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Atomistic computer simulations and anisotropic elastic theory are employed to determine the elastic fields of
surface steps and vicinal surfaces. The displacement field of and interaction energies between^100& steps on a
$001% surface of Ni and Au are determined using atomistic simulations and embedded-atom method potentials.
The step-step interaction energy found from the simulations is consistent with a surface line force dipole elastic
model of a step. We derive an anisotropic form for the elastic field associated with a surface line force dipole
using a two-dimensional surface Green tensor for a cubic elastic half-space within the Stroh formalism. Both
the displacement fields and step-step interaction energy predicted by the theory are shown to be in excellent
agreement with the simulations. The symmetry of the step displacement field is used to determine analytically
the relative values of the components of the surface force dipole vector.

I. INTRODUCTION

The elastic fields of steps on surfaces play a key role in a
number of important surface phenomena, including interac-
tions between surface steps; interactions between impurities,
adatoms, and steps; epitaxial growth; surface reconstruction;
and crystal shape. The interaction between surface defects is
caused by the elastic lattice distortions which can extend far
into the bulk of the crystal. Unlike for topological defects,
such as dislocations, where the Burger’s vector alone deter-
mines the displacement field, there is no topological relation-
ship that uniquely specifies the elastic field of a step in terms
of its magnitude and orientation. Therefore, several computer
simulations and experiments have been performed in order to
understand the relation between steps and their elastic
fields.1–5Within the last 15 years, several theoretical models
for the elastic field of a step have been proposed based upon
continuum elasticity and assumptions regarding the step.6,7

In the present paper, we employ atomistic simulation tech-
niques to investigate the elastic field associated with surface
steps. We then derive an anisotropic elastic theory of step
elasticity and fit the variables to the results of the atomistic
simulations. In this way, we obtain a fully parametrized, con-
sistent description of step elasticity.

Marchenko and Parshin6 suggested that the elastic fields
of surface steps can be described in terms of a traction dis-
tribution upon a flat surface. They argued that the source of
these tractions is associated with the surface stress~tension!.
The discontinuity of the surface stress at the surface sets up a
force moment along the surface step of magnitude propor-
tional to the surface stress. Marchenko and Parshin argued
that this force moment must be compensated for by a surface
force dipole oriented perpendicular to the surface along the
line of the surface step. Using this approach, they estimated
the magnitude of this vertical force dipole to be the product
of the surface energyg and the step heightb ~more careful
consideration given in the same article leads to replacing
surface energyg by surface stresst!. Using this model and
working within isotropic elasticity, Marchenko and Parshin
predicted that the interaction energy between two identical
steps~per unit length of the step! is
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wheretb is the magnitude of the vertical force dipole,j is
the magnitude of the force dipole in the lateral direction
~providing one exists!, d0 is the separation between two
steps, andE andn are the Young’s modulus and Poisson’s
ratio of the crystal, respectively. This interaction is repulsive
between like steps and decays quadratically with the recip-
rocal step separation.

Several additional attempts have been made to study step-
step interactions theoretically3,4,8 in order to understand the
energetics of vicinal surfaces in terms of a periodic array of
identical steps on flat high-symmetry surfaces. Atomistic
simulations of vicinal surface energetics have been per-
formed using different descriptions of atomic interactions.
These simulations show that the interaction energy decays
quadratically with the inverse interstep separation, as pre-
dicted by Marchenko and Parshin. While the general argu-
ments presented above clearly lead to the correct functional
form for the decay of the elastic field with distance from the
step, these simulations did not carefully examine the elastic
field of the steps. Nor did these simulations provide the key
piece of information needed to parametrize the elastic theory
fully for steps, namely the surface force dipole vector.

Modern electron microscopy techniques have made it
possible to measure indirectly the displacement field created
by a single step.9 Recently Stewart, Pohland, and Gibson10

analyzed the electron-diffraction data from a^211& step on Si
$111% in terms of a multipole expansion of the surface trac-
tions. Based upon these results, the authors argue that the
leading-order term in the expansion is that associated with a
surface force dipole; however, some discrepancies between
the experimental results and the elastic theory remained.

