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The origin of moirépatterns in scanning tunneling microscopy~STM! is clarified. It is found that two factors
are important in observing the moire´ patterns in STM. One is interface scattering in lattice-mismatched
systems, which produces nanoscale lateral waves. The other is a qualitative difference of decay behavior in the
vacuum region between the nanoscale and atomic-scale lateral waves, because of the typical value of work
functions. Different from those in transmission electron microscopy~TEM!, the moirépatterns in STM are not
the beat of waves but are essentially due to three-dimensional tunneling. Furthermore, it is found that the
nanoscale waves propagate through many layers without decay due to the typical value of Fermi energies. This
means that nanoscale structures can be observed in STM even if they are buried deep in surfaces. These
findings are evidently demonstrated by numerical calculations. The mechanism of this paper clarifies condi-
tions for obtaining subsurface information by STM.

I. INTRODUCTION

Since its invention, scanning tunneling microscopy
~STM! has been used extensively for studying topography
and electronic states of surfaces. Interest in most of the stud-
ies has been concentrated on outermost layers of surfaces,
because inner layers are usually not observed in STM. How-
ever, several STM experiments showing information of the
inner layers have been reported recently. For example, moire´
patterns have been observed in STM of lattice-mismatched
systems.1–15 Images of bulk defects buried in semiconductor
surfaces have been observed clearly in STM.16–18

These observations of the subsurface structures in STM
are quite curious from a theoretical point of view. According
to the Tersoff and Hamann theory,19 STM images reflect lo-
cal density of states~LDOS! of surfaces in the vacuum re-
gion. This means that STM images are very sensitive to elec-
tronic states of only outermost layers of surfaces. As Tersoff
and Hamann showed for the Au~110! surface,19 STM images
are usually quite insensitive to atomic structures of inner
layers. However, subsurface structures such as the moire´ pat-
terns and bulk defects are observed in STM. Moreover, cor-
rugation amplitudes of the subsurface structures are often
larger than those of atomic structures.2,3,18

In this paper, we discuss and clarify the origin of the
observation of subsurface structures in STM, mainly focus-
ing on the moire´ patterns. The most important conclusion of
this paper is that subsurface structures are generally visible
in STM if they have nanoscale dimensions. Furthermore,
STM can observe nanoscale structures even if they are bur-
ied deep in subsurfaces. These results are due to two facts.
One is that STM makes use of the three-dimensional tunnel-
ing phenomenon. The other is that characteristic lengths of
work functions and Fermi energies of most materials lie be-
tween the atomic scale and the nanoscale.

Moiré patterns are often observed in STM when lattice
constants of overlayers and substrates are slightly different.
Usually, the moire´ patterns have been explained by simple

superposition of atomic structures of the overlayers and sub-
strates. This interpretation would be the analogy of transmis-
sion electron microscopy~TEM!. In TEM images, moire´ pat-
terns are often observed, when electrons are transmitted
through two layers with slightly different lattice constants.
The moirépatterns in TEM are explained in terms of the beat
of two waves with slightly different frequencies. However, it
is questionable that this picture is also applicable to the
moirépatterns in STM, because STM makes use of tunneling
phenomenon. In this picture, electrons tunnel directly from
inner layers of surfaces as well as from outermost layers, but
the meaning of the direct tunneling from inner layers is not
clear.

Another picture for the moire´ patterns in STM is that
electronic structures of overlayers are modulated by influ-
ence of lattice-mismatched substrates. However, this picture
is not sufficient, because moire´ patterns are observed in lay-
ered materials such as graphite1–5 and transition-metal
dichalcogenides.9,10 In these materials, interlayer interaction
is very weak and, therefore, the influence of substrates on
overlayers would be small. Moreover, moire´ patterns are
clearly observed even when four monolayers of MoSe2 are
grown on a MoS2 substrate.10 To explain these facts, the
modulation of electronic structures in overlayers alone would
not be sufficient.

In lattice-mismatched systems, atomic positions of over-
layers are modulated by the influence of substrates. There is
a standpoint that moire´ patterns in STM are explained by the
modulation of the atomic structures of overlayers. However,
moiré patterns have not been observed by atomic force mi-
croscopy~AFM! as far as the present author knows. More-
over, corrugation amplitudes of moire´ patterns are usually
much larger than those expected from small atomic displace-
ments. These facts imply the importance of electronic effects
in moiré patterns in STM.

