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A classical approach, relating magnetoresistance oscillations of a two-dimensional electron gas~2DEG! in a
weak lateral superlattice to the guiding center drift of cyclotron orbits, is extended to superlattices defined by
spatially periodic electrostatic and magnetic fields of arbitrary shape but equal lattice constants. The results are
applied to the experimentally relevant situation of modulation fields produced by periodic arrays of magnetized
strips or dots on the surface of a heterostructure containing a 2DEG. Magnetic modulation fields of different
symmetries, tuned by the orientation of the magnetization, are superimposed on the stress-induced electrostatic
modulation and lead to characteristic interference effects on the Weiss oscillations of the magnetoresistance.

I. INTRODUCTION

A two-dimensional electron gas~2DEG! subjected to a
perpendicular homogeneous magnetic field and weak spa-
tially periodic modulation fields, shows interesting commen-
surability effects. In magnetic fields of intermediate
strengths, these are manifested in the so-called Weiss oscil-
lations of the magnetoresistance, which have first been ob-
served in 2DEG’s in Al12xGaxAs-GaAs heterostructures
with a weakelectrostaticmodulation.1 The Weiss oscilla-
tions have been understood2,3 within a quantum mechanical
picture, as resulting from the modulation-induced broadening
of the Landau levels into Landau bands, with an oscillatory
dependence of the bandwidth on the Landau quantum num-
ber. The dispersion of the Landau bands leads to a group
velocity, and this to a ‘‘band conductivity,’’ which both van-
ish when the Landau levels become flat. This happens when
‘‘flat-band conditions’’ hold which, for large Landau quan-
tum numbers, can be expressed by simple ratios of the cy-
clotron radius at the Fermi energy of the 2DEG and the pe-
riod of the modulation potential. Although some aspects of
the Weiss oscillations, notably in 2D lateral superlattices,
seem to require a quantum mechanical explanation~for a
review see Ref. 4!, other aspects can be understood within a
simple quasiclassical approach,5,6 in which the analog of the
quantum mechanical group velocity appears as a drift veloc-
ity of the guiding centers of cyclotron orbits in the crossed
homogeneous magnetic field and the periodic electric field of
the modulation.

The analog of the Weiss oscillations in a 2DEG with a 1D
lateral superlattice defined by aperiodic magnetic fieldwas
predicted7 and investigated in some detail8,9 several years
ago. The experimental realization of these superlattices and
the observation of the predicted effect has, however, been
achieved only recently.10–12 The magnetic modulation has
been produced by metallic strips on the surface, consisting
either of superconducting10 or ferromagnetic11,12 material.
Whereas the flux expulsion by the superconductor leads to
tiny modulation effects, the deposition of dysprosium~Dy!
micromagnets on the surface leads to very strong modulation
effects.11 Since the thermal expansion coefficients of the

metal and of the semiconductor heterostructure are different,
the ferromagnetic strips exert, at the low temperatures of the
experiment, mechanical stress on the underlying semicon-
ductor, which leads to a periodic modulation of the conduc-
tion band edge and acts as an electrostatic modulation on the
2DEG. This stress effect has been investigated
systematically,13,14 and it has been found that this unavoid-
able electrostatic modulation has a considerable content of
higher harmonics. For the understanding of the magnetic
Weiss oscillations, it is important to be aware of the fact that
this stress-induced modulation is always present.11

A quantum mechanical study of the Weiss oscillations in
the presence of both an electrical and a magnetic modulation
in one lateral direction has been presented by Peeters and
Vasilopoulos.9 This study has been restricted to purely sinu-
soidal modulations in the two special cases that either the
cosine modulation of the magnetic field is in phase with that
of the electrostatic potential, or that there is a phase differ-
ence ofp/2 between these.

The purpose of the present paper is twofold. First, we
want to demonstrate that for one- and two-dimensional lat-
eral superlattices, under conditions which can be realized
experimentally,15 a rich variety of interesting interference ef-
fects exists in which the stress-induced modulation acts to-
gether with a magnetic modulation. Situations of very differ-
ent symmetries can be generated, since the strength and the
phase of the magnetic modulation can be tuned via the
strength and the direction of the magnetization of the micro-
magnets on the surface. Second, we want to generalize a
simple classical approach,5,6 based on the calculation of the
guiding center drift of the cyclotron orbits in a weak magne-
toelectric modulation, which then allows us to calculate the
Weiss oscillations of the magnetoresistance in such situa-
tions, including the case of strongly anharmonic periodic
modulations. We will demonstrate that the higher harmonics
may give rise to nondiagonal contributions to the resistance
tensor, which are entirely absent in the simple harmonic ap-
proximation.

The plan of this paper is as follows. In Sec. II and the
Appendices we calculate the guiding-center drift velocities
as well as the formula for the corrections to the Drude resis-
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tivity tensor, due to this drift, to lowest order in the modula-
tion amplitudes. In Sec. III we apply this formula to typical
situations, paying special attention to reasonable treatment of
the modulation fields generated by periodic arrays of micro-
magnets on the surface of the sample.

II. QUASICLASSICAL BAND CONDUCTIVITY

A. Guiding-center drift

Within the semiclassical picture, the Weiss oscillations of
the magnetoresistance of a two-dimensional electron gas in a
lateral superlattice, realized by a weak electrostatic potential
modulation, is related to the drift motion of cyclotron orbits.
Without modulation, the homogeneous magnetic fieldBW 0 ap-
plied perpendicularly to the plane of the 2DEG forces the
electrons on circular orbits of radiusRc and energy
m
2 vc

2Rc
2 , with vc5eB0 /mc the cyclotron frequency. We

consider only electrons at the Fermi energyEF5\2kF
2/2m,

so thatRc5vF /vc , with vF5\kF /m the Fermi velocity. If
the modulation is sufficiently weak, it will lead only to a
minor modification of the cyclotron orbits, notably a drift of
their center coordinates or ‘‘guiding’’ centers.

In order to calculate the average drift velocityvWD of the
guiding center of a cyclotron orbit, we start with Newton’s
equation of motion for the velocityvW 5rẆ of an electron in the
x-y plane,

mvẆ 52e@EW 1~vW /c!3BW #, ~2.1!

with an in-plane electric fieldEW 5¹V(rW)/e, expressed in
terms of the potential energyV(rW) of the electron of charge
2e,0, and a perpendicular magnetic field
BW 5„0,0,B01Bm(rW)…. We assume thatV(rW) andBm(rW) are
periodic on the same rectangular lattice with lattice constants
ax52p/Kx anday52p/Ky ,

V~rW !5 (
qW Þ0

VqWe
iqW •rW, Bm~rW !5 (

qW Þ0

BqWe
iqW •rW, ~2.2!

and that they have zero average values, so that, in Eq.~2.2!,
theqW sums are overqW 5(Kxnx ,Kyny,0) with integersnx and
ny which are not simultaneously zero.