In the present paper, we present atomistic simulation re-
sults for ^100& steps on a nominally flat$001% surface of
nickel and gold. By examining the elastic interactions be-
tween steps as a function of the interstep spacing, we obtain
one estimate of the magnitude of the surface force dipole.
Next, we perform a detailed analysis of the displacement
field associated with a surface step. In order to analyze these
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data in terms of an elastic model, we derive an anisotropic
elastic theory for the elastic field of a step in terms of the
surface force dipole vector. We then invert the surface step
displacement field obtained from the simulation in order to
determine the entire surface force dipole vector. The result-
ant dipole vector yields elastic step interaction energies in
reasonable agreement with those obtained directly via atom-
istic simulation. Finally, an analysis of the elastic theory
shows that the relative magnitudes of the components of the
surface force dipole vector are determined simply by the an-
isotropic elastic constants of the crystal.

II. SIMULATION METHOD

In the present paper, we examine@001# steps on the~010!
surface of nickel and gold. In order to determine step-step
interaction energies, we performed a series of simulations of
several~1̄ m̄0! vicinal surfaces. The geometry of the simula-
tion cell and surface crystallography employed in the present
study are shown in Fig. 1. In this figure,d0 denotes the
distance between two adjacent steps measured along the ter-
race in the direction perpendicular to the steps, andh is the
height of the computational cell. The dimension of the com-
putational cell in the direction in which the step runs is one
face-centered-cubic lattice constanta0 ~which corresponds to
two atomic layers!, the separation between steps is in the
range 8a0<d0<80a0 . Periodic boundary conditions were
applied in both theZ direction~i.e., @001#! and in the@m̄10#
direction.

The atomic interactions were described using embedded-
atom-method~EAM! potentials.11 In the this formalism the
total energyEtot consists of two distinct parts: a pairwise
interaction energy and an on-site energy
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whereN is the number of atoms in the system,r i j is the
separation between atomsi and j , andf, r, andF are em-

pirical functions fit to the universal binding energy relation
and several experimentally determined parameters~elastic
constants, lattice parameter, vacancy formation energy, etc.!.
The expressions for the empirical functions employed in the
present simulations may be found in Ref. 12.

The equilibrium atomic structure and energy of the model
were determined by minimizing the total energy with respect
to the coordinates of all of the atoms using a conjugate gra-
dient routine.13 The simulation cell was matched to a perfect
crystal lattice of the appropriate lattice parameter at a dis-
tanceh below the free surface. During the course of the
simulation, the heighth of the computational cell was gradu-
ally increased until the total energy did not change to within
an accuracy of 1027 eV. The conjugate gradient method was
deemed converged when the maximum force on any atom
was less than or equal to 1025 eV/a0, and when the maxi-
mum atomic displacements in any one step were less than or
equal to 1026 a0.

In order to compare the interaction energies obtained in
the present simulations with that predicted by Eq.~1!, we
calculated the surface stress tensor using the expression pro-
posed in Ref. 14,

tab52Ac
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HereFkia denotes thea component of the force on thei th
site resulting from its interaction with sitek, r kib is the b
component of the radius vector from sitei to sitek, andAc is
the area of a unit cell of the surface. For a$010% surface of a
cubic material, the surface stress tensor is diagonal, i.e.,

tab5tdab . ~4!

III. SIMULATION RESULTS

The step-step interaction energyEint on ~1̄ m̄0! vicinal
surfaces of gold and nickel as a function of the square of the
reciprocal interstep separationd0

22 is shown in Figs. 2~a! and
2~b!, respectively. Both sets of data show that over the range
of interstep spacings considered here, the step-step interac-
tion energy is well described by thed0

22 functional form.
This is consistent with the prediction of Eq.~1!, and with
earlier atomistic simulation results.3,4 Earlier simulation
results4 suggest that at much smaller step spacings than con-
sidered here, higher-order terms in the step-step interaction
energy dependence of the reciprocal interstep separation
must also be included.

In order to evaluate the agreement of the simulation data
with the functional form forEint vs d0 predicted by Eq.~1!,
we fit the data in Fig. 2 to the functional form

Eint5
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The step-step interaction energy is determined from the
simulations as indicated in Ref. 4. If Eq.~5! provided a per-
fect fit to the entire range of simulation data,A1 and A3
would be exactly zero. Table I shows thatA1 is indeed very
small for both Ni and Au. AlthoughA3 is nonzero, this term
makes a negligible contribution to the interaction energy
over the range of step spacings examined in the present