In this paper, we present a picture for the observation of
the moirépatterns in STM. In the next section, we discuss
the origin of the moire´ patterns qualitatively, where it is
clarified that moire´ patterns in STM are essentially due to
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three-dimensional tunneling and are quite different from
those in TEM. This mechanism is verified by numerical cal-
culations in Sec. III, where it is shown that the moire´ patterns
are obtained even if interfaces of the overlayers and sub-
strates are buried deep in subsurface. In Sec. IV, discussion
and conclusion are presented. In this paper, we use atomic
units (\5m5e51) if units are not shown explicitly.

II. ORIGIN OF MOIRE´ PATTERNS IN SCANNING
TUNNELING MICROSCOPY

In this section, we present a qualitative picture for the
moiré patterns in STM. For this purpose, we discuss scatter-
ing behavior of electrons in detail.

Behavior of electrons transmitted through matter depends
on the kinetic energy of incident electrons. When the kinetic
energy is much larger than strength of the scattering potential
in the matter, the perturbative treatment is valid. In this case,
the Born approximation is good, and wave functions of the
transmitted electrons are expressed in terms of superposition
of waves singly scattered by each atomic potential. There-
fore, high-energy electrons transmitted through two layers
with slightly different lattice constants show moire´ patterns,
as seen in TEM images. The typical kinetic energy of the
electrons is 100 keV.

When the kinetic energy of electrons is lowered to the
same order with the potential strength, the effect of multiple
scattering manifests itself. In this case, wave functions of the
scattered electrons cannot be expressed by the simple super-
position of singly scattered waves. Interpretation of images is
complicated.

Another factor determining the scattering behavior of
low-energy electrons is the channeling. Because of the con-
servation of the kinetic energy, propagating channels of the
scattered electrons are restricted. For example, when the ki-
netic energy isE, channels with lateral momenta larger than
A2E do not propagate in the direction normal to the surface.
Therefore, no atomic image is observed on a screen far from
a sample surface whenE,(2p/a)2/2, wherea is a lattice
constant of the sample. However, when the electrons trans-
mit through two layers with slightly different lattice con-
stantsa andb, they can gain a small lateral momentum of
2p/l5u2p/a22p/bu by the multiple scattering. Therefore, a
structure with the period ofl is observed ifE.(2p/ l )2/2. In
this case, different from the high-energy electrons, the image
shows not a moire´ pattern but only a superstructure with the
period of l .

In the case of tunneling, there is no propagating channel
and all waves decay in the vacuum region. Therefore, the
probe in STM must be situated near sample surfaces. The
typical tip-sample distance is 10 Å. Since the kinetic energy
of electrons at the Fermi level is the same order as the po-
tential strength, the multiple scattering is also important in
this case. A simple and useful interpretation of STM images
has been given by Tersoff and Hamann.19 In their theory, the
tunneling current is proportional to the Fermi-level LDOS of
a sample surface at the position of the tip. Since electronic
states in the vacuum region are very sensitive to only outer-
most layers, STM images reflect usually atomic structures of
the outermost layers. Therefore, it seems that even when the
lattice constants of the outermost and second layers are

slightly different, moire´ patterns such as those in high-energy
TEM cannot be observed in STM. However, moire´ patterns
are observed in STM on account of another kind of mecha-
nism, explained as follows.

The main component of wave functions in the vacuum
region near the outermost layer is the wave with the lateral
momentum of 2p/a. The component with the lateral momen-
tum of 2p/l produced by the multiple scattering is a higher-
order term and its amplitude is generally very small. How-
ever, waves with larger lateral momenta decay faster,
because a wave with a lateral momentumq decays in the
vacuum region as

exp~2lz!, l[A2uEu1q2, ~2.1!

whereE is the energy of the wave function measured from
the vacuum level, andz axis is perpendicular to the surface.
Therefore, even if the amplitude is small in the region of the
outermost layer, the large lateral structure ofl is observed in
STM when the tip is scanned far from the sample surface. If
the tip-sample distance is properly chosen, the large lateral
structure and the atomic structure are observed simulta-
neously. This is the moire´ pattern observed in STM.

