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Elastic field of a surface step: Atomistic simulations and anisotropic elastic theory
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Atomistic computer simulations and anisotropic elastic theory are employed to determine the elastic fields of
surface steps and vicinal surfaces. The displacement field of and interaction energies K&Bfesteps on a
{001} surface of Ni and Au are determined using atomistic simulations and embedded-atom method potentials.
The step-step interaction energy found from the simulations is consistent with a surface line force dipole elastic
model of a step. We derive an anisotropic form for the elastic field associated with a surface line force dipole
using a two-dimensional surface Green tensor for a cubic elastic half-space within the Stroh formalism. Both
the displacement fields and step-step interaction energy predicted by the theory are shown to be in excellent
agreement with the simulations. The symmetry of the step displacement field is used to determine analytically
the relative values of the components of the surface force dipole vector.

. INTRODUCTION 2(1—12) 1
Bin=—"g— [£2+(7h)%] 2 (1)
The elastic fields of steps on surfaces play a key role in a 0
number of important surface phenomena, including interacwhere 7b is the magnitude of the vertical force dipolgjs
tions between surface steps; interactions between impuritiethe magnitude of the force dipole in the lateral direction
adatoms, and steps; epitaxial growth; surface reconstructiofiproviding one exists d, is the separation between two
and crystal shape. The interaction between surface defects$¢eps, andE and v are the Young's modulus and Poisson’s
caused by the elastic lattice distortions which can extend faratio of the crystal, respectively. This interaction is repulsive
into the bulk of the crystal. Unlike for topological defects, between like steps and decays quadratically with the recip-
such as dislocations, where the Burger’s vector alone deterocal step separation.
mines the displacement field, there is no topological relation- Several additional attempts have been made to study step-
ship that uniquely specifies the elastic field of a step in termstep interactions theoreticafl§® in order to understand the
of its magnitude and orientation. Therefore, several computegnergetics of vicinal surfaces in terms of a periodic array of
simulations and experiments have been performed in order toentical steps on flat high-symmetry surfaces. Atomistic
understand the relation between steps and their elast@imulations of vicinal surface energetics have been per-
fields1~° Within the last 15 years, several theoretical modelsformed using different descriptions of atomic interactions.
for the elastic field of a step have been proposed based updrhese simulations show that the interaction energy decays
continuum elasticity and assumptions regarding the %fep. quadratically with the inverse interstep separation, as pre-
In the present paper, we employ atomistic simulation techédicted by Marchenko and Parshin. While the general argu-
niques to investigate the elastic field associated with surfaceents presented above clearly lead to the correct functional
steps. We then derive an anisotropic elastic theory of steform for the decay of the elastic field with distance from the
elasticity and fit the variables to the results of the atomisticstep, these simulations did not carefully examine the elastic
simulations. In this way, we obtain a fully parametrized, con-field of the steps. Nor did these simulations provide the key
sistent description of step elasticity. piece of information needed to parametrize the elastic theory
Marchenko and ParsHirsuggested that the elastic fields fully for steps, namely the surface force dipole vector.
of surface steps can be described in terms of a traction dis- Modern electron microscopy technigues have made it
tribution upon a flat surface. They argued that the source gbossible to measure indirectly the displacement field created
these tractions is associated with the surface stteasion. by a single stef.Recently Stewart, Pohland, and Gib&bn
The discontinuity of the surface stress at the surface sets upamalyzed the electron-diffraction data fron24.1) step on Si
force moment along the surface step of magnitude proporfl11} in terms of a multipole expansion of the surface trac-
tional to the surface stress. Marchenko and Parshin argudtns. Based upon these results, the authors argue that the
that this force moment must be compensated for by a surfadeading-order term in the expansion is that associated with a
force dipole oriented perpendicular to the surface along theurface force dipole; however, some discrepancies between
line of the surface step. Using this approach, they estimatethe experimental results and the elastic theory remained.
the magnitude of this vertical force dipole to be the product In the present paper, we present atomistic simulation re-
of the surface energy and the step height (more careful sults for (100) steps on a nominally flaf001} surface of
consideration given in the same article leads to replacingrickel and gold. By examining the elastic interactions be-
surface energy by surface stress). Using this model and tween steps as a function of the interstep spacing, we obtain
working within isotropic elasticity, Marchenko and Parshin one estimate of the magnitude of the surface force dipole.
predicted that the interaction energy between two identicaNext, we perform a detailed analysis of the displacement
steps(per unit length of the steps field associated with a surface step. In order to analyze these