FIG. 1. The geometry of the simulation cell. Black and white
circles denote atoms displaced in theZ direction bya0/2, wherea0
is the perfect crystal lattice constant. This figure corresponds to a
~1̄ 6̄0! surface.d0 is the step separation andb5a0/2 is the step
height. The unit cell width is equal to the step separation, its height
is h, and its thickness isa0. Periodic boundary conditions are ap-
plied in the [m̄10] direction, and the atoms atY.h are frozen in
their perfect crystal positions.
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study. The values for theseAm are similar to those obtained
in a previous atomistic study of step-step interactions.4

The atomic displacement fields associated with individual
@001# steps on the~010! surface of gold and nickel are shown
in Figs. 3~a! and 3~b!, respectively. These displacement
fields were obtained from simulations in which the step sepa-
ration wasd0580a0. In order to demonstrate that the step
spacing was sufficiently large to guarantee that step-step in-
teractions do not significantly modify the displacement
fields, we also determined the displacement field for the
same step in Ni, but with a step spacingd05300a0 @see Fig.
3~c!#. The displacement fields for the steps separated by
d0580a0 and 300a0 are indistinguishable.

The maximum atomic displacements associated with the
step are 1.931022a0 in Ni, and 5.031022a0 in Au. Exclud-
ing a region of radius 1a0 of the upper step edge, the maxi-
mum atomic displacements are 631023a0 in Ni and
1.631022a0 in Au. Since most of the remaining displace-
ments are very small compared with the interatomic separa-
tion, we expect that linear elasticity should be applicable for
describing the elastic field of the step~except, perhaps,
within a very small region immediately surrounding the core
of the step!.

The displacement fields associated with the steps in Au
and Ni @Figs. 3~a! and 3~b!# are very similar. They are char-
acterized by decreasing magnitude with distance from the
step. In both cases, there is a plane, canted with respect to the
vertical, across which the out-of-plane displacements change
sign. The in-plane displacements also change sign as the
same plane is crossed. Therefore, in both the Au and Ni
cases, the step displacement fields exhibit a plane of zero~or
nearly zero! displacement which is canted toward the upper
side of the step. The fact that this plane is canted with respect
to the surface normal is unexpected, since the simplest model
of a surface step~based upon Marchenko and Parshin’s sur-
face stress argument! implies a surface force dipole oriented
perpendicular to the nominal surface.

Although it is possible to analyze the displacement field

FIG. 2. Interaction energy of the steps on vicinal~1̄ m̄0! sur-
faces vs the square of the inverse step separation for~a! gold and
~b! nickel.

FIG. 3. Displacement field for a periodic array of^100& steps on
a $001% surface obtained from the atomistic simulations.~a! and~b!
correspond to gold and nickel surfaces, respectively, with a step
separationd0580a0 ~only a segment of the surface is shown!. ~c! is
the same as~b! except thatd05300a0 . In order to improve the
clarity, the atomic displacement vectors are magnified by a factor of
100 for gold and 200 for nickel. Displacements larger than
531023a0, in the core region, are not shown.

TABLE I. The coefficients of (d0)
2m in the expansion of the

step-step interaction energyEint vs the inverse interstep spacingd0,
as per Eq.~5!.

A1 ~eV! A2 ~eV Å! A3 ~eV Å2!

Au 20.000360.0002 0.1760.02 20.6260.34
Ni 20.000 0360.000 02 0.04560.001 20.1460.02
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associated with the surface step~determined from the simu-
lations! in terms of an isotropic elastic surface force dipole
vector model, such an analysis would be inappropriate be-
cause the elastic anisotropy in nickel is substantial. One of
the effects of this anisotropy can be seen in Fig. 3. If both the
Au and Ni were isotropic, then the step displacement fields
in these two materials would be identical with the possible
exception of an overall scale factor. Careful examination of
Figs. 3~a! and 3~b! show that the planes about which the
displacements change signs occur at different angles in these
two materials. Therefore, an anisotropic elastic analysis of
the displacement fields of the step is necessary.

IV. ELASTIC ANALYSIS

Consider the case of a step oriented parallel to theOZ
direction on a surface with normalOY. The directionOX
lies within the surface, perpendicular to the direction in
which the step runs. The step is at the origin of the coordi-
nate system. Further, let the material occupy the half-space
y.0. The displacement field associated with any distribution
of surface tractions can be written as a convolution of these
tractions T(x,z) with the elastic surface Green tensor
G(x,y,z):

u~x,y,z!5E dSG~x2x8,y,z2z8!T~x8,z8!. ~6!

