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Data evaluation technique for electron-tunneling spectroscopy
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A systematic study of local-density-of-statd<DOS) deconvolution from tip-surface tunneling spectra is
reported. The one-dimensional WKB approximation is used to simulate the process. A technique for DOS
deconvolution from the electron-tunneling spectroscopy data is proposed. The differential conductivity nor-
malized to its fit to the tunneling probability function is used as a method of recovering sample DOS. This
explicit procedure does not use unconstrained parameters and reveals a better DOS deconvolution in compatri-
son with other techniques. The advantage of this method is its feasibility for extracting two important physical
parameters from experimental tunneling spediaocal surface potential, an@) tip-sample distance. These
values are the parameters used in the proposed fitting procedure. The local surface potential and the tip-sample
distance retrieval are demonstrated by means of numerical simulations. Comparative scanning tunneling spec-
troscopy is proposed as an approach to eliminate the influence of the tip condition on the surface LDOS
recovery.

[. INTRODUCTION was shown, by numerical simulation, that the approximation
employed by Sellonét al# is in reasonable agreement with
The first observation of the spectral density of electronicthe “exact” solution obtained by three-dimensional many-
states in metal-oxide-superconductor tunneling experimentsody transfer-Hamiltonian calculations. To the best of the
was made by GiaverThis work led to a reexamination of author's knowledge, this is the only case when the method of
the one-electron theory of tunneling that has dominated th&unneling current calculation widely employed today in STM
field for more than 30 yearsThe new many-body transfer- and STS with spatial resolution was confirmed by accurate
Hamiltonian approach in tunneling current calculation wastheoretical calculation.
pioneered by Bardeérand developed by Cohen, Falicov, The first experimental observation of the spectral density
and Phillips? Duke, Silverstein, and BennéttAppelbaum  of sample electronic states by STM is due to Sellenal 14
and Brinkmarf, Caroli et al,” and many other®.This for-  The first derivative of tunneling current over tip-sample volt-
malism is used today, in most applications of the tunnelingage or differential conductivitydl/dV, was used as a mea-
theory. sure of the DOS for graphite. Two issues were left unsolved.
The invention of scanning tunneling microscof§TM)  These are the influence of tip DOS and the effect of the
by Binnig, Rohrer, Gerber, and WeiBestimulated addi- tunneling transmission probability on the observed depen-
tional interest in the theory of tunneling. Using the transfer-dence of the tunneling current on tip-sample voltage.
Hamiltonian formalisn?, three-dimensional tunneling in the Stroscio, Feenstra, and F&iproposed an effective solu-
STM was studied by Tersoff and HamatfhGarcia, Ocal, tion for the later problem. It was found that, by normaliza-
and Flores! Feuchtwang, Cutler, and Miskovsk§,and tion of the differential conductivity by the total conductivity,
Lang?!® one can effectively remove the dependence of the tunneling
With the advent of STM, a scanning tunneling spectros-current on the tip-sample distance. The result \gaalita-
copy (STS with atomic spatial resolution became possible.tively generalized and it was concluded that this normaliza-
The theory of STS was considered by Feuchwang, Cutlettion procedure will cancel out both tip-sample distance and
and Miskovsky'? Selloni et al,}* and Lang® It was con- tip-sample voltage dependencies of the tunneling transmis-
cluded that, in the general case of three-dimensional tunnekion probability in the differential conductivity. It was
ing, currentcannot be calculateds a simple convolution of claimed that thel/dV)/(1/V) function is “a relatively di-
sample densities of staté®0S) and tip DOS with the “ef-  rect measure of the surface DO This conclusion was
fective matrix element for tunneling.” The simple relation confirmed by Lan{ in three-dimensional transfer-
between sample DOS and tunneling current can be obtainddamiltonian numerical calculations for tunneling between
in the one-dimensionaand semiclassical Wentzel, Kramers, Na and Ca single atoms positioned on infinite planar metal
and Brillouin (WKB) approximation only. electrodes. The normalization technique was also justified by
Selloniet al!* qualitativelygeneralized the model of Ter- Hamerst® Simmon’s formula¥’ (WKB approximation and
soff and Hamant for modest tip-sample voltages and, de- constant DOS for the tip were used to simulate the tunneling
spite the problem emphasized by Feuchtwang, Cutler, andurrent dependence on the tip-sample voltage. The recovered
Miskovsky? suggested convolution of sample DOS and tun-(d1/dV)/(1/V) function has shown qualitative agreement
neling transmission probability for a crude estimation of thewith the input sample DOS. It is worthwhile to note that in
tunneling current. This assumption was justified later bythis casé® less correspondence can be found between input
Lang' in the specific case of tunneling between Na and Caand output sample densities of states in comparison with the
single atoms placed on infinite planar metal electrodes. Itexact” simulation done by Lang? It is also important that
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in both calculations'8 metal-like sample DOS were used. Another benefit of the method of DOS deconvolution is
Stroscio, Feenstra, and F&irexperimentally tested the the proposed comparative scanning tunneling spectroscopy
influence of the tungsten tip DOS on the deconvolutedCSTS. As shown below, the CSTS virtually eliminates the
sample density of states. The DOS of a Ni sample, deconvdnfluence of the tip on the recovered spectra of the surface
luted by the ¢i1/dV)/(1/V) technique, shows no tip-related €lectronic states. _ _
features. This result contradicts the recently published field- The fundamental problem of tip-sample spectroscopy is
emission electron spectroscopy data of Betral,?? which  the fact that the tunneling current measured by the STM is a
showed highly structured DOS for tungsten tips with singleconvolution of the sample DOS with the unknown tip density
atom protrusions. To some degree the observation of Stro&f eIectroznc states. As was shown by Criffith and
cio, Feenstra, and Féthis also inconsistent with numerical Kochansk%' and conﬁrm_ed in this paper, changes in tip DOS
calculations due to Lantf:'5 which showed clearly the in- MUSt dominate at negative sample kisse also Refs. 17, 18,
fluence of the tip DOS on the deconvolution result. Howeverand 23. To d|m|n|sh_the influence of the empty tip DOS on
the method developed by Stroscio, Feenstra, and-Eeias the recovery of the filled sample DOS, the auth(_)r suggests to
tested extensively in many exper}ments an'd demonstraté alyze thalifferenceof the deconvoluted densities of states

