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A systematic study of local-density-of-states~LDOS! deconvolution from tip-surface tunneling spectra is
reported. The one-dimensional WKB approximation is used to simulate the process. A technique for DOS
deconvolution from the electron-tunneling spectroscopy data is proposed. The differential conductivity nor-
malized to its fit to the tunneling probability function is used as a method of recovering sample DOS. This
explicit procedure does not use unconstrained parameters and reveals a better DOS deconvolution in compari-
son with other techniques. The advantage of this method is its feasibility for extracting two important physical
parameters from experimental tunneling spectra:~i! local surface potential, and~ii ! tip-sample distance. These
values are the parameters used in the proposed fitting procedure. The local surface potential and the tip-sample
distance retrieval are demonstrated by means of numerical simulations. Comparative scanning tunneling spec-
troscopy is proposed as an approach to eliminate the influence of the tip condition on the surface LDOS
recovery.

I. INTRODUCTION

The first observation of the spectral density of electronic
states in metal-oxide-superconductor tunneling experiments
was made by Giaver.1 This work led to a reexamination of
the one-electron theory of tunneling that has dominated the
field for more than 30 years.2 The new many-body transfer-
Hamiltonian approach in tunneling current calculation was
pioneered by Bardeen3 and developed by Cohen, Falicov,
and Phillips,4 Duke, Silverstein, and Bennett,5 Appelbaum
and Brinkman,6 Caroli et al.,7 and many others.8 This for-
malism is used today, in most applications of the tunneling
theory.

The invention of scanning tunneling microscopy~STM!
by Binnig, Rohrer, Gerber, and Weibel9 stimulated addi-
tional interest in the theory of tunneling. Using the transfer-
Hamiltonian formalism,3 three-dimensional tunneling in the
STM was studied by Tersoff and Hamann,10 Garcia, Ocal,
and Flores,11 Feuchtwang, Cutler, and Miskovsky,12 and
Lang.13

With the advent of STM, a scanning tunneling spectros-
copy ~STS! with atomic spatial resolution became possible.
The theory of STS was considered by Feuchwang, Cutler,
and Miskovsky,12 Selloni et al.,14 and Lang.15 It was con-
cluded that, in the general case of three-dimensional tunnel-
ing, currentcannot be calculatedas a simple convolution of
sample densities of states~DOS! and tip DOS with the ‘‘ef-
fective matrix element for tunneling.’’ The simple relation
between sample DOS and tunneling current can be obtained
in theone-dimensionaland semiclassical Wentzel, Kramers,
and Brillouin ~WKB! approximation only.

Selloniet al.14 qualitativelygeneralized the model of Ter-
soff and Hamann10 for modest tip-sample voltages and, de-
spite the problem emphasized by Feuchtwang, Cutler, and
Miskovsky,12 suggested convolution of sample DOS and tun-
neling transmission probability for a crude estimation of the
tunneling current. This assumption was justified later by
Lang15 in the specific case of tunneling between Na and Ca
single atoms placed on infinite planar metal electrodes. It

was shown, by numerical simulation, that the approximation
employed by Selloniet al.4 is in reasonable agreement with
the ‘‘exact’’ solution obtained by three-dimensional many-
body transfer-Hamiltonian calculations. To the best of the
author’s knowledge, this is the only case when the method of
tunneling current calculation widely employed today in STM
and STS with spatial resolution was confirmed by accurate
theoretical calculation.

The first experimental observation of the spectral density
of sample electronic states by STM is due to Selloniet al.14

The first derivative of tunneling current over tip-sample volt-
age or differential conductivity,dI/dV, was used as a mea-
sure of the DOS for graphite. Two issues were left unsolved.
These are the influence of tip DOS and the effect of the
tunneling transmission probability on the observed depen-
dence of the tunneling current on tip-sample voltage.

Stroscio, Feenstra, and Fein16 proposed an effective solu-
tion for the later problem. It was found that, by normaliza-
tion of the differential conductivity by the total conductivity,
one can effectively remove the dependence of the tunneling
current on the tip-sample distance. The result wasqualita-
tively generalized and it was concluded that this normaliza-
tion procedure will cancel out both tip-sample distance and
tip-sample voltage dependencies of the tunneling transmis-
sion probability in the differential conductivity.17 It was
claimed that the (dI/dV)/(I /V) function is ‘‘a relatively di-
rect measure of the surface DOS,’’16 This conclusion was
confirmed by Lang15 in three-dimensional transfer-
Hamiltonian numerical calculations for tunneling between
Na and Ca single atoms positioned on infinite planar metal
electrodes. The normalization technique was also justified by
Hamers.18 Simmon’s formulas19 ~WKB approximation! and
constant DOS for the tip were used to simulate the tunneling
current dependence on the tip-sample voltage. The recovered
(dI/dV)/(I /V) function has shown qualitative agreement
with the input sample DOS. It is worthwhile to note that in
this case18 less correspondence can be found between input
and output sample densities of states in comparison with the
‘‘exact’’ simulation done by Lang.15 It is also important that
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in both calculations15,18metal-like sample DOS were used.
Stroscio, Feenstra, and Fein16 experimentally tested the