0163-1829/96/536)/111208)/$10.00 53 11120 © 1996 The American Physical Society



53 ELASTIC FIELD OF A SURFACE STEP: ATOMIST. .. 11121

pirical functions fit to the universal binding energy relation
and several experimentally determined parametelastic

[imo}
f constants, lattice parameter, vacancy formation energy, etc.
_ The expressions for the empirical functions employed in the
— Gy —> tm10l present simulations may be found in Ref. 12.
 39] lo] 1o 1
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00000 e | The equilibrium atomic structure and energy of the model
89898982:89 :2808089000000 were determined by minimizing the total energy with respect
[010] 900000 ho.a.g.o.o.o.o to the coordinates of all of the atoms using a conjugate gra-
080eneCe00}e00000 00000800 i inet? i i

Yo YoI 1o O'Ooﬁooo.oooooooooo dient routlr_nel. The S|mulat|on. cell was matched to a perfec;t
crystal lattice of the appropriate lattice parameter at a dis-

8 e el tanceh below the free surface. During the course of the

< x simulation, the heighh of the computational cell was gradu-
[ooj ally increased until the total energy did not change to within

an accuracy of 10’ eV. The conjugate gradient method was
FIG. 1. The geometry of the simulation cell. Black and white deemed converged when the maximum force on any atom
circles denote atoms displaced in thelirection byay/2, wherea, was less than or equal to ﬂ)eV/ao, and when the maxi-
is the perfect crystal lattice constant. This figure corresponds to gnym atomic displacements in any one step were less than or
(160) surface.do is the step separation arfii=a,/2 is the step  equal to 10° a,,.
height. The unit cell width is equal to the step separation, its height | order to compare the interaction energies obtained in
is h, and its thickness igy. Periodic boundary conditions are ap- the present simulations with that predicted by ED), we

fk:ie.d in tfhet[mlo]t ?ireCt.it(.)n’ and the atoms at>h are frozen in - -o10|ated the surface stress tensor using the expression pro-
eir perfect crystal positions. posed in Ref. 14,

data in terms of an elastic model, we derive an anisotropic

elastic theory for the elastic field of a step in terms of the Tap™ —A;lz E MkigFiia - 3

surface force dipole vector. We then invert the surface step Pk

displacement field obtained from the simulation in order toHere F,,  denotes ther component of the force on thi¢h

determine the entire surface force dipole vector. The resultsite resulting from its interaction with site, r; is the 8

ant dipole vector yields elastic step interaction energies iomponent of the radius vector from site sitek, andA, is

reasonable agreement with those obtained directly via atomne area of a unit cell of the surface. Foftd0 surface of a

istic simulation. Finally, an analysis of the elastic theory cybic material, the surface stress tensor is diagonal, i.e.,
shows that the relative magnitudes of the components of the

surface force dipole vector are determined simply by the an- Top=TOup- 4
isotropic elastic constants of the crystal.