reasonable agreement with other experimental and theoreti- tained W't.h the same tip, rather.t.han the |nd_|V|duaI D.OS
cal datat’-18:21 itself. STM images are very sensitive to the tip condition

The method of DOS deconvolution was modified for mea-and' hence, this condition can be precisely monitored.

surements on semiconductor surfates Both the differen-
tial and the total conductivities vanish inside the band gapll. BASICS OF ELECTRON-TUNNELING SPECTROSCOPY

Therefore, the 1/dV)/(1/V) function cannot be properly The theory of electron-tunneling spectroscopy has been

determined. Metensson and Feenstfgroposed an empiri- . ) 2
cal solution of the problem. The italp conductancs Wasdlscqssed In many publ|(_:at|oﬁs*?'lz’l“'lf’l'herefore, the goal
broadened by one-pole Fourier low-pass filtering with theof this section is to provide a short summary of the theory.
pole frequency given b ! (see Ref. 22 and Sec. IIl A for
more detall. If the A is larger than band gap, the broadened A. Methods of tunneling current calculation
conductivity becomes then nonzero inside the gap. The thg tynneling current between two weakly bounded elec-
broadened/V provides a more meaningful approximation to . qes using first-order perturbation theor§ 12
the tunneling transmission probability, which is nonz&ro.

Feenstr® has proposed several other empirical modifica- ome
tions of the normalization procedure with the ultimate goal |(S V)= —— 2 M, §|28(E,—EQ[f(E,—eV)—f(Eg)],
of improving the correspondence between an expected tun- A1 '
neling transmission probability and the modified total con- (€
ductivity (for detalls, see, Sec. Il A Finally, Feenstra was
able to obtain reproducible and reliable electronic spectra
l1I-V semiconductors® However, with all these empirical
adjustments, it is increasingly difficult to keep explicit the

fundamental meaning of the normalization procedure, a . ; ;
e : of statesy; and s, respectively, in the absence of tunneling.
well as to justify its ultimate accuracy. X s . .
Both energies are referenced to the surface Fermi level. Posi-

In this paper, a technique for DOS deconvolution fromt. t indicat lectron t ling f 6D t f
electron-tunneling spectroscopy data is introduced. To rell Ve current indicates electron tunnéling from up 1o surtace.
The tunneling matrix element can be calculated as fol-

cover the sample and/or tip DOS, one may usedifferen- )
tial conductivity normalized by its fit to the tunneling prob- lows, using the method of Bardeén
ability function The one-dimensional and semiclassical 52
WKB approximation was used to model electron tunneling __ + _ +
between the STM tip and the sample. As shown by simula- Mis=~2m J (Y Vibs— hsV g )dA, 2
tions, in all studied cases, this technique reveals better de-
convolution of the input DOS in comparison with any exist- where the integral is calculated over an arbitrary surface ly-
ing technique?® This procedure does not use unconstrainedng entirely within the vacuum region separating the tip and
parameters, except the analytical form of the tunneling probthe surface.
ability function. Since one should employ the same tunneling In the semiclassical WKB approximation, tidensity of
model to justify any other DOS deconvolution technique, thethe tunneling current between two planar electrodes can be
suggested procedure is more constrained and certainly mogxpressed in the following forf!®*2
explicit than others.

