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The origin of moirepatterns in scanning tunneling microsca®TM) is clarified. It is found that two factors
are important in observing the moigatterns in STM. One is interface scattering in lattice-mismatched
systems, which produces nanoscale lateral waves. The other is a qualitative difference of decay behavior in the
vacuum region between the nanoscale and atomic-scale lateral waves, because of the typical value of work
functions. Different from those in transmission electron microsd@gM), the moirepatterns in STM are not
the beat of waves but are essentially due to three-dimensional tunneling. Furthermore, it is found that the
nanoscale waves propagate through many layers without decay due to the typical value of Fermi energies. This
means that nanoscale structures can be observed in STM even if they are buried deep in surfaces. These
findings are evidently demonstrated by numerical calculations. The mechanism of this paper clarifies condi-
tions for obtaining subsurface information by STM.

[. INTRODUCTION superposition of atomic structures of the overlayers and sub-
strates. This interpretation would be the analogy of transmis-
Since its invention, scanning tunneling microscopysion electron microscop§T EM). In TEM images, moirgat-
(STM) has been used extensively for studying topographyierns are often observed, when electrons are transmitted
and electronic states of surfaces. Interest in most of the studbrough two layers with slightly different lattice constants.
ies has been concentrated on outermost layers of surfacek)e moirepatterns in TEM are explained in terms of the beat
because inner layers are usually not observed in STM. Howef two waves with slightly different frequencies. However, it
ever, several STM experiments showing information of theS questionable that this picture is also applicable to the
inner layers have been reported recently. For example, moif&0ire patterns in STM, because STM makes use of tunneling

patterns have been observed in STM of Iattice-mismatcheBhenomenon' In this picture, electrons tunnel directly from
systems-1%Images of bulk defects buried in semiconductor "Ner layers of surfaces as well as from outermost layers, but

surfaces have been observed clearly in SV the meaning of the direct tunneling from inner layers is not

. . lear.
The§e ob_servanons of the sybsurfgce str.uctures n STI\% Another picture for the moirgatterns in STM is that
are quite curious from a theoretical point of view. According

. electronic structures of overlayers are modulated by influ-
to the Te.rsoff and Hamann thedfySTM Images reflect 10- - o ce of lattice-mismatched substrates. However, this picture
cal density of state6 DOS) of surfaces in the vacuum re-

‘ > ) > is not sufficient, because moipatterns are observed in lay-
gion. This means that STM images are very sensitive t0 eleGs;eq materials such as graphite and transition-metal

tronic states of only outermost layers of surfaces. As Tersoffjichalcogenide&2® In these materials, interlayer interaction
and Hamann showed for the /10 surface;’ STM images  is very weak and, therefore, the influence of substrates on
are usually quite insensitive to atomic structures of innefoverlayers would be small. Moreover, moipatterns are
layers. However, subsurface structures such as the paire clearly observed even when four monolayers of Mpo&Se
terns and bulk defects are observed in STM. Moreover, corgrown on a Mo$ substraté® To explain these facts, the
rugation amplitudes of the subsurface structures are oftemodulation of electronic structures in overlayers alone would
larger than those of atomic structurest® not be sufficient.

In this paper, we discuss and clarify the origin of the In lattice-mismatched systems, atomic positions of over-
observation of subsurface structures in STM, mainly focuslayers are modulated by the influence of substrates. There is
ing on the moirepatterns. The most important conclusion of a standpoint that moirgatterns in STM are explained by the
this paper is that subsurface structures are generally visibl@odulation of the atomic structures of overlayers. However,
in STM if they have nanoscale dimensions. Furthermoremoire patterns have not been observed by atomic force mi-
STM can observe nanoscale structures even if they are bucroscopy(AFM) as far as the present author knows. More-
ied deep in subsurfaces. These results are due to two factsver, corrugation amplitudes of moirgatterns are usually
One is that STM makes use of the three-dimensional tunneimuch larger than those expected from small atomic displace-
ing phenomenon. The other is that characteristic lengths ahents. These facts imply the importance of electronic effects
work functions and Fermi energies of most materials lie bein moire patterns in STM.
tween the atomic scale and the nanoscale. In this paper, we present a picture for the observation of

