrosion.
The sample masses are about 30 and 100mg for Na and Cs,
respectively.

The NMR signals were obtained using a standard pulse
spectrometer. The23Na spectra~resonance frequency 52.9
MHz in 4.7 T! were determined by accumulating about
105 free induction decay~FID! signals following ap/2
pulse and a subsequent Fourier transform. In the case of
133Cs ~resonance frequency 26.6 MHz!, strong ringing
signals12 concealed the FID completely for pressures above
0.6 GPa. Therefore, we used a modified phase cycling pulse
sequence5 to record the spin echo after a fixed time of 100
ms. The spectra were obtained by Fourier transformation of
about 106 accumulated spin echo signals.

We have recorded so-calledmagnitude spectrawhich are
the square root of the sum of the squared real and imaginary
parts of the Fourier transform of the complex FID.
Linewidths quoted throughout this paper refer to the ‘‘full
width at half height’’ of these spectra. The use of Berylco
gaskets reduced the Na linewidth at ambient pressure and
temperature to about 350 Hz, which is still larger than the
linewidth due to magnetic inhomogeneities of the cryostat.

To get the Knight shiftK(p) at a particular pressurep,
we measure the NMR frequency at this pressure,nm(p), and
at ambient pressure,nm(0). With the frequency shift
Dn(p) defined as

Dn~p!5nm~p!2nm~0! ~2.1!

and Eq. ~1.1! we obtain the following expression for the
Knight shift at pressurep:

K~p!5K01
Dn~p!

nm~0!
~11K0!, ~2.2!

whereK0 is the Knight shift at ambient pressure.
For the discussion of the experimental data, it is useful to

express the relative Knight shiftK(p)/K0 as a function of
the relative volumeV(p)/V0 , whereV(p) and V0 are the
sample volumes at pressurep and ambient pressure, respec-
tively. We used the results of Boehler13 and of Ho and
Ruoff14 to calculate, for a given temperatureT, the pressure-

volume isotherm for Na. For Cs, we used the experimental
equation of state given by Andersonet al.15 to transform
pressure into volume.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Sodium

The 23Na Knight shift at ambient pressure and tempera-
ture ~295 K! which we measured in the DAC isK0(295 K!
5 0.1136~5!% with respect to23Na in NaOH which was
placed beside the probe hole. Our result is in excellent agree-
ment with the literature value 0.113~1!%.16

In Fig. 1, we compare the volume dependence of the new
relative shift data taken at 295 K with our previous results.3

The increase of the error bars with rising pressure is due to
the pressure-induced line broadening, which reduces the ac-
curacy ofDn(p). From ambient pressure up to about 2 GPa
@V(p)/V0'0.81# the NMR line is relatively narrow because
of the translational diffusion of the Na ions. Between 2 and
4.5 GPa the linewidth increases steeply by a factor of about
20, because the diffusion is progressively hindered by
pressure.3 Above 4.5 GPa the linewidth stays nearly constant
because the diffusion is suppressed to such an amount that
the lattice is ‘‘rigid’’as defined by NMR.3

We note two important facts with respect to our previous
study:3 ~i! The new ambient temperature data agree with the
old measurements performed with a rhenium gasket, and
hence the gasket material does not influence the NMR fre-
quency;~ii ! the presence of a Knight shift minimum is re-
confirmed.

We will now turn to the temperature dependence of both
the value of the Knight shift at ambient pressure,K0(T), and
of the Knight shift minimum value. First, we noticed, in
agreement with data from the literature,16 a slight linear in-
crease of K0 with temperature with a slope
]K0 /]T5@1.23(15)31025#%/K. This temperature depen-
dence can be explained by the thermal expansion of the lat-
tice, which causes a narrowing of the electronic bands and
hence an enhancement of the density of states at the Fermi
level. This in turn increases the electron spin susceptibility
and therefore the Knight shift.

Next, we will discuss in some detail the significance of
the temperature dependence of the Knight shift minimum.