In the absence of modulations, the solution
rW5„x(w),y(w),0… of Eq. ~2.1! reads

x~w!5xM1Rcsinw, y~w!5yM2Rccosw, ~2.3!

with w5vct1w0 , and the guiding-center coordinates

xM5x2vy /vc , yM5y1vx /vc ~2.4!

are constant in time.
In the presence of modulations, we define the guiding

center for each point on a modified cyclotron orbit as the
center of the circle of curvature at that point. As is shown in
Appendix A, we obtain results for the drift velocity of the
guiding centers, which are correct to first order in the modu-
lation fields, if we first take Eq.~2.4! as the definition for the
guiding center and calculate its velocity from Eq.~2.1!,

ẋM5c
Ey

B0
2vx

vm

vc
, ẏM52c

Ex

B0
2vy

vm

vc
~2.5!

and, secondly, calculate the average drift velocity by averag-
ing Eq. ~2.5! along an unperturbed cyclotron orbit~2.3!,

vx
D5E

2p

p dw

2p F cB0
Ey„rW~w!…2Rcvm„rW~w!…cosw G , ~2.6!

vy
D5E

2p

p dw

2p F2
c

B0
Ex„rW~w!…2Rcvm„rW~w!…sinwG .

~2.7!

Herevm(rW)5eBm(rW)/mc is defined in analogy tovc , and
vx
D andvy

D depend on the radiusRc and the center position

rWM of the selected orbit. To evaluate these integrals, we in-
sert the Fourier expansions~2.2! and obtain after a straight-
forward calculation

vWD5
i

mvc
(
qW Þ0

gW ~qW !eiq
W
•rWMS qW , ~2.8!

in which gW (qW )5(qy ,2qx,0) and

S qW5sB0
VqWJ0~Rcq!1

kF
q

\vqWJ1~Rcq!, ~2.9!

with sB0
5B0 /uB0u, q5uqW u, vqW5eBqW /mc, and Jn(x) the

Bessel functions of the first kind. So far we have tacitly
assumed that the homogeneous part of the magnetic field
points into the positivez direction, i.e.,BW 05B0eW z with
B0.0, so thatsB0

51.
It is interesting to keep the modulations of the electro-

static potential and of the magnetic field fixed and to invert
the direction of the homogeneous magnetic field, i.e., to take
B0,0. Then the electrons move through the cyclotron orbits
in the opposite direction, so that at each point of the orbit the
velocity has the opposite sign. Formally, the consequences
for the average guiding center drift are seen most easily form
Eq. ~2.5!. The first term, i.e., the usual (EW 3BW 0)/B0

2 drift,

changes sign withB0 . The second drift term2vWBm /B0 , due
to the magnetic modulation, remains, however, unchanged,
since together withB0 the velocity vW changes sign. As a
consequence, if we takevc andRc in Eqs.~2.8! and~2.9! to
be positive, we havesB0

521 for B0,0. This result is also
easily understood from the disturbed cyclotron orbits. An
electric modulation in thex direction leads to cycloidic orbits
which drift in they direction, with local radius of curvature
Rc(x)5$2@EF2V(x)#/m%1/2/vc . When the direction ofB0
is inverted, the electron follows the same orbit in opposite
direction, and the drift velocity changes sign. A magnetic
modulation in thex direction with uBm(x)u,uB0u leads to a
similar orbit with local radius Rc(x)5(2mEF)

1/2c/
@euB01Bm(x)u#. When the direction ofB0 is inverted, the
orbit changes. Regions corresponding to large values of
Rc(x) are interchanged with those corresponding to smaller
values, but the electron also travels locally in the opposite
direction, so that the overall drift velocity remains un-
changed.
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B. Contribution to conductivity

The guiding-center drift introduces a degree of freedom in
addition to the cyclotron motion, so that an additional con-
tribution to the velocity-velocity correlation function and,
therefore, to the diffusion tensor appears. The corresponding
contribution to the conductivity tensor, which adds to the
usual Drude conductivity, can be written in the form

Dsmn5
te2m

p\2 ^vm
Dvn

D&u.c., ~2.10!

where the contribution of the individual cyclotron orbits
must be averaged with respect to their center coordinates
rWM over the unit cell of the superlattice.5,6 As shown in Ap-
pendix B, Eq.~2.10! follows from the more familiar expres-
sion for the conductivity in terms of the velocity-velocity
correlation function when the relaxation timet is much
larger than the period of the cyclotron motion, i.e., for
vct@1. According to Eq.~2.8!, the integral with respect to
rWM reduces the double sum, introduced by the product of two
components of the drift velocity, to a singleqW sum. This
yields for the ‘‘band conductivity’’ tensor

Dsmn5
te2

pm~\vc!
2(
qW Þ0

gm~qW !gn~qW !uS qW u2, ~2.11!

which generalizes a previous result6,4 for purely electrostatic
modulation.

C. Comparison with previous calculations

Results similar to Eq.~2.11! but for simple sinusoidal
modulations in only one direction have been obtained by
other authors.8,9 We want to compare explicitly with the re-
sult of a quantum mechanical calculation by Peeters and
Vasilopoulos9 for V(x)5V0cosKx and Bm(x)5BmcosKx,
and for one spin direction. With slightly altered notation, Eq.
~22! of Ref. 9 reads

syy
dif'

e2tK2l 2

4p\2 (
n

@Wn~u!#2S 2
] f ~E!

]E D
E5En

, ~2.12!

with l5(\/mvc)
1/2 the magnetic length,u5K2l 2/2, and

with Wn(u)5uV0Fn(u)1\vmGn(u)u the half width of the
nth Landau level. Here Gn(u)52]Fn(u)/]u and
Fn(u)5exp(2u/2)Ln(u) with Ln(u) a Laguerre polynomial.
To compare with our quasiclassical calculation, we first note
that our averaging over cyclotron orbits is only meaningful if
the relaxation timet is sufficiently large, i.e.,tvc@1. This
implies small collision broadening of the Landau levels.
Then, in order to smear out the quantum Shubnikov–de Haas
oscillations, the temperature must be sufficiently high, so
that the sum over Landau quantum numbers in Eq.~2.12! can
be replaced by an energy integration over
En5\vc(n11/2), and it must be sufficiently low, that this
integration yields only contributions from the neighborhood
of the Fermi energy. This leads to the condition9,4

Tc,T,Ta with kBTc5\vc/2p2 andTa5(pkF /K)Tc , and
implies that\vc!EF so that many Landau levels are occu-
pied. Forn@1 the asymptotic relations

Fn~u!'J0~KRn!, Gn~u!'J1~KRn!Rn /~Kl
2!

~2.13!

hold with Rn5 lA2n11. With Rn5Rc5 l 2kF valid at
En5EF , and a spin degeneracy factor 2, Eq.~2.12! agrees
with Eq. ~2.11! for m5n5y, VqW5V0/2 andvqW5vm/2 if
qW 5(K,0,0) or (2K,0,0) andVqW5\vqW50 otherwise. The
caseV(x)5V0cosKx andBm(x)5BmsinKx, where the phase
of the magnetic modulation is shifted byp/2 with respect to
the electric one, has also been considered in Ref. 9,
and is called ‘‘out-of-phase’’ modulation. For this case,
Eq. ~2.12! was obtained with Wn(u)5$@V0Fn(u)#

2

1@\vmGn(u)#
2%1/2, which reduces in the quasiclassical

limit also to Eq. ~2.11!, but with vqW5vm/2i52v2qW for
qW 5(K,0,0). In Sec. III it will become clear how such phase
shifts can be realized experimentally.