Moiré patterns are often observed in STM when latticethe moirepatterns in STM. In the next section, we discuss
constants of overlayers and substrates are slightly differenthe origin of the moirepatterns qualitatively, where it is
Usually, the moirepatterns have been explained by simpleclarified that moirepatterns in STM are essentially due to
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three-dimensional tunneling and are quite different fromslightly different, moirepatterns such as those in high-energy
those in TEM. This mechanism is verified by numerical cal-TEM cannot be observed in STM. However, mojratterns
culations in Sec. I, where it is shown that the magiatterns are observed in STM on account of another kind of mecha-
are obtained even if interfaces of the overlayers and sulnism, explained as follows.
strates are buried deep in subsurface. In Sec. 1V, discussion The main component of wave functions in the vacuum
and conclusion are presented. In this paper, we use atomiegion near the outermost layer is the wave with the lateral
units A=m=e=1) if units are not shown explicitly. momentum of Z/a. The component with the lateral momen-
tum of 27/l produced by the multiple scattering is a higher-
. order term and its amplitude is generally very small. How-
Il. ORIGIN OF MOIRE  PATTERNS IN SCANNING ever, waves with larger lateral momenta decay faster,
TUNNELING MICROSCOPY because a wave with a lateral momentgndecays in the

In this section, we present a qualitative picture for theVacuum region as
moire patterns in STM. For this purpose, we discuss scatter- _
ing behavior of electrons in detail. exp—\z), \=y2[E[+q? 2.9
Behavior of electrons transmitted through matter dependghereE is the energy of the wave function measured from
on the kinetic energy of incident electrons. When the kinetiahe vacuum level, and axis is perpendicular to the surface.
energy is much larger than strength of the scattering potentiatherefore, even if the amplitude is small in the region of the
in the matter, the perturbative treatment is valid. In this casegutermost layer, the large lateral structurd @ observed in
the Born approximation is good, and wave functions of theSTM when the tip is scanned far from the sample surface. If
transmitted electrons are expressed in terms of superpositiae tip-sample distance is properly chosen, the large lateral
of waves singly scattered by each atomic potential. Therestructure and the atomic structure are observed simulta-
fore, high-energy electrons transmitted through two layersieously. This is the moirpattern observed in STM.

with slightly different lattice constants show moipatterns, If we use 5 a.u., 20 a.u., and 5 eV as typical values of the
as seen in TEM images. The typical kinetic energy of theatomic lattice spacing, nanoscale structur and work
electrons is 100 keV. function|E|, the energies of2/a)%2, (27/1)%/2, and|E| are

When the kinetic energy of electrons is lowered to thecalculated as 0.8, 0.05, and 0.2, respectively. Therefore, the
same order with the potential strength, the effect of multipledecay behavior in the vacuum region is different between the
scattering manifests itself. In this case, wave functions of theitomic-scale and nanoscale waves. As seen from(Ef),
scattered electrons cannot be expressed by the simple supeiie decay constant of the former is governed by the lattice
position of singly scattered waves. Interpretation of images igpacing and the latter is by the work function. The border of
complicated. these scales is abb A for the typical work function of 5

Another factor determining the scattering behavior ofey,
low-energy electrons is the channeling. Because of the con- According to the Tersoff and Hamann theé?yahe cor-
servation of the kinetic energy, propagating channels of theugation amplitude\z decays exponentially with increase of
scattered electrons are restricted. For example, when the ke tip-sample distance as
netic energy i€, channels with lateral momenta larger than
\/E do not propagate in the direction normal to the surface. 1 L , q?