FIG. 1. The relative23Na Knight shift at 295 K as a function of
relative volumeV(p)/V0 and pressure:d, this work;s, Ref. 3.
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The minimum appears at all temperatures~see Fig. 2!, and
the depth of the minimum seems to decrease with decreasing
temperature. Unfortunately, the transition to the rigid lattice
regime moves towards lower pressure if the temperature is
reduced.5 Therefore, the error bars around the minimum be-
come larger with decreasing temperature. For the 358 K data,
whose errors are relatively small up to 4.5 GPa, the relative
shift value at the minimum is clearly smaller than the 295 K
value; in addition, the minimum appears at a smaller relative
volume.

What is the origin of the temperature dependence of the
Knight shift minimum value? It is unlikely that it is caused
by a thermal rearrangements of the density of states since
these vary smoothly near the Fermi energy.7 Instead, we sug-
gest that the temperature dependence of the lattice constant
accounts for the effect. Figure 3 shows the absolute Knight
shift K(p) as a function of the lattice constantd for 295 and
358 K. We have determinedd(p,T) as follows. The ambient
pressure value at 295 K,d054.2906 Å,17 together with the
coefficient of linear thermal expansion17 provides the ambi-
ent pressure value for a particular temperature,d0(T). Using
our calculatedp-V isotherm for this temperature~see above!,
the relation

S d~p,T!

d0~T! D 35V~p,T!

V0~T!
~3.1!

yields the pressure- and temperature-dependent cubic lattice
constantd(p,T).

Figure 3 shows how bothK(p) curves are parallel to each
other from low pressures up to the shift minimum which
occurs, within the experimental accuracy, at the same lattice
constant. The vertical displacement of both curves is about
(531024)% which is the same as the experimental error of
K0(T). SinceK0(T) fixes the vertical position of theK(p)
curve for a given temperature@see Eq.~2.2!#, the error of
K0(T) causes a systematic displacement of the whole curve.
Thus, bothK(p) curves can be made to coincide~at least up
to the minimum! if one variesK0(T) within the error bars.
This procedure can also be applied to theK(p) curves at
other temperatures since all Knight shift minima fall into the
interval (0.111860.0005)%. Thus, the minimum value of
K(p) is constant, as a function of temperature. The experi-
mental data forK(d) are also consistent with a temperature-
independent position of the minimum. In other words, the
temperature dependence ofK(p,T) results solely from the
thermal changes in the lattice constant. On the high-pressure
side of the minimum the large errors do not allow us to draw
reliable conclusions.

B. Cesium

We have measured, at 295 K, the pressure dependence of
the 133Cs Knight shift in the bcc phase up to 2.1 GPa, cor-
responding to a volume reduction of about 40%.15 These
measurements were more difficult than those with sodium,
because cesium metal is extremely reactive, thus complicat-
ing the sample preparation, and because the NMR sensitivity
of 133Cs is only half that of23Na. In addition, the measure-
ments become increasingly time consuming at high pressure
since the Cs signals get very weak due to line broadening
and perhaps due to increased spin-lattice relaxation times.

The determination of the ambient pressure Knight shift
value carried out in our DAC, using CsF as reference yields
K051.489(5)% which agrees very well with the literature
valueK051.49(1)%.16 Figure 4 displays the relative Knight
shift K(p)/K0 as a function of the relative volume. We have
included the results of Benedek and Kushida1 who deter-
mined the Knight shift up to 0.8 GPa.

The relative Knight shift increases by 74% when reducing
the volume to 0.6V0 . To our knowledge, this is the strongest

FIG. 2. The relative23Na Knight shift as a function of the rela-
tive volumeV(p)/V0 at various temperatures.

FIG. 3. The absolute23Na Knight shift as a function of the
lattice constantd at two temperatures.

FIG. 4. The relative133Cs Knight shift as a function of the
relative volume:s, this work;d, Ref.1.
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pressure-induced change in a Knight shift observed so far.
Comparing this enormous pressure dependence with the
small change of about 2% in Na, it is obvious that the ex-
perimental data for Cs will serve as a challenging test for
theories concerned with many-electron problem in metals.