If we use 5 a.u., 20 a.u., and 5 eV as typical values of the
atomic lattice spacinga, nanoscale structurel , and work
function uEu, the energies of~2p/a!2/2, ~2p/l !2/2, anduEu are
calculated as 0.8, 0.05, and 0.2, respectively. Therefore, the
decay behavior in the vacuum region is different between the
atomic-scale and nanoscale waves. As seen from Eq.~2.1!,
the decay constant of the former is governed by the lattice
spacing and the latter is by the work function. The border of
these scales is about 5 Å for the typical work function of 5
eV.

According to the Tersoff and Hamann theory,19 the cor-
rugation amplitudeDz decays exponentially with increase of
the tip-sample distance as

Dz;
1

l08
exp@22~l82l08!z#, l8[A2uEu1

q2

4
, ~2.2!

wherel08 is the value ofl8 for q50. However, the corruga-
tion amplitude of nanoscale structures does not decay within
the ordinary tip-sample distance observing STM images, be-
cause the decay constant of nanoscale structures is almost the
same as that of the component withq50. The constant cor-
rugation amplitude of nanoscale structures is observed in an
STM experiment of an Al~111!-S surface,15 where the decay
of the atomic corrugation with the tip-sample distance is also
observed.

If we use Eq.~2.2! and the above typical values for cal-
culating the corrugation amplitudes of the nanoscale struc-
tureDzl and the atomic-scale structureDza , we find that the
ratioDzl /Dza is enhanced by a factor of 12 with increase of
the tip-sample distance by 5 a.u. This means that nanoscale
structures are generally visible in STM even when the am-
plitude of the nanoscale structures is negligibly small at the
region of the outermost layers.

The fact that smaller structures decay faster than larger
structures has already been pointed out in the early work by
Tersoff and Hamann,19 but it has been used for discussing
only atomic-scale structures of outermost layers. In this pa-
per, it is used from a different point of view for explaining
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the observation of subsurface structures in STM, where the
typical value of work functions is important to discriminate
qualitatively the decay behavior of nanoscale and atomic-
scale structures.

The qualitative difference between nanoscale and atomic-
scale structures is also remarkable in the case of electrons
propagating through inner layers of surfaces. Since the typi-
cal Wigner-Seitz radiusr s is 3.0 a.u., the Fermi energy
k F
2/25(9p/4)2/3/(2r s

2) is 0.2. This value is the same order
as that of the typical work function and smaller than the
lateral kinetic energy~2p/a!2/2~50.8! of atomic-scale struc-
tures. Therefore, atomic-scale waves cannot propagate in a
structureless jellium which is a spatial average of atomic
potentials. In a real crystal, the atomic-scale waves have a
finite amplitude only around the region of atoms by the scat-
tering of the atomic potentials from theq50 component.
Therefore, these waves decay rapidly on an atomic scale in
the regions of the vacuum and lattice-mismatched interfaces.
This is the reason why subsurface atomic-scale structures are
generally not observed in STM.

In contrast, the lateral kinetic energy of nanoscale struc-
tures is smaller than the Fermi energy. Therefore, nanoscale
waves can propagate through many layers without decay. In
other words, nanoscale waves behave like theq50 compo-
nent. This means that information of interfaces buried deep
in subsurfaces can be obtained in STM mediated by nano-
scale waves.

III. NUMERICAL CALCULATIONS

A. Method of calculation

To verify the discussions in the preceding section, we
perform numerical calculations for a realistic system. Our
aim is not to treat a specific case but to discuss general fea-
tures semiquantitatively. Figure 1 shows a schematic of the
model system used in the present calculations. We use the
screened empty-core pseudopotential20 for the atomic poten-
tial given by

V~r !5H 2
e2ksr

r
0

~r.r c!
~r,r c!.

~3.1!

For the overlayer, we choose a Cu~111! surface as a typical
example. The lattice constant,r c , andks are 4.83, 0.81, and
0.9, respectively.20We use a 10310 supercell for calculating
moiré patterns. Then, the lattice constant of the supercell is
48.3 a.u. The lattice vectors of the overlayer and substrate
are aligned and the lattice constant of the substrate is chosen

so that the 939 supercell is commensurate with the 10310
supercell of the overlayer. Forr c andks of the substrate, we
use values of 0.9 and 0.81, respectively, because the ratio of
the lattice constants of the substrate and overlayer is 10/9.