Therefore, no atomic image is observed on a screen far froft2~ 37 X —2(\"—Ag)z], N'=/2[E[+ 7, (2.2

a sample surface whelB<(2m/a)?/2, wherea is a lattice 0

constant of the sample. However, when the electrons transvhere) is the value ofA’ for g=0. However, the corruga-

mit through two layers with slightly different lattice con- tion amplitude of nanoscale structures does not decay within
stantsa andb, they can gain a small lateral momentum of the ordinary tip-sample distance observing STM images, be-
2@/l =|27/a—2mlb| by the multiple scattering. Therefore, a cause the decay constant of nanoscale structures is almost the
structure with the period dfis observed iE>(2#/1)%/2. In  same as that of the component witk-0. The constant cor-

this case, different from the high-energy electrons, the imageugation amplitude of nanoscale structures is observed in an
shows not a moir@attern but only a superstructure with the STM experiment of an AlL11)-S surface?’ where the decay
period ofl. of the atomic corrugation with the tip-sample distance is also

In the case of tunneling, there is no propagating channebbserved.
and all waves decay in the vacuum region. Therefore, the If we use Eq.(2.2) and the above typical values for cal-
probe in STM must be situated near sample surfaces. Theulating the corrugation amplitudes of the nanoscale struc-
typical tip-sample distance is 10 A. Since the kinetic energyture Az, and the atomic-scale structutez, , we find that the
of electrons at the Fermi level is the same order as the paatio Az/Az, is enhanced by a factor of 12 with increase of
tential strength, the multiple scattering is also important inthe tip-sample distance by 5 a.u. This means that nanoscale
this case. A simple and useful interpretation of STM imagesstructures are generally visible in STM even when the am-
has been given by Tersoff and Hamdfmn their theory, the  plitude of the nanoscale structures is negligibly small at the
tunneling current is proportional to the Fermi-level LDOS of region of the outermost layers.

a sample surface at the position of the tip. Since electronic The fact that smaller structures decay faster than larger
states in the vacuum region are very sensitive to only outerstructures has already been pointed out in the early work by
most layers, STM images reflect usually atomic structures oTersoff and Hamanf, but it has been used for discussing
the outermost layers. Therefore, it seems that even when thanly atomic-scale structures of outermost layers. In this pa-
lattice constants of the outermost and second layers anger, it is used from a different point of view for explaining
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so that the &9 supercell is commensurate with theXT0

0 supercell of the overlayer. Fog and kg of the substrate, we
Energy use values of 0.9 and 0.81, respectively, because the ratio of
the lattice constants of the substrate and overlayer is 10/9.
Er Vacuum L .
Jellinm Transmission images are calculated for a system where
v both the overlayer and substrate are monolayers. In calculat-
L

ing STM images, the number of layers in the overlayer is
varied from 1 to 10 for investigating dependence of moire
patterns on the overlayer thickness. The number of layers in
FIG. 1. Schematic of the model system used in the numericathe substrate is fixed as 5. Atoms are arranged in the hcp
calculations. structure. The structure of the lattice-mismatched interface is
chosen so that one of the atoms in the overlayer is put on the
the observation of subsurface structures in STM, where theop of one of the atoms in the substrate. In these calculations,
typical value of work functions is important to discriminate all the interlayer distances are fixed as 4.0 a.u. and the bot-
qualitatively the decay behavior of nanoscale and atomictom of the substrate is situated at the position by 1.0 a.u.
scale structures. above the edge of the jellium for reducing the unphysical
The qualitative difference between nanoscale and atomidnterface scattering by joining smoothly the substrate and
scale structures is also remarkable in the case of electrorjellium.
propagating through inner layers of surfaces. Since the typi- Energies are measured from the vacuum level. Since the
cal Wigner-Seitz radiugg is 3.0 a.u., the Fermi energy work function of Cu is about 4.5 eV, the Fermi eneigy is
kZ/2=(9m/4)?%(2r 2) is 0.2. This value is the same order chosen as-0.15. The bottom energy of the jelliuky is set
as that of the typical work function and smaller than theat —0.192 which is a spatially averaged value of the sub-
lateral kinetic energy2m/a)%2(=0.8) of atomic-scale struc-  strate atomic potentials. In the calculations of TEM images,
tures. Therefore, atomic-scale waves cannot propagate invae setV, =0. In the present model, the lateral kinetic ener-
structureless jellium which is a spatial average of atomiaies corresponding to the atomic spacings of the overlayer
potentials. In a real crystal, the atomic-scale waves have and substrate arg;=1.1 andE,=0.9, respectively.
finite amplitude only around the region of atoms by the scat- Wave functions are solved by the recursion-transfer-
tering of the atomic potentials from th@=0 component. matrix method®* which enables us to obtain an accurate tail
Therefore, these waves decay rapidly on an atomic scale ipart of the wave functions in the vacuum region without the
the regions of the vacuum and lattice-mismatched interfaceglifficulty of divergence. The cutoff energy for the lateral
This is the reason why subsurface atomic-scale structures akinetic energy is chosen as 1.5. This is too small to express
generally not observed in STM. accurately waves with shorter wavelengths than the atomic
In contrast, the lateral kinetic energy of nanoscale strucspacing, but is sufficient for the present purpose of the com-
tures is smaller than the Fermi energy. Therefore, nanoscafgarison between the nanoscale and atomic-scale structures.
waves can propagate through many layers without decay. IMhe intervals of mesh points along thexis are 0.5 and 0.1
other words, nanoscale waves behave likegh® compo- a.u. in the calculations of STM and TEM images, respec-
nent. This means that information of interfaces buried deepively.
in subsurfaces can be obtained in STM mediated by nano- TEM images are calculated from only the channel with