influence of the tungsten tip DOS on the deconvoluted
sample density of states. The DOS of a Ni sample, deconvo-
luted by the (dI/dV)/(I /V) technique, shows no tip-related
features. This result contradicts the recently published field-
emission electron spectroscopy data of Binhet al.,20 which
showed highly structured DOS for tungsten tips with single
atom protrusions. To some degree the observation of Stros-
cio, Feenstra, and Fein16 is also inconsistent with numerical
calculations due to Lang,13,15 which showed clearly the in-
fluence of the tip DOS on the deconvolution result. However,
the method developed by Stroscio, Feenstra, and Fein16 was
tested extensively in many experiments and demonstrated
reasonable agreement with other experimental and theoreti-
cal data.17,18,21

The method of DOS deconvolution was modified for mea-
surements on semiconductor surfaces.22,23Both the differen-
tial and the total conductivities vanish inside the band gap.
Therefore, the (dI/dV)/(I /V) function cannot be properly
determined. Ma˚rtensson and Feenstra22 proposed an empiri-
cal solution of the problem. The total conductance was
broadened by one-pole Fourier low-pass filtering with the
pole frequency given byD21 ~see Ref. 22 and Sec. III A for
more detail!. If the D is larger than band gap, the broadened
conductivity becomes then nonzero inside the gap. The
broadenedI /V provides a more meaningful approximation to
the tunneling transmission probability, which is nonzero.22

Feenstra23 has proposed several other empirical modifica-
tions of the normalization procedure with the ultimate goal
of improving the correspondence between an expected tun-
neling transmission probability and the modified total con-
ductivity ~for details, see, Sec. III A!. Finally, Feenstra was
able to obtain reproducible and reliable electronic spectra of
III-V semiconductors.23 However, with all these empirical
adjustments, it is increasingly difficult to keep explicit the
fundamental meaning of the normalization procedure, as
well as to justify its ultimate accuracy.

In this paper, a technique for DOS deconvolution from
electron-tunneling spectroscopy data is introduced. To re-
cover the sample and/or tip DOS, one may use thedifferen-
tial conductivity normalized by its fit to the tunneling prob-
ability function. The one-dimensional and semiclassical
WKB approximation was used to model electron tunneling
between the STM tip and the sample. As shown by simula-
tions, in all studied cases, this technique reveals better de-
convolution of the input DOS in comparison with any exist-
ing technique.23 This procedure does not use unconstrained
parameters, except the analytical form of the tunneling prob-
ability function. Since one should employ the same tunneling
model to justify any other DOS deconvolution technique, the
suggested procedure is more constrained and certainly more
explicit than others.

The advantage of this method is the feasibility of extract-
ing two important physical parameters from experimental
tunneling spectra:~i! ‘‘local work function,’’ and ~ii ! tip-
sample distance. These parameters are used in the proposed
fitting of the differential conductivity by the tunneling prob-
ability function. The local surface potential or ‘‘local work
function’’ and the tip-sample distance retrieval is probed by
means of numerical simulation.

Another benefit of the method of DOS deconvolution is
the proposed comparative scanning tunneling spectroscopy
~CSTS!. As shown below, the CSTS virtually eliminates the
influence of the tip on the recovered spectra of the surface
electronic states.

The fundamental problem of tip-sample spectroscopy is
the fact that the tunneling current measured by the STM is a
convolution of the sample DOS with the unknown tip density
of electronic states. As was shown by Griffith and
Kochanski24 and confirmed in this paper, changes in tip DOS
must dominate at negative sample bias~see also Refs. 17, 18,
and 25!. To diminish the influence of the empty tip DOS on
the recovery of the filled sample DOS, the author suggests to
analyze thedifferenceof the deconvoluted densities of states
obtained with the same tip, rather than the individual DOS
itself. STM images are very sensitive to the tip condition
and, hence, this condition can be precisely monitored.

II. BASICS OF ELECTRON-TUNNELING SPECTROSCOPY

The theory of electron-tunneling spectroscopy has been
discussed in many publications.3–8,12,14,15Therefore, the goal
of this section is to provide a short summary of the theory.

A. Methods of tunneling current calculation

The tunneling current between two weakly bounded elec-
trodes using first-order perturbation theory is6,10,12

I ~S,V!5
2pe

\ (
t,s

uMt,su2d~Et2Es!@ f ~Et2eV!2 f ~Es!#,

~1!

whereV is the sample bias with respect to the tip;S is the
tip-surface separation;Mt,s is the tunneling matrix element
between statesct of the tip andcs of the surface;f (E) is the
Fermi-Dirac distribution function;Et andEs are the energies
of statesct andcs , respectively, in the absence of tunneling.
Both energies are referenced to the surface Fermi level. Posi-
tive current indicates electron tunneling from tip to surface.