IV. THEORY

Our theoretical studies of the sodium Knight shift are
based on a self-consistent band structure calculation with the
scalar-relativistic linear muffin tin orbital~LMTO! method
and the local density approximation~LDA !. Since it is incon-
sistent to use the Fermi contact term in the scalar-relativistic
case,18,19 the contact term was replaced by the corresponding
relativistic expression. Starting with a relativistic formulation
has the additional advantage of putting the present investiga-
tions on an equal footing with future calculations of heavier
alkali metals, where a relativistic treatment of local quanti-
ties such as the Knight shift is indispensable. Consequently,
we use Dirac wave functions based on the self-consistent
scalar-relativistic crystal potential.

A. Method of calculation

There are several electronic-nuclear interactions which
contribute to the Knight shift:~i! the Fermi contact term of
s states, which has in our case to be replaced by its relativ-
istic counterpart,~ii ! the core polarization by conduction
electrons,~iii ! the spin dipolar interaction, and~iv! the inter-
action with the orbital motion of the conduction electrons.
The dipolar interaction vanishes in crystals with cubic sym-
metry and yields an anisotropic shift in systems with lower
symmetry. The core polarization amounts to 2% estimated
from the polarization hyperfine field of Carteret al.16 and
from our calculated density of states~DOS!. Finally, the or-
bital contribution, as estimated by second-order perturbation,
is three orders of magnitude smaller than the measured
Knight shift. Thus, we are left with contribution~i!.

The Dirac equation describing the motion of an electron
in the presence of a crystal potential and a nuclear magnetic
dipolar field yields the hyperfine interaction in a straightfor-
ward manner:

HHF5
ec~a3r !mN

r 3
, ~4.1!

wherea is the 43 4 velocity matrix,c the velocity of light,
andmN the magnetic moment of the nucleus. Then, the spin
contribution to the Knight shift becomes, using first order
perturbation theory,

K52
(k^ckuHHFuck& f ~«k!

mNB0
. ~4.2!

Since ck represents a relativistic Bloch state of the spin-
polarized electron system, the numerator is proportional to
the external fieldB0 and one obtains forK ~Ref. 19,20!

K52
8p

3
mB
2ns

4m0c

\ E
0

rWS
f21~r !g21~r !Y00

2 dr. ~4.3!

whereg21(r ) and f21(r ) are the radial parts of the major
and minor components, respectively, of thes state spinor at

the Fermi energyEF , ns is the density ofs states atEF ,
m0 is the electron mass, andY00 is the spherical harmonic of
zero order. The radial integrals are restricted to the Wigner-
Seitz sphere with radiusrWS.

Using the abbreviations

PF52
4m0c

\ E
0

rWS
f21~r !g21~r !Y00

2 dr, ~4.4!

x5mB
2ns , ~4.5!

Eq. ~4.3! turns into Eq.~1.2!. Passing to the nonrelativistic
limit, one can show thatPF is the density of Fermi electrons
at the nuclear positionr(0)uEF. Thus the hyperfine coupling
constant

HF5
8p

3
mBPF ~4.6!

is the relativistic counterpart of the Fermi contact hyperfine
interaction.

The band structure calculations are carried out with the
self-consistent LMTO method, which was developed by
Andersen21 and discussed in detail by Skriver.22 This LMTO
version contains mass-velocity and Darwin corrections up to
any order. In a first step, we performspin-restrictedcalcula-
tions, where the magnetization is given by the net spin pro-
duced by the external magnetic field only, and the suscepti-
bility is determined by the DOS atEF . In a second step, we
take into account theexchange enhancementfrom the spin-
polarized calculations of Leiberichet al.7 The enhancement
occurs because the net spin gives rise to exchange potentials
which are different for ‘‘spin up’’ and ‘‘spin down’’ elec-
trons, thus encouraging further polarization of the electrons.
The enhanced susceptibility due tos states,x, is related to
the unenhanced susceptibilityx0 via the relation16

x5
x0

12a
. ~4.7!

a is the Stoner enhancement factor which is equal to the
product of the exchange-correlation integral23 and the den-
sity of s states.

