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Two- and three-dimensional polarons with extended coherent states
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The properties of two- and three-dimensional polarons are investigated with the use of extended coherent
states. In the weak-coupling limit, the obtained expansions for the ground-state energy and effective mass to
the second order in the coupling constantare the same as the previous exact ones. Moreover, in the
intermediate-coupling regime, the numerical results for the ground-state energy and effective mass agree with
the results by the Feynman path-integral method, and perhaps closer to the exact results than the Feynman
ones. It is suggested that the present approach should be an effective one in polaron physics.

The arbitrary N-dimensional (ND) polaron has been a electron and the lattice polarization is assumed to be
subject of interestan incomplete list is given by Refs. 1910 Coulomb-like (1f) (in units of 2n=%=wy=1)
since the pioneering work by Peetasall Physically, it is
indeed interesting foN=<3, because polaron effects have
been observed in low-dimensional systethsertain physi-
cal problems have been mapped into a two-dimensi2ial _ .
polaron oné? and it has been technologically possible to Where all vectors are in NI, andp are the position and the
grow structures in which the electrons are localized in twomhomentum operators of the electra, and a, are respec-
directions. However, the meaning of the formal extension tdively the creation and annihilation operators of the LO
higher than three dimensio3D) is obscure. Therefore itis Phonons with the wave vectd,
important to study 2D and 3D polarons.

H=p2+; alaﬁ% ve(ae® " +aje N, (1)

Recently, a two-polaron bound stafieipolaron has at- | = |oN-1(N-Dr2,,
tracted much attention after the mechanism of the bipolaron ) 2 _
Bose-Einstein condensation to explain the high-temperature U= BNURE! ; (2

superconductivity HTS) was put forward by Emif® It is
known that HTS’s materials are quasi-two-dimensional, sdere vy is the ND crystal volume andr is the electron-
the bipolaron in 2D should be studied. It is necessary tgphonon coupling constant.
know the single polaron in 2D for understanding the stability ~As usual, applying the canonical transformation of Lee,
problem of the 2D bipolarons. Low, and PinegLLP) (Ref. 16 to the Hamiltonian(1) leads

In a recent pape¥ we have proposed a concise approachto
for calculating the ground-state energy of 3D polarons by
means of extended coherent states. The calculated results are |, +
in good agreement with the exact Monte Carlo ofteShe —(Q-}k: kayay
purpose of this paper is to extend the same method to the
calculation of both the ground-state energy and the effectivavhereQ is the total momentum of the polaron. It should be
mass of 2D and 3D polarons. Consequently, we derive selfkept in mind that the momentu® remains throughout this
consistent equations by which the energy of a slowly movingpaper, so that both the ground-state energy and the effective
polaron can be calculated. Moreover, we analytically calcuimass can be evaluated simultaneously.
late the ground-state energy and the effective mass expan- To solve the Hamiltonia{l) with a high accuracy, we
sions up to thex? term in the weak-coupling limit. Alterna-  will follow our previous approach as fully discussed in Ref.
tively, by solving the self-consistent equation numerically,14. In this paper, it is straightforward to take the phonon
we calculate the ground-state energy and the effective masgave function as the following extended coherent state form:
in the intermediate-coupling regime. We also compare our
method with the well known ones in the literature.

In order to study the 2D and 3D polaron in a unified way, |>=|>0+k§:‘< b(kl’kZ)aLaEzDO' (4)
we begin with the Hamiltonian of arbitrary ND polarons de- 1
rived by Peeteret al,® where the interaction between the where|), is the coherent state

2
+; alawg v(aj+ay), (3
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where the variable=cosd. By means of Eq(12), we easily

At
|>o=H e'9%¢]0), agl)o=F(a))o, (5)  obtain the ground-state energy and effective mass as
q
and b(ky,k,) is the interchanging symmetrical function of r N—1
k, andk, to be determined. The physics behind E4).hints J 2
that correlation between wave vectors of pairs of emitted E=- o TNl * (13
phonons in the field are under consideration. (E)
Inserting Eg. (4) into the Schrdinger equation
H|)=E|), neglecting &)%), and @"*), terms, and N—1
equating the coefficients of the terms |0, (a')|)o, and (_)
(a")?|), on both sides of the Schdinger equation, we have S ﬁ 2 N (14
the following three coupled equations: 4N r N '
2
— N2
E=Q +; vif(k), 6) which are just the well known results obtained by many au-

thors with different approximate schemes®!’ For later
use, we also present the average number of virtual phonons

okt (1-2Q-k+ k() +23 vib(k'K)=0, () to ordera
k/
N—-1
)