The tunneling matrix element can be calculated as fol-
lows, using the method of Bardeen3:

Mt,s52
\2

2m E ~c t
1¹cs2cs¹c t

1!dA, ~2!

where the integral is calculated over an arbitrary surface ly-
ing entirely within the vacuum region separating the tip and
the surface.

In the semiclassical WKB approximation, thedensityof
the tunneling current between two planar electrodes can be
expressed in the following form:6,10,12

J~S,V!>
2pe

\ S \2

2mD 2E
2`

`

T~S,V,E!@ f ~E2eV!

2 f ~E!#rs~E!r t~E2eV!dE, ~3!

whereT(S,V,E) is the tunneling transmission probability,6

rs(E) and r t(E) are the surface and tip densities of elec-
tronic states, respectively. In this simplified expression,
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the dependence of the tunneling probability on the momen-
tum of the tunneling electron is ignored.

The tunneling transmission probability for a trapezoidal
barrier can be estimated in the WKB approximation as18,21

T~S,V,E!>expH 22SS 2m\2 F F̄1
eV

2
2~E2Ei!G D 1/2J ,

~4!

whereF̄5(F t1Fs)/2 is the average of sampleFs and tip
Ft work functions,Ei5\2k i

2/2m is the component of elec-
tron energy parallel to the junction interface, andki is the
corresponding electron momentum.

The tunneling probability is a strong function of the par-
allel component of the energyEi . At each particular total
energyE, the DOS with a zeroEi component is heavily
weighted by the tunneling probability in Eq.~3!. Therefore,
rs(E) and r t(E) may be approximated by the surface and
the tip densities of electronic states withki'0.18 This ap-
proximation may in part be a justification for ignoring the
tunneling electron momentum in Eq.~3!.

One can simplify Eq.~3! at low surface temperature,
kBT!eV ~kB is Boltzmann’s constant!, by using the step
function instead of the Fermi-Dirac distribution function.
The density of the tunneling current is then

J~S,V!>
2pe

\ S \2

2mD 2E
0

eV

T~S,V,E!rs~E!r t~E2eV!dE.

~5!

AssumingEi'0 for the electronic states, which influence
the tunneling current, the transmission probability can be
written in the following form:

T~S,V,E!>expH 22SF2m\2 S F̄1
eV

2
2ED G1/2J . ~6!

Expressions similar to~5!, ~6! were employed in most
cases in an attempt to describe semiquantitatively the tunnel-

ing spectroscopy with spatial resolution.12,15,17,18,21These
equations were obtained for the weakly bounded electrodes
in the one-dimensional and semiclassical WKB approxima-
tion in the limit of the low surface temperature and with a
strong preference for tunneling from electronic states with
ki'0. These equations~5!, ~6! and, hence, these approxima-
tions will be used in the following sections to simulate nu-
merically the tunneling current dependency on tip-sample
voltage and to test the quality of DOS deconvolution by
different techniques.

B. Influence of tip condition on DOS deconvolution

To deconvolute the sample DOS, the first derivative of the
tunneling current, with respect to tip-sample voltage~the dif-
ferential conductivity!, is usually analyzed:

dI~S,V!

dV
>AFeT~S,V,E!rs~E!r t~E2eV! U

E5eV

1E
0

eV

T~S,V,E!rs~E!
dr t~E2eV!

dV
dE

1E
0

eV dT~S,V,E!

dV
rs~E!r t~E2eV!dEG , ~7!

whereA is a proportionality coefficient related to the effec-
tive tip-surface contact area. The second and third terms are
usually neglected assuming constant tip DOS and minor
changes in tunneling transmission probability at small tip-
sample biases.14,17,18 These simplifications help to explain
the basic principle of tunneling spectroscopy, but may lead
to qualitatively wrong conclusions. To illustrate this state-
ment, one may express the differential conductivity~7! in the
form symmetric with respect to the tip and the surface den-
sities of states. One can accomplish this by substituting
j5(E2eV/2) in Eqs.~5! and~6!. Then the differential con-
ductivity is

dI~S,V!

dV
>
Ae

2 FT8~S,j!rs~j1eV/2!r t~j2eV/2! U
j5eV/2

1T8~S,j!rs~j1eV/2!r t~j2eV/2! U
j52eV/2

1E
eV/2

eV/2

T8~S,j!
drs~j1eV/2!

dj
r t~j2eV/2!dj2E

2eV/2

eV/2

T8~S,j!rs~j1eV/2!
dr t~j2eV/2!

dj
djG , ~8!

where

T8~S,j![T~S,V,E!5expF22SS 2m\2 ~F̄2j! D 1/2G ~9!

is the appropriate presentation of the tunneling transmission
probability ~6!.

Equation~8! is symmetric with respect to the surface and
tip DOS. TheT8(S,eV/2) is a probability of tunneling to or
from the tip Fermi level and theT8(S,2eV/2) is a probabil-
ity of tunneling to or from the sample Fermi level. As shown
in Fig. 1, at positiveV ~sample bias with respect to tip!