The advantage of this method is the feasibility of extract- 2me [ h? o
ing two important physical parameters from experimental J(S’V)ET (ﬁ) jﬁxT(S,V,E)[f(E—eV)
tunneling spectraf(i) “local work function,” and (ii) tip-
sample distance. These parameters are used in the proposed —f(E)]ps(E)pi(E—eV)dE, 3
fitting of the differential conductivity by the tunneling prob-
ability function. The local surface potential or “local work whereT(S,V,E) is the tunneling transmission probabilfty,
function” and the tip-sample distance retrieval is probed byps(E) and p,(E) are the surface and tip densities of elec-
means of numerical simulation. tronic states, respectively. In this simplified expression,

\fvhereV is the sample bias with respect to the tipjs the
ol . ) : .
tip-surface separatioriyl, s is the tunneling matrix element
between stateg; of the tip andyy of the surfacef(E) is the
germi-Dirac distribution functionk; andE, are the energies
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the dependence of the tunneling probability on the momening spectroscopy with spatial resolutidht>1"1821 These
tum of the tunneling electron is ignored. equations were obtained for the weakly bounded electrodes

The tunneling transmission probability for a trapezoidalin the one-dimensional and semiclassical WKB approxima-
barrier can be estimated in the WKB approximatiof4s tion in the limit of the low surface temperature and with a
1o strong preference for tunneling from electronic states with

k,~0. These equation®), (6) and, hence, these approxima-

]’ tions will be used in the following sections to simulate nu-
merically the tunneling current dependency on tip-sample
voltage and to test the quality of DOS deconvolution by
different techniques.

2m| — eV
T(S,V,E)zexp{—zs(ﬁ ®+7—(E—E|)}

where® =(d,+ d)/2 is the average of samptkg and tip
®, work functions,E,=#%2k/2m is the component of elec-
tron energy parallel to the junction interface, akdis the
corresponding electron momentum. B. Influence of tip condition on DOS deconvolution

The tunneling probability is a strong function of the par- 14 geconvolute the sample DOS, the first derivative of the
allel component of the energly,. At each particular total tunneling current, with respect to tip-sample voltétye dif-
energy E, the DOS with a zerce, component is heavily  ferential conductivity, is usually analyzed:
weighted by the tunneling probability in E(B). Therefore,
p<(E) and p,(E) may be approximated by the surface anddI(S,V)

the tip densities of electronic states wiki=0."® This ap- =A

eT(S,\V,E)ps(E)p(E—eV)

proximation may in part be a justification for ignoring the dv E=eVv
tunneling electron momentum in E(B). eV dp(E—eV)
One can simplify Eq.(3) at low surface temperature, +J’ T(S,V,E)py(E) —————dE
kgT<eV (kg is Boltzmann’s constajpt by using the step 0 dv
function instead of the Fermi-Dirac distribution function. ev dT(S,V,E)
The density of the tunneling current is then +f T pS(E)pt(E—eV)dE}, )
0

2

2 rev
J(S,V)= 7 (ﬁ) f T(S,\V,E)ps(E)p(E—eV)dE. whereA is a proportionality coefficient related to the effec-
0 ) tive tip-surface contact area. The second and third terms are
usually neglected assuming constant tip DOS and minor

AssumingE;~0 for the electronic states, which influence changes in tunneling transmission probability at small tip-
the tunneling current, the transmission probability can besample biase¥''"'® These simplifications help to explain
written in the following form: the basic principle of tunneling spectroscopy, but may lead

to qualitatively wrong conclusions. To illustrate this state-
12 ment, one may express the differential conductiyityin the
®  form symmetric with respect to the tip and the surface den-
sities of states. One can accomplish this by substituting
Expressions similar td5), (6) were employed in most ¢=(E—eV/2) in Egs.(5) and(6). Then the differential con-
cases in an attempt to describe semiquantitatively the tunnettuctivity is

3+ev E
2

2m
T(S,V,E)sexp[ - 28[?

di(S\v) Ae|_, )
v =% [T (s,§>ps(§+ew2>pt(§—ew2)’ +T'(S,6)ps(£+eVI2) p(£—eVI2)
E=eVi2 E=—eVi2
evi2 dp(é+eVi2 ev/2 d —eV/2
+f T'(S,6) Lpt(f—GV/Z)d&—f T'(S,)ps({+eVi2) dede—eVi2) ) dé|, (8
evi2 d¢ —eVi2 dé
|
where T'(S,eVI2)>T'(S,—eVI2). In this case, the differential

conductivity can be crudely estimated as

m — 1/2
T’(S,g)ET(S,V,E)=exp{—28(77—(CI>—§)> 9 di(SV) eA_

—av =7 1(SeVi2)[p(eV)pi(0)+Aps(eV)pi(0)
is the appropriate presentation of the tunneling transmission
probability (6). —p(eV)Ap,(0)], (10)