We start the calculations with a crystal potential that is
derived from renormalized atomic charge densities, which
follow from Dirac-Fock-Slater calculations24 for the Na
ground state configuration. In the band structure calculations,
the exchange and correlation~XC! potential of von Barth and
Hedin25 is used. The structure constants appearing in the
LMTO formalism involve lattice sums which are extended
over about 30 atomic shells in the direct as well as in the
reciprocal space, so that the numerical error is lower than
0.1%. To construct the new potential we use, in each itera-
tion, the band structure data at 55k points in the irreducible
part of the Brillouin zone; for the final two iterations 819
points are considered. The partial DOS is obtained by the
tetrahedron method.26,27 The self-consistent procedure is
continued until the largest relative change of the valence
charge density on the radial mesh is less than 1023. Once
self-consistency has been achieved, the Dirac equation is in-
tegrated using a basis set that includess, p, andd states and
the crystal potential at the Fermi energy. At all steps, the
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complete LMTO formalism including the combined muffin
tin corrections to the atomic sphere approximation is applied.

B. Numerical results

The numerical results for the hyperfine field, the DOS,
and the Knight shift at normal pressure were obtained with
the theoretical equilibrium lattice constant of 7.6767a0 ,
wherea0 is the Bohr radius. This value, which corresponds
to the XC potential used throughout, was calculated with the
Barth-Hedin XC potential entering the pressure relation of
Nieminen and Hodges.22,28 It is satisfying that our lattice
constant agrees within 0.3% with the calculations of Moruzzi
et al.29

Table I shows the theoretical results. First, we consider
the normal pressure data and start with the hyperfine field
HF . Carteret al.

16 cite anatomichyperfine field of 390 kOe.
In the renormalized atom picture of Hodgeset al.,30 the s
density in metals is about twice the atomic value. Hence,
theoreticalHF values in metals turn out to be about twice the
atomic data31 which is in accordance with our theoretical
value. It is important to note thatHF depends only weakly on
the position of the Fermi energy but very sensitively on vol-
ume effects. This is due to thes character of the correspond-
ing states, whereas ford states the situation is just vice versa.

Next, we note that the total DOS at normal pressure
agrees with Janak’s value of 6.2 states/Ry atom.23 To test the
accuracy of the electronic structure data, we calculated the
‘‘spin-lattice relaxation rate per unit temperature’’
(T1T)

21. The rate is less enhanced by electron-electron in-
teractions than the Knight shift because the Lindhard func-
tion, which is the linear response function of the dynamic
susceptibility in the case of a spherical Fermi surface, de-
creases monotonically with the scattering momentum. The
theoretical rate, includingp andd states, is (T1T)

21 5 0.16
~s K! 21, which is only 20% lower than the experimental
rate.16

Now we will deal with the volume dependence of the
quantities entering the Knight shift, namely, the DOS and the
hyperfine coupling. We found that the total DOS, divided by
its value at normal pressure, increases linearly with increas-
ing V(p)/V0 with a slope of 0.6, which agrees with the ex-
perimental susceptibility value.32 Thus, the relative change

of the susceptibility is very well described by the LDA cal-
culations. However, its magnitude is underestimated by us-
ing the effective one-particle theory, which yields a Knight
shift denoted byKns

about 30% lower than the experimental

value. Therefore, in a next step, we included the ‘‘exchange
enhancement,’’ which is known to be large for alkali metals
according to Stoner-like theories23 and spin-polarized
calculations.7 In calculating the exchange-enhanced Knight
shift Kx , we have taken linearly interpolatedx/x0 ratios
~see Table I! from spin-polarized calculations.7 TheKx value
at normal pressure~Table I! is in fairly good agreement with
our experimental result.

Coming now to the hyperfine field we note a pronounced
contrast between our result and all previous calculations. The
calculated reduced hyperfine field,hF(p)5HF(p)/HF0 ,
whereHF0 is the hyperfine coupling constant at normal pres-
sure, varies much more strongly than the data of Leiberich
et al.7 as shown in Fig. 5. Wilk and Vosko6 found an even
weaker volume dependence. For comparison, Fig. 5 also
contains the plane-wave result which is given by the recip-
rocal volume ratio. Obviously, our hyperfine field values are
closer to the plane-wave curve than those of Leiberichet al.7

Combining these theoretical results yields the volume de-
pendence of the Knight shift. Figure 6 summarizes, together
with the experimental data, the various theoretical results.
The dotted line represents the results of our spin-restricted
calculations. Taking into account the exchange enhancement,
as discussed above, leads to the final result expressed by the
solid line.