T8(S,eV/2)@T8(S,2eV/2). In this case, the differential
conductivity can be crudely estimated as

dI~S,V!

dV
>
eA

2
T8~S,eV/2!@rs~eV!r t~0!1Drs~eV!r t~0!

2rs~eV!Dr t~0!#, ~10!

whereDrs(eV) andDrt~0! are effective changes in surface
and tip DOS, respectively, in the proximity ofj5eV/2,
where the tunneling probabilityT8(S,j) is close to its maxi-
mum valueT8(S,eV/2). It will be shown by numerical simu-
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lation that the second and the third terms of Eq.~10! do not
vanish. At negative tip-sample voltage,T8(S,2eV/2)
@T8(S,eV/2), the differential conductivity can be estimated
in a similar fashion:

dI~S,V!

dV
>
eA

2
T8~S,2eV/2!@rs~0!r t~2eV!

1Drs~0!r t~2eV!2rs~0!Dr t~2eV!#. ~11!

Equation~11! conclusively demonstrates that the differen-
tial conductivity at negative sample biases is proportional to
the tip density of nonoccupied electronic states, rather than
to the surface DOS. The differential conductivity is propor-
tional to the surface DOS at positive biases only@Eq. ~10!#.
This problem was discussed qualitatively by Feenstra
et al.17,25 and Hamers18 and the conclusion has been proven
by a numerical simulation by Griffith and Kochanski.24 In
Sec. IV, a possible solution of the problem will be consid-
ered.

It is worthwhile to mention here the specifics of sample
DOS recovery for semiconductors with the Fermi level lo-
cated in the band gap. In this case,rs(0)>Drs(0)>0, and
the influence of the tip DOS is reduced at negative sample

biases~11!. Therefore, the sample density of occupied elec-
tronic states has a higher chance of revealing itself at nega-
tive tip-sample voltages, despite the tunneling probability
vanishing@cf. Eqs.~8! and~11!#. This effect will be demon-
strated by numerical simulations in Sec. IV.

III. SURFACE AND TIP DOS RECOVERY BY
NORMALIZATION TO TUNNELING PROBABILITY

The simplified equations~10!, ~11! show clearly the
method of DOS deconvolution by using the differential con-
ductivity. The best one can do is to normalize thedI/dV to
T(S,eV/2) at positive sample bias and toT8(S,2eV/2) at
negative sample bias. Then the normalized differential con-
ductivity will be proportional to the sample~10! or to the tip
~11! DOS. As also seen from Eqs.~10!, ~11!, one may expect
an influence of the first derivatives of the corresponding
DOS on the recovered spectra. Nevertheless, all existing
methods of DOS recovery from the tunneling spectroscopy
data ultimately use this approach.17,18,21The difference be-
tween various techniques is in the different methods of re-
covering the tunneling transmission probability.

A. Methods based on total conductivity utilization

As was found empirically in many practical
cases,15,17,18,21the total tunneling conductivity,I /V, follows
reasonably well the desired normalization function. To verify
the idea one may analyze the simplest case of constant tip
and surface DOS,rs(j)5r t(j)51. Using ~5!, ~6! and ~8!,
~9! one can obtain algebraic expressions for the total and the
differential conductivity, respectively.

The total tunneling conductivity at the constant tip and
surface DOS is

I const~S,V!/V5
2A

VB2 HT8~S,eV/2!F11BS F̄2
eV

2 D 1/2G
2T8~S,2eV/2!F11BS F̄1

eV

2 D 1/2G J ,
~12!

whereB52S(2m/\2)1/2 is the coefficient proportional to the
tip-surface distanceS andA is the coefficient related to the
tip-surface effective contact area@cf. Eq. ~7!#.

The differential conductivity at constant tip and surface
DOS is

sconst~S,V![
dIconst~S,V!

dV

5
eA

2
@T8~S,eV/2!1T8~S,2eV/2!#. ~13!

The above function~13! appears to be an ideal one for
DOS recovery. Indeed, at positive as well as at negative
sample biases, it follows closely the appropriate tunneling
probability ~see Fig. 1!. A technique of DOS recovery based
on this idea will be discussed in the next section.

As shown in Fig. 1, the total tunneling conductivity at
constant tip and surface DOS,@I const(S,V)/V#, does not fol-
low the tunneling transmission probability or the correspond-

FIG. 1. Dependence of tunneling transmission probability on
sample bias with respect to tip. The solid line is the differential
conductivity at constant tip and surface DOS~sconst!. The dashed
line is the@I const(s,v)/v# function. Circles and squares are the prob-
abilities of tunneling from or to tip and sample Fermi levels, respec-
tively. The equations~9!, ~12!, ~13! and valuesA51,B512 eV21/2,
F̄53 eV, e51 are used in the simulation.
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ing differential conductivity,sconst(S,V). Hence, normaliza-
tion of the differential conductivity to the total conductivity
will not recover the constant input DOS,rs(j)5r t(j)51.