D. Correction to resistivity

From the comparison with the quantum mechanical cal-
culation, we see that our quasiclassical calculation can be
valid only in the temperature windowTc,T,Ta . Further
limitations are implied by taking the average of the modula-
tion effects over unperturbed cyclotron orbits, which, inci-
dentally, corresponds to the neglect of Landau level mixing
in the quantum calculations.9,4 It implies tvc@1 and that the
correction ~2.11! to the Drude conductivity can be correct
only to lowest order in the modulation strengths. Thus we
may readily transform Eq.~2.11! into the corresponding
lowest-order correction to the Druderesistivity tensor. To
leading order in (tvc)

21 we obtain

Drmn5r0
l f
2

2EF
2 (
qW Þ0

qmqnuS qW u2, ~2.14!

where r05m/(e2nelt) is the Drude resistivity and
n el5kF

2/(2p) the density of the homogeneous 2DEG with
the mean free pathl f5t\kF /m.

16 For sufficiently small
values of the homogeneous magnetic field, actually for
qRc[ql f /tvc*2, the Bessel functions in Eq.~2.9! may be
replaced by their large-argument asymptotic expansions, so
that

S qW'S 2

pqRc
D 1/2FsB0

VqWcosS qRc2 p

4 D
1
kF
q

\vqWsinS qRc2 p

4 D G . ~2.15!

‘‘Flat-band’’ conditions withS qW50, at which theqW th Fou-
rier component of the modulation yields no contribution to
Drmn , can occur only ifVqW and\vqW have the same complex
phase, as, e.g., for pure cosine modulations. It is interesting
to note that the magnetic analog of the dimensionless ampli-
tude factorVqW /EF of the electric modulation is the ratio of
two lengths, (kF /q)\vqW /EF52/(qRqW). Here 2p/q is the
wavelength andRqW5vF /vqW the ‘‘cyclotron radius’’ in the
magnetic modulation field, which, in contrast to the energy
quantum\vqW , both are meaningful in the classical limit.

When the modulations become too strong as compared to
\vc , the classical orbits may be completely different from
cyclotron orbits. For a 1D modulation, channeling along po-
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tential minima may occur for the electrostatic case17 and
along ‘‘snake orbits’’ in the magnetic case,18 so that Eq.
~2.14! is not applicable in the limitB0→0. For a strong 2D
modulation~‘‘antidot lattice’’! reflection from antidots may
lead to chaotic orbits. But even for a weak 2D modulation
quantum effects may render Eq.~2.14! useless. Bragg reflec-
tions in the 2D superlattice may lead to a complicated inter-
nal subband structure of the Landau levels with weak disper-
sion and large gaps~Hofstadter spectrum!, so that the group
velocities, i.e., the quantum analog of the drift velocities
~2.8!, become very small and the band conductivity is dra-
matically suppressed.4 The importance of these quantum ef-
fects depends on the relative magnitude of collision broad-
ening and modulation broadening of the Landau levels and
on their separation\vc , and is hardly predictable within the
quasiclassical approach.

III. EXAMPLES

A. Modulation model

We now want to adapt Eq.~2.14! to typical experimental
situations met in a Al12xGaxAs-GaAs heterostructure with
lithographically patterned surface. A periodic array of one-
or zero-dimensional ferromagnetic structures on the surface
creates a periodic magnetic field in the plane of the 2DEG
located at some distance below the surface. Strong modula-
tion effects have been observed for one-dimensional lattices
of parallel metal~Dy! strips11 and for square lattices of Dy
posts.19

In order to model the magnetic stray fields of such struc-
tures, we take the surface as thex-y plane and the semicon-
ductor in the half spacez,0, with the two-dimensional elec-
tron gas located in a planez52D,0. For a rectangular
lattice we assume at the lattice sitesRW 5(nxax ,nyay,0), for
all integer valuesnx and ny , replica of a cylinder at the
origin, with heighth, 0,z,h, and either a circular basis of
radius r 0 , x21y2,r 0

2 , or a rectangular basis with
uxu,bx/2 and uyu,by/2. For a one-dimensional modulation
we use metal strips with rectangular cross sections, located at
0,z,h, ux2nxaxu,bx/2 ~for all integersnx) and transla-
tional invariant in they direction. For the sake of simplicity,
we assume that these metal structures are homogeneously
magnetized, with a magnetizationMW (rW,z)5MW 0 inside and
MW (rW,z)50 outside the metal. We takemW to represent the
magnetic moment of a unit cell. Then, the ‘‘magnetic charge
density’’ 2¹W •MW is concentrated on the boundary faces of
the metal structures, and acts as the source of the static mag-
netic fieldHW (rW,z)5BW 24pMW 52¹W f, where the scalar po-
tentialf satisfies Poisson’s equation in the form

Df54p¹W •MW . ~3.1!

The solution of Eq.~3.1! with the standard boundary condi-
tions of Maxwell’s theory is a straightforward problem of
magnetostatic. Defining two-dimensional Fourier expansions
as in Eq.~2.2!, we obtain for the scalar potential in the half
spacesz,0 andz.h, and forqW Þ0,

fqW~z!5
2p

axay
FqW •mW i

iq
1mzsgnzGFqWe

2quz2h/2u, ~3.2!

with mW i5(mx ,my,0) andFqW the form factor, which depends
on the shape of the micromagnets on top of the semiconduc-
tor surface. ForqW 50, a linear function ofz solves Eq.~3.1!
in the half spacesz,0 andz.h, corresponding to a homo-
geneous magnetic field inz direction. Since our magnets in
the layer 0,z,h cannot produce such homogeneous fields,
we must putfqW 50(z)[0. In these half spaces, the magnetic
flux density is given byBW (rW,z)52¹W f(rW,z). Considering a
strictly two-dimensional model for the electron gas, we ne-
glect thex and y components of the magnetic flux density
and calculate the magnetic modulation field
Bm(rW)5Bz(rW,z52D) from the Fourier coefficients

BqW~z!5
2p

axay
@ iqW •mW i1qmz#FqWe

2quz2h/2u. ~3.3!

If one concentrates the magnetization of the metallic posts in
their centers, i.e., assumes ideal magnetic dipoles, one can
immediately calculate the Fourier coefficients of the lattice
sum of the magnetic dipole fields to obtain Eq.~3.3! with
FqW[1. For the magnetized circular cylinders one obtains

FqW5
2J1~qr0!

qr0

sinh~qh/2!

qh/2
, ~3.4!

with J1 the Bessel function, and for cylinders with rectangu-
lar basis20

FqW5
sin~qxbx/2!

qxbx/2

sin~qyby/2!

qyby/2

sinh~qh/2!

qh/2
. ~3.5!

If the cylinders merge in they direction, i.e., forby5ay , Eq.
~3.5! reduces to the form factor for the 1D strip lattice,

FqW5dqy,0
sin~qxbx/2!

qxbx/2

sinh~qh/2!

qh/2
. ~3.6!