Substrate  Overlayer

scale waves. the direction of incident electrons normal to the surface.
Wave functions are calculated at the position by 10.0 a.u.

lIl. NUMERICAL CALCULATIONS above the outermost layer. Components decaying in the

vacuum region are omitted, because TEM images in experi-

A. Method of calculation ments are observed on a screen far from sample surfaces.

To verify the discussions in the preceding section, weSTM images are calculated by the Tersoff agd Hamann for-
perform numerical calculations for a realistic system. Qurmula using the LDOS(r E) at the Fermi levet? In the case
aim is not to treat a specific case but to discuss general fe&f the large unit-cell system, the two-dimensional integral in
tures semiquantitatively. Figure 1 shows a schematic of théhe reciprocal space is replaced by a sum of the channels
model system used in the present calculations. We use th#éith a weight as
screened empty-core pseudopotefligdr the atomic poten-

tial given b 2S |6,
g y p(rE)="7—"3 > — (3.2
_— (27)% |6 |< JZE=Vg V2(E—V,)—Gf
- >
V(r)= r E:<:°§ (3.)  where Y, is a wave function with an energi and a
o)

0 two-dimensional reciprocal lattice vect@y;. Sis the area of

) the first Brillouin zone.
For the overlayer, we choose a @1) surface as a typical

example. The lattice constamt,, and « are 4.83, 0.81, and .
0.9, respectively® We use a 1810 supercell for calculating B. TEM image

moire patterns. Then, the lattice constant of the supercell is Figure 2 shows calculated TEM images. The images are
48.3 a.u. The lattice vectors of the overlayer and substratdisplayed in a X2 supercell of the present unit cell. Figure
are aligned and the lattice constant of the substrate is chos&(a) is an image folE=100. In the case of the high-energy
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FIG. 2. Calculated TEM images. The energyof the incident
electron is(a@ 100 and(b) 0.5.V, is set to 0.

transmission, the calculated image shows a meigtern
which can be interpreted as a beat produced by superposing
two waves with slightly different periods. The two waves
also beat along the axis because of the conservation of ) ) )
kinetic energies. The period of the beat is about 400 a.u. in FIG. 3. Calculated STM images. _The overlayer thlc_kness is one
the present case, because the difference of the momenta ndﬁyer. The energiE of the electron is=0.15=Eg). V| is set fo

.. . —0.192. The position of the tip is big) 1.0, (b) 3.0, and(c) 5.0 a.u.
mal to the surface is given bbEl__EZV V_ZE fo_r the high- above the outermost layer. As the tip-sample distance increases, the
energy electron. The moingattern is obtained in the energy

g moire pattern becomes distinct.
region of E>E;.