Significant deviation from thesconst(S,V) was also ob-
tained for the modified total conductivity@Fig. 2~a!#. In this
case, double exponential weighting of the broadened and ex-
tended total conductivity was used to approximate the tun-
neling transmission probability17,23

I ~S,V!/V5exp~auVu!E
2`

` I ~S,j!

j
expS 2

ueV2ju
D D

3exp~2auju!dj, ~14!

wherea is the best parameter obtained during theuI (S,V)u
fitting by the exponential function exp(auVu) and D is the
broadening width. In all simulationsD51 eV was used.

Tunneling current versus voltage is always known in a
limited voltage range. Hence, to avoid decay of the convo-
luted total conductivity in the proximity of the limits, one
should somehow extend the values of the tunneling current
or total conductivity far beyond the limits of the voltage
range. For variable tip-sample separation tunneling spectros-
copy, Feenstra23 has suggested extending the current values

with constant value equal to the value of current at the larg-
est measured voltage~the extension should be done sepa-
rately for positive and negative voltages!. For constant tip-
sample separation spectroscopy, it would be more
appropriate to extend theI vsV dependence by its exponen-
tial fit. Therefore, this technique was used to extend the tun-
neling current beyond the voltage limits used in theI vs V
simulations at constant tip-sample separation.

With large enoughD the integral itself@Eq. ~14!# is a
smooth function of the tip-sample voltage. Therefore, the
modified total conductivity~14! is very sensitive to the value
of parametera and, virtually, resembles the fit function
exp(auVu).

Anyhow, both the procedures used today for the STS data
evaluation at constant tip-sample separation show obvious
deviations from the tunneling probability function@Fig.
2~a!#. Consequently, normalization of the differential con-
ductivity to these functions should lead to systematic errors
during DOS recovery@Fig. 2~b!#.

To simulate the DOS recovery in case of STS with vari-
able tip-sample separation, one should use

S5S01auVu, ~15!

FIG. 2. ~a! Approximation of tunneling transmission probability by various functions. The solid line is the fit of the differential
conductivity at constant tip and surface DOS~sconst! by the tunneling probability function (F). The dashed line is the total conductivity. The
dotted line is the modified total conductivity at the constant tip-sample separation. The equations~5!, ~6!, ~13!, ~14! and valuesA51, B512
eV21/2, F̄53 eV,e51,D51 eV,a52.16 eV21 are used in the simulation.~b! Comparison of different DOS deconvolution techniques. The
solid line is the tunneling probability function normalization. The dashed line is the total conductivity normalization. The dotted line is the
normalization to the modified total conductivity at a constant tip-sample separation. Dash-dot line is the normalization to the modified total
conductivity at variable tip-sample separation~Ref. 23!. The equations~5!, ~6!, ~14!, ~16! and values, the same as for~a!, are used in the
simulation.
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whereS0 is the tip-sample separation atV50 V anda is the
constant with a typical value of 1 Å/V~Ref. 23!. If a50.98
Å/V, then transition from the constant to variable tip-sample
separation case can be achieved by a simple substitution:

B5B01uVu, ~16!

whereB0 is the coefficient used at constant tip-sample sepa-
ration.

DOS deconvolution accomplished by normalization of the
differential conductivity to the modified total conductivity23

shows a systematic error in the case of variable tip-sample
separation@Fig. 2~b!#. Therefore, in the framework of the
one-dimensional WKB simulations, all techniques that em-
ploy the total conductivity for DOS recovery reveal signifi-
cant deviation from the input tip and sample constant densi-
ties of states.

B. Method based on differential conductivity fitting

The differential conductivity at a constant tip and surface
DOS @Eq. ~13!# follows closely the appropriate tunneling
probability at positive as well as at negative sample biases

~Fig. 1!. Therefore, this function is a suitable one for DOS
recovery by normalization@Eqs.~10!, ~11!#.

If the sample Fermi level is located inside the band gap,
thenrs(0)!r t(0) and the tunneling differential conductivity
should vanish at the negative sample bias@Eq. ~11!#. The
symmetric tunneling probability function~13! is not appro-
priate for the fitting of this asymmetric differential conduc-
tivity. The situation can be fixed by employing anasymmet-
ric tunneling probability function:

F~S,V!5ATT8~S,eV/2!1AST8~S,2eV/2!, ~17!

whereAT andAS are the proportionality coefficients related
to the tip-surface effective contact area and proportional to
the tip and the sample densities of states at the Fermi level,
respectively@cf. Eqs.~10!, ~11!#.