We want to emphasize some features of these results.~i! The
spatial orientation of the magnetization of the micromagnets
determines the complex phases of the Fourier coefficients. A
magnetization in thez direction (mW i50) leads to real Fou-
rier coefficients, that is, to a pure cosine expansion of the
modulation magnetic field, whereas a magnetization parallel
to the plane of the 2DEG (mz50) leads to purely imaginary
coefficients, i.e., a sine expansion.~ii ! For the strip lattice
only the magnetization perpendicular to the strip axes is rel-
evant. A magnetization in they direction has no effect. A
magnetization with the direction ofmW 5m0(sinu,0,cosu) re-
sults in a complex phase factor exp(iu). ~iii ! For our idealized
periodic model without lateral confinement, the average of
the modulation field over a unit cell vanishes in each plane of
constantz, and the amplitude decreases exponentially with
the distance of that plane from the surface atz50. Since
with increasing distance the contributions from the indi-
vidual micromagnets decrease only with an inverse power
law, the field contributions of more and more micromagnets
must interfere destructively in order to produce the exponen-
tial decrease. For a real laterally confined system this implies
that finite-size effects become more important with increas-
ing distance from the surface. In any planez52D the av-
erage modulation field produced by a finite array of micro-
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magnets on the surface must still vanish, as the average field
of a single dipole on the surface does. But if one calculates
the average only over a part of the plane, say the area below
the finite array of micromagnets~i.e., essentially over the
‘‘sample’’!, the cancellation due to destructive interference
will in general not be complete. Especially the average taken
in a unit cell of a finite array will no longer vanish.

The array of micromagnets attached to the surface of the
semiconductor heterostructure not only allows us to apply a
magnetic modulation field to the 2DEG, it also is the source
of an effective electric modulation. The reason for this is the
difference in the thermal expansion coefficients of the metal-
lic magnets and the semiconductor, which results, at the low
temperatures of the experiments, in a stress-induced bending
of the conduction band edge.

Theoretical as well as experimental investigations have
shown13,14 that the stress-induced potential energy under a
strip centered atx50 has a central peak and two side ex-
trema of opposite sign, similar to the second derivative of a
Gaussian,V(x)52V0l

2@d2exp(2x2/l2)/dx2#. To simulate
stress effects in the 1D modulation case, we repeat this an-
satz for all strips and obtain the Fourier coefficients

Vqx
5V0Ap~l/ax!~lqx!

2e2~lqx!2/4e2uzqxu, ~3.7!

where we have introduced the required exponentialz depen-
dence by hand. To get the potential close to the form ob-
tained in Ref. 13, we choosel5bx /A6.

To simulate the stress-induced potential below a circular
cylinder we choose the rotational invariant second derivative
of a Gaussian, i.e.,V(rW)52V0l

2Dexp(2r2/l2). On a rect-
angular lattice this leads to the Fourier coefficients

VqW5V0~pl2/axay!~lq!2e2~lq!2/4e2uzqu, ~3.8!

where we takel5r/A2.

B. One-dimensional modulation

We first consider the simplest description of one-
dimensional lateral superlattices in terms of purely harmonic
modulation fields, i.e., we take

V~x!5V0cos~qx!, Bm~x!5Re@Bm
0 eiqx#, ~3.9!

with q52p/a andBm
0 either real, for a cosine, or imaginary,

for a sine modulation. The strip modulation discussed above
reduces to this simple form if the distanceD between the
2DEG and the surface becomes comparable with the period
a or larger. According to Eq.~2.14! only Drxx is different
from zero, whereas the other tensor components of the resis-
tance are not changed by the modulation. In Fig. 1 we show
the resultingDrxx in two different regimes of the applied
homogeneous magnetic fieldB0 . Since a common amplitude
factor in the electric and the magnetic modulation does not
change the shape of the magnetoresistance curves, we write
V05gEF« and (kF /q)\vm

0 5gEFm, with vm
0 5eBm

0 /mc,
and divide the resistance correction by (ql fg)

2/2. Note that
in the lower panel of Fig. 1 as well as in all the following
magnetoresistance plots the magnetic field scale starts at a
finite value ofa/2Rc and not ata/2Rc50. We suppress the

region of small values of the applied magnetic fieldB0 ,
since there our calculation scheme is not applicable.

In Fig. 1 the solid curves labeled («,m)5(1,0) and~0,1!
give the resistance change due to only electric and only mag-
netic modulation, respectively. According to the values of
the Bessel functions for zero argument, the magnetoresis-
tance due to the magnetic modulation approaches zero for
largeB0 (Dr}1/B0

2), whereas that due to the electric modu-
lation saturates, such as the curve~1,0! in Fig. 1~a!, which
approaches the value 0.5. In the case of only electric modu-
lation, Dr vanishes at the ‘‘electrical flat-band conditions’’
a/2Rc5 1.306, 0.569, . . . , indicated by the open triangles
in Fig. 1~b!. They are determined by the zeroes of the Bessel
function J0 and are, according to Eq.~2.15!, well approxi-
mated by

2Rc'a~le21/4!, le51,2, . . . . ~3.10!

For purely magnetic modulation,Dr vanishes at the mag-
netic flat-band conditionsa/2Rc50.820, 0.448, . . . , indi-
cated by the filled triangles. They are determined by the ze-
roes of J1 and are, according to Eq.~2.15!, accurately
approximated by

2Rc'a~lm11/4!, lm51,2, . . . . ~3.11!

For le andlm larger than 1, Eqs.~3.10! and~3.11! approxi-
mate the correct values with an error of less than 1%.

FIG. 1. Magnetoresistance vs scaled magnetic field for one-
dimensional harmonic electric and magnetic modulations,
V(x)5V0cos(qx) and Bm(x)5Re@Bm

0 exp(iqx)#, respectively, with
V05gEF« and (kF /q)\vm

0 5gEFm, and the scaling factor
a52/(gql f)

2. The solid curves labeled («,m)5(1,0) and ~0,1!
refer to purely electric and purely magnetic modulations, respec-
tively. The long-dashed lines labeled~1,1! refer to in-phase cosine
modulations, the dash-dotted lines labeled (21,1) to cosine modu-
lations with phase differencep, and the short-dashed lines labeled
(1,i ) to modulations with phase differencep/2. In ~b! the results of
~a! are shown in greater detail, and the electric and magnetic flat-
band conditions are indicated by open and filled triangles, respec-
tively.
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The long-dashed curve, labeled~1,1!, refers to the case
where electric and magnetic modulation are in phase. For
B0 larger than the last electric flat-band condition
(a/2Rc.4/3), all contributions to Eq.~2.9! are positive, and,
for very largeB0 values, this magnetoresistance curve ap-
proaches the curve for pure electric modulation from above.
ForB0 values between the last electric and the last magnetic
flat-band condition (4/3.a/2Rc.4/5), the Bessel function
J0 in Eq. ~2.9! assumes negative values whileJ1 is still posi-
tive. Here the effects of electric and magnetic modulation
interfere destructively and cancel each other at that value of
B0 where the magnetoresistance due to a purely electric
modulation equals that of a purely magnetic modulation. If
we turn on the magnetic modulation continuously, so that
m increases from 0 to 1, the long-dashed curve evolves from
that with pure electric modulation in such a manner that the
zeroes shift from the electric flat-band conditions towards the
corresponding magnetic flat-band conditions withlm5le ,
i.e., to smaller values ofB0 .