When E,>E>E,, calculated images show the atomic py mytiplying each component of the wave functions in the
structure of the substrate. In this case, the overlayer has on\)5.,um region by a factor which is a function of the decay

the g=0 component in the scattering potential and behavegonstant. The result is that atomic-scale structures are en-
like a structureless sheet. Whé&E,, calculated images nanced by thel-wave tip but nanoscale structures are not
show no atomic structure but only a superstructure with &nhanced, because the decay constant of nanoscale waves are
long period of the present unit cell. Figurébp shows &  gjmost the same as that of the-0 component. This means
calculated image foE=0.5. This image is calculated from hat the position of the tip observing moipatterns becomes

only the channel with the incident direction normal to theta, from the surface in the case of tdewave tip.

surface. If a summation is taken over all the incident chan- e moirepattern is clearly visible even for six layers of
nels, calculated images show atomic structures. Even whee overlayer thickness. Figure 4 shows STM images calcu-

E<E,, a waveq with an atomic period is produced by the |5teq for the cases that the overlayer thicknegg)ig and(b)
interference terms a§/2 and—q/2 components, in calculat- 4 layers. The tip-sample distance is 5.0 a.u. &nelE . In

ing the absolute square of a wave function. WienE /4, e two-layer case shown in Fig(a}, the contrast of the
calculated images show no atomic structure for all the Cha”éuperstructure is reversed.

nels.

This behavior of the STM images depending on the over-
layer thickness is due to the standing wave formed by the
C. STM image

In the energy region of tunneling, STM images show S :
moire patterns, depending on the tip-sample distance. Figure (a) 'ﬁ w v

3 shows calculated STM images. These images are calcu- e o
lated for the case that the overlayer thickness is one layer and ﬁ : 0%
E=Eg(=—0.15. The position of the LDOS is bga) 1.0, (b) b 02

3.0, and(c) 5.0 a.u. above the outermost layer. When the
tip-sample distance is short, only the atomic structure of the
outermost layer is seen as Fig(aB As the distance in-
creases, the maingattern becomes distinct.

In the present calculations, STM images are evaluated
from the LDOS of the surfaces using the Tersoff and Ha-
mann theory® This corresponds to STM images that are
observed by as-wave tip. As has been shown by Chen, the
d-wave tip is important for explaining the large atomic cor-
rugation of metal surface?.In the present calculations, the FIG. 4. Calculated STM images. The overlayer thicknes®)is
effect of thed-wave tip can be taken into account easily two and(b) six layers. The energi is E . The position of the tip
according to Chen’s formuf®. STM images are calculated is by 5.0 a.u. above the outermost layer.
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total reflection at the surface. Figuréabshows variations of 5
amplitudes of the superstructure, the atomic structures of the 0.
overlayer and substrate, and ttpe0 component along the
axis. Here, the superstructure means the wave with the long
wavelength of the present unit cell. The amplitudes are cal-
culated by Fourier transformation from the absolute square
of a wave function with a single incident channel normal to
the surface. The overlayer thickness is four layers aneg
E=E. Values are shown in the unit of the incident wave. 2
The unit of the horizontal axis is the interlayer distanced.
d(=4.0) and the position of the outermost layer is zero. =
In Fig. 5(a), theq=0 component shows oscillating behav-
ior. This is a standing wave with a period ok2formed as

|elkrz— e~ 1kez|20c 1 — cog 2kez). (3.3

In the present case, the periadk. calculated from a spatial

average of the scattering potential in the overlayer is 10.8

a.u.(=2.7 layer$ which agrees well with the period in Fig. . . . . A . 1 .

5(a). -5 0
The period of the superstructure is slightly longer than

that of theq=0 component, because of the superstructure Z/d

is slightly smaller tharkgr due to the lateral kinetic energy.

By a simple model using &-function potential, it can be

shown that spatial variation of the superstructure amplitude

along thez axis is given by 0.04 n T L T T T T

ke —k/ — K-+ k'
sin(ke2)sin(kiz) = 20 F>lecos{< kD7)