C. Discussion

All previous theoretical examinations of the sodium
Knight shift established a stronger volume dependence6,7

than the experiment, and did not reproduce the minimum or
found it at too low volume ratios. So far, the discrepancies
have been attributed to~nonlocal! exchange and correlation
effects6 in the susceptibility. On the other hand, the volume
dependence of the theoreticalx is much closer to the experi-
ment than the theoretical Knight shift, as shown in the fore-
going subsection. Therefore, we will discuss now whether an

TABLE I. Theoretical results of the23Na Knight shift calcula-
tion for various values of the relative volumeV(p)/V0 . ns , n 5
partial and total DOS@states/Ry atom#; HF 5 hyperfine field@kOe#;
x/x0 5 susceptibility enhancement~Ref. 7;Kns

5 Knight shift in
effective one-particle approximation;Kx 5 enhanced Knight shift;
Kexpt 5 experimental value; all Knight shifts in %.

V(p)/V0 1 0.9 0.85 0.75 0.65

ns(p) 2.1831 1.9948 1.9018 1.7190 1.5391
n(p) 6.1292 5.7740 5.5921 5.2163 4.8211
HF(p) 826.2 897.6 937.6 1042.6 1186.5
x/x0 1.53a 1.516 1.509 1.494 1.48a

Kns
(p) 0.07674 0.07602 0.07586 0.07626 0.07769

Kx(p) 0.1174 0.1152 0.1145 0.1139 0.1150
Kexpt(p) 0.1136 0.1121 0.1119 0.1125 0.1142

aRef. 7.

FIG. 5. Reduced hyperfine fieldhF(p) versus relative volume
V(p)/V0 . Solid line andn, this work; dashed line, Leiberichet al.
~Ref. 7!; dash-dotted line, plane-wave method.
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inadequate description of either the susceptibility or the hy-
perfine field is mainly responsible for the deviations from
experiment.

For doing so, we have to compare the theoretical ex-
change enhancement of the susceptibilityx/x0 5 1.53 with
an estimated experimental value. The estimate can be done
with the help of the Korringa relation

T1TK
2C05SK

21 ~4.8!

and

C05
4pkB

\ S gn

ge
D 2, ~4.9!

wheregn andge are the nuclear and electronic gyromagnetic
ratios, respectively, andSK is called the ‘‘Korringa enhance-
ment factor’’ which takes into account many-particle effects;
SK is equal to 1 for noninteracting electrons.~In fact, it is
SK

21 which describes the enhancement.! The Korringa rela-
tion, withSK close to 1, is known to be valid in alkali metals
due to the fact that bothK and T1T are dominated bys
states. Thep states in Na, according to our calculations,
contribute only 2% to the total spin-lattice relaxation rate.

The parameterSK is a function of the Stoner enhancement
factor a. The exchange enhancements of both the Knight
shift and the relaxation rate contribute to the value of
SK(a)

21. The enhancement ofK is given by a factor
(12a)21 @see Eq.~4.7!#, resulting in a factor (12a)22 in
SK(a)

21. The enhancement of the relaxation rate is given by
a squared expression33 containinga, the Lindhard function,
and an effective electron-electron potential. The results in
Fig. 2 of Ref. 34 suggest that, for realistic effective interac-
tion potentials35,36 in alkali metals, this squared expression
behaves approximately like (12a). We therefore write the
Korringa relation as

T1TK
2C05

1

12a
. ~4.10!

Using the experimental values forT1T ~Ref. 16! andK ~from
this work!, Eq. ~4.10! yields a static susceptibility enhance-
mentx/x0 of 1.58 which is in accordance with the theoreti-
cal value of 1.53.