I1l. SIMULATION RESULTS
Il. SIMULATION METHOD ) ) —
The step-step interaction enerdy,, on (1 mO) vicinal

In the present paper, we examii#®1] steps on th€010  surfaces of gold and nickel as a function of the square of the
surface of nickel and gold. In order to determine step-steReciprocal interstep separatio  is shown in Figs. &) and
interaction energies, we performed a series of simulations o), respectively. Both sets of data show that over the range
several(1 m0) vicinal surfaces. The geometry of the simula- of interstep spacings considered here, the step-step interac-
tion cell and surface crystallography employed in the presenion energy is well described by the, 2 functional form.
study are shown in Fig. 1. In this figurel, denotes the Thjs is consistent with the prediction of E€lL), and with
distance between two adjacent steps measured along the t@irlier atomistic simulation resuff$. Earlier simulation
race in the direction perpendicular to the steps, Bnsithe  resulté suggest that at much smaller step spacings than con-
height of the computational cell. The dimension of the com-sidered here, higher-order terms in the step-step interaction
putational cell in the direction in which the step runs is Oneenergy dependence of the reciprocal interstep separation
face-centered-cubic lattice constagt(which corresponds to  must also be included.
two atomic layers the separation between steps is in the |y order to evaluate the agreement of the simulation data
range &,=dy=<80a,. Periodic boundary conditions were wjth the functional form forE,, vs d, predicted by Eq(1),

applied in both the direction(i.e.,[001]) and in thefm10] e fit the data in Fig. 2 to the functional form
direction.

The atomic interactions were described using embedded- Al Ay Az
atom-method EAM) potentialst! In the this formalism the S 2T E 5
. . . L 0 0 0
total energyE,, consists of two distinct parts: a pairwise
interaction energy and an on-site energy The step-step interaction energy is determined from the

\ N simulations as indicated in Ref. 4. If E() provided a per-
fect fit to the entire range of simulation datd; and A;
Eot= ;1 ; ¢(rij)+§l F( ;I P(rij))* (2 would be exactly zero. Table | shows thf is indeed very
small for both Ni and Au. Althougti; is nonzero, this term
whereN is the number of atoms in the system, is the = makes a negligible contribution to the interaction energy
separation between atomsandj, and ¢, p, andF are em- over the range of step spacings examined in the present
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spacing was sufficiently large to guarantee that step-step in-
teractions do not significantly modify the displacement . . o
fields, we also determined the displacement field for the FIG. 3. Displacement field for a periodic array(@00 steps on
same step in Ni, but with a step spacitg= 300a, [see Fig. 21001 surface obtained from the atomistic simulatiof@.and (b)
3(c)]. The displacement fields for the steps separated byorresp.ond to gold and nickel surfaces, respectiyely, with a step
d,=80a, and 30@, are indistinguishable. Separatiordy= 80a, (only a segment of the surface is show(e) is

The maximum atomic displacements associated with thd'¢ Same asb) except thatd,=3008,. In order fo improve the
step are 1.9(10’2a0 in Ni, and 5.0(1072a0 in Au. Exclud- clarity, the atomic dlsplacement_vectors are magnified by a factor of
ing a region of radius &, of the upper step edge, the maxi- éOO 1:03r gqld and 200 for nickel. Displacements larger than

- - 3. . X10 “aq, in the core region, are not shown.
mum atomic displacements arex®0 “a, in Ni and
1.6xX10 %a, in Au. Since most of the remaining displace-  The displacement fields associated with the steps in Au
ments are very small compared with the interatomic separaand Ni[Figs. 3a) and 3b)] are very similar. They are char-
tion, we expect that linear elasticity should be applicable foracterized by decreasing magnitude with distance from the
describing the elastic field of the stefexcept, perhaps, step. In both cases, there is a plane, canted with respect to the
within a very small region immediately surrounding the corevertical, across which the out-of-plane displacements change
of the step. sign. The in-plane displacements also change sign as the
same plane is crossed. Therefore, in both the Au and Ni
cases, the step displacement fields exhibit a plane of(@ero
nearly zer¢ displacement which is canted toward the upper
side of the step. The fact that this plane is canted with respect
to the surface normal is unexpected, since the simplest model

TABLE |. The coefficients of ;) ™ in the expansion of the
step-step interaction ener@y,; vs the inverse interstep spacidg,
as per Eq(5).