[; vif(K)—E+Q%+[2—2Q- (kg +kp) +k2+Kk3] 15

+2k1'kZJb(klka):_kl'ka(kl)f(kz)- (8

For the second iteration, inserting E4.) into the right-
If the three equations are simultaneously satisfied, the wavgand side of Eq(10) gives

function (4) will be a approximate solution to the Hamil-

tonian(1) and approximate results for the energy will then be (k)= Uk 2
obtained. _ _ ( )__1—2Q.k+k2+1—2Q~k+k2
Next, according to Eqgs(6) and (8), we find b(k4,k,)
satisfies K.k’
X2 U o K k) T (REK
bk k)= kq-kof(kq)f(ky) © K’ Q- ( )+( )
12 2_2Q'(k1+k2)+(k1+k2)2. Uk U/
Substituting Eq.(9) into Eq. (7) we get the self-consistent ><1—2Q-k+ k? 1-2Q-k’+k'?" (16)

equation obeyed by(k) According to Eq.(6), we have the energy of the moving

vk 2 polaron
M=" 150 kK2 120K+ K2 )2
E=Q* > 150 kK2
k-k'f(k)f(k") © 1-2Q-k+k?
X2 v 3 50 ke s (rk? (10
k' S 22 2k -k’
Note that iff (k) from this self-consistent equation is really +k = Uk 222Q - (k+ k') + (K+K')?
solved, by means of Ed6), we will get the polaron energy ’
of the moving polaron. Further, we can calculate its impor- 1 1
tant observables such as the ground-state energy and the ef- ><(1_2Q. k+k??1-2Q-k'+k'? (17

fective mass. Thus it remains to solve Ef0) for f(k). o ] )
For the first approximation, neglecting the second term inVe easily find that this energy is truncated to oreér for

the right-hand side of Eq10), we then have vi is proportional tor as shown in Eq(2). It is very inter-
esting to note that Eq17) is just equal to the sum of Egs.
Uk (6)—(9) in Ref. 5 derived with the fourth-order perturbation
f(k)= 1-2Q-k+k? (12) theory. Thus, a simple forril7) contains the overall infor-

_ _ _ ) mation of the fourth-order perturbation theory. In other
Inserting Eq/(11) into Eq.(6), replacing the discrete summa- yords, only the second iteration in our approach can supply
tion by a continuous integral, and integrating out all angleshe fourth-order perturbative results.
exceptd, the angle betwee® andk, the energy of the By the third iteration, we can also calculate the coeffi-
moving polaronE(Q) can be obtained as cients of thea® term in the expansions. Up to now, only the

o (1—x2)N-3)2 ground-state energy expansions of the 3D and 2D polaron up

o 1 3 . .
E(O)= z_j ko dx— 12 to the o® term have been exactly calculated by Seljugin
(@=Q 0 -1 m 1-2Qkx+k (12 et al®® and Larsel? with the sixth-order perturbation theory.
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FIG. 1. The relative difference between the present and Feyn- FIG. 2. The relative difference between the present and Feyn-
man polaron ground-state energy as a function of the coupling corman polaron effective mass as a function of the coupling constant
stanta for the dimensiondN=2,3. « for the dimensiorN=2,3.

= 3
The coefficients of the” term are 0.000 806 07 and 0.0074, 50 jations are still lacking. But we can estimate it qualita-

respectively. For comparison, in this paper, the correspond;elv by comparing the weak-counling apbroximation. It is
ing coefficients are computed to be 0.000 75909 an Y Y paning ping app '

k X onvenient to collect the ground-state energy expansions to
0.007 61.1 92, which are very close to Fhe exact S'Xth"‘-’rdef)rdera2 in the Feynman path-integral and fourth-order per-
perturbative ones. It is clear that the differences are due tQ, 1 otion theory:

the approximate wave functioi).

Generally speaking, above procedures can be carried out
step by step and we could analytically obtain the polaron ™ ) ™
ground-state energy and effective mass expansions in higher == E“_0'04569“2' EfT=— Ea_0'0639b2’
powers ofa. However, analytically calculations are obvi- (18)
ously rather complicated for further iterations.