We now pass over to the volume dependence of the hy-
perfine field. The reason for the steeper upturn of the hyper-
fine field we have calculated, as compared to the result of
Ref. 7, is that we used the theoretical equilibrium lattice
constant and employed a relativistic theory. The difference
between the hyperfine field values of this work and of Ref. 7
can be expressed in the following way. For plane waves, we
have the relationhF(p)@V(p)/V0#51. As mentioned above,
the hyperfine field ofs states reflects very strongly their
plane-wave character. Thus, it is reasonable, as has been
done by Leiberichet al.,7 to take into account deviations of
the calculateds states from the plane-wave results by a linear
correction of the plane-wave relation

hF~p!
V~p!

V0
512ch

V02V~p!

V0
. ~4.11!

The solid line in Fig. 5 represents a fit of Eq.~4.11! to the
calculatedhF(p) values withch50.185, whereas the dashed
line due to Leiberichet al. corresponds toch 5 0.60. The
volume dependence of ourhF result then yields theK mini-
mum at the volume ratio found experimentally. Weaker vol-
ume dependences result in a minimum at higher pressures.7

Finally, when comparing absolute values of the calculated
relative Knight shift ~see Fig. 6! we note that our spin-
restricted calculations~dotted line! come closer to the experi-
mental values than the calculations which take into account
exchange enhancement~solid line!. This is a puzzling result
since, as explained above, the exchange enhancement should
not be neglected in these calculations. It should be noted that
the results of the spin-polarized calculations~dashed line in
Fig. 6! would agree with those of our spin-restricted calcu-
lations ~dotted line!, if the exchange enhancement were in-
dependent of the electron density. Thus, the above-
mentioned puzzle probably arises because the exchange
enhancement used in the spin-polarized calculations depends
too strongly on the electron density. In any case, the main
reason for the differences between theory and experiment
does not lie in nonlocal exchange and correlation corrections
for the susceptibility, but in an inappropriate description of
the hyperfine field.

V. SUMMARY

We have presented an experimental and theoretical study
of the pressure dependence of the Knight shift of23Na and
133Cs in sodium and cesium metal, respectively. For sodium,
we have measured the shift up to about 8 GPa and confirmed
our earlier experimental data, in particular the shift minimum
around 1.5 GPa. We have also shown that the temperature
dependence of the shift, at a fixed pressure, results solely
from the thermal changes in the lattice constant.

For cesium, the Knight shift at 295 K has been measured
beyond 0.8 GPa. Between normal pressure and 2.1 GPa, the
Knight shift increases by 74%, which seems to be the stron-
gest pressure-induced change in a Knight shift observed so
far.

FIG. 6. Calculated relative Knight shiftK(p)/K0 of 23Na in
sodium metal as a function of the relative volumeV(p)/V0 . Solid
line andn, this work ~using enhanced susceptibility!; dotted line
and,, this work ~without enhancement!; dashed line andh, Ref.
7; dash-dotted line, Ref. 6;d, experimental data~this work!.
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Our theoretical studies of the sodium Knight shift are
based on a self-consistent band structure calculation, with the
scalar-relativistic linear muffin tin orbital method and the
local density approximation. The relativistic counterpart of
the Fermi contact hyperfine interaction has been considered.
We have performed spin-restricted and exchange-enhanced
calculations; in the latter case the enhancement is taken from
spin-polarized calculations.

Our results provide a more appropriate description of the
experimental data, in particular of the Knight shift minimum,
than earlier calculations could do. The improvement is
mainly caused by using thecalculatedlattice constant which
ensures a consistent treatment of all electronic structure data.
This procedure affects, for the most part, the volume depen-
dence of the hyperfine field.

The spin-restricted calculations result in data which are in

better agreement with experiment than those of the
exchange-enhanced calculations. The reason for this devia-
tion is probably that, in the spin-polarized calculations, the
exchange enhancement depends too strongly on the electron
density.

In conclusion, correct calculations of the hyperfine field’s
volume dependence will make future investigations of the
pressure-dependent Knight shifts, for instance in cesium, a
valuable tool to deliver reliable information on the depen-
dence of the exchange enhancement on the electron density.
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