A A, (eVA A; (eV A2 .
1(eV) 2(€VA) 3 (VA of a surface stefbased upon Marchenko and Parshin’s sur-
Au —0.0003£0.0002 0.1%0.02 —0.62+0.34 face stress argumenimplies a surface force dipole oriented
Ni —0.000 03-0.00002  0.04%0.001 —0.14+0.02 perpendicular to the nominal surface.

Although it is possible to analyze the displacement field
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associated with the surface st@jetermined from the simu- For an anisotropic medium, an analytical expressior&for
lations in terms of an isotropic elastic surface force dipolecan be obtained only for the case of hexagonal symntétry.
vector model, such an analysis would be inappropriate beHowever, for two-dimensional problems, the complexity of
cause the elastic anisotropy in nickel is substantial. One ate problem can be significantly reduced by using the for-
the effects of this anisotropy can be seen in Fig. 3. If both thenalism developed by StroH.The expression for the deriva-
Au and Ni were isotropic, then the step displacement fieldgive of the surface Green tensgr derived in this way, is
in these two materials would be identical with the possiblepresented in the Appendix. For the case of a step oriented
exception of an overall scale factor. Careful examination ofalong(001) on a{001} surface of a cubic crystal, an expres-
Figs. 3a) and 3b) show that the planes about which the sion for g can be found analytically in closed form. The
displacements change signs occur at different angles in thesdéements of the derivatives of the surface Green tegsar
two materials. Therefore, an anisotropic elastic analysis opolar coordinates are
the displacement fields of the step is necessary.

1 f(0) 1 f,(0)

IV. ELASTIC ANALYSIS r wLd(@) r wLd(6) an
g= , 11
Consider the case of a step oriented parallel toGre 1 f(6) 1 1,(6)
direction on a surface with norm&®Y. The directionOX r wLd(6) r wLd(0)
lies within the surface, perpendicular to the direction in
which the step runs. The step is at the origin of the coordiWhere
nate system. Further, let the material occupy the half-space . .
y>0. The displacement field associated with any distribution fux(0) = C 44008 0)[ C1£08'(6) ~ Cysin?(6)],
of surface tractions can be written as a convolution of these _ ) i? 2
tractions T(x,z) with the elastic surface Green tensor Fiy(0) = Cassin(O)[ Cz8in(6) — C1ac08() ],
G(x,y,2): _ _ (123
fyx(8) = C4sSin( )[ CySirP( ) — C1,c08( )],
u(x.y,2)= f dSG(x=x"y,z=2)T(x",2").  (6) fyy(6) =Cos 0){H coS(6)(Cyy+C1o) +C1.Cas
In the straight surface step case, the problem is strictly two +(Cy3#+ C19)[C11— Cqpt Chucog(6)]},

dimensional, since the surface tractions are assumed to be

uniform along the step line, i.e., they are independent of the d(8)=H(Cy;+C1p)coS(0)sir?(6)+C11Cas, (12b)
coordinate along a step. These tractions will be denoted as

T(x). The Green tenso6(x,y,z) can, therefore, be inte- and

grated along the step direction to yieB{x,y).

In Marchenko and Parshin’s model, the tractions pro- L Cas(C11—Cypo) 1
duced by a step are assumed to be associated with a surface B C.C C..C : (129
line force dipole which, in the most general case, may be \/( a4 ) 1-ad
tilted with respect to the surface, Cut+Co CutCyp

T(x)=D&"(x), ) H is the elastic anisotropy of the cubic crystal:

H=C;;—C4,—2C4 andC,;, C4,, and C,, are the three
where &' is a derivative of a delta function, arid is the  ynjique elastic constants of a cubic crystal. The form of Egs.
surface force dlp0|e vector. The resultant expression for th%ll) and (12) preserve the same structure of the derivative of
displacement field associated with a single surface step ighe Green tensor found in the isotropic case: the radial parts
simply [inserting Eq.(7) into Eq. (6)] are all proportional to t/ The angled is measured from the

