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The properties of two- and three-dimensional polarons are investigated with the use of extended coherent
states. In the weak-coupling limit, the obtained expansions for the ground-state energy and effective mass to
the second order in the coupling constanta are the same as the previous exact ones. Moreover, in the
intermediate-coupling regime, the numerical results for the ground-state energy and effective mass agree with
the results by the Feynman path-integral method, and perhaps closer to the exact results than the Feynman
ones. It is suggested that the present approach should be an effective one in polaron physics.

The arbitraryN-dimensional~ND! polaron has been a
subject of interest~an incomplete list is given by Refs. 1–10!
since the pioneering work by Peeterset al.1 Physically, it is
indeed interesting forN<3, because polaron effects have
been observed in low-dimensional systems,11 certain physi-
cal problems have been mapped into a two-dimensional~2D!
polaron one,12 and it has been technologically possible to
grow structures in which the electrons are localized in two
directions. However, the meaning of the formal extension to
higher than three dimensions~3D! is obscure. Therefore it is
important to study 2D and 3D polarons.

Recently, a two-polaron bound state~bipolaron! has at-
tracted much attention after the mechanism of the bipolaron
Bose-Einstein condensation to explain the high-temperature
superconductivity~HTS! was put forward by Emin.13 It is
known that HTS’s materials are quasi-two-dimensional, so
the bipolaron in 2D should be studied. It is necessary to
know the single polaron in 2D for understanding the stability
problem of the 2D bipolarons.

In a recent paper,14 we have proposed a concise approach
for calculating the ground-state energy of 3D polarons by
means of extended coherent states. The calculated results are
in good agreement with the exact Monte Carlo ones.15 The
purpose of this paper is to extend the same method to the
calculation of both the ground-state energy and the effective
mass of 2D and 3D polarons. Consequently, we derive self-
consistent equations by which the energy of a slowly moving
polaron can be calculated. Moreover, we analytically calcu-
late the ground-state energy and the effective mass expan-
sions up to thea2 term in the weak-coupling limit. Alterna-
tively, by solving the self-consistent equation numerically,
we calculate the ground-state energy and the effective mass
in the intermediate-coupling regime. We also compare our
method with the well known ones in the literature.

In order to study the 2D and 3D polaron in a unified way,
we begin with the Hamiltonian of arbitrary ND polarons de-
rived by Peeterset al.,1 where the interaction between the

electron and the lattice polarization is assumed to be
Coulomb-like (1/r ) ~in units of 2m5\5v051)
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where all vectors are in ND,r andp are the position and the
momentum operators of the electron,ak
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here nN is the ND crystal volume anda is the electron-
phonon coupling constant.

As usual, applying the canonical transformation of Lee,
Low, and Pines~LLP! ~Ref. 16! to the Hamiltonian~1! leads
to
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whereQ is the total momentum of the polaron. It should be
kept in mind that the momentumQ remains throughout this
paper, so that both the ground-state energy and the effective
mass can be evaluated simultaneously.

To solve the Hamiltonian~1! with a high accuracy, we
will follow our previous approach as fully discussed in Ref.
14. In this paper, it is straightforward to take the phonon
wave function as the following extended coherent state form:

u&5u&01 (
k1 ,k2

b~k1 ,k2!ak1
† ak2

† u&0 , ~4!

whereu&0 is the coherent state
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and b(k1 ,k2) is the interchanging symmetrical function of
k1 andk2 to be determined. The physics behind Eq.~4! hints
that correlation between wave vectors of pairs of emitted
phonons in the field are under consideration.

Inserting Eq. ~4! into the Schro¨dinger equation
Hu&5Eu&, neglecting (a†)3u&0 and (a†)4u&0 terms, and
equating the coefficients of the terms ofu&0 , (a†)u&0 , and
(a†)2u&0 on both sides of the Schro¨dinger equation, we have
the following three coupled equations:

E5Q21(
k
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If the three equations are simultaneously satisfied, the wave
function ~4! will be a approximate solution to the Hamil-
tonian~1! and approximate results for the energy will then be
obtained.

Next, according to Eqs.~6! and ~8!, we find b(k1 ,k2)
satisfies

b~k1 ,k2!52
k1•k2f ~k1! f ~k2!

