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We show that the analytical result underlying the improved formulation of the effective-potential Monte
Carlo method presented in a recent paper can be obtained in a simple way by resorting to the theory of
Gaussian integrals.

A recent paper has been devoted to the investigation of an
improved formulation of the effective-potential Monte Carlo
~EPMC! method for three-dimensional crystals.1 The main
purpose of that paper was to describe an analytical and com-
putational version of the effective-potential theory which is
able to overcome some earlier formulations of it.2–6Remark-
ing that the new formalism is very appealing from a compu-
tational point of view, the aim of this paper is to show that
the analytical result underlying it can be obtained in a much
simpler way by resorting to the theory ofN-dimensional
Gaussian integrals. In order to demonstrate this, we begin by
recalling here the main features of the general formulation of
the effective-potential theory for a three-dimensional
crystal.2–6The method relies on a variationally approximated
expression for the quantum partition function, which turns
out to be written in a classical-like form through the employ-
ment of an effective potential. Therefore the method pro-
vides a tool for dealing with the quantum behavior of ther-
modynamic observables by means of the standard techniques
of classical statistical mechanics, such as the Monte Carlo
method, for example. The downside of this approach resides
in the difficulties of the computational scheme for the evalu-
ation of the effective potential. Some approximations must
be introduced in order to make the calculations feasible.
Within the so-called low coupling approximation
~LCA!,7–9,2–6which so far has been retained in all applica-
tions, the expression for the effective potential at a tempera-
tureb51/KT reads
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and f a5b\va/2. In these equationsV(x) is the interaction
potential of the system evaluated atx[$xi%, that is, at the
instantaneous position in theN-dimensional configurational
space, andx0 denotes the equilibrium configuration. More-
over, the subscriptsa,b refer to the normal modes of the
crystal obtained through the orthogonal matrixU[$Uai%.

Furthermore, the tilde appearing in Eqs.~1! and ~2! denotes
the broadening of the functionf (x) over the variables
j[$ja%,
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due to the so-called quantum renormalization parameters
aa which are related to the pure quantum contribution to the
~quadratic! fluctuation of the normal modes. In several appli-
cations the interaction potentialV(x), whose Gaussian
smoothing appears in Eqs.~1! and~2!, has been expanded up
to finite order in the parametersaa .

9,2–5 The formulation
described in Ref. 1 explores the possibility of taking into
account in the computations all terms in the Taylor expan-
sion ofV(x). After some lengthy calculations, in which the
potential is expanded and eventually resummed analytically,
an expression is obtained which is very manageable for com-
putational purposes. We describe here an alternative way
which allows us to obtain the same result very simply. In this
approach the potential does not need to be expanded in a
Taylor series. Instead, the analytical calculation can be ac-
complished in a few lines by employing an identity from the
theory of Gaussian integrals, namely,
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Here,A is a positive definite square matrix of orderN3N
whose determinant is denoted byuAu and B is an N-
dimensional vector. By Fourier transformingf (x) in Eq. ~4!
and using Eq.~5! we have
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whereD[$Di j % is anN3N tensor whose elements are de-
fined by

Di j5(
a

Uia
T aaUa j . ~7!

Now, by inverse Fourier transformingf (q) in Eq. ~6! we
obtain
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where the identity~5! has been used again in the integration
over the variablesq[$qi%. It should be noted that we have
not made any assumption about the particular form of the
function f (x) that is the interaction potential of the system.
For a three-dimensional crystal whose potential energy con-
sists of a pairwise central interaction, Eqs.~7! and~8! reduce,
with a slightly different notation, to the results reported in
Ref. 1 @Eqs.~18! and ~19!#, namely,
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Here, the subscriptsi , j label the particles of the crystal
whose instantaneous positions are denoted by the three-
dimensional vectorsxi[$xia% where a5x,y,z labels the
Cartesian components; in addition,Di j5$Di j ,ab% is a 333
tensor defined by
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which is related to the pure quantum fluctuation of the dis-
placement between the atomsi and j .

As described in Ref. 1, Eqs.~9! and ~10! can be effec-
tively implemented in an easy and efficient Monte Carlo al-
gorithm. We agree that this procedure represents a meaning-
ful step forward with respect to previous formulations whose
limitation was related to the finite order expansion of the
effective potential. The very simple way this formalism can
be obtained through the theory ofN-dimensional Gaussian
integrals makes the improved formulation of the EPMC
theory even more appealing for future applications.
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