_ OX axis to theOY axis in a counterclockwise manneee
ux,y)=g(x.y)b, ®) Fig. 1). All elements of the tensog in which one of the
whereg(x,y) is a 3x3 matrix, indices isz are identically zero except fog,,. However,
because of the symmetry of the surface step problem, the
d magnitude of the dipole force in tHeZ direction is zero.
9(x,y) == — G(X.y). ©) Given the green tensay, the interaction energy between
two identical step&, can be readily obtained from the gen-
The tensog is easily obtained for the case of an isotropic eral expression for the elastic interaction energy between two
mediunt® from the well-known isotropic elastic surface surface loads:
Green tenso6(x,Y,z).t° For our purposes, the main feature
of this tensor is thafin polar coordinatéseach of its com- _
ponents can be factored as a product of an angularf péit Eint_f dST,1(x,2)ux(x,2), (13
and a radial part which is proportional tor Livherer is the ) ) ) ) _
distance from the origin. The off-diagonal elements of theWhereTy(x,z) is the traction associated with the first load,

matrix f vanish at the surface and exhibit the following sym- U2(X,2) is the displacement vector associated with the trac-
metry: tions of the second load, and the integral is evaluated over

the entire surface. Inserting Eq&’) and (8) into Eq. (13)
fuy=—Tyx- (100  yields
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elastic step-step interaction energy data from the simulation
(presented in Table )| allows direct determination of . ] o
D2+D2. The individual components of the surface line force  FIG. 4. Displacement field for a periodic array(@00) steps on
dipole vector may be extracted directly from the displace-a {001} surface obtained from the anisotropic elastic theldty.

ment field determined in the atomistic simulations. Both of(8)] using the best-fit surface line force dipole vedibr(a) and(b)
these analyses are performed below. correspond to gold and nickel surfaces, respectively, with a step

separatiordy=80a, (only a segment of the surface is showiihe
magnification factors used for the displacements are exactly as
shown in Fig. 3.

The simulation results presented above suggest that the . . ) )
leading-order term in the expansion of the step-step interad®Ct comparison of the displacements determined via the
tion energy in a series of reciprocal powers of distance i$imulation with the analytical, anisotropic form of E¢8)—
quadratic, i.e.dy 2. This is consistent with the predictions of (12. The two independent components of the surface line
both the isotropic and our anisotropic elastic theories thatorce dipole vectoD, and D, were chosen to provide the
model the elastic field of a step in terms of a surface ling?est fit to the displacement field obtained from the simula-
force dipole. Nonzero higher-order terms in this expansiorions using a least-squares fitting procedure. There is ambi-
may be associated with surface force distributions whictfuity on the scale of an interatomic spacing as to which line
contain quadrupole or higher-order terms. The next-ordePn Fhe surface to associate Wlth the step location. We arbi-
term in the expansion of the step-step interaction endggy trarily as;umed that the step is located at the upper edge of
is associated with the interaction between a dipole on oné€ step(i.e., at the edge of the upper terrackn order to
step and a quadrapole on another f&phe relative contri- exclude the effect of surface relaxation, we excluded all at-

bution of this third-order term can be estimated in terms of 2MSs Within the thre¢020) planes closest to the surface from
dimensionless parameter the fit. Similarly, to eliminate the effects of nonlinear elastic

displacements near the “core” of the step, we also excluded

all atoms that were within a radius of four atomic spacings of
. (17)  the step from the fit. The best-fit, anisotropic elastic displace-