Transmission images are calculated for a system where
both the overlayer and substrate are monolayers. In calculat-
ing STM images, the number of layers in the overlayer is
varied from 1 to 10 for investigating dependence of moire´
patterns on the overlayer thickness. The number of layers in
the substrate is fixed as 5. Atoms are arranged in the hcp
structure. The structure of the lattice-mismatched interface is
chosen so that one of the atoms in the overlayer is put on the
top of one of the atoms in the substrate. In these calculations,
all the interlayer distances are fixed as 4.0 a.u. and the bot-
tom of the substrate is situated at the position by 1.0 a.u.
above the edge of the jellium for reducing the unphysical
interface scattering by joining smoothly the substrate and
jellium.

Energies are measured from the vacuum level. Since the
work function of Cu is about 4.5 eV, the Fermi energyEF is
chosen as20.15. The bottom energy of the jelliumVL is set
at 20.192 which is a spatially averaged value of the sub-
strate atomic potentials. In the calculations of TEM images,
we setVL50. In the present model, the lateral kinetic ener-
gies corresponding to the atomic spacings of the overlayer
and substrate areE151.1 andE250.9, respectively.

Wave functions are solved by the recursion-transfer-
matrix method,21 which enables us to obtain an accurate tail
part of the wave functions in the vacuum region without the
difficulty of divergence. The cutoff energy for the lateral
kinetic energy is chosen as 1.5. This is too small to express
accurately waves with shorter wavelengths than the atomic
spacing, but is sufficient for the present purpose of the com-
parison between the nanoscale and atomic-scale structures.
The intervals of mesh points along thez axis are 0.5 and 0.1
a.u. in the calculations of STM and TEM images, respec-
tively.

TEM images are calculated from only the channel with
the direction of incident electrons normal to the surface.
Wave functions are calculated at the position by 10.0 a.u.
above the outermost layer. Components decaying in the
vacuum region are omitted, because TEM images in experi-
ments are observed on a screen far from sample surfaces.
STM images are calculated by the Tersoff and Hamann for-
mula using the LDOSr~r ,E! at the Fermi level.19 In the case
of the large unit-cell system, the two-dimensional integral in
the reciprocal space is replaced by a sum of the channels
with a weight as

r~r ,E!5
2S

~2p!3 (
uGiu,A2~E2VL!

ucE,Gi
~r !u2

A2~E2VL!2Gi
2
, ~3.2!

where cE,Gi
is a wave function with an energyE and a

two-dimensional reciprocal lattice vectorGi . S is the area of
the first Brillouin zone.

B. TEM image

Figure 2 shows calculated TEM images. The images are
displayed in a 232 supercell of the present unit cell. Figure
2~a! is an image forE5100. In the case of the high-energy

FIG. 1. Schematic of the model system used in the numerical
calculations.
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transmission, the calculated image shows a moire´ pattern
which can be interpreted as a beat produced by superposing
two waves with slightly different periods. The two waves
also beat along thez axis because of the conservation of
kinetic energies. The period of the beat is about 400 a.u. in
the present case, because the difference of the momenta nor-
mal to the surface is given byuE12E2u/A2E for the high-
energy electron. The moire´ pattern is obtained in the energy
region ofE.E1.

When E1.E.E2 , calculated images show the atomic
structure of the substrate. In this case, the overlayer has only
the q50 component in the scattering potential and behaves
like a structureless sheet. WhenE,E2, calculated images
show no atomic structure but only a superstructure with a
long period of the present unit cell. Figure 2~b! shows a
calculated image forE50.5. This image is calculated from
only the channel with the incident direction normal to the
surface. If a summation is taken over all the incident chan-
nels, calculated images show atomic structures. Even when
E,E2, a waveq with an atomic period is produced by the
interference terms ofq/2 and2q/2 components, in calculat-
ing the absolute square of a wave function. WhenE,E2/4,
calculated images show no atomic structure for all the chan-
nels.