Equation(8) is symmetric with respect to the surface and ° ‘
tip DOS. TheT'(S,eV/2) is a probability of tunneling to or whereApg(eV) and Ap,(0) are effective changes in surface
from the tip Fermi level and th&' (S,—eV/2) is a probabil- and tip DOS, respectively, in the proximity af=eV/2,
ity of tunneling to or from the sample Fermi level. As shown where the tunneling probabilit§’ (S,£) is close to its maxi-
in Fig. 1, at positiveV (sample bias with respect to Jip mum valueT’(S,eV/2). It will be shown by numerical simu-
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biases(11). Therefore, the sample density of occupied elec-
tronic states has a higher chance of revealing itself at nega-
; tive tip-sample voltages, despite the tunneling probability
2.0x107 |- O T(SeVi2) - vanishing[cf. Egs.(8) and(11)]. This effect will be demon-

O T(s-evi2) strated by numerical simulations in Sec. IV.

oconst

——— boonst/V Ill. SURFACE AND TIP DOS RECOVERY BY
NORMALIZATION TO TUNNELING PROBABILITY

1.5x107
The simplified equationg10), (11) show clearly the
method of DOS deconvolution by using the differential con-
ductivity. The best one can do is to normalize thiédV to
T(S,eV/2) at positive sample bias and T (S,—eV/2) at
= negative sample bias. Then the normalized differential con-
ductivity will be proportional to the sampl@.0) or to the tip
(11) DOS. As also seen from Egdl0), (11), one may expect
an influence of the first derivatives of the corresponding
DOS on the recovered spectra. Nevertheless, all existing
i methods of DOS recovery from the tunneling spectroscopy
data ultimately use this approath'®2! The difference be-
tween various techniques is in the different methods of re-
covering the tunneling transmission probability.

T

1.0x107

Tunneling Transmission Probability

5.0x10°

0 - T - A. Methods based on total conductivity utilization

As was found empirically in many practical
1 | n I I : . cases>17182the total tunneling conductivityl/V, follows
-3 -2 -1 0 1 2 3 reasonably well the desired normalization function. To verify
Tip-Sample Bias (V) the idea one may analyze the simplest case of constant tip
and surface DOSp4(¢)=p;(&€)=1. Using (5), (6) and (8),
FIG. 1. Dependence of tunneling transmission probability on(9) 0ne can obtain algebraic expressions for the total and the
sample bias with respect to tip. The solid line is the differential differential conductivity, respectively.
conductivity at constant tip and surface D@&,,). The dashed The total tunneling conductivity at the constant tip and
line is the[l cons(S,v)/v ] function. Circles and squares are the prob- surface DOS is
abilities of tunneling from or to tip and sample Fermi levels, respec-

tively. The equation$9), (12), (13) and valuesA=1,B=12 eV *?, 2A , — eV\12
<I>=g ev, e=ql are used in the simulation. lcons( S,V)/V= VB2 [T (S,eVi2) 1+B| &- 7)
lation that the second and the third terms of Ek)) do not , — eV|'?
vanish. At negative tip-sample voltagel’(S,—eV/2) ~T(S,—eVi2) 1+B| o+ = :
>T'(S,eV/2), the differential conductivity can be estimated (12
in a similar fashion:
whereB=2S(2m/#?)2is the coefficient proportional to the
di(S\V) eA_, tip-surface distanc& andA is the coefficient related to the
av = 1 (S—eVi2)[ps0)p(—eV) tip-surface effective contact argef. Eq. (7)].

The differential conductivity at constant tip and surface
+Aps(0)pi(—eV)—ps(0)Ap(—eV)]. (1) DOS is

Equation(11) conclusively demonstrates that the differen- _ dlgonsfS,V)
tial conductivity at negative sample biases is proportional to Teonst S, V) = dv
the tip density of nonoccupied electronic states, rather than
to the surface DOS. The differential conductivity is propor-
tional to the surface DOS at positive biases drily. (10)].
This problem was discussed qualitatively by Feenstra
et al"?®and Hamer¥ and the conclusion has been proven The above functior(13) appears to be an ideal one for
by a numerical simulation by Griffith and Kochangkiln DOS recovery. Indeed, at positive as well as at negative
Sec. IV, a possible solution of the problem will be consid-sample biases, it follows closely the appropriate tunneling
ered. probability (see Fig. 1 A technique of DOS recovery based
It is worthwhile to mention here the specifics of sampleon this idea will be discussed in the next section.
DOS recovery for semiconductors with the Fermi level lo- As shown in Fig. 1, the total tunneling conductivity at
cated in the band gap. In this cagg(0)=Ap(0)=0, and constant tip and surface DOB,.s(S,V)/V], does not fol-
the influence of the tip DOS is reduced at negative sampléow the tunneling transmission probability or the correspond-