(3.9

wherek=\kZ—q? andq is the lateral momentum of the
superstructure. The derivation is shown in the Appendix. If £
ki =k, this is the same as E(B.3). By the slight difference
betweerk{ andk , the wave of the superstructure shows the 3
behavior slightly different from thg=0 component. For ex- N
ample, the negative amplitude of the superstructure aroun(g
z/d=-2in Fig. 5a) is explained by Eq(3.4). =
The components corresponding to the atomic structures @
the overlayer and substrate also show the oscillating behav-
ior in Fig. 5a). In this case, the period of the oscillation is
the same as that of the=0 component, because the atomic-
scale waves are produced only by the scattering of the atomic
potential from theq=0 component and decay in the struc-
tureless jellium. Their standing-wave behavior is due to that
of theq=0 component, and their amplitudes are proportional Z/d
to that of theq=0 component. In contrast, the nanoscale
wave of the superstructure produced by the interface scatter-
ing propagates through the overlayer and is reflected by the - . :
surface. Therefore, the standing-wave behavior of the super- /G- 5- Variation along tha axis of the amplitudes of waves
structure bears no relation to tlie=0 component, and the corresponding to the superstructufesavy solid ling, the atomic

. . . v structures of the overlaydsolid line) and substratédotted ling,
period is slightly different from that of thg=0 component. and theq=0 componenibroken ling. The amplitudes are calcu-

. : . r]ated by Fourier transformation frorta) an absolute square of a
into account. Figure (b) shows amplitudes ca!culated ]‘rom wave function with a channel of the incident wave normal to the
the LDOS for the case that the overlayer thickness is fougiface andb) the LDOS. Values are displayed in the unit of the
layers andE=E . The amplitudes displayed are normalized jncigent wave in(@ and are normalized by thg=0 component in

by theq=0 component. Therefore, the standing-wave behavy). The overlayer thickness is four layers. The unit of the horizon-
ior is hidden. The amplitude of the substrate atomic structurey| axis is the interlayer distana{=4.0 a.u), and the position of
decays rapidly on an atomic scale at the interface, and th@e outermost layer of the overlayer is zero. Therefor8,0 and
amplitude of the overlayer grows instead. The amplitude of-4.0 are the positions of the lowermost layer of the overlayer and
the superstructure produced at the interface propagateSe outermost layer of the substrate, respectively. Values of the
through the overlayer without decay and is detected by STMy=0 component ir(a) are scaled down by 1/20.

plitude

Al
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in the vacuum region, due to the rapid decay of the overlayer — T T T T T T
atomic structures. The crossover point of the amplitudes of
the superstructure and the overlayer atomic structure is by
about one monolayer above the outermost layer. Around this
height, the moirgattern is clearly observed as shown in Fig. % S
3(c). We cannot observe directly the atomic structures of 3
subsurfaces by STM, but can obtain information of su,bsur- ot
face structures by nanoscale lateral waves such as the moireg
patterns.

The oscillating behavior is also seen in overlayer-
thickness dependence of the superstructure amplitude. FigureN
6 shows amplitudes of the superstructure calculated by Fou-
rier transformation fronfa) absolute square of a single wave
function with an incident channel normal to the surface and
(b) the LDOS. Values shown in the figure are calculated at a
height by 5.0 a.u. above the outermost layer and are normal-©
ized by theq=0 component. For comparison, the amplitudes ™
corresponding to the atomic structure of the overlayer are (T T R T N R SR SN N
shown. As a matter of course, they do not depend on the 0 5 10
overlayer thickness. When the amplitude of the superstruc-
ture is the same order as that of the atomic structure, the
moire patterns are clearly seen as shown in Fig. 4.

In the case of the single channel in Figap the ampli-
tude of the superstructure does not decrease with the over-
layer thickness but shows an oscillating behavior, reflecting
that the superstructure wave is a propagating one. This be-
havior can be understood by a simple formula derived in the
Appendix using thes-function potential as

in (k Ay i (Ke— KO
Sin(kpl)COS(k{:l)=SIr{( FKe) ];S'r{( F—Kg) ],

ed Al

% Norma
o

(3.9

wherel is the effective overlayer thickness and is expressed
asl=(n+ 6)d with the number of layers in the overlayer
and the distance between the laydrss is a parameter of an
order of 1 expressing ambiguity of the overlayer thickness.
In the present cas&g, ki, andd are 0.290, 0.248, and 4.0,
respectively. By choosingg=0, the numerical values are
well fitted by this simple function.

In calculating the LDOS, many waves with various values
of k, are integrated. The superstructure amplitude decreases _4 Lo Lo L
with the overlayer thickness like the Friedel oscillation as 0 5 10
shown in Fig. @b). In this case also, the decreasing behavior
can be understood by a simple formula, Number of Layers

10° Normalized Amplitude

Sin(2Kel ) — (2kel )cod 2ke )
(2kel)? ’

(3.9

as derived in the Appendix using th&function potential.