222Q•~k11k2!1~k11k2!
2 . ~9!

Substituting Eq.~9! into Eq. ~7! we get the self-consistent
equation obeyed byf (k)

f ~k!52
vk

122Q•k1k2
1

2

122Q•k1k2

3(
k8

vk8
k•k8 f ~k! f ~k8!

222Q•~k1k8!1~k1k8!2
. ~10!

Note that if f (k) from this self-consistent equation is really
solved, by means of Eq.~6!, we will get the polaron energy
of the moving polaron. Further, we can calculate its impor-
tant observables such as the ground-state energy and the ef-
fective mass. Thus it remains to solve Eq.~10! for f (k).

For the first approximation, neglecting the second term in
the right-hand side of Eq.~10!, we then have

f ~k!5
vk

122Q•k1k2
. ~11!

Inserting Eq.~11! into Eq.~6!, replacing the discrete summa-
tion by a continuous integral, and integrating out all angles
exceptu, the angle betweenQ and k, the energy of the
moving polaronE(Q) can be obtained as

E~Q!5Q22E
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where the variablex5cosu. By means of Eq.~12!, we easily
obtain the ground-state energy and effective mass as
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which are just the well known results obtained by many au-
thors with different approximate schemes.1–10,17 For later
use, we also present the average number of virtual phonons
to ordera
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For the second iteration, inserting Eq.~11! into the right-
hand side of Eq.~10! gives
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According to Eq.~6!, we have the energy of the moving
polaron
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We easily find that this energy is truncated to ordera2, for
vk
2 is proportional toa as shown in Eq.~2!. It is very inter-

esting to note that Eq.~17! is just equal to the sum of Eqs.
~6!–~9! in Ref. 5 derived with the fourth-order perturbation
theory. Thus, a simple form~17! contains the overall infor-
mation of the fourth-order perturbation theory. In other
words, only the second iteration in our approach can supply
the fourth-order perturbative results.

By the third iteration, we can also calculate the coeffi-
cients of thea3 term in the expansions. Up to now, only the
ground-state energy expansions of the 3D and 2D polaron up
to the a3 term have been exactly calculated by Seljugin
et al.18 and Larsen19 with the sixth-order perturbation theory.
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The coefficients of thea3 term are 0.000 806 07 and 0.0074,
respectively. For comparison, in this paper, the correspond-
ing coefficients are computed to be 0.000 759 09 and
0.007 611 92, which are very close to the exact sixth-order
perturbative ones. It is clear that the differences are due to
the approximate wave function~4!.

Generally speaking, above procedures can be carried out
step by step and we could analytically obtain the polaron
ground-state energy and effective mass expansions in higher
powers ofa. However, analytically calculations are obvi-
ously rather complicated for further iterations.

On the other hand, it is possible to solve the self-
consistent Eq.~10! accurately by the numerical method, be-
cause above iteration procedures are easily performed on a
computer for sufficient times. Therefore, we can numerically
obtain these polaron observables as a function ofa in the
intermediate-coupling regime. The numerical results for the
ground-state energy and effective mass of 2D and 3D po-
larons are displayed in Figs. 1 and 2.

To test the validity and effectiveness of our approach in
this regime, we will compare the present results with the
elegant Feynman path-integral ones.20–22

In Fig. 1, we plot the relative difference between our re-
sults and the Feynman ones for the polaron ground-state en-
ergy (E2EF)/EF as a function of the coupling constant. It is
shown that, for 3D~2D! polarons, our results are lower than
the Feynman ones by around 2%~4%! for a interval @0,6#
~@0,3#!. As the coupling constant increases further, our results
deviate from the Feynman ones more and more. It seems that
the relative difference between our results and Feynman ones
is a bit larger in 2D than in 3D.