C. STM image

In the energy region of tunneling, STM images show
moiré patterns, depending on the tip-sample distance. Figure
3 shows calculated STM images. These images are calcu-
lated for the case that the overlayer thickness is one layer and
E5EF~520.15!. The position of the LDOS is by~a! 1.0,~b!
3.0, and~c! 5.0 a.u. above the outermost layer. When the
tip-sample distance is short, only the atomic structure of the
outermost layer is seen as Fig. 3~a!. As the distance in-
creases, the moire´ pattern becomes distinct.

In the present calculations, STM images are evaluated
from the LDOS of the surfaces using the Tersoff and Ha-
mann theory.19 This corresponds to STM images that are
observed by ans-wave tip. As has been shown by Chen, the
d-wave tip is important for explaining the large atomic cor-
rugation of metal surfaces.22 In the present calculations, the
effect of thed-wave tip can be taken into account easily
according to Chen’s formula.22 STM images are calculated

by multiplying each component of the wave functions in the
vacuum region by a factor which is a function of the decay
constant. The result is that atomic-scale structures are en-
hanced by thed-wave tip but nanoscale structures are not
enhanced, because the decay constant of nanoscale waves are
almost the same as that of theq50 component. This means
that the position of the tip observing moire´ patterns becomes
far from the surface in the case of thed-wave tip.

The moirépattern is clearly visible even for six layers of
the overlayer thickness. Figure 4 shows STM images calcu-
lated for the cases that the overlayer thickness is~a! 2 and~b!
6 layers. The tip-sample distance is 5.0 a.u. andE5EF . In
the two-layer case shown in Fig. 4~a!, the contrast of the
superstructure is reversed.

This behavior of the STM images depending on the over-
layer thickness is due to the standing wave formed by the

FIG. 2. Calculated TEM images. The energyE of the incident
electron is~a! 100 and~b! 0.5.VL is set to 0.

FIG. 3. Calculated STM images. The overlayer thickness is one
layer. The energyE of the electron is20.15~5EF!. VL is set to
20.192. The position of the tip is by~a! 1.0,~b! 3.0, and~c! 5.0 a.u.
above the outermost layer. As the tip-sample distance increases, the
moiré pattern becomes distinct.

FIG. 4. Calculated STM images. The overlayer thickness is~a!
two and~b! six layers. The energyE is EF . The position of the tip
is by 5.0 a.u. above the outermost layer.
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total reflection at the surface. Figure 5~a! shows variations of
amplitudes of the superstructure, the atomic structures of the
overlayer and substrate, and theq50 component along thez
axis. Here, the superstructure means the wave with the long
wavelength of the present unit cell. The amplitudes are cal-
culated by Fourier transformation from the absolute square
of a wave function with a single incident channel normal to
the surface. The overlayer thickness is four layers and
E5EF . Values are shown in the unit of the incident wave.
The unit of the horizontal axis is the interlayer distance
d~54.0! and the position of the outermost layer is zero.

In Fig. 5~a!, theq50 component shows oscillating behav-
ior. This is a standing wave with a period of 2kF formed as

ueikFz2e2 ikFzu2}12cos~2kFz!. ~3.3!

In the present case, the periodp/kF calculated from a spatial
average of the scattering potential in the overlayer is 10.8
a.u. ~52.7 layers! which agrees well with the period in Fig.
5~a!.

The period of the superstructure is slightly longer than
that of theq50 component, becausekz of the superstructure
is slightly smaller thankF due to the lateral kinetic energy.
By a simple model using ad-function potential, it can be
shown that spatial variation of the superstructure amplitude
along thez axis is given by

sin~kFz!sin~kF8z!5
cos@~kF2kF8 !z#2cos@~kF1kF8 !z#

2
,

~3.4!

wherekF85AkF22q2 and q is the lateral momentum of the
superstructure. The derivation is shown in the Appendix. If
kF85kF , this is the same as Eq.~3.3!. By the slight difference
betweenkF8 andkF , the wave of the superstructure shows the
behavior slightly different from theq50 component. For ex-
ample, the negative amplitude of the superstructure around
z/d522 in Fig. 5~a! is explained by Eq.~3.4!.