If we keep the modulations fixed, invert the direction of
the applied homogeneous field (B0→2B0), and plot the
magnetoresistance versusuB0u, we obtain the dash-dotted
curves labeled (21,1). The same result is obtained if we
keepB0 positive and change the relative sign betweenV0

andBm
0 , i.e., superpose electric and magnetic cosine modu-

lations with a phase difference ofp. Now theB0 regions of
constructive and destructive interference are interchanged.
For largeB0 values the dash-dotted curve approaches the
curve for purely electric modulation from below. If we turn
on the magnetic modulation gradually, the dash-dotted curve
evolves from that for purely electric modulation in such a
manner that the zeroes shift to largerB0 values, i.e., from
electric flat-band condition with a certainle to the magnetic
flat-band condition with lm5le21, for le.1. Since
J1(0)50, we may extend this statement to the casele51, if
we define the magnetic flat-band condition forlm50 as the
limit 2Rc /a→0. Equation~3.11! corresponds to the large-
argument expansion of the Bessel functions, see Eq.~2.15!,
which is not applicable for 2Rc /a,3/4.

This asymmetry under inversion of the direction of the
applied homogeneous magnetic field has been observed in
experiment,11 and it has been exploited to determine the sign
of the stress-induced electrostatic potential from the known
direction of the magnetic modulation field.

The short-dashed curves in Fig. 1 are obtained for
(«,m)5(1,i ), i.e., an electrical cosine and a magnetic sine
modulation~phase differencep/2). In this case the contribu-
tions of the purely electric and the purely magnetic modula-
tion simply add, without any interference. In this case there
are no zeroes of the magnetoresistance or corresponding flat
bands in the quantum mechanical description.9 This is also in
agreement with recent experiments in which the Dy strips
were magnetized in the direction perpendicular to their axes
and parallel to the plane of the 2DEG.15

The harmonic approximation of the magnetic modulation
field considered in Fig. 1 is an oversimplification and does
not hold in the existing experiments, where the distance be-
tween the 2DEG and the surface is only 10–20 % of the
perioda of the strip lattice. Figure 2 gives an impression of
the stray field generated by a strip lattice as a function of the
strip height for a given strip widthbx50.6a. For a homoge-

neous magnetization of a given valueM0 , the amplitude of
the modulation field in any plane below the surface increases
with increasing height of the strips, but thex dependence
becomes smoother, since the added magnetized material has
a larger distance from this plane and thus contributes pre-
dominantly to the lowest harmonics.

A more realistic situation is considered in Fig. 3. The
magnetic field is calculated according to Eqs.~3.3! and~3.6!
for a lattice with periodax5a of strips which are homoge-
neous in they direction. The stress-induced electrostatic po-
tential is modeled by Eq.~3.7!. In the upper panels the ho-
mogeneous magnetization of the strips is assumed in thex
direction, i.e., parallel to the plane of the 2DEG and perpen-
dicular to the axes of the strips. In the lower panels it is taken
in thez direction, perpendicular to the strips and to the plane
of the 2DEG. As is seen in the left panels in Fig. 3, the fields
contain higher harmonics. These have as consequence that
the magnetoresistance curves in the lower right panel do not
go down to zero at their minima. The dash-dotted line, pre-
senting the result for purely electrostatic modulation, has
minima at slightly lowerB0 values as those given by the
ideal flat-band condition~3.10!, e.g., neara/2Rc51.22 in-
stead ofa/2Rc51.31. As the amount of magnetic modula-
tion is increased (m50.5, 1.0, 1.25!, the minima shift to-
wards the magnetic flat-band conditions withlm5le as
discussed above. At the magnetic flat-band conditions all the
curves with the same amount of electric modulation («51)
intersect each other at the same value for the magnetoresis-
tance. This indicates that the higher harmonics of the mag-

FIG. 2. Magnetic modulation fieldBz(x) produced by a lattice
of period a in the x direction of strips, which have the width
bx50.6a and are homogeneous in they direction. A homogeneous
magnetization of modulusM0 is taken in thez direction perpen-
dicular to the surface~left panels!, or in thex direction parallel to
the surface~right panels!. The strip heightsh are chosen ash/a5
0.05 ~solid lines!, 0.1 ~dotted lines!, 0.2 ~dashed-dotted lines!, and
0.4 ~dashed lines!. The x dependence ofBz is shown in planes at
distancesz50.05a, 0.1a, and 0.2a ~from top to bottom! below the
surface plane atz50.
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netic modulation are less effective than those of the electric
modulation, as is to be expected from Eq.~2.9!. In contrast to
the resistance curves in the lower panel, those in the upper
panel do notintersecteach other at the magnetic flat-band
conditions, although they all assume there the same values,
namely, those for the purely electric modulation. This char-
acteristic difference between the two directions of magneti-
zation is a direct consequence of the different complex
phases of the Fourier coefficients in both cases, and has re-
cently been observed in experiments.15

C. Square lattice of magnetized cylinders

In samples with a two-dimensional periodic array of mi-
cromagnets, an in-plane component of the magnetization
leads to an anisotropic magnetoresistance tensor. In contrast
to the case of 1D strip arrays, where the anisotropy is trivial
~only DrxxÞ0), now in general bothDrxx and Dryy are
nonzero and different from each other. Thus, in addition to
the size and the form of the micromagnets, and to the relative
magnitude of stress-induced electrostatic and of magnetic
modulations, theorientationof the magnetization will influ-
ence the magnetoresistance curves. Among the huge number
of possible experimental situations, we will choose only a
few typical examples, with parameters that are accessible to
the experiment.

We consider a square lattice, with perioda ~say,a5500
nm!, of circular cylinders with radiusr50.25a and height
h50.4a on the sample surface in the planez50, and a
2DEG in the planez520.2a below the surface. The stress-
induced potential is modeled by Eq.~3.8! with V05gEF«
and kept fixed in the following. It is visualized in the upper

part of Fig. 4. The magnetic modulation is calculated from
Eqs.~3.3! and ~3.4!, with ax5ay5a andBm52pumW u/a3.

We first take the magnetization vector in thex-z plane,
mW 5umW u(sinu,0,cosu). The resulting magnetic modulation is
visualized in the middle part of Fig. 4 for a magnetization in
the z direction (u50), perpendicular to the plane of the
2DEG, and in the lower part of Fig. 4 for a magnetization in
thex direction (u5p/2). It is seen that, at the given distance
between the 2DEG and the surface, the modulation fields
still have a lot of harmonic content and are not simply sinu-
soidal. Whereas the modulation field foru50 is invariant
under rotations along thez axis at multiples ofp/2, the
modulated magnetic fieldBz(rW,z52D) for u5p/2 is seen
to be very anisotropic, without rotational symmetry. Its
maximum variation along a line in they direction is at most
half as large as the maximum variation along the lines in the
x direction corresponding to constant, integer values of
y/a. The modulation in they direction is only due to higher
harmonics with periods shorter thana, since according to

FIG. 3. Modulation fields~left panels! and resulting magnetore-
sistance~right panels! for a one-dimensional lattice~periodax5a)
of magnetized strips of widthbx50.6a and heighth50.4a, and a
two-dimensional electron gas atz520.1a. The fields are given by
Eq. ~3.7! with V05gEF« and by Eqs. ~3.3!, ~3.6! with

Bm52pumW u/(ax
2ay). The magnetic momentmW is taken in thex

direction in the upper panels and in thez direction in the lower
panels. Its magnitude is chosen so that (akF/2p)\eBm /
mc5gEFm. In the right panels, the dash-dotted lines refer to
purely electric modulation, i.e., («,m)5(1,0), the dotted lines to
purely magnetic modulation, («,m)5(0,1), and the solid lines to a
mixed modulation with the indicated («,m) values. The scaling
factor isa52a2/(2pgl f)

2.