On the other hand, it is possible to solve the self-for 2D polaroné! and
consistent Eq(10) accurately by the numerical method, be-
cause above iteration procedures are easily performed on a . 5 3D )
computer for sufficient times. Therefore, we can numerically ~EfF = —a—0.01234%7 Epy,=—a—0.01591967,
obtain these polaron observables as a functiom of the (19
intermediate-coupling regime. The numerical results for the
ground-state energy and effective mass of 2D and 3D pofor 3D polarons:®?®Usually, the known fourth-order pertur-
larons are displayed in Figs. 1 and 2. bative results are referred to as the exact ones in the weak-

To test the validity and effectiveness of our approach incoupling limit. According to Eqs(24) and (25), it is easily
this regime, we will compare the present results with thefound that the difference between the exact and Feynman
elegant Feynman path-integral orf8s? energy is 0.0183%(0.0035%2) for 2D(3D) polarons. It is

In Fig. 1, we plot the relative difference between our re-clear that, in the intermediate-coupling regime, the relative
sults and the Feynman ones for the polaron ground-state edifference between the exact and Feynman ones in 2D is
ergy (E—Eg)/Eg as a function of the coupling constant. It is larger than in 3D. Therefore, although our results for the
shown that, for 30(2D) polarons, our results are lower than ground-state energy in 2D polarons are less than Feynman
the Feynman ones by around 2% for « interval [0,6]  ones by a larger percentage, it is still possible that our results
([0,3)). As the coupling constant increases further, our result§or the ground-state energy are closer to the unknown exact
deviate from the Feynman ones more and more. It seems thegsults than Feynman ones, like in 3D polarons.
the relative difference between our results and Feynman ones The relative difference between our results and Feynman
is a bit larger in 2D than in 3D. ones for the effective massn¢ —m¢)/mg as the coupling

We would like to point out that our approach is not aconstant is displayed in Fig. 2. We see that, for both 3D and
variational one, so the obtained ground-state energy is n@D polarons, our results in the weak-coupling regime are
the upper bound to the exact result. Fortunately, for 3D potower than the Feynman ones by the very small percentage.
larons, it is recalled from Ref. 14 that our results for theAs the coupling constant increases, the present results be-
ground-state energy are in excellent agreement with the resome larger than the Feynman ones.
cent exact Monte Carlo calculations up d&=6. As for 2D It is found that in the weak-coupling regime the exact
polarons, we do not know the magnitude of the relative dif-results are really lower than the Feynman ones, as proven in
ference between the exact and Feynman results in thihe following weak-coupling expansions in the Feynman and
intermediate-coupling regime, since the corresponding exadourth-order perturbation theory:
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T T number of virtual phonons of the 2D polaron is larger than

mE#P=1+ §a+0-137112? mtg=1+ gt 0.1272, that of the 3D polaron for a fixed coupling constantPhysi-

(20) cally, our approach, where only correlations between wave
vectors of pairs of emitted phonons in the field are taken into
account, is not suited to the polaron problem with a very
large phonon number. Qualitatively, this is just that case as
shown in Figs. 1 and 2.

%3D 1 5 In summary, we have studied 2D and 3D polarons with

Mprs =1+ sa+0.02362767, (22) extended coherent states. In the weak-coupling limit, the ob-

for 3D polarons’® It follows that our results in the weak- tained expansions of some observables are very close to the

coupling regime are perhaps closer to the exact ones. Waixth-order perturbative ones and cover the fourth-order per-
would mention that the present results for the effective masurbative ones. It is implied that we have completely calcu-
in 3D do not agree with the Monte Carlo restittso well as  lated the contributions from all Feynman diagrams in the
for the ground-state energy in the intermediate-coupling refourth-order perturbation theory by the second iteration, and
gime. In our opinion, the obtained exact results for the effecevaluated for the most part the contributions from the Feyn-
tive mass in the Monte Carlo calculatidnshould be re- man diagrams in the sixth-order perturbation theory by the
stricted to the weak-coupling regime due to the insufficienthird iteration. Moreover, the numerical results for the

convergence in the intermediate-coupling regime. It is likelyground-state energy and effective mass as a functioa of

that the _effect'ive mass is a sensitive qu'antity to calculateagree with the well known Feynman path-integral results,
stochastically in the Monte Carlo calculatlon,_ co_ntrary to thegq perhaps are closer to the exact results in the
ground-state energy. Alternatively, the convincing exact réjniermediate-coupling regime, which again underlines the ef-

Zlijflfiufl?rt ozza[;/()ltﬁ;?n\?v hai(r:?] les)grcl)?cﬁngaﬁpshopagvzh eS%;tttLSrfectiveness of our approach in polaron physics. Finally, we
X . Id like t int out that hi h helpful
results for the effective mass, unlike for the ground-stat would like to point out that our approach is perhaps helpfu

energy. Anyway, in both 3D and 2D polarons, our results fo‘ret0 other polaronlike problems.

the effective mass agree with the Feynman ones to some This work was partially supported by the Centre for Re-
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mEP=1+ La+0.0246917;
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