ment field associated with a surface line force dipole is
For K<0.2, the third-order term makes less than a 20% corshown in Figs. éa) and 4b) for the case of af001]-oriented
rection to the step-step interaction energy. Using the simulastep on a(010 surface in gold and nickel, respectively.
tion data in Table I, this only occurs for step spacings biggelComparison of Figs. 3 and 4 shows that the theoretical pre-
than approximately 18 A in Ni and Ad.e., >5 lattice pa-  dictions of the displacement fields are in excellent agreement
rameters Although it is not possible to extract the surface with the atomistic data for both nickel and gold everywhere,
line dipole force vectofor its magnitudgfrom elastic theo- except for some small differences very near the step itself. It
ries, comparison of atomistic simulation and elastic theoryis also possible to invert the Green tensor for the surface line
results can be employed uniquely to determine this dipolelipole Eq.(9) locally, at each atomic position, and investi-
force vector. gate the variation of the surface line force dipole needed to

The most direct method for extracting the surface lineproduce those local displacements and the magnitude of the

force dipole vector from the atomistic simulations is by di- parameterA, in the step-step interaction energy obtained

V. DISCUSSION

As
doAz

K:
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TABLE II. The two independent components of the surface line  TABLE Ill. The surfaces stress and surface energy of the

force dipoleD, and D, (eVIA) and the coefficienth, (eV A) of {001} surface of Au and Ni determined from the present atomistic

(dy)~? in the expansion of the step-step interaction endggy vs simulations. For comparison, we also enclose the surface energy

the inverse interstep spaciidg, as per Eq(5) with A;=A;=0 (as  determined from experiments using polycrystalline sampTg@J

discussed in the textTable 1l(@) presents data for Au, and Table (Ref. 20.

II(b) presents data for Ni. The “Theorffit)” data were obtained

from a least-square fit of E8) to the simulation data. The value of 7 (eVIA?) y (eVIA?) Y exp (EVIAY

A, in the row labeled “Simulations” was determined from Fig. 2.

The data in the rows labeledr%” and * yb” were obtained using Au 0.196 0.057 0.094
Egs. (8) and (16) and the values of the surface stress and surfacdVi 0.164 0.098 0.149
energy determined in the present simulatidis.ay/2 is the surface
step height.
force dipole oriented normal to the surface is equal to the
@ product of the surface stress and the step height,ibe.In
Au D, D, A, order to examine this assertion, we have calculated the sur-
face stress for th§001} surface of Ni and Au. The data are
Simulations 0.15 tabulated in Table I, along with th¢001} surface energy
Theory (fit) 0.17 0.18 0.13 determined from the simulation and polycrystalline average
7b 0.40 0.34 surface energies determined experimentally. The surface
yb 0.12 0.03 stress is found to be 1-4 times larger than the surface en-
ergy. Hence approximating one with the other would be a
(b) N i _
. poor approximation. Additionally, the computed surface en
Ni Dy Dy Az ergies are significantly smaller than the experimental values.
Simulations 0.039 This is due in large part to the fact that the EAM potentials
Theory (fit) 0.15 0.13 0.033 routinely underestimate the surface energies of fcc metals,
b 0.29 0.070 and that the experimental values are polycrystalline aver-
vb 0.17 0.025 ages. Inserting the surface stress values determined from

these simulations into the expression for the step-step inter-
action energy parameter for the vicinal surfdée in Eq.

procedure produces only small variations in the surface linéh€ magnitude of the surface line force dipole is equal to the
force dipole values and the step-step interaction energy cdroduct of the surface stress and the step height yields results
efficientA,. This further demonstrates the accuracy and conthat are of the correct order of magnitude. However, only
sistency between the anisotropic elastic analytical predicincluding therb term inA; ignores the possibility of a force
tions of the step elastic field and that found from ourdipole in the plane of the surfa¢see Eq(1) above. Such a
atomistic simulations. term would only further increase Marchenko and Parshin’s

The core of the step is the region near the step in whictredicted value oA, which is already too large by approxi-
the linear elastic theory fails to describe the atomic displaceMately 100% compared with the simulation results.
ment field accurately. Although this definition of core size _BOth the displacement fields obtained from the atomistic
depends on the threshold we use to determine whether trfmulations and those determined using EB).(see Figs. 3
displacement fields are sufficiently accurately reproduced b@nd 4 show that a plane exists along which the atomic dis-
linear elasticity, we can make a reasonable choice, such thRfacements are very nearly zero. This plane passes through
small changes in this threshold do not significantly changdhe step and hence occurs at some angle, which we ébel
change the core size. Using the best-fit valueBpandD, Analytically, the occurrence of such a zero displacement
and a threshold error of 10%, we estimate the step core ré}la}ne até, implies that the following condition must be sat-
dius to be approximatelyd, for these steps in both Ni and isfied:
Au.