The tunneling probability between the tip and the surface
in the semiclassical WKB approximation depends on several
parameters:~i! the effective area of tip-surface tunneling
contact,~ii ! the tip and the sample densities of states at Fermi
level, ~iii ! the tip-surface separation, and~iv! the ‘‘local work
function.’’ A local surface potential is a more accurate term

FIG. 3. Tip influence on DOS deconvolution. Top graph: input
sample~upper! and tip~lower! DOS. Bottom graph: the solid line is
the DOS deconvoluted byF normalization, the dotted line is the
DOS deconvoluted by normalization to the modified total conduc-
tivity at a constant tip-sample separationI /V, the dash-dot line is
the DOS deconvoluted by normalization to the modified total con-
ductivity at variable tip-sample separationI m /V. The equations~5!,
~6!, ~14!, ~16!, ~17! and values, the same as for Fig. 1, are used in
the simulation.

FIG. 4. Problem of sample DOS recovery below the Fermi
level. Top graph: input sample~upper! and tip ~lower! DOS. Bot-
tom graph: the solid line is the DOS deconvoluted byF normaliza-
tion, the dotted line is the DOS deconvoluted by normalization to
the modified total conductivity at a constant tip-sample separation
I /V, the dash-dot line is the DOS deconvoluted by normalization to
the modified total conductivity at variable tip-sample separation
I m /V. The equations~5!, ~6!, ~14!, ~16!, ~17! and values, the same
as for Fig. 1, are used in the simulation.
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for the later value.26 To extract these parameters from experi-
mental data, one can fit thedI/dV vs V dependence by the
analytical functions~17!.

The real tunneling transmission probability function may
be quite different from this fit, at least because of the three-
dimensional nature of tunneling in STM and the strong in-
fluence of tip and surface-states dispersion,E~k!, on the tun-
neling probability. The later may cause dependence of the
parameters on the energy of electronic states or, in other
words, on the tip-sample voltage. The dependence of the
coefficientB ~tip-surface separation! on the energy of elec-
tronic states is also entirely possible. A good example of
such dependence might be the spectrum of a buckled dimer
on Si~001!-~231!. As shown by theoretical calculations,27

the filled ~EU;20.75 eV! and empty~ED;0.5 eV! surface
states should be strongly localized on ‘‘up’’ and ‘‘down’’
atoms of the single dimer, respectively. It is predicted that
for these ‘‘up’’ and ‘‘down’’ atoms the difference in normal
coordinate is about 0.5 Å. Therefore, for the STM probe
placed above the dimer, the density of states of the ‘‘up’’
atom of the asymmetric dimer are enhanced in the tunneling

spectrum by a factor of 3, with respect to the density of states
of the ‘‘down’’ one. In this analysis, the decay factor has
been assumed to bek'1 Å21.28

Therefore, the fitting of experimental differential conduc-
tivity s(S,V) by sconst(S,V) and the following DOS recov-
ery cannot be considered to be a quantitative procedure, but
rather should be viewed as aqualitativeone. However, the
proposed technique reveals the best DOS recovery, at least in
the frame of the WKB simulations.

IV. NUMERICAL SIMULATION OF THE ELECTRON-
TUNNELING SPECTROSCOPY, WKB APPROXIMATION,

ONE-DIMENSIONAL CASE

In the simulations presented in Figs. 1–6, the following
values were used:B512 eV21/2 corresponding to the tip-
surface separation of>11.7 Å, and the average tip-sample
work functionF̄53 eV. Such values were obtained from the
evaluation of tunneling spectra of Si~001!-~231!,29 and are
used here to better model the experimental situation.

In Fig. 3 simulation for a sine tip and a sine surface DOS

FIG. 5. ~a! Deconvolution of the simple semiconductor sample DOS. Top graph: input sample~upper! and tip ~lower! DOS. Bottom
graph: the solid line is the DOS deconvoluted by F normalization, the dotted line is the DOS deconvoluted by normalization to the modified
total conductivity at a constant tip-sample separationI /V, the dash-dot line is the DOS deconvoluted by normalization to the modified total
conductivity at variable tip-sample separationI m /V. The equations~5!, ~6!, ~14!, ~16!, ~17! and values, the same as for Fig. 1, are used in
the simulation.~b! Deconvolution of the augmented semiconductor sample DOS. Top graph: input sample~upper! and tip ~lower! DOS.
Bottom graph: the solid line is the DOS deconvoluted byF normalization, the dotted line is the DOS deconvoluted by normalization to the
modified total conductivity at a constant tip-sample separationI /V, the dash-dot line is the DOS deconvoluted by normalization to the
modified total conductivity at variable tip-sample separationI m /V. The equations~5!, ~6!, ~14!, ~16!, ~17! and values, the same as for Fig.
1, are used in the simulation.

11 182 53VLADIMIR A. UKRAINTSEV



is presented. The periods of the tip and the sample DOS are
1 and 0.5 eV, respectively. As was expected from Eqs.~10!,
~11!, the deconvoluted DOS resembles the tip DOS at nega-
tive sample bias and the sample DOS at positive sample bias.
Normalization to the tunneling probability function~solid
line! reveals better correspondence to the input densities of
states in comparison with normalization to the modified total
conductivity at constant~dotted line! and variable~dash-dot
line! tip-sample separation. Even if the tip DOS is constant,
recovery by any known method would not correctly present
the density of sample occupied states~Fig. 4!. One can see
the systematic error in the sample DOS recovery at negative
sample biases.