eA
= [T'(SeV2+T'(S—eVi2)]. (13
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FIG. 2. (a) Approximation of tunneling transmission probability by various functions. The solid line is the fit of the differential
conductivity at constant tip and surface DQS,,s) by the tunneling probability functionR). The dashed line is the total conductivity. The
dotted line is the modified total conductivity at the constant tip-sample separation. The eq@tiéhls (13), (14) and valueA=1,B=12

eV 2 d=3eV,e=1,A=1eV,a=2.16 eV * are used in the simulatiotb) Comparison of different DOS deconvolution techniques. The

solid line is the tunneling probability function normalization. The dashed line is the total conductivity normalization. The dotted line is the
normalization to the modified total conductivity at a constant tip-sample separation. Dash-dot line is the normalization to the modified total
conductivity at variable tip-sample separatidtef. 23. The equationg5), (6), (14), (16) and values, the same as f@, are used in the

simulation.
ing differential conductivity,o.,ns(S,V). Hence, normaliza- with constant value equal to the value of current at the larg-
tion of the differential conductivity to the total conductivity est measured voltagéhe extension should be done sepa-
will not recover the constant input DOB4(&)=p(§)=1. rately for positive and negative voltage$or constant tip-
Significant deviation from ther.,,s(S,V) was also ob- sample separation spectroscopy, it would be more
appropriate to extend thevs V dependence by its exponen-

tained for the modified total conductiviffFig. 2(a)]. In this
case, double exponential weighting of the broadened and exial fit. Therefore, this technique was used to extend the tun-

tended total conductivity was used to approximate the tunneling current beyond the voltage limits used in thes V
simulations at constant tip-sample separation.

neling transmission probability?3
With large enoughA the integral itself[Eq. (14)] is a
T(SV)IV= exp(a|V|)fw 1(S,6) exr{ |ev— §|) smooth function of the tip-sample voltage. Therefore, the
' R A modified total conductivity14) is very sensitive to the value
of parametera and, virtually, resembles the fit function

X exp(—al¢|)d¢, (14 exp@|V]).
Anyhow, both the procedures used today for the STS data

wherea is the best parameter obtained during thes,V)| X ; ) ;
fitting by the exponential function exa[V|) and A is the gva!ua_ltlon ?t conitant tlp-slample Sgpg:gtlo? ShQW pr|ous
broadening width. In all simulationA=1 eV was used. 2ewatgns rom :I € tunnell_ngt_ pro ?téltyd_fl;nctlot_EFllg.
Tunneling current versus voltage is always known in a (a)]_. ~—onsequently, normalization ot the ditierential con-
ductivity to these functions should lead to systematic errors

limited voltage range. Hence, to avoid decay of the convo-, " .
luted total conductivity in the proximity of the limits, one during DOS recoveryFig. 2b)]. . . .
should somehow extend the values of the tunneling current To _S|mulate the DOS. recovery in case of STS with vari-
or total conductivity far beyond the limits of the voltage dble tip-sample separation, one should use
range. For variable tip-sample separation tunneling spectros-

S=Sy+alV|, (15

copy, Feenstrd has suggested extending the current values



53 DATA EVALUATION TECHNIQUE FOR ELECTRON-TUNNELING . .. 11181

T T T T T I T T 1 T T T T
Sample DOS Sample DOS

Input DOS (arb. units)
Input DOS (arb. units)

10 |\ |— DosbyF_
R DOS by IV _
——. DOSby[ N A

| .

] 6 |— DOSbyF_ -
| . DOS by IV _ '.
——. DOSby IV

Deconvoluted DOS (arb. units)
Deconvoluted DOS (arb. units)

-4

-3 -2 -1 0 1 2 3

Electron Energy Referenced to Fermi Level (eV) Electron Energy Referenced to Fermi Level (eV)

FIG. 3. Tip influence on DOS deconvolution. Top graph: input  FIG. 4. Problem of sample DOS recovery below the Fermi
sample(uppe) and tip(lower) DOS. Bottom graph: the solid line is level. Top graph: input sampl@ppe) and tip (lower) DOS. Bot-
the DOS deconvoluted bf normalization, the dotted line is the tom graph: the solid line is the DOS deconvolutedfoypormaliza-
DOS deconvoluted by normalization to the modified total conduc-tion, the dotted line is the DOS deconvoluted by normalization to
tivity at a constant tip-sample separatibtv, the dash-dot line is the modified total conductivity at a constant tip-sample separation
the DOS deconvoluted by normalization to the modified total con-1/V, the dash-dot line is the DOS deconvoluted by normalization to
ductivity at variable tip-sample separatibp/V. The equation$5), the modified total conductivity at variable tip-sample separation
(6), (14), (16), (17) and values, the same as for Fig. 1, are used inl,,/V. The equationg5), (6), (14), (16), (17) and values, the same
the simulation. as for Fig. 1, are used in the simulation.

whereS, is the tip-sample separation¥t=0 V ande is the  (Fig. 1). Therefore, this function is a suitable one for DOS
constant with a typical value of 1 A/\Ref. 23. If «=0.98 recovery by normalizatiohEgs. (10), (11)].