FIG. 4. Modulation fields in the plane of the two-dimensional
electron system due to a square lattice of homogeneously magne-
tized circular cylinders on the sample surface. Top: stress-induced
electrostatic potential energy in the model of Eq.~3.8!. Middle and
bottom: normal component of the periodic magnetic field due to a
magnetization of the cylinders in thez direction perpendicular
~middle! and in thex direction parallel~bottom! to the plane of the
2DEG. Sample parameters are given in the text.
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Eq. ~3.3! only Fourier coefficientsBqW with qxÞ0 are non-
zero. At larger distances, where only the fundamental peri-
odicities survive, the position dependence of this modulation
field reduces to}sin(2px/a), whereas the position depen-
dence of the electrostatic potential and that of the modulation
due to a magnetization in thez direction reduce to the form
}@cos(2px/a)1cos(2py/a)#.

In Fig. 5 we show the magnetoresistance curves calcu-
lated for simple combinations of these modulation fields. We
describe the amplitude of the magnetic modulation in terms
of m, defined by (2pkF /a)\eBm /mc5gEFm, and scale the
factor g2 out of the resistance results as before. The solid
curve labeled~1,0! presents the result for the stress modula-
tion only. Due to the higher harmonics~see upper panel of
Fig. 4! only a shallow minimum appears near the electric
flat-band conditiona/2Rc'1.3, and an additional minimum
occurs near the magnetic flat-band conditiona/2Rc'0.8.
This minimum is due to the harmonics with wave vectors
qW 5(62,62)p/a, which yield zero contribution at the flat-
band condition qRc5p(l21/4), with l52 and
q5A2(2p/a). The solid line labeled (0,1;z) refers to purely
magnetic modulation due to magnetization in thez direction.
The finite values of the magnetoresistance at the magnetic
flat-band conditiona/2Rc'0.8 indicates higher harmonics.
The dash-dotted lines labeled (1,1;z) and (21,1;z) refer to a
superposition of these two fields with equal@sB0

511 in

Eq. ~2.9!# and opposite (sB0
521) phases, respectively. It is

easily seen from Eqs.~3.3! and ~3.4! that, for magnetization
only in thez direction,BqW and thereforeuS qW u in Eq. ~2.14!
depend only onuqW u. As a consequence,Drxx5Dryy and
Drxy5Dryx50, i.e., the tensorDr is isotropic.

The magnetoresistance components for a purely magnetic
modulation due to a magnetization in thex direction are
indicated by the short-dashed lines in Fig. 5, labeled
(0,1;x). The strong anisotropy is obvious:Drxx is rather
similar to the solid line labeled (0,1;z) @the difference being
only due to higher harmonics, see Eqs.~3.3! and ~3.4!# and

has pronounced minima at the magnetic flat-band conditions,
whereasDryy assumes much smaller values~being nonzero
only due to higher harmonics! and has even a maximum at
the magnetic flat-band conditiona/2Rc'0.8. The long-
dashed lines labeled (1,1;x) indicate the result obtained for a
superposition of this magnetic modulation with the stress-
induced electric modulation. Here the contributions to the
magnetoresistance due to magnetic and electric modulation
simply add~the sign ofsB0

is irrelevant since the Fourier
coefficients describing the magnetic modulation are purely
imaginary!.

Experimentally it seems impossible to measure a magne-
toresistance curve for a magnetic modulation due to a mag-
netization which is strictly parallel to the 2DEG, since the
applied homogeneous fieldB0 will always produce az com-
ponent of the magnetization. It is, therefore, of interest to
follow the change of the magnetoresistance as the magneti-
zation is tilted with respect to the surface normal. Such a
variation is shown in Fig. 6. We takemW 5umW u(sinu,0,cosu)
and, with our usual convention for the amplitudes of the
modulation field, («,m)5(21,1), so that we have a destruc-
tive interference between the electric modulation and the
magnetic modulation due to thez component ofmW for
a/2Rc.1.31. The solid line in Fig. 6 indicatesDrxx5Dryy
for u50°. The dash-dotted lines refer tou530°, the dotted
lines tou545°, etc. The upper lines representDrxx , which
for large values ofB0 (a/2Rc.1.5) increases with increas-
ing tilt angleu. The lower lines indicateDryy , which in the
region of the maximum close toa/2Rc51.5 decreases with
increasingu.

In all situations we have considered so far, the symmetry
uS (2qx ,qy)

u5uS (qx ,qy)
u, which follows from Eq. ~3.3! for

my50, leads with Eq.~2.14! to Drxy5Dryx50. This is no
longer true if the magnetization has finitex and y compo-
nents, i.e.,mxmyÞ0. From Eqs.~3.3! and ~2.14! we obtain

Drxy /r05mxmyP (
qx ,qy.0

@qxqyFqW~z!J1~qRc!#
2

~3.12!

with FqW(z)5FqWexp(2quz2h/2u) and the prefactor
P5(4pl f\e)

2/(EFaxaymc)2. Note thatDryx5Drxy , so

FIG. 5. Magnetoresistance for simple superpositions of the
modulation fields depicted in Fig. 4. Solid lines for pure electric,
~1,0!, and pure magnetic, (0,1;z), modulation due to magnetization
in the z direction, dash-dotted lines for constructive, (1,1;z), and
destructive, (21,1;z), superpositions of these modulations. These
four lines represent isotropic situations withDryy5Drxx . The
dashed lines are for magnetization in thex direction with,
(1,1;x), and without, (0,1;x), superposition of the electric modu-
lation. Scaling parametera as in Fig. 3.

FIG. 6. Magnetoresistance curves for different tilt angles of the
magnetization between thez direction (u50°) and thex direction
(u590°). The upper curves~dashed-dotted! showDrxx , the lower
ones~dashed! showDryy ; a as in Fig. 3.
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that the tensorDr is real and symmetric and can be diago-
nalized by a rotation of the coordinate axes, and that only
higher harmonics~with qxÞ0 and qyÞ0) contribute. It is
also interesting to note that these off-diagonal contributions
are independent of thez component of the magnetization and
of the electric modulation. As a consequence, the plot of
Drxy versus the applied homogeneous magnetic fieldB0
should only change its magnitude but not its shape if the
relative strengths of magnetic and electric modulations are
changed, in contrast to the plots of the diagonal contributions
to Dr.

In Fig. 7 we present results for the symmetric case
mx5my and different tilt anglesu with respect to thez axis,
mW 5umW u(sinu,sinu,A2cosu)/A2. Foru50 we obtain the pre-
vious isotropic result. For u.0 we still obtain
Drxx5Dryy , since the modulation is symmetric with regard
to the interchange ofx and y. The main features of the
results in Fig. 7 are not difficult to understand. At the mag-
netic flat-band conditions for the fundamental period
(a/2Rc 5 0.82, 0.45, 0.31,. . . ) all thecurves for the diag-
onal magnetoresistance assume similar values, close to the
value for pure electric modulation. This indicates thatDrxx
is dominated by the fundamental period of the magnetic
modulation. The minima of theDrxx curves foru50° and
45° neara/2Rc 5 3.3 and 0.4 are due to destructive inter-
ference between the electric modulation and the magnetic
modulation as a result of thez component of the magnetiza-
tion. The values at the minima are dominated by higher har-
monics in the case ofu50° and by contributions due to the
in-plane component of the magnetization foru545°. With
increasingu, the interference becomes less important and the
minimum becomes less pronounced and shifts from
a/2Rc' 3.5 for u50 to a/2Rc' 2.5 for u590°. At the
same timeDrxy increases without any change of its shape
from zero foru50° to its full value atu590°, saturating
rapidly for u.60°. The minima ofDrxy occur at the flat-
band conditions for the harmonics withuqW u5A2(2p/a) at
a/2Rc 51.16, 0.63, etc.