In the straight surface step case, the problem is strictly two
dimensional, since the surface tractions are assumed to be
uniform along the step line, i.e., they are independent of the
coordinate along a step. These tractions will be denoted as
T(x). The Green tensorG(x,y,z) can, therefore, be inte-
grated along the step direction to yieldG(x,y).

In Marchenko and Parshin’s model, the tractions pro-
duced by a step are assumed to be associated with a surface
line force dipole which, in the most general case, may be
tilted with respect to the surface,

T~x!5Dd8~x!, ~7!

where d8 is a derivative of a delta function, andD is the
surface force dipole vector. The resultant expression for the
displacement field associated with a single surface step is
simply @inserting Eq.~7! into Eq. ~6!#

u~x,y!5g~x,y!D, ~8!

whereg(x,y) is a 333 matrix,

g~x,y!52
]

]x
G~x,y!. ~9!

The tensorg is easily obtained for the case of an isotropic
medium10 from the well-known isotropic elastic surface
Green tensorG(x,y,z).15 For our purposes, the main feature
of this tensor is that~in polar coordinates! each of its com-
ponents can be factored as a product of an angular partf i j ~u!
and a radial part which is proportional to 1/r , wherer is the
distance from the origin. The off-diagonal elements of the
matrix f vanish at the surface and exhibit the following sym-
metry:

fxy52fyx . ~10!

For an anisotropic medium, an analytical expression forG
can be obtained only for the case of hexagonal symmetry.16

However, for two-dimensional problems, the complexity of
the problem can be significantly reduced by using the for-
malism developed by Stroh.17 The expression for the deriva-
tive of the surface Green tensorg, derived in this way, is
presented in the Appendix. For the case of a step oriented
along^001& on a$001% surface of a cubic crystal, an expres-
sion for g can be found analytically in closed form. The
elements of the derivatives of the surface Green tensorg in
polar coordinates are

g5S 1

r

fxx~u!

pLd~u!
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where

fxx~u!5C44cos~u!@C12cos
2~u!2C11sin

2~u!#,

fxy~u!5C44sin~u!@C12sin
2~u!2C11cos

2~u!#,
~12a!

fyx~u!5C44sin~u!@C11sin
2~u!2C12cos

2~u!#,

fyy~u!5cos~u!$H cos2~u!~C111C12!1C12C44

1~C111C12!@C112C121C44cos
2~u!#%,

d~u!5H~C111C12!cos
2~u!sin2~u!1C11C44, ~12b!

and

L5
C44~C112C12!

AS 4 C11C44

C111C12
1H D S C11C44

C111C12
D
. ~12c!

H is the elastic anisotropy of the cubic crystal:
H5C112C1222C44, andC11, C12, andC44 are the three
unique elastic constants of a cubic crystal. The form of Eqs.
~11! and~12! preserve the same structure of the derivative of
the Green tensor found in the isotropic case: the radial parts
are all proportional to 1/r . The angleu is measured from the
OX axis to theOY axis in a counterclockwise manner~see
Fig. 1!. All elements of the tensorg in which one of the
indices isz are identically zero except forgzz. However,
because of the symmetry of the surface step problem, the
magnitude of the dipole force in theOZ direction is zero.

Given the green tensorg, the interaction energy between
two identical stepsE2 can be readily obtained from the gen-
eral expression for the elastic interaction energy between two
surface loads:

Eint5E dS T1~x,z!u2~x,z!, ~13!

whereT1(x,z) is the traction associated with the first load,
u2(x,z) is the displacement vector associated with the trac-
tions of the second load, and the integral is evaluated over
the entire surface. Inserting Eqs.~7! and ~8! into Eq. ~13!
yields
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The interaction energy of a periodic array of parallel, identi-
cal steps was derived in Ref. 4 and is given by

Eint5
p2

6
E25

p

6

Dx
21Dy

2

Ld0
2 . ~15!

This result is the anisotropic generalization of the isotropic
result of Marchenko and Parshin6 presented in Eq.~1!, for
the case of â100& step on a$001% surface of a cubic crystal.
Like the isotropic theory and the simulation results, this in-
teraction energy decays with step spacing asd0

22. In terms of
the expansion of the step-step interaction energy data for the
vicinal surface in terms of the inverse step spacing, the pa-
rameterA2 in Eq. ~5! is

A25
p

6

Dx
21Dy

2

L
. ~16!