We would like to point out that our approach is not a
variational one, so the obtained ground-state energy is not
the upper bound to the exact result. Fortunately, for 3D po-
larons, it is recalled from Ref. 14 that our results for the
ground-state energy are in excellent agreement with the re-
cent exact Monte Carlo calculations up toa56. As for 2D
polarons, we do not know the magnitude of the relative dif-
ference between the exact and Feynman results in the
intermediate-coupling regime, since the corresponding exact

calculations are still lacking. But we can estimate it qualita-
tively by comparing the weak-coupling approximation. It is
convenient to collect the ground-state energy expansions to
ordera2 in the Feynman path-integral and fourth-order per-
turbation theory:

EF
2D52

p

2
a20.04569a2; EPT4

2D 52
p

2
a20.06397a2,

~18!

for 2D polarons21 and

EF
3D52a20.012347a2; EPT4

3D 52a20.0159196a2,
~19!

for 3D polarons.10,23Usually, the known fourth-order pertur-
bative results are referred to as the exact ones in the weak-
coupling limit. According to Eqs.~24! and ~25!, it is easily
found that the difference between the exact and Feynman
energy is 0.0183a2(0.00357a2) for 2D~3D! polarons. It is
clear that, in the intermediate-coupling regime, the relative
difference between the exact and Feynman ones in 2D is
larger than in 3D. Therefore, although our results for the
ground-state energy in 2D polarons are less than Feynman
ones by a larger percentage, it is still possible that our results
for the ground-state energy are closer to the unknown exact
results than Feynman ones, like in 3D polarons.

The relative difference between our results and Feynman
ones for the effective mass (m*2mF* )/mF* as the coupling
constant is displayed in Fig. 2. We see that, for both 3D and
2D polarons, our results in the weak-coupling regime are
lower than the Feynman ones by the very small percentage.
As the coupling constant increases, the present results be-
come larger than the Feynman ones.

It is found that in the weak-coupling regime the exact
results are really lower than the Feynman ones, as proven in
the following weak-coupling expansions in the Feynman and
fourth-order perturbation theory:

FIG. 1. The relative difference between the present and Feyn-
man polaron ground-state energy as a function of the coupling con-
stanta for the dimensionsN52,3.

FIG. 2. The relative difference between the present and Feyn-
man polaron effective mass as a function of the coupling constant
a for the dimensionN52,3.
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for 2D polarons22 and

mF*
3D511 1

6a10.024691a2;

mPT4* 3D511 1
6a10.0236276a2, ~21!

for 3D polarons.24 It follows that our results in the weak-
coupling regime are perhaps closer to the exact ones. We
would mention that the present results for the effective mass
in 3D do not agree with the Monte Carlo results15 so well as
for the ground-state energy in the intermediate-coupling re-
gime. In our opinion, the obtained exact results for the effec-
tive mass in the Monte Carlo calculation15 should be re-
stricted to the weak-coupling regime due to the insufficient
convergence in the intermediate-coupling regime. It is likely
that the effective mass is a sensitive quantity to calculated
stochastically in the Monte Carlo calculation, contrary to the
ground-state energy. Alternatively, the convincing exact re-
sults for 2D polarons are also lacking up to now. So it is
difficult to say that which approach can supply the better
results for the effective mass, unlike for the ground-state
energy. Anyway, in both 3D and 2D polarons, our results for
the effective mass agree with the Feynman ones to some
degree for a finite coupling range, as indicated in Fig. 2.

Finally, as expected from Figs. 1 and 2, the valid range of
our approach for the 3D polaron is wider than for the 2D
polaron. According to Eq.~15!, we can see that the average

number of virtual phonons of the 2D polaron is larger than
that of the 3D polaron for a fixed coupling constanta. Physi-
cally, our approach, where only correlations between wave
vectors of pairs of emitted phonons in the field are taken into
account, is not suited to the polaron problem with a very
large phonon number. Qualitatively, this is just that case as
shown in Figs. 1 and 2.

In summary, we have studied 2D and 3D polarons with
extended coherent states. In the weak-coupling limit, the ob-
tained expansions of some observables are very close to the
sixth-order perturbative ones and cover the fourth-order per-
turbative ones. It is implied that we have completely calcu-
lated the contributions from all Feynman diagrams in the
fourth-order perturbation theory by the second iteration, and
evaluated for the most part the contributions from the Feyn-
man diagrams in the sixth-order perturbation theory by the
third iteration. Moreover, the numerical results for the
ground-state energy and effective mass as a function ofa
agree with the well known Feynman path-integral results,
and perhaps are closer to the exact results in the
intermediate-coupling regime, which again underlines the ef-
fectiveness of our approach in polaron physics. Finally, we
would like to point out that our approach is perhaps helpful
to other polaronlike problems.
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