The symmetry propertyDrxx5Dryy does not mean that
the resistance tensor is isotropic, since nowDryx5Drxy
Þ0. Obviously this tensor can be diagonalized by a rotation
of the x and y coordinate axes byp/4, with eigenvalue
Drxx1Drxy in the ~1,1! direction and eigenvalue
Drxx2Drxy in the (1,21) direction. This symmetry is eas-
ily understood from the contour plots in Fig. 8. These show
the variation of the magnetic modulation fieldBm(x,y) for
three high-symmetry directions of the magnetization. FormW
in the z direction, the pattern has the full square symmetry,
and theDr tensor is isotropic. FormW in the x direction, the
pattern is symmetric under reflection at thex axis and anti-
symmetric under reflection at they axis, but it has no rota-
tional symmetry. As a result, theDr tensor is diagonal, but
with DrxxÞDryy . Finally, for mW in the direction~1,1,0!,
there is no mirror symmetry with respect to thex andy axes,
and theDr tensor is not diagonal. However, the pattern is
symmetrical under interchanging ofx andy, so that the di-
agonal elements of theDr tensor are equal. This symmetry
means that the pattern is symmetrical under reflection at the

FIG. 7. Magnetoresistance curves for different tilt angles of the
magnetization between thez direction (u50°) and the direction
x5y in the x-y plane (u590°). The upper curves show the diag-
onal contributionsDrxx5Dryy , the lower ones the off-diagonal
contributionsDrxy5Dryx . Same line styles refer to equal tilt
angles,Drxy(0°)[0, a as in Fig. 3. The black triangles indicate
the magnetic flat-band conditions as in Fig. 1.

FIG. 8. Contour plots of the magnetic modulation field
Bz(x,y)/Bm for magnetization in thez direction ~top!, in the x
direction ~middle!, and formx5my , mz50 ~bottom!. Sample pa-
rameters are the same as those in the lower panels of Fig. 4. The
indicated gray step code is used in all plots.
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diagonal through the origin with slope11, while it is anti-
symmetric under reflection at the diagonal through the origin
with slope21. With respect to the axes of reflection sym-
metry, theDr tensor becomes diagonal, but not isotropic.

We mention in passing that the symmetric off-diagonal
components of theDr tensor, which are due to anisotropy,
do contribute to dissipation, whereas the antisymmetric off-
diagonal components of the Drude resistivity tensor, which
describe the Hall effect, do not. Another aspect is that the
form of the Drude resistivity tensor is invariant under rota-
tion of the coordinate axes, while theDr tensor can be di-
agonalized by a suitable rotation.

IV. CONCLUSIONS

We have generalized the quasiclassical theory of Weiss
oscillations in two-dimensional electron gases to the case of
superlattices defined by a combination of weak electrostatic
and magnetic fields of arbitrary shapes, but with the same
lattice constants. We have adapted fields to the experimental
situation, where periodic arrays of nanostructured ferromag-
nets are deposited on the surfaces of the samples. We have
idealized the situation in so far as we have assumed simple
geometric shapes and homogeneous magnetization of these
micromagnets. In experiments, the magnetization will not be
homogeneous, since the micromagnets are not of ellipsoidal
shape, and it will depend in a nonlinear hysteretic manner on
the applied homogeneous magnetic field and its history. Nev-
ertheless, the calculated interference effects of magnetic and
electric modulations are in encouraging agreement with typi-
cal features observed in recent experiments.11,15 Especially,
tilting the magnetization with respect to the surface normal
provides a new degree of freedom for the investigation of
Weiss oscillations and may be a promising route to test our
understanding of these transport effects in detail.

We have also discussed the limitations of this simple but
fertile approach. The restrictions to a temperature window
and to relatively low values of the applied magnetic field
B0 — so that the Weiss oscillations are resolved but not the
Shubnikov–de Haas oscillations — are obviously of a quan-
tum mechanical nature. The restrictions to sufficiently large
B0 values and small modulation amplitudes occur already
within the classical treatment, since here, for the perturbation
of the cyclotron orbits to remain small, the forces exerted on
the electrons by the modulation fields must be much smaller
than the Lorentz force due to the homogeneous fieldB0 . In
this context it is interesting to remark that the sum in Eq.
~2.14! diverges for an electrostatic step potential,6 since the
Fourier coefficients in each direction decay only as 1/qm .
Obviously the electric field of the step potential has
d-function singularities and the corresponding force is not
small as compared with the Lorentz force. It can also be
shown that, in a one-dimensional periodic step potential
V(x), always orbits exist which are confined to a single pe-
riod in the x direction and are traversed nearly with the
Fermi velocity in they direction. These orbits cannot be
approximated by drifting cyclotron orbits, and their contribu-
tion to the magnetoresistance cannot be calculated perturba-
tively with respect toV(x). Any attempt to do so leads to
diverging results.

In two-dimensional superlattices a quantum mechanical

subband structure of the Landau bands~Hofstadter spectrum!
may reduce the group velocities considerably. A strong re-
duction of the band conductivity observed in high-mobility
samples with a weak electric modulation has been attributed
to this quantum interference effect.4 Whether there is a need
for such a quantum transport theory in the situations consid-
ered in the present work will become clear after a detailed
comparison of future experiments with the predictions of the
quasiclassical approach presented here.
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APPENDIX A

In the presence of modulations, we define for each point
rW of the modified cyclotron orbit the guiding center as the
center of the circle which has inrW the same tangent and the
same radius of curvatureR as the modified orbit. In terms of
the lengths along the orbit, this circle of curvature at the
point rW5rW(s0) is given by

rW~s!5rW1R@sinw tW1~12cosw!nW #, ~A1!

with w5(s2s0)/R, and with tW5(drW/ds)/ ṡ and nW 5RdtW/
ds the unit tangent and the unit normal vectors of the orbit at
point rW, respectively. With ṡ5v5urẆu, vW 5v tW, and
vẆ 5 v̇ tW1(v2/R)nW , one obtains from Newton’s equation~2.1!

v̇52(e/m)EW • tW and

v2

R
nW 52

e

m F tW3~EW 3 tW !1
v
c
tW3BW G . ~A2!