The components corresponding to the atomic structures of
the overlayer and substrate also show the oscillating behav-
ior in Fig. 5~a!. In this case, the period of the oscillation is
the same as that of theq50 component, because the atomic-
scale waves are produced only by the scattering of the atomic
potential from theq50 component and decay in the struc-
tureless jellium. Their standing-wave behavior is due to that
of theq50 component, and their amplitudes are proportional
to that of theq50 component. In contrast, the nanoscale
wave of the superstructure produced by the interface scatter-
ing propagates through the overlayer and is reflected by the
surface. Therefore, the standing-wave behavior of the super-
structure bears no relation to theq50 component, and the
period is slightly different from that of theq50 component.

In calculating the LDOS, all the channels must be taken
into account. Figure 5~b! shows amplitudes calculated from
the LDOS for the case that the overlayer thickness is four
layers andE5EF . The amplitudes displayed are normalized
by theq50 component. Therefore, the standing-wave behav-
ior is hidden. The amplitude of the substrate atomic structure
decays rapidly on an atomic scale at the interface, and the
amplitude of the overlayer grows instead. The amplitude of
the superstructure produced at the interface propagates
through the overlayer without decay and is detected by STM

FIG. 5. Variation along thez axis of the amplitudes of waves
corresponding to the superstructure~heavy solid line!, the atomic
structures of the overlayer~solid line! and substrate~dotted line!,
and theq50 component~broken line!. The amplitudes are calcu-
lated by Fourier transformation from~a! an absolute square of a
wave function with a channel of the incident wave normal to the
surface and~b! the LDOS. Values are displayed in the unit of the
incident wave in~a! and are normalized by theq50 component in
~b!. The overlayer thickness is four layers. The unit of the horizon-
tal axis is the interlayer distanced~54.0 a.u.!, and the position of
the outermost layer of the overlayer is zero. Therefore,23.0 and
24.0 are the positions of the lowermost layer of the overlayer and
the outermost layer of the substrate, respectively. Values of the
q50 component in~a! are scaled down by 1/20.
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in the vacuum region, due to the rapid decay of the overlayer
atomic structures. The crossover point of the amplitudes of
the superstructure and the overlayer atomic structure is by
about one monolayer above the outermost layer. Around this
height, the moire´ pattern is clearly observed as shown in Fig.
3~c!. We cannot observe directly the atomic structures of
subsurfaces by STM, but can obtain information of subsur-
face structures by nanoscale lateral waves such as the moire´
patterns.

The oscillating behavior is also seen in overlayer-
thickness dependence of the superstructure amplitude. Figure
6 shows amplitudes of the superstructure calculated by Fou-
rier transformation from~a! absolute square of a single wave
function with an incident channel normal to the surface and
~b! the LDOS. Values shown in the figure are calculated at a
height by 5.0 a.u. above the outermost layer and are normal-
ized by theq50 component. For comparison, the amplitudes
corresponding to the atomic structure of the overlayer are
shown. As a matter of course, they do not depend on the
overlayer thickness. When the amplitude of the superstruc-
ture is the same order as that of the atomic structure, the
moiré patterns are clearly seen as shown in Fig. 4.

In the case of the single channel in Fig. 6~a!, the ampli-
tude of the superstructure does not decrease with the over-
layer thickness but shows an oscillating behavior, reflecting
that the superstructure wave is a propagating one. This be-
havior can be understood by a simple formula derived in the
Appendix using thed-function potential as

sin~kFl !cos~kF8 l !5
sin@~kF1kF8 !l #1sin@~kF2kF8 !l #

2
,

~3.5!

wherel is the effective overlayer thickness and is expressed
as l5(n1d)d with the number of layers in the overlayern
and the distance between the layersd. d is a parameter of an
order of 1 expressing ambiguity of the overlayer thickness.
In the present case,kF , kF8 , andd are 0.290, 0.248, and 4.0,
respectively. By choosingd50, the numerical values are
well fitted by this simple function.

In calculating the LDOS, many waves with various values
of kz are integrated. The superstructure amplitude decreases
with the overlayer thickness like the Friedel oscillation as
shown in Fig. 6~b!. In this case also, the decreasing behavior
can be understood by a simple formula,

sin~2kFl !2~2kFl !cos~2kFl !