Table Il shows the values @, andD, obtained by fitting 9(6o)D=0. (18)

Eq. (8) to the displacement field found from the atomistic This can only occur if the determinant gt 6, is identically
simulations. In order to establish the consistency of theseero. For the step geometry considered Heee, (100) steps

results with respect to the simulations, Table Il compares then a{001 surface, this implies thatf, must satisfy the fol-
magnitude of the step-step interaction energhes obtained  |owing condition:

by varying the step spacing in the simulations directly with
the predictions of the analytical theory, E46). The result- Cuy
ant values agree to within 15% for both Au and Ni. We note tanzao:C—- (19
that an error of ordet-¢ in D, andD, leads to an error of up 12
to 4e in A,. Therefore, we conclude that the errordpand  Therefore, the angle of the zero displacement plane is simply
D, are in the range of 4—15 %. On this basis, we conclude function of the elastic constants. Equatid®) is a neces-
that the analytical anisotropic elastic theory is in excellentsary condition in order to satisfy E¢L8), but not a sufficient
agreement with the simulations. one. Using the value of), determined in Eq(19), we find

In Marchenko and Parshiforiginal paper on step-step that Eq.(18) is satisfied only if the two components of the
interactions, they speculated that the magnitude of the linsurface line force dipole vector satisfy the following relation:
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Ni and Au have much different elastic anisotropies—
H(Au)=—0.40 eV/A and H(Ni)=-1.10 eV/® using the
elastic constants derived from the EAM potentials. However, APPENDIX: ANISOTROPIC SURFACE ELASTIC GREEN
these anisotropies produce only a relatively small difference TENSOR

in 6y: Oy(Au)=47.0° andfy(Ni)=50.9°. 6, can also be ex- . . . . .
tracted from the displacement fields shown in Fig. 3, which The elastic Green tensor associated with an isotropic elas-

were determined from the atomistic simulations. These valtic half-space is easily derived and is well knowrwhile
. . . ' the Green tensor for an anisotropic half-space may also be
ues determined from the simulations afig{Au)=50°+3° b b y

. . determined, it cannot be evaluated analytically except in spe-
and 6y(Ni)=51°+2°. The values ofj, determined from the y Y P P

. > - cial cases, e.g., a hexagonal crystafortunately, this com-
elastic constantiEq. (19)] are within the error bars of those plexity may be significantly reduced in two-dimensional

obtained from the simulations. Although the predicted Va|ue?)roblems by application of the Stroh formalidfn.

for 00 for Au and Ni are very Similar, the values determined Let us consider an anisotropiC, elastic ha|f-space occupy-
from the simulations are such thaj(Au)<6,(Ni), in agree-  jng the regiony>0, with thex axis parallel to the surface.
ment with the theoretical predictions. The predicted angleshis problem is two dimensional, and all solutions are inde-
could be better tested in a material such as diamond whejfgendent of the coordinate. Following the approach pro-
the anisotropy is very larged,(diamond=71°. posed by Tind® we introduce the following 83 matrices:

Qik(0)=Cijksnjns, Rix(0)=Cjjshjm,

VI. CONCLUSIONS Tik(0) = Cijksmyms, (A1)
Atomistic computer simulation and anisotropic elasticWheren;=[cosp, sind, 0], m;=[—sing, cos, 0], andC;;;s is

theory were applied to the determination of the elastic fielddhe anisotropic elastic constant tensor. The artgie mea-

of individual surface steps and steps on vicinal surfaces. Theured with respect to th®X axis in a counterclockwise di-

displacement field of and interaction energies betwdeg) rectlor_1(|.e., towards_th@Y axis). It is useful to identify the

steps on 4001} surface of Ni and Au were determined using following three matrices:

zero-temperature atomistic simulations and embedded-atom-

method interatomic potentials. A fit of the step-step interac- Ni(6)=—T HORT(6), Ny6)=T X9,
tion energy determined from simulations in terms of a power
law in the inverse step spacing shows that the leading order N3(8)=R(O)T X ORT(8)—Q(6), (A2)

term in the step-step interaction energy is proportional to the

inverse square of the step spacing. This is consistent with and three incomplete integrals

surface line force dipole elastic model of a step. In order to

fit the simulation data to the elastic model, we derived an 1 (6 1 (6

anisotropic form for the elastic field associated with a surface ~ S(6)= — f Ny(w)dw, H(#)=— j No(w)dw,

line force dipole using a two-dimensional surface Green ten- 0 0

sor for a cubic elastic half-space within the Stroh formalism. 1 (6

This is necessary since Ni has a large elastic anisotropy. One L(o)=-— f N3(w)dw. (A3)
input into the analytical description of the elastic fields of the 0

step is the surface force dipole vector associated with th?he surface Green tens@, (r, 6) for an anisotropic, elastic

step. We d_etermmed t.h's dipole vect_or by_ﬁttmg the d's'half—space may now be written in terms of these quantities as
placement field determined from the simulation with the regtsee expressiofb.2) in the same articld]:

sults of the anisotropic elastic theory. We demonstrated th
this fit is excellent for both Ni and Au. This dipole vector
was combined with the anisotropic elastic theory to predict G=—
the step-step interaction energy. This too was shown to be in

excellent agreement with the simulations. Finally, the sym- , , , )
metry of the displacement field associated with the step sug¥nere! is an identity matrix, and

gests an analytical method for determining the relative val-

ues of the components of the surface force dipole vector in S=8(m), H=H(m), L=L(m). (AS5)
terms of the anisotropic elastic constants. This reduces the

determination of the elastic field of a step to a single param- Integrals (A3) and (A5) can be computed analytically
eter. only in a few special cases. However, in order to describe the

;(

In r)I+S(0)—%S}L1, (A4)



53 ELASTIC FIELD OF A SURFACE STEP: ATOMIST. .. 11127

displacement field associated with a surface force line dipole, L33=Cua, (A7)
we need only evaluate the derivative of the surface Green’s
function with respect tax, rather than the entire surface C44(C11—C1o)

Green tensor itself. This simplification allows us to avoid Lii=Lyp=L=
evaluating the indefinite integrals EGA3) altogether, and
only the elements of the matrik, which are the definite
integrals Eq(A5), need to be computed. At most, the matrix
L contains six unique elements because it is symmetric. Th
resultant expression for the surface dipole Green tegssr

C11Cua
CuutCyy

C..C
(4&%)
CutCyp

}1/2’

whereH is the crystal anisotropyf =C;,—C;,—2C,,. In
fhe isotropic limit (H—0), Eq. (A6) reduces to the well-
known isotropic elastic surface dipole Green terior.

1 If we examine{111} surfaces rather than tH€®01} sur-

g=-— x G= T [1 cos—N;sing]L 1. (A6) faces, as in recent experiments, computation of the elements
of L requires either solving a cubic equation or numerical

In the case of cubic symmetry, when the half-space isvaluation. Except for this step, the procedure for deriving
bounded by 4001 -type plane and thél00) step lies along the surface Green tensor fo{BHL1} surface is essentially the
OZ (as in the present casehis problem can be solved ana- same as that outlined above for tf@10-[001] surface step
lytically. The matrixL becomes diagonal: geometry.
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