Therefore, the superstrugture decreases le.q;]/)_ By . (closed circlgé and the atomic structure of the outermost lafgren
choosings=0.4, th? nl,!merlcal vqlues are well fltt(_ad by this circle) on the overlayer thickness. The amplitudes are calculated by
formula as shown in Fig.(6). In Fig. 6b), the amplitude of o rier transformation fronta) an absolute square of a wave func-
the superstructure shows negative values at 2, 5, 7, and ® with a channel of the incident wave normal to the surface and
layers. At these overlayer thickness, the contrast of the sup) the LDOS. Values are normalized by the-0 component. Solid
perstructure is reversed as seen in Fi@).4The superstruc- |ines are obtained by spline extrapolation of the closed circles.
ture contrast is sensitive to the overlayer thickness and magotted lines show functions () A sin(kgl)cogkfl) and

be used for determining the interface depth. (b) B[sin(2kgl) — (2kgl)cog2kel ) /(2kel)?,  where A=0.006,

In the present calculation, we treat a metal surface of C8=0.014,k=0.290, anck;=0.248. The surface-interface distance
and, therefore, the amplitude of the superstructure decreases given byl =(n+ 8)d, wheren andd are the number of layers
with the overlayer thickness as shown in Figb)6 In the  and the interlayer distance of the overlayer, respectiv@ig. cho-
case that there are only few states at the Fermi energy suskn aga 0.0 and(b) 0.4.

FIG. 6. Dependence of the amplitudes of the superstructure
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as graphite and semiconductors, the amplitude of the supeobservation of moirgatterns in STM. Different from TEM,
structure behaves like the one-channel case shown in Fighe moire patterns in STM is not the beat of waves and
6(a) and does not decrease with the overlayer thickness. Inannot be understood in terms of the simple superposition of
such cases, it is expected that we can observe nanoscaltomic structures of overlayers and substrates. The three-
structures buried deep in subsurfaces. This may explain thdimensional tunneling and the typical value of work func-
experimental fact that maingatterns are observed even whentions play important roles in observing nanoscale structures
4 MX, sandwiches of the semiconducting MgS$ee grown by STM. Moreover, we can observe nanoscale structures
on a Mo$S substraté? buried deep in subsurfaces, because nanoscale waves propa-
In the above, the numerical values of the superstructurgate through many layers without decay due to the typical
amplitudes are well fitted by the simple formulas in Eqgs.value of Fermi energies. The mechanism presented in this
(3.4—(3.6), using onlykg andk., which are calculated from paper is quite simple but general, because we often encounter
the spatial average of the atomic potentials in the overlayemnanoscale structures when we study lattice-mismatched sys-
This means that the nanoscale waves can be treated by tk@ms synthesized by heteroepitaxy.
effective mass theory. The nanoscale is the border length

where the effective-mass theory is valid. STM can observe ACKNOWLEDGMENT
the waves appearing in the effective-mass theory and the _ ) o

the Ministry of Education, Science and Culture, Japan.

IV. DISCUSSION AND CONCLUSION APPENDIX

- So far, mOifq:).aFternS in STM have been explaiHEd by the In this AppendiX, we derive rough|y Eq€34)_(36) us-
simple superposition of atomic structures of overlayers anghg a simple model. Since the superstructure is produced in a

substrates. In this picture, electrons tunnel directly from theegion localized at the interface, the scattering potential of
substrates as well as the overlayers. However, this is thge interface is approximated by

picture for moirepatterns in TEM and is not valid in the case

of STM. V(r)=vo8(z)(e'% "1+e 1% ), (A1)
Another picture is the modulation in the electronic states . . )

of the outermost layers by the influence of the substratesVherev, is strength of the scattering potential, amgandr,