A/IV, then transition from the constant to variable tip-sample  |f the sample Fermi level is located inside the band gap,
separation case can be achieved by a simple substitution: thenp (0)<p,(0) and the tunneling differential conductivity
should vanish at the negative sample bigs. (11)]. The
symmetric tunneling probability functiofiL3) is not appro-
whereB, is the coefficient used at constant tip-sample sepaE.)ri.ate for th.e fitt.ing of this a_lsymmetric diffgrential conduc-
ration. tivity. The_ situation can be flx_ed by employing asymmet-

ric tunneling probability function

B=Bg+|V|, (16)

DOS deconvolution accomplished by normalization of the
differential conductivity to the modified total conductivify
shows a systematic error in the case of variable tip-sample F(SV)=ArT'(S,eVi2)+AsT'(S,—eVi2),  (17)
separationFig. 2(b)]. Therefore, in the framework of the _ ) .
one-dimensional WKB simulations, all techniques that emWhereéAr andAs are the proportionality coefficients related
ploy the total conductivity for DOS recovery reveal signifi- 1© the tip-surface effective contact area and proportional to
cant deviation from the input tip and sample constant densith€ tip and the sample densities of states at the Fermi level,
ties of states. respectively{cf. Egs.(10), (11)].

The tunneling probability between the tip and the surface
in the semiclassical WKB approximation depends on several
parameters{i) the effective area of tip-surface tunneling

The differential conductivity at a constant tip and surfacecontactii) the tip and the sample densities of states at Fermi
DOS [Eg. (13)] follows closely the appropriate tunneling level, (iii ) the tip-surface separation, afid) the “local work
probability at positive as well as at negative sample biasefunction.” A local surface potential is a more accurate term

B. Method based on differential conductivity fitting
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FIG. 5. (a) Deconvolution of the simple semiconductor sample DOS. Top graph: input sdogpe) and tip (lower) DOS. Bottom
graph: the solid line is the DOS deconvoluted by F normalization, the dotted line is the DOS deconvoluted by normalization to the modified
total conductivity at a constant tip-sample separaﬁh the dash-dot line is the DOS deconvoluted by normalization to the modified total
conductivity at variable tip-sample separatilq,w_v. The equationg5), (6), (14), (16), (17) and values, the same as for Fig. 1, are used in
the simulation.(b) Deconvolution of the augmented semiconductor sample DOS. Top graph: input Sampé and tip (lower) DOS.
Bottom graph: the solid line is the DOS deconvoluteddogiormalization, the dotted line is the DOS deconvoluted by normalization to the
modified total conductivity at a constant tip-sample separatl_M) the dash-dot line is the DOS deconvoluted by normalization to the
modified total conductivity at variable tip-sample separatilqw. The equationg5), (6), (14), (16), (17) and values, the same as for Fig.
1, are used in the simulation.

for the later value® To extract these parameters from experi- spectrum by a factor of 3, with respect to the density of states
mental data, one can fit trl/dV vs V dependence by the of the “down” one. In this analysis, the decay factor has
analytical functiong17). been assumed to be~1 A 128

The real tunneling transmission probability function may Therefore, the fitting of experimental differential conduc-
be quite different from this fit, at least because of the threetivity o(S,V) by o.ns(S,V) and the following DOS recov-
dimensional nature of tunneling in STM and the strong in-ery cannot be considered to be a quantitative procedure, but
fluence of tip and surface-states dispersig(k), on the tun-  rather should be viewed ascmalitative one. However, the
neling probability. The later may cause dependence of th@roposed technique reveals the best DOS recovery, at least in
parameters on the energy of electronic states or, in othdhe frame of the WKB simulations.
words, on the tip-sample voltage. The dependence of the

coefficientB (tip-surface separatigron the energy of elec- IV. NUMERICAL SIMULATION OF THE ELECTRON-

tronic states is also entirely possible. A good example of;\NELING SPECTROSCOPY. WKB APPROXIMATION
such dependence might be the spectrum of a buckled dimer ONE-DIMENSIO,NAL CASE '

on Si001)-(2x1). As shown by theoretical calculatiofs,
the filled (E;,~—0.75 eV} and empty(Ep~0.5 eV) surface In the simulations presented in Figs. 1-6, the following
states should be strongly localized on “up” and “down” values were used8=12 eV Y2 corresponding to the tip-
atoms of the single dimer, respectively. It is predicted thasurface separation ok11.7 A, and the average tip-sample
for these “up” and “down” atoms the difference in normal work function® =3 eV. Such values were obtained from the
coordinate is about 0.5 A. Therefore, for the STM probeevaluation of tunneling spectra of (801)-(2x1),%° and are
placed above the dimer, the density of states of the “up”used here to better model the experimental situation.