~2kFl !
2 , ~3.6!

as derived in the Appendix using thed-function potential.
Therefore, the superstructure decreases as 1/~2kFl !. By
choosingd50.4, the numerical values are well fitted by this
formula as shown in Fig. 6~b!. In Fig. 6~b!, the amplitude of
the superstructure shows negative values at 2, 5, 7, and 8
layers. At these overlayer thickness, the contrast of the su-
perstructure is reversed as seen in Fig. 4~a!. The superstruc-
ture contrast is sensitive to the overlayer thickness and may
be used for determining the interface depth.

In the present calculation, we treat a metal surface of Cu
and, therefore, the amplitude of the superstructure decreases
with the overlayer thickness as shown in Fig. 6~b!. In the
case that there are only few states at the Fermi energy such

FIG. 6. Dependence of the amplitudes of the superstructure
~closed circle! and the atomic structure of the outermost layer~open
circle! on the overlayer thickness. The amplitudes are calculated by
Fourier transformation from~a! an absolute square of a wave func-
tion with a channel of the incident wave normal to the surface and
~b! the LDOS. Values are normalized by theq50 component. Solid
lines are obtained by spline extrapolation of the closed circles.
Dotted lines show functions ~a! A sin~kFl !cos~kF8 l ! and
~b! B@sin~2kFl )2(2kFl !cos~2kFl )#/~2kFl !

2, where A50.006,
B50.014,kF50.290, andkF850.248. The surface-interface distance
l is given byl5(n1d)d, wheren andd are the number of layers
and the interlayer distance of the overlayer, respectively.d is cho-
sen as~a! 0.0 and~b! 0.4.
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as graphite and semiconductors, the amplitude of the super-
structure behaves like the one-channel case shown in Fig.
6~a! and does not decrease with the overlayer thickness. In
such cases, it is expected that we can observe nanoscale
structures buried deep in subsurfaces. This may explain the
experimental fact that moire´ patterns are observed even when
4 MX2 sandwiches of the semiconducting MoSe2 are grown
on a MoS2 substrate.

10

In the above, the numerical values of the superstructure
amplitudes are well fitted by the simple formulas in Eqs.
~3.4!–~3.6!, using onlykF andkF8 , which are calculated from
the spatial average of the atomic potentials in the overlayer.
This means that the nanoscale waves can be treated by the
effective mass theory. The nanoscale is the border length
where the effective-mass theory is valid. STM can observe
the waves appearing in the effective-mass theory and the
atomic-scale waves simultaneously.

IV. DISCUSSION AND CONCLUSION

So far, moire´ patterns in STM have been explained by the
simple superposition of atomic structures of overlayers and
substrates. In this picture, electrons tunnel directly from the
substrates as well as the overlayers. However, this is the
picture for moirépatterns in TEM and is not valid in the case
of STM.

Another picture is the modulation in the electronic states
of the outermost layers by the influence of the substrates.
This is equivalent to the picture where on-site energies in the
tight-binding model are modulated by the transfer energies
between the overlayers and substrates.23 However, the moire´
patterns in STM cannot be explained by only this mecha-
nism, because the direct influence of the substrates on the
overlayers is generally very weak, as shown in Fig. 3~a!.
Therefore, the fact that STM makes use of the three-
dimensional tunneling is important in explaining the moire´
patterns. From this point of view, it is not curious that moire´
patterns are observed on layered-material surfaces such as
graphite1–8 and transition-metal dichalcogenides,9,10 where
the interlayer interaction is very weak, like the van-der-
Waals interaction. Moreover, the moire´ patterns are observed
even when several layers of overlayers are grown on the
substrates, because nanoscale waves propagate through many
layers without decay.

In lattice-mismatched systems, lattice distortion of over-
layers induced by substrates is often important. In such
cases, superstructures in STM are not so simple as the moire´
patterns discussed in this paper but show domain
structures.24–31However, the domain structures in STM are
observed generally more clearly than those expected from
the small amplitude of atomic displacements. These facts can
be understood by the enhancement effect of nanoscale struc-
tures in STM discussed in this paper.