The only unspecified parameters in this analysis areDx
andDy which, together, specify the orientation of the surface
line force dipole. Comparison of Eq.~16! with the simulated
elastic step-step interaction energy data from the simulation
~presented in Table I! allows direct determination of
D x

21D y
2. The individual components of the surface line force

dipole vector may be extracted directly from the displace-
ment field determined in the atomistic simulations. Both of
these analyses are performed below.

V. DISCUSSION

The simulation results presented above suggest that the
leading-order term in the expansion of the step-step interac-
tion energy in a series of reciprocal powers of distance is
quadratic, i.e.,d0

22. This is consistent with the predictions of
both the isotropic and our anisotropic elastic theories that
model the elastic field of a step in terms of a surface line
force dipole. Nonzero higher-order terms in this expansion
may be associated with surface force distributions which
contain quadrupole or higher-order terms. The next-order
term in the expansion of the step-step interaction energyd0

23

is associated with the interaction between a dipole on one
step and a quadrapole on another step.18 The relative contri-
bution of this third-order term can be estimated in terms of a
dimensionless parameter

K5U A3

d0A2
U. ~17!

ForK,0.2, the third-order term makes less than a 20% cor-
rection to the step-step interaction energy. Using the simula-
tion data in Table I, this only occurs for step spacings bigger
than approximately 18 Å in Ni and Au~i.e., .5 lattice pa-
rameters!. Although it is not possible to extract the surface
line dipole force vector~or its magnitude! from elastic theo-
ries, comparison of atomistic simulation and elastic theory
results can be employed uniquely to determine this dipole
force vector.

The most direct method for extracting the surface line
force dipole vector from the atomistic simulations is by di-

rect comparison of the displacements determined via the
simulation with the analytical, anisotropic form of Eqs.~8!–
~12!. The two independent components of the surface line
force dipole vectorDx andDy were chosen to provide the
best fit to the displacement field obtained from the simula-
tions using a least-squares fitting procedure. There is ambi-
guity on the scale of an interatomic spacing as to which line
on the surface to associate with the step location. We arbi-
trarily assumed that the step is located at the upper edge of
the step~i.e., at the edge of the upper terrace!. In order to
exclude the effect of surface relaxation, we excluded all at-
oms within the three~020! planes closest to the surface from
the fit. Similarly, to eliminate the effects of nonlinear elastic
displacements near the ‘‘core’’ of the step, we also excluded
all atoms that were within a radius of four atomic spacings of
the step from the fit. The best-fit, anisotropic elastic displace-
ment field associated with a surface line force dipole is
shown in Figs. 4~a! and 4~b! for the case of an@001#-oriented
step on a~010! surface in gold and nickel, respectively.
Comparison of Figs. 3 and 4 shows that the theoretical pre-
dictions of the displacement fields are in excellent agreement
with the atomistic data for both nickel and gold everywhere,
except for some small differences very near the step itself. It
is also possible to invert the Green tensor for the surface line
dipole Eq.~9! locally, at each atomic position, and investi-
gate the variation of the surface line force dipole needed to
produce those local displacements and the magnitude of the
parameterA2 in the step-step interaction energy obtained

FIG. 4. Displacement field for a periodic array of^100& steps on
a $001% surface obtained from the anisotropic elastic theory@Eq.
~8!# using the best-fit surface line force dipole vectorD. ~a! and~b!
correspond to gold and nickel surfaces, respectively, with a step
separationd0580a0 ~only a segment of the surface is shown!. The
magnification factors used for the displacements are exactly as
shown in Fig. 3.
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from Eq. ~16!. For all but a small number of points, this
procedure produces only small variations in the surface line
force dipole values and the step-step interaction energy co-
efficientA2. This further demonstrates the accuracy and con-
sistency between the anisotropic elastic analytical predic-
tions of the step elastic field and that found from our
atomistic simulations.

The core of the step is the region near the step in which
the linear elastic theory fails to describe the atomic displace-
ment field accurately. Although this definition of core size
depends on the threshold we use to determine whether the
displacement fields are sufficiently accurately reproduced by
linear elasticity, we can make a reasonable choice, such that
small changes in this threshold do not significantly change
change the core size. Using the best-fit values ofDx andDy
and a threshold error of 10%, we estimate the step core ra-
dius to be approximately 3a0 for these steps in both Ni and
Au.