Assuming the modulation fields to be sufficiently small, we
obtainnW 5eW z3vW /v and

R5v/@vc1vm1evW •~eW z3EW !/~mv2!#, ~A3!

wherevm(rW)5eBm(rW)/mc. Apparently the radius of curva-
tureR deviates from the unperturbed cyclotron radiusRc by
a small correction, which vanishes linearly with vanishing
amplitudes of the modulation fields. According to Eq.~A1!,
the center of the circle of curvature throughrW is given by

rWM5rW1RnW 5rW1~eW z3vW !/vc1d~1!rWM , ~A4!

which deviates from Eq.~2.4! only by the termd (1)rWM ,
which is of first order in the modulation fields. We want to
calculate the average of the guiding-center drift velocity only
to first order in these fields. As we see from Eqs.~2.4! and
~2.5!, the leading terms on the right hand side of Eq.~A4!
lead to a result which is of first order in these fields, so that
the average can be taken over the unperturbed cyclotron or-
bits. To evaluate the contribution of the correction term
d (1)rWM with the same accuracy, we must calculate its time
derivative from Eq.~2.1! but with the modulation fields ne-
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glected, i.e., here we have to take the time derivatives of the
unperturbed cyclotron motion. Taking then the average over
a cyclotron orbit, i.e., the integral with respect to the angle
w in Eq. ~2.3! between2p andp, we obtain a zero result.
This is because the time derivative ofd (1)rWM along this cy-
clotron orbit is justvc times its derivative with respect to the
angle. Thus, to first order in the modulation fields, the cor-
rection termd (1)rWM in Eq. ~A4! does not contribute to the
averagedrift velocity.

APPENDIX B

In this appendix we sketch the derivation of the conduc-
tivity formula ~2.11! from the more familiar form in terms of
the velocity-velocity correlation function. For a spatially in-
homogeneous, degenerate electron gas, the average current
density as the linear response to a homogeneous electric field
can be calculated, within the relaxation time approximation
of Boltzmann’s equation, from Chambers’ formula.21 This
yields the conductivity in the form of Einstein’s relation
smn5e2D(EF)Dmn , with D(EF)5nel /EF the density of
states at the Fermi level and

Dmn5E
0

`

dte2t/t^vm~ t !vn~0!& initial ~B1!

the diffusion tensor. Here the velocityvW (t) is taken along a
specific trajectory of an electron with energyEF , that is
allowed by Newton’s equation of motion and determined by
initial position rW(0) and velocityvW (0) at timet50, and the
average is taken over all possible initial conditions for the
motion along such trajectories. When the velocity along a
given trajectory is a periodic function of time with period
T, as, e.g., for the cyclotron motion in a homogeneous 2DEG
or in a 2DEG with modulation in only one lateral direction,
the time integral in Eq.~B1! reduces to

E
0

`

dte2t/tvm~ t !5E
0

T

dt
e2t/tvm~ t !

12e2T/t . ~B2!

When the periodT is much shorter than the relaxation time,
the right hand side of Eq.~B2! can be approximated, to lead-
ing order in the small parameterT/t!1, by

t

TE0
T

dtvm~ t !5tvm
D , ~B3!

where vm
D is a Cartesian component of the average~drift!

velocity along the trajectory, and has the same value for all
possible initial conditions leading to motion along this tra-
jectory. Then it is convenient to perform the average over
initial conditions in Eq.~B1! in two steps. First, one averages
over all initial conditions which lead to the same trajectory,
and then the average over all possible trajectories is taken.
Thus, to leading order inT/t!1, Eq. ~B1! reduces to

Dmn5t^vm
Dvn

D& orbits. ~B4!

Note that this result is consistent with the Drude conductivity
of the homogeneous 2DEG. ForB050, the velocity is a
constant of motion,vm(t)5vm

D , and one obtainsDmn

5 1
2tvF

2dmn . For B0Þ0 one hasvm
D50, and, forvct@1,

nonzero contributions come only from higher orders in the
small parameterT/t52p/(vct).

It is also interesting to note that, for the derivation of Eq.
~B4!, we did not need an assumption about the amplitude of
the modulations. For one-dimensional periodic electric and
magnetic modulations the motion in an externally applied,
homogeneous magnetic fieldB0 is bounded in the direction
of the modulation, and the velocity along any allowed trajec-
tory is a periodic function of time. Thus, Eq.~2.4! is appli-
cable for arbitrary modulation strengths, even if the orbits
are rather different from the unperturbed cyclotron orbits in
the absence of modulations. The only condition is that the
period T be much shorter thant. This condition will be
violated for very small values ofB0 , but may hold again for
B050. In the regime of the Weiss oscillations we assume the
modulations to be so weak, that, within a periodT, each
trajectory remains close to an unperturbed cyclotron orbit,
and that the average~drift! velocity can be calculated along
the latter. Consequently the average over orbits reduces to
the average over the centersrWM of the cyclotron orbits, i.e.,
to Eq. ~2.11!.

In this limit of weak modulations, where the cyclotron
orbits are only slightly modified, we may apply Eq.~2.11!
also to the case of two-dimensional periodic modulations.
However, with increasing modulation strength the nature of
the trajectories in the two-dimensional lateral superlattice
changes and chaotic trajectories will occur. The velocity
along such trajectories will not be a periodic function of
time, and the concept of an average~drift! velocity along the
trajectory loses its meaning. In such a situation Eq.~B4! is
no longer a reasonable approximation to the more general
Eq. ~B1!.

1D. Weiss, K. v. Klitzing, K. Ploog, and G. Weimann, Europhys.
Lett. 8, 179 ~1989!; see also inHigh Magnetic Fields in Semi-
conductor Physics II, edited by G. Landwehr, Springer Series in
Solid-State Sciences Vol. 87~Springer-Verlag, Berlin, 1989!, p.
357.

2R. R. Gerhardts, D. Weiss, and K. v. Klitzing, Phys. Rev. Lett.
62, 1173~1989!.

3R. W. Winkler, J. P. Kotthaus, and K. Ploog, Phys. Rev. Lett.62,
1177 ~1989!.

4D. Pfannkuche and R. R. Gerhardts, Phys. Rev. B46, 12 606
~1992!.

5C. W. J. Beenakker, Phys. Rev. Lett.62, 2020~1989!.
6R. R. Gerhardts, Phys. Rev. B45, 3449~1992!.
7P. Vasilopoulos and F. M. Peeters, Superlatt. Microstruct.7, 393

~1990!.
8D. P. Xue and G. Xiao, Phys. Rev. B45, 5986~1992!.
9F. M. Peeters and P. Vasilopoulos, Phys. Rev. B47, 1466~1993!.
10H. A. Carmonaet al., Phys. Rev. Lett.74, 3009~1995!.
11P. D. Yeet al., Phys. Rev. Lett.74, 3013~1995!.
12S. Izawa, S. Katsumoto, A. Endo, and Y. Iye, J. Phys. Soc. Jpn.

64, 706 ~1995!.
13J. H. Davies and I. A. Larkin, Phys. Rev. B49, 4800~1994!.

11 074 53ROLF R. GERHARDTS



14P. D. Yeet al., Semicond. Sci. Technol.10, 715 ~1995!.
15P. D. Ye and D. Weiss~private communication!.
16The corresponding result in Eq.~16! of Ref. 8 is too small by a

factor 2, due to an incorrect ansatz for the diffusion tensor.
17P. H. Betonet al., Phys. Rev. B42, 9229~1990!.
18J. E. Müller, Phys. Rev. Lett.68, 385 ~1992!.

19P. D. Yeet al., Appl. Phys. Lett.67, 1441~1995!.
20The case of cylinders with a square basis and a homogeneous

magnetization in thez direction has been treated by O. Ravel
~unpublished!.

21R. G. Chambers, inThe Physics of Metals, I: Electrons, edited by
J. M. Ziman ~Cambridge University Press, London, 1969!, p.
175.

53 11 075QUASICLASSICAL CALCULATION OF MAGNETORESISTANCE . . .