atom of the asymmetric dimer are enhanced in the tunneling In Fig. 3 simulation for a sine tip and a sine surface DOS
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: : : : : : : Another considerable difficulty of DOS recovery is seen
Sample DOS clearly in Fig. 5. This is the influence of DOS first derivative
. on the shape of the deconvoluted DOS. This figure demon-
strates that the first DOS derivative may cause the appear-
ance of extra features in the spectrum of electronic states.
Figs. 3, 4, and 5 illustrate again the better quality of DOS
l | . recovery by the proposed technique.
Tip DOS Nevertheless, even in the case of a semiconductor surface,
1 NVAVAVAVYVAVYAVYER where p(0)=Ap,(0)=0, the influence of tip DOS on the
final result is significant. To diminish the influence of tip
DOS, a technique termedomparative scanning tunneling
or | | | | | | L] spectroscopy (CSTS3$ proposed. The effectiveness of tip
3 2 - 0 1 2 3 DOS elimination is demonstrated in Fig. 6. One can see no
oscillations at negative sample biaget Fig. 5).
I : : ‘ ' ' ' The deconvoluted DOS shown in Figi@dwas used as a
— ADOSbyF_ reference spectrum. Two features were added to the input
L iggg ‘;V:i 1 DOS of thereferencesample[Fig. 5@)] on both sides of the
T y N band gap in order to get probe sample input DOSFig.
5(b)]. The difference of input sample densities of stdfég.
6, dashed lingeas well as output comparative spectra are
7 presented in Fig. 6. The same tip DOS was used in both
simulations.
Y : In the case of an experiment, one should select reference
a1k i sites. These may be nondefective sites representing the ma-
jority of the surface. To get a comparative tunneling spec-
trum of the specific defected sita probe, one should sub-
3 2 - 0 1 2 8 tract the reference deconvoluted DQSreferencefrom the
Electron Energy Referenced to Fermi Level (eV) probe spectrum. Both tunneling spedireference and probe
should be obtained with exactly the same tip. STM images
FIG. 6. An example of comparative scanning tunneling spec-are very sensitive to the tip condition and, hence, the later
troscopy. Top graph: input DOS of reference sampigper solid  can be precisely monitored.
line), difference between input DOS of probe and reference sample Employment of the tunneling probability functi¢h?) for
(upper dashed ling and input tip DOS(lower solid ling. Input  the comparative site specific tunneling spectroscopy on
DOS of probe sample is not shown. Bottom graph: the solid line isSi(001)-(2X1) revealed excellent reproducibility on a day-
the difference between probe and reference DOS deconvoluted lyp-day and a tip-to-tip bas?é’.AppIication of this compara-
F normalization, the dotted line is the difference deconvoluted byjye approach in the case afl/dV normalization by the
normalization to the modified total conductivity at a constant tip- modified total conductivity is questionable, partially because
sample separatiolV, the dash-dot line is the difference deconvo- of possible changes in local surface potential, tip-surface dis-
luted by normalization to the modified total conductivity at variable tance, and effective tip area from one surface feature to an-
tip-sample separation,/V. The equations5), (6), (14), (16), (17)  other. Accordingly, less reproducible comparative spectra
and values, the same as for Fig. 1, are used in the simulation.  \vere observed with the later LDOS deconvolution technique
in experiments on $001)-(2x1).2°
is presented. The periods of the tip and the sample DOS are As mentioned in Sec. Il B, two important physical pa-
1 and 0.5 eV, respectively. As was expected from Ef8), rameters can be extracted from the experimehtals V
(11), the deconvoluted DOS resembles the tip DOS at negacurves:(i) the tip-surface separation, afid) the local sur-
tive sample bias and the sample DOS at positive sample biaface potential. In an attempt to retrieve these parameters, the
Normalization to the tunneling probability functiofsolid  author fitted thedl/dV vs V dependence by the analytical
line) reveals better correspondence to the input densities dfinction(17). In Fig. 7, the results of simulations designed to
states in comparison with normalization to the modified totaldemonstrate such a retrieval are presented.
conductivity at constanfdotted ling and variable(dash-dot Figure 7 shows data obtained for the tip and the sample
line) tip-sample separation. Even if the tip DOS is constantDOS presented in Fig.(8). In Fig. 7(a) input tip-surface
recovery by any known method would not correctly presendistance(TSD) is constantS=11.7 A, and input work func-
the density of sample occupied stat€éy. 4). One can see tion (WF) varies from 2.5 to 3.5 eV. The extracted tip-
the systematic error in the sample DOS recovery at negativeurface distancéop graph is almost constant and decreases
sample biases. slightly with the work function. The output WF increases in
The situation may be better in the case of a semiconductargreement with input Wkbottom graph
sample DOS. As was mentioned in Sec. Il B, the influence of In the simulations presented in Fig(bJ the input WF is
tip DOS is reduced at negative sample biases since, for thieeld constant at 3 eV and input tip-surface distance is al-
semiconductor surfacg(0)=Ap,(0)=0 [Eq. (11)]. The lowed to vary from 9 to 15 A. The deconvoluted TSD
improvement of sample DOS recovery is demonstrated irtlosely follows the input onébottom graph The output WF
Fig. 5. varies moderately around input value of 3 €dp graph.