Table II shows the values ofDx andDy obtained by fitting
Eq. ~8! to the displacement field found from the atomistic
simulations. In order to establish the consistency of these
results with respect to the simulations, Table II compares the
magnitude of the step-step interaction energies~A2! obtained
by varying the step spacing in the simulations directly with
the predictions of the analytical theory, Eq.~16!. The result-
ant values agree to within 15% for both Au and Ni. We note
that an error of order1« in Dx andDy leads to an error of up
to 4« in A2. Therefore, we conclude that the errors inDx and
Dy are in the range of 4–15 %. On this basis, we conclude
that the analytical anisotropic elastic theory is in excellent
agreement with the simulations.

In Marchenko and Parshin’s6 original paper on step-step
interactions, they speculated that the magnitude of the line

force dipole oriented normal to the surface is equal to the
product of the surface stress and the step height, i.e.,tb. In
order to examine this assertion, we have calculated the sur-
face stress for the$001% surface of Ni and Au. The data are
tabulated in Table III, along with the$001% surface energy
determined from the simulation and polycrystalline average
surface energies determined experimentally. The surface
stress is found to be 1–4 times larger than the surface en-
ergy. Hence approximating one with the other would be a
poor approximation. Additionally, the computed surface en-
ergies are significantly smaller than the experimental values.
This is due in large part to the fact that the EAM potentials
routinely underestimate the surface energies of fcc metals,
and that the experimental values are polycrystalline aver-
ages. Inserting the surface stress values determined from
these simulations into the expression for the step-step inter-
action energy parameter for the vicinal surface@A2 in Eq.
~16!#, we find that Marchenko and Parshin’s speculation that
the magnitude of the surface line force dipole is equal to the
product of the surface stress and the step height yields results
that are of the correct order of magnitude. However, only
including thetb term inA2 ignores the possibility of a force
dipole in the plane of the surface@see Eq.~1! above#. Such a
term would only further increase Marchenko and Parshin’s
predicted value ofA2, which is already too large by approxi-
mately 100% compared with the simulation results.

Both the displacement fields obtained from the atomistic
simulations and those determined using Eq.~8! ~see Figs. 3
and 4! show that a plane exists along which the atomic dis-
placements are very nearly zero. This plane passes through
the step and hence occurs at some angle, which we labelu0.
Analytically, the occurrence of such a zero displacement
plane atu0 implies that the following condition must be sat-
isfied:

g~u0!D50. ~18!

This can only occur if the determinant ofg atu0 is identically
zero. For the step geometry considered here~i.e., ^100& steps
on a$001% surface!, this implies thatu0 must satisfy the fol-
lowing condition:

tan2u05
C11

C12
. ~19!

Therefore, the angle of the zero displacement plane is simply
a function of the elastic constants. Equation~19! is a neces-
sary condition in order to satisfy Eq.~18!, but not a sufficient
one. Using the value ofu0 determined in Eq.~19!, we find
that Eq.~18! is satisfied only if the two components of the
surface line force dipole vector satisfy the following relation:

TABLE II. The two independent components of the surface line
force dipoleDx andDy ~eV/Å! and the coefficientA2 ~eV Å! of
~d0!

22 in the expansion of the step-step interaction energyEint vs
the inverse interstep spacingd0, as per Eq.~5! with A15A350 ~as
discussed in the text!. Table II~a! presents data for Au, and Table
II ~b! presents data for Ni. The ‘‘Theory~fit!’’ data were obtained
from a least-square fit of Eq.~8! to the simulation data. The value of
A2 in the row labeled ‘‘Simulations’’ was determined from Fig. 2.
The data in the rows labeled ‘‘tb’’ and ‘‘ gb’’ were obtained using
Eqs. ~8! and ~16! and the values of the surface stress and surface
energy determined in the present simulations.b5a0/2 is the surface
step height.

~a!
Au Dx Dy A2

Simulations 0.15
Theory ~fit! 0.17 0.18 0.13
tb 0.40 0.34
gb 0.12 0.03

~b!

Ni Dx Dy A2

Simulations 0.039
Theory ~fit! 0.15 0.13 0.033
tb 0.29 0.070
gb 0.17 0.025

TABLE III. The surfaces stresst and surface energyg of the
$001% surface of Au and Ni determined from the present atomistic
simulations. For comparison, we also enclose the surface energy
determined from experiments using polycrystalline samplesḡexp
~Ref. 20!.

t ~eV/Å2! g ~eV/Å2! g ēxp ~eV/Å2!