The mechanism of the present paper is not restricted to
periodic structures such as the moire´ patterns. The important
point is that nanoscale structures are always enhanced in
STM even when they are buried deep in subsurfaces. This
would explain the large corrugation amplitudes observed in
STM of bulk impurities buried in semiconductor surfaces6–18

and of alkali-adsorbed semiconductor surfaces.32

In conclusion, we have clarified the mechanism of the

observation of moire´ patterns in STM. Different from TEM,
the moiré patterns in STM is not the beat of waves and
cannot be understood in terms of the simple superposition of
atomic structures of overlayers and substrates. The three-
dimensional tunneling and the typical value of work func-
tions play important roles in observing nanoscale structures
by STM. Moreover, we can observe nanoscale structures
buried deep in subsurfaces, because nanoscale waves propa-
gate through many layers without decay due to the typical
value of Fermi energies. The mechanism presented in this
paper is quite simple but general, because we often encounter
nanoscale structures when we study lattice-mismatched sys-
tems synthesized by heteroepitaxy.
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APPENDIX

In this Appendix, we derive roughly Eqs.~3.4!–~3.6! us-
ing a simple model. Since the superstructure is produced in a
region localized at the interface, the scattering potential of
the interface is approximated by

V~r !5v0d~z!~eiq0•r i1e2 iq0•r i!, ~A1!

wherev0 is strength of the scattering potential, andq0 andr i

are lateral momentum of the superstructure and coordinates
parallel to the surface, respectively.

When a wave function is expanded in terms of lateral
momentumq as

c~r !5(
q
Aq~z!eiq•r i, ~A2!

the coefficients satisfy a relation of

DS ddz Aq~z!uz50D52v0@Aq1q0
~0!1Aq2q0

~0!#, ~A3!

whereD means difference of values whenz is approached to
0 from 1 and2.

In the following, we treat the potential as a perturbation.
When the unperturbed wave is

c~r !5eikz, ~A4!

the coefficient of the superstructure wave is determined by
the condition

DS ddz A6q0
~z!Uz50D52v0 , ~A5!

and the continuity of the wave function atz50. For example,
when

Aq0
~z!5HCeik8z ~z.0!

Ce2 ik8z ~z,0!
, ~A6!

the coefficient is determined asC5v0/( ik8), where k8
5Ak22q0

2.
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In the presence of a surface atz5 l , the unperturbed wave
function changes to a standing wave as

c~r !5eikz1Re2 ikz, R52e2ikl . ~A7!

The component of the superstructurecq0
(r ) produced by the

d-function potential has the form

cq0
~r !5H a~eik8z1R8e2 ik8z!eiq0•r i

be2 ik8zeiq0•r i

~z.0!

~z,0!
, ~A8!

whereR852e2ik8 l . By the condition of Eq.~A3! and the
continuity, we obtain

a5
v0
ik8

~11R!,

~A9!

b5a~11R8!.

The2q0 term can be treated similarly.
The absolute square of the wave function is calculated up

to the first order of the scattering potential as

uc~r !u254 sin2~kz!2
32v0
k8

sin~kl !cos~k8l !sin~kz!

3sin~k8z!cos~q0•r i! ~z.2 l !. ~A10!

In the above, the origin ofz is changed by transforming
z2 l→z. From this equation, we obtain thez dependence of

the superstructure shown in Eq.~3.4!. The oscillation term
sin~kl! is originated from the interference of two waves pro-
duced by the transmitting scattering fromeikz and the reflec-
tive scattering fromRe2 ikz. Therefore, the period is gov-
erned not byk8 but by k. On the other hand, the term
cos~k8l ! is produced by the total reflection of the superstruc-
ture itself at the surface and the period is determined byk8.

In the above, we assume that the wave function is zero at
the surface, but a realistic wave function must be connected
smoothly with a wave exponentially decaying in the vacuum
region. The connecting points are determined by

k cot~kz!52l,
~A11!

k8cot~k8z!52l8,

wherel andl8 are decay constants. By putting these condi-
tions in Eq.~A10!, we obtain that the amplitude of the su-
perstructure in the vacuum region is roughly proportional to

k sin~kl !cos~k8l !, ~A12!

which is Eq.~3.5!.
In calculating the LDOS, Eq.~A12! is integrated byk as

E
0

kF
k sin~kl !cos~kl !dk}

sin~2kFl !2~2kFl !cos~2kFl !

~2kFl !
2 .

~A13!

In the above, we approximatedk85k. This is Eq.~3.6!.
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