1| Reference

Input DOS (arb. units)

Difference of Deconvoluted DOS (arb. units)
o
T
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FIG. 7. (a) Work function (WF) and tip-sample distanc@ SD) recovery in the case of the simple semiconductor sample DOS. The
tunneling current vs tip-sample bias dependencies were fitted by the tunneling probability fud@iomop graph: the solid line is the
dependence of recovered tip-sample distance on input work function, the dotted line is the input tip-sample distance. Bottom graph: the solid
line is the dependence of the recovered work function on input work function, the dotted line is the input work function. The e@)ations
(6), (17) are used in the simulatio) WF and TSD recovery in the case of the simple semiconductor sample DOS. The tunneling current
vs tip-sample bias dependencies were fitted by the tunneling probability fui@éffonTop graph: the solid line is the dependence of the
recovered work function on input tip-sample distance, the dotted line is the input work function. Bottom graph: the solid line is the
dependence of the recovered work function on input work function, the dotted line is the input work function. Eqi@atit)s (17) are
used in the simulation.

An accuracy of work function and tip-sample distancemation was used to simulate the electron tunneling between
retrieval from the simulatedl vs V spectra was studied for the metal tip and the surface. Using the simplest case of
many other tip and sample densities of states and in mosjonstant tip and sample densities of statEgy. 2), it is
cases discrepancy between the output and the input was bshown that all current methods of DOS recovery based on
low 30% for input WF from 2.5to 3.5 eV and TSD from 9to the utilization of the total conductivity have a systematic
15 A. At the same time, slow convergence and larger diserror. In this paper, a technique for DOS deconvolution from
crepancy caused by high correlation of the fitting parametergnneling spectroscopy data is introducdte differential

[Egs.(9), (17)] was observed in some cases of highly modu-congyctivity normalized to its fit to the tunneling probability

lated tip and sample densities of states. Such situations nevgf, .tion is employed as a method of recovering sample
occurred during experimental data evaluafion. D

H the dat ted in Fig. 7 b i 0OS. As shown by numerical simulations, this technique
owever, the data presented In Fig. / cah be cons ereHeveals a better deconvolution of input DOS, in comparison

as aqlualltat_we examplenly. One should clearly _reahze that with the other techniqué® (Figs. 2—5. The procedure uses
all simulations reported here were done in the one-

dimensional and semiclassical WKB approximation. The™© uncons_trained pa.rgmeters_, except the analytical form of
proper test of the method has to be done in experiments &pe tunneling probability functiokd ).

with a much more comprehensive theoretical approace The adyantage of this.method is its abiIi_ty to extract from
Refs. 15, 30 the experimental tunneling spectra two important param-

eters:(i) local surface potential, an@) tip-sample distance.
These values are the parameters used in the proposed fitting
procedure. The local surface potential and the tip-sample dis-
A systematic study of surface DOS deconvolution fromtance retrieval are probed by means of numerical simulations
the tip-sample tunneling electron spectroscopy data was unn the framework of the WKB approximatiofFig. 7). To
dertaken. The one-dimensional, semiclassical WKB approxijustify the method, more experimental and theoretical testing

V. CONCLUSION
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of the technique has to be done. An attempt to apply thigjuestionable, partially because of possible changes in the

method for the analysis of the local density of states of delocal surface potential from one surface feature to another.

fects on Sj001)-(2x1) has been mad€. The influence of this parameter on the modified total conduc-
A method of sample DOS recovery termedmparative tivity is unknown.

scanning tunneling spectroscopy (CSTiS)proposed. As
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