Au 0.196 0.057 0.094
Ni 0.164 0.098 0.149
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Equation~20! implies that the ratio of the two components of
the surface line force dipole vector is determined solely by
the elastic constants of the material.

Ni and Au have much different elastic anisotropies—
H~Au!520.40 eV/Å3 and H~Ni!521.10 eV/Å3 using the
elastic constants derived from the EAM potentials. However,
these anisotropies produce only a relatively small difference
in u0: u0~Au!547.0° andu0~Ni!550.9°. u0 can also be ex-
tracted from the displacement fields shown in Fig. 3, which
were determined from the atomistic simulations. These val-
ues determined from the simulations areu0~Au!550°63°
andu0~Ni!551°62°. The values ofu0 determined from the
elastic constants@Eq. ~19!# are within the error bars of those
obtained from the simulations. Although the predicted values
for u0 for Au and Ni are very similar, the values determined
from the simulations are such thatu0~Au!,u0~Ni!, in agree-
ment with the theoretical predictions. The predicted angles
could be better tested in a material such as diamond where
the anisotropy is very large:u0~diamond!571°.

VI. CONCLUSIONS

Atomistic computer simulation and anisotropic elastic
theory were applied to the determination of the elastic fields
of individual surface steps and steps on vicinal surfaces. The
displacement field of and interaction energies between^100&
steps on a$001% surface of Ni and Au were determined using
zero-temperature atomistic simulations and embedded-atom-
method interatomic potentials. A fit of the step-step interac-
tion energy determined from simulations in terms of a power
law in the inverse step spacing shows that the leading order
term in the step-step interaction energy is proportional to the
inverse square of the step spacing. This is consistent with a
surface line force dipole elastic model of a step. In order to
fit the simulation data to the elastic model, we derived an
anisotropic form for the elastic field associated with a surface
line force dipole using a two-dimensional surface Green ten-
sor for a cubic elastic half-space within the Stroh formalism.
This is necessary since Ni has a large elastic anisotropy. One
input into the analytical description of the elastic fields of the
step is the surface force dipole vector associated with the
step. We determined this dipole vector by fitting the dis-
placement field determined from the simulation with the re-
sults of the anisotropic elastic theory. We demonstrated that
this fit is excellent for both Ni and Au. This dipole vector
was combined with the anisotropic elastic theory to predict
the step-step interaction energy. This too was shown to be in
excellent agreement with the simulations. Finally, the sym-
metry of the displacement field associated with the step sug-
gests an analytical method for determining the relative val-
ues of the components of the surface force dipole vector in
terms of the anisotropic elastic constants. This reduces the
determination of the elastic field of a step to a single param-
eter.
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APPENDIX: ANISOTROPIC SURFACE ELASTIC GREEN
TENSOR

The elastic Green tensor associated with an isotropic elas-
tic half-space is easily derived and is well known.15 While
the Green tensor for an anisotropic half-space may also be
determined, it cannot be evaluated analytically except in spe-
cial cases, e.g., a hexagonal crystal.16 Fortunately, this com-
plexity may be significantly reduced in two-dimensional
problems by application of the Stroh formalism.17

Let us consider an anisotropic, elastic half-space occupy-
ing the regiony.0, with thex axis parallel to the surface.
This problem is two dimensional, and all solutions are inde-
pendent of the coordinatez. Following the approach pro-
posed by Ting,19 we introduce the following 333 matrices:

Qik~u!5Ci jksnjns , Rik~u!5Ci jksnjms ,

Tik~u!5Ci jksmjms , ~A1!

whereni5@cosu, sinu, 0#, mi5@2sinu, cosu, 0#, andCi jrs is
the anisotropic elastic constant tensor. The angleu is mea-
sured with respect to theOX axis in a counterclockwise di-
rection~i.e., towards theOY axis!. It is useful to identify the
following three matrices:

N1~u!52T21~u!RT~u!, N2~u!5T21~u!,

N3~u!5R~u!T21~u!RT~u!2Q~u!, ~A2!

and three incomplete integrals

S~u!5
1

p E
0

u

N1~v!dv, H~u!5
1

p E
0

u

N2~v!dv,

L ~u!52
1

p E
0

u

N3~v!dv. ~A3!