This is equivalent to the picture where on-site energies in thé"e lateral momentum of the superstructure and coordinates

tight-binding model are modulated by the transfer energie®arallel to the surface, respectively. _

between the overlayers and substrafddowever, the moire When a wave function is expanded in terms of lateral

patterns in STM cannot be explained by only this mechamomentumq as

nism, because the direct influence of the substrates on the

overlayers is generally very weak, as shown in Fi¢g).3 z//(r):2 Aq(z)eiq-n“ (A2)

Therefore, the fact that STM makes use of the three- q

dimensional tunneling is important in explaining the moire

patterns. From this point of view, it is not curious that moire

patterns are observed on layered-material surfaces such as

graphité~® and transition-metal dichalcogenide®, where A(— Ay (2)] 0) =200[Agsa(0)+ A, o (0)], (A3)

the interlayer interaction is very weak, like the van-der- dz” 977 "% 4

Waals interaction. Moreover, the mojpatterns are observed whereA means difference of values wheris approached to
even when several layers of overlayers are grown on th@ from + and —

substrates, because nanoscale waves propagate through many, e following, we treat the potential as a perturbation.

layers Wllthout.decay. . . . When the unperturbed wave is
In lattice-mismatched systems, lattice distortion of over-

layers induced by sub_strates is often important. In,suc.h w(r)=ek?, (A%)
cases, superstructures in STM are not so simple as the moire
patterns discussed in this paper but show domairhe coefficient of the superstructure wave is determined by
structure$*-3 However, the domain structures in STM are the condition
observed generally more clearly than those expected from
the small amplitude of atomic displacements. These facts can A(i Ao (2)
be understood by the enhancement effect of nanoscale struc- dz =%
tures in STM discussed in this paper. o )
The mechanism of the present paper is not restricted t+gnd the continuity of the wave functionzt0. For example,
periodic structures such as the mopatterns. The important when
point is that nanoscale structures are always enhanced in
STM even when they are buried deep in subsurfaces. This
would explain the large corrugation amplitudes observed in
STM of bulk impurities buried in semiconductor surfate$§
and of alkali-adsorbed semiconductor surfates. the coefficient is determined a€=uv/(ik’), where k'’
In conclusion, we have clarified the mechanism of the= \/kz—qoz.

the coefficients satisfy a relation of

zo) =2vo, (AS)

cek'z (z>0)

Ce k'z (z<0)’ (A6)

Ag(2)= {
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In the presence of a surfacezt |, the unperturbed wave the superstructure shown in E(.4). The oscillation term

function changes to a standing wave as sin(kl) is originated from the interference of two waves pro-
duced by the transmitting scattering freefi? and the reflec-
W(r)=e*2+ Re k2, R=— g2k (A7) tive scattering fromRe 2. Therefore, the period is gov-

erned not byk’ but by k. On the other hand, the term
The component of the superstructukg (r) produced by the  cogk’l) is produced by the total reflection of the superstruc-
S&function potential has the form ture itself at the surface and the period is determined'by
In the above, we assume that the wave function is zero at

(&4 R e K'Z)gito T (7>0) the surface, but a realistic wave function must be connected

o (r)= S . (A8) smoothly with a wave exponentially decaying in the vacuum
o Be K zel% (z<0) region. The connecting points are determined by
whereR’ = —e?¥'!. By the condition of Eq.(A3) and the
continuity, we obtain k cottkz)=—N,
(A11)
Vo k'cot(k’z)=—\",
a= ik’ (l+ R),

where\ and\’ are decay constants. By putting these condi-
(A9)  tions in Eq.(A10), we obtain that the amplitude of the su-

B=a(1+R'). perstructure in the vacuum region is roughly proportional to
The —q, term can be treated similarly. , )
The absolute square of the wave function is calculated up k sin(kl)cogk'l), (A12)
to the first order of the scattering potential as which is Eq.(3.5).
32 In calculating the LDOS, EqA12) is integrated by as
|(r)|2=4 siré(kz)— k—° sin(kl)cogk’1)sin(kz)
ke sin(2kgl) — (2kgl)cog 2kel)
xsin(k'z)cog o 1) (z>—1). (A10) fo k sin(kl)cogkl)dke (2k:1)2 :
In the above, the origin of is changed by transforming (A13)

z—1—z. From this equation, we obtain tlzedependence of In the above, we approximatéd =k. This is Eq.(3.6).
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