The situation may be better in the case of a semiconductor
sample DOS. As was mentioned in Sec. II B, the influence of
tip DOS is reduced at negative sample biases since, for the
semiconductor surface,rs(0)>Drs(0)>0 @Eq. ~11!#. The
improvement of sample DOS recovery is demonstrated in
Fig. 5.

Another considerable difficulty of DOS recovery is seen
clearly in Fig. 5. This is the influence of DOS first derivative
on the shape of the deconvoluted DOS. This figure demon-
strates that the first DOS derivative may cause the appear-
ance of extra features in the spectrum of electronic states.
Figs. 3, 4, and 5 illustrate again the better quality of DOS
recovery by the proposed technique.

Nevertheless, even in the case of a semiconductor surface,
wherers(0)>Drs(0)>0, the influence of tip DOS on the
final result is significant. To diminish the influence of tip
DOS, a technique termedcomparative scanning tunneling
spectroscopy (CSTS)is proposed. The effectiveness of tip
DOS elimination is demonstrated in Fig. 6. One can see no
oscillations at negative sample biases~cf. Fig. 5!.

The deconvoluted DOS shown in Fig. 5~a! was used as a
reference spectrum. Two features were added to the input
DOS of thereferencesample@Fig. 5~a!# on both sides of the
band gap in order to get aprobe sample input DOS@Fig.
5~b!#. The difference of input sample densities of states~Fig.
6, dashed line! as well as output comparative spectra are
presented in Fig. 6. The same tip DOS was used in both
simulations.

In the case of an experiment, one should select reference
sites. These may be nondefective sites representing the ma-
jority of the surface. To get a comparative tunneling spec-
trum of the specific defected site~a probe!, one should sub-
tract the reference deconvoluted DOS~a reference! from the
probe spectrum. Both tunneling spectra~reference and probe!
should be obtained with exactly the same tip. STM images
are very sensitive to the tip condition and, hence, the later
can be precisely monitored.

Employment of the tunneling probability function~17! for
the comparative site specific tunneling spectroscopy on
Si~001!-~231! revealed excellent reproducibility on a day-
to-day and a tip-to-tip basis.29 Application of this compara-
tive approach in the case ofdI/dV normalization by the
modified total conductivity is questionable, partially because
of possible changes in local surface potential, tip-surface dis-
tance, and effective tip area from one surface feature to an-
other. Accordingly, less reproducible comparative spectra
were observed with the later LDOS deconvolution technique
in experiments on Si~001!-~231!.29

As mentioned in Sec. III B, two important physical pa-
rameters can be extracted from the experimentalI vs V
curves:~i! the tip-surface separation, and~ii ! the local sur-
face potential. In an attempt to retrieve these parameters, the
author fitted thedI/dV vs V dependence by the analytical
function~17!. In Fig. 7, the results of simulations designed to
demonstrate such a retrieval are presented.

Figure 7 shows data obtained for the tip and the sample
DOS presented in Fig. 5~a!. In Fig. 7~a! input tip-surface
distance~TSD! is constant,S>11.7 Å, and input work func-
tion ~WF! varies from 2.5 to 3.5 eV. The extracted tip-
surface distance~top graph! is almost constant and decreases
slightly with the work function. The output WF increases in
agreement with input WF~bottom graph!.

In the simulations presented in Fig. 7~b! the input WF is
held constant at 3 eV and input tip-surface distance is al-
lowed to vary from 9 to 15 Å. The deconvoluted TSD
closely follows the input one~bottom graph!. The output WF
varies moderately around input value of 3 eV~top graph!.

FIG. 6. An example of comparative scanning tunneling spec-
troscopy. Top graph: input DOS of reference sample~upper solid
line!, difference between input DOS of probe and reference sample
~upper dashed line!, and input tip DOS~lower solid line!. Input
DOS of probe sample is not shown. Bottom graph: the solid line is
the difference between probe and reference DOS deconvoluted by
F normalization, the dotted line is the difference deconvoluted by
normalization to the modified total conductivity at a constant tip-
sample separationI /V, the dash-dot line is the difference deconvo-
luted by normalization to the modified total conductivity at variable
tip-sample separationI m /V. The equations~5!, ~6!, ~14!, ~16!, ~17!
and values, the same as for Fig. 1, are used in the simulation.
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An accuracy of work function and tip-sample distance
retrieval from the simulatedI vs V spectra was studied for
many other tip and sample densities of states and in most
cases discrepancy between the output and the input was be-
low 30% for input WF from 2.5 to 3.5 eV and TSD from 9 to
15 Å. At the same time, slow convergence and larger dis-
crepancy caused by high correlation of the fitting parameters
@Eqs.~9!, ~17!# was observed in some cases of highly modu-
lated tip and sample densities of states. Such situations never
occurred during experimental data evaluation.29

However, the data presented in Fig. 7 can be considered
as aqualitative exampleonly. One should clearly realize that
all simulations reported here were done in the one-
dimensional and semiclassical WKB approximation. The
proper test of the method has to be done in experiments or
with a much more comprehensive theoretical approach~see
Refs. 15, 30!.