The surface Green tensorGi j (r ,u) for an anisotropic, elastic
half-space may now be written in terms of these quantities as
@see expression~5.2! in the same article19#:

G52F 1p ~ ln r !I1S~u!2
1

2
SGL21, ~A4!

whereI is an identity matrix, and

S5S~p!, H5H~p!, L5L ~p!. ~A5!

Integrals ~A3! and ~A5! can be computed analytically
only in a few special cases. However, in order to describe the
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displacement field associated with a surface force line dipole,
we need only evaluate the derivative of the surface Green’s
function with respect tox, rather than the entire surface
Green tensor itself. This simplification allows us to avoid
evaluating the indefinite integrals Eq.~A3! altogether, and
only the elements of the matrixL , which are the definite
integrals Eq.~A5!, need to be computed. At most, the matrix
L contains six unique elements because it is symmetric. The
resultant expression for the surface dipole Green tensorg is

g52
]

]x
G5

1

r
@ I cosu2N1sinu#L21. ~A6!

In the case of cubic symmetry, when the half-space is
bounded by a$001%-type plane and thê100& step lies along
OZ ~as in the present case!, this problem can be solved ana-
lytically. The matrixL becomes diagonal:

L335C44, ~A7!

L115L225L5
C44~C112C12!

F S 4 C11C44

C111C12
1H D S C11C44

C111C12
D G1/2,

whereH is the crystal anisotropy,H5C112C1222C44. In
the isotropic limit ~H→0!, Eq. ~A6! reduces to the well-
known isotropic elastic surface dipole Green tensor.10

If we examine$111% surfaces rather than the$001% sur-
faces, as in recent experiments, computation of the elements
of L requires either solving a cubic equation or numerical
evaluation. Except for this step, the procedure for deriving
the surface Green tensor for a$111% surface is essentially the
same as that outlined above for the$010%-@001# surface step
geometry.

1P. Wynblatt, inInteratomic Potentials and Simulation of Lattice
Defects, edited by P. Gehlen, J. R. Beeler, Jr., and R. I. Jaffee
~Plenum, New York, 1972!.

2Tze Wing Poonet al., Phys. Rev. Lett.65, 2161~1990!.
3D. Wolf and J. A. Jaszczak, Surf. Sci.277, 301 ~1992!.
4R. Najafabadi and D. J. Srolovitz, Surf. Sci.317, 221 ~1994!.
5S. Kodiyalamet al., Phys. Rev. B51, 5200~1995!.
6V. I. Marchenko and A. Ya. Parshin, Zh. Eksp. Teor. Fiz.79, 257

~1980! @Sov. Phys. JETP52, 129 ~1980!#.
7D. J. Srolovitz and J. P. Hirth, Surf. Sci.255, 111 ~1991!.
8B. Houchmandzadeh and C. Misbah, J. Phys.~France! I 5, 685

~1995!.
9O. Pohland, X. Tong, and J. M. Gibson, J. Vac. Sci. Technol. A
11, 1837~1993!.

10J. Stewart, O. Pohland, and J. M. Gibson, Phys. Rev. B49,
13 848~1994!.

11M. S. Daw and M. I. Baskes, Phys. Rev. B29, 6443~1984!.
12S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B33, 7983

~1986!.
13W. H. Presset al., Numerical Recipes in C: The Art of Scientific

Computing, 2nd ed.~Cambridge University Press, New York,
1992!, pp. 420–425.

14G. J. Ackland and M. W. Finnis, Philos. Mag. A54, 301 ~1986!.
15L. D. Landau and E. M. Lifshitz,Theory of Elasticity, 3rd ed.

~Pergamon, Oxford, 1986!.
16I. M. Lifshitz and L. N. Rozentsveig, Zh. Eksp. Teor. Fiz.17, 783

~1947!.
17A. N. Stroh, Philos. Mag.3, 625 ~1958!.
18J. M. Rickman and D. J. Srolovitz, Surf. Sci.284, 211 ~1993!.
19T. C. T. Ting, Q. J. Mech. Appl. Math.45, 119 ~1992!.
20W. R. Tyson and W. A. Miller, Surf. Sci.62, 267 ~1977!.

53 11 127ELASTIC FIELD OF A SURFACE STEP: ATOMISTIC . . .