V. CONCLUSION

A systematic study of surface DOS deconvolution from
the tip-sample tunneling electron spectroscopy data was un-
dertaken. The one-dimensional, semiclassical WKB approxi-

mation was used to simulate the electron tunneling between
the metal tip and the surface. Using the simplest case of
constant tip and sample densities of states~Fig. 2!, it is
shown that all current methods of DOS recovery based on
the utilization of the total conductivity have a systematic
error. In this paper, a technique for DOS deconvolution from
tunneling spectroscopy data is introduced.The differential
conductivity normalized to its fit to the tunneling probability
function is employed as a method of recovering sample
DOS. As shown by numerical simulations, this technique
reveals a better deconvolution of input DOS, in comparison
with the other techniques23 ~Figs. 2–5!. The procedure uses
no unconstrained parameters, except the analytical form of
the tunneling probability function~17!.

The advantage of this method is its ability to extract from
the experimental tunneling spectra two important param-
eters:~i! local surface potential, and~ii ! tip-sample distance.
These values are the parameters used in the proposed fitting
procedure. The local surface potential and the tip-sample dis-
tance retrieval are probed by means of numerical simulations
in the framework of the WKB approximation~Fig. 7!. To
justify the method, more experimental and theoretical testing

FIG. 7. ~a! Work function ~WF! and tip-sample distance~TSD! recovery in the case of the simple semiconductor sample DOS. The
tunneling current vs tip-sample bias dependencies were fitted by the tunneling probability function~17!. Top graph: the solid line is the
dependence of recovered tip-sample distance on input work function, the dotted line is the input tip-sample distance. Bottom graph: the solid
line is the dependence of the recovered work function on input work function, the dotted line is the input work function. The equations~5!,
~6!, ~17! are used in the simulation.~b! WF and TSD recovery in the case of the simple semiconductor sample DOS. The tunneling current
vs tip-sample bias dependencies were fitted by the tunneling probability function~17!. Top graph: the solid line is the dependence of the
recovered work function on input tip-sample distance, the dotted line is the input work function. Bottom graph: the solid line is the
dependence of the recovered work function on input work function, the dotted line is the input work function. Equations~5!, ~6!, ~17! are
used in the simulation.
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of the technique has to be done. An attempt to apply this
method for the analysis of the local density of states of de-
fects on Si~001!-~231! has been made.29

A method of sample DOS recovery termedcomparative
scanning tunneling spectroscopy (CSTS)is proposed. As
shown in Fig. 6, this approach virtually eliminates the influ-
ence of tip DOS on the recovered spectra of surface elec-
tronic states. The fact that the tunneling current is a convo-
lution of sample DOS, with an unknown tip density of
electronic states, causes a fundamental problem for the tra-
ditional tip-sample tunneling spectroscopy.

In the case ofdI/dV normalization by the modified total
conductivity, application of this comparative approach is

questionable, partially because of possible changes in the
local surface potential from one surface feature to another.
The influence of this parameter on the modified total conduc-
tivity is unknown.
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22P. Mårtensson and R. M. Feenstra, Phys. Rev. B39, 7744~1989!.
23R. M. Feenstra, Phys. Rev. B50, 4561~1994!.
24J. E. Griffith and G. P. Kochanski, CBC Crit. Rev. Solid State

Mater. Sci.16, 255 ~1990!.
25R. M. Feenstra, Joseph A. Stroscio, and A. P. Fein, Surf. Sci.181,

295 ~1987!.
26V. A. Ukraintsev, T. J. Long, T. Gowl, and I. Harrison, J. Chem.

Phys.96, 9114~1992!.
27J. Ihm, M. L. Cohen, and D. J. Chadi, Phys. Rev. B21, 4592

~1980!; M. A. Bowen, J. D. Dow, and R. E. Alen,ibid. 26, 7083
~1982!; M. Schmeits, A. Mazur, and J. Pollmann,ibid. 27, 5012
~1983!.

28C. Julian Chen,Introduction to Scanning Tunneling Microscopy
~Oxford University Press, New York, 1993!, p. 6.

29V. A. Ukraintsev, Z. Dohnalek, and J. T. Yates, Jr.~unpublished!.
30R. M. Feenstra and J. A. Stroscio, J. Vac. Sci. Technol. B5, 923

~1987!; J. A. Stroscio and R. M. Feenstra,ibid. 6, 1472~1988!.

53 11 185DATA EVALUATION TECHNIQUE FOR ELECTRON-TUNNELING . . .


