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Quasiclassical calculation of magnetoresistance oscillations of a two-dimensional electron gas
in spatially periodic magnetic and electrostatic fields
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A classical approach, relating magnetoresistance oscillations of a two-dimensional electf2DE@sin a
weak lateral superlattice to the guiding center drift of cyclotron orbits, is extended to superlattices defined by
spatially periodic electrostatic and magnetic fields of arbitrary shape but equal lattice constants. The results are
applied to the experimentally relevant situation of modulation fields produced by periodic arrays of magnetized
strips or dots on the surface of a heterostructure containing a 2DEG. Magnetic modulation fields of different
symmetries, tuned by the orientation of the magnetization, are superimposed on the stress-induced electrostatic
modulation and lead to characteristic interference effects on the Weiss oscillations of the magnetoresistance.

[. INTRODUCTION metal and of the semiconductor heterostructure are different,
the ferromagnetic strips exert, at the low temperatures of the
A two-dimensional electron ga®DEG) subjected to a experiment, mechanical stress on the underlying semicon-
perpendicular homogeneous magnetic field and weak spahuctor, which leads to a periodic modulation of the conduc-
tially periodic modulation fields, shows interesting commen-tion band edge and acts as an electrostatic modulation on the
surability effects. In magnetic fields of intermediate 2DEG. This stress effect has been investigated
strengths, these are manifested in the so-called Weiss osciystematically>'* and it has been found that this unavoid-
lations of the magnetoresistance, which have first been olable electrostatic modulation has a considerable content of
served in 2DEG’s in Al_,Ga,As-GaAs heterostructures higher harmonics. For the understanding of the magnetic
with a weakelectrostaticmodulation! The Weiss oscilla- Weiss oscillations, it is important to be aware of the fact that
tions have been understdotwithin a quantum mechanical this stress-induced modulation is always presént.
picture, as resulting from the modulation-induced broadening A quantum mechanical study of the Weiss oscillations in
of the Landau levels into Landau bands, with an oscillatorythe presence of both an electrical and a magnetic modulation
dependence of the bandwidth on the Landau quantum nunir one lateral direction has been presented by Peeters and
ber. The dispersion of the Landau bands leads to a grougasilopoulos’ This study has been restricted to purely sinu-
velocity, and this to a “band conductivity,” which both van- soidal modulations in the two special cases that either the
ish when the Landau levels become flat. This happens whetosine modulation of the magnetic field is in phase with that
“flat-band conditions” hold which, for large Landau quan- of the electrostatic potential, or that there is a phase differ-
tum numbers, can be expressed by simple ratios of the cyence of7/2 between these.
clotron radius at the Fermi energy of the 2DEG and the pe- The purpose of the present paper is twofold. First, we
riod of the modulation potential. Although some aspects ofwant to demonstrate that for one- and two-dimensional lat-
the Weiss oscillations, notably in 2D lateral superlatticesgeral superlattices, under conditions which can be realized
seem to require a quantum mechanical explanatfona  experimentally*® a rich variety of interesting interference ef-
review see Ref. ¥} other aspects can be understood within afects exists in which the stress-induced modulation acts to-
simple quasiclassical approathin which the analog of the gether with a magnetic modulation. Situations of very differ-
guantum mechanical group velocity appears as a drift velocent symmetries can be generated, since the strength and the
ity of the guiding centers of cyclotron orbits in the crossedphase of the magnetic modulation can be tuned via the
homogeneous magnetic field and the periodic electric field oftrength and the direction of the magnetization of the micro-
the modulation. magnets on the surface. Second, we want to generalize a
The analog of the Weiss oscillations in a 2DEG with a 1Dsimple classical approactf,based on the calculation of the
lateral superlattice defined byperiodic magnetic fieldvas  guiding center drift of the cyclotron orbits in a weak magne-
predicted and investigated in some defillseveral years toelectric modulation, which then allows us to calculate the
ago. The experimental realization of these superlattices and/eiss oscillations of the magnetoresistance in such situa-
the observation of the predicted effect has, however, beetions, including the case of strongly anharmonic periodic
achieved only recentl? 12 The magnetic modulation has modulations. We will demonstrate that the higher harmonics
been produced by metallic strips on the surface, consistinghay give rise to nondiagonal contributions to the resistance
either of superconductifd or ferromagnetit"'? material.  tensor, which are entirely absent in the simple harmonic ap-
Whereas the flux expulsion by the superconductor leads tproximation.
tiny modulation effects, the deposition of dysprosigby) The plan of this paper is as follows. In Sec. Il and the
micromagnets on the surface leads to very strong modulatioAppendices we calculate the guiding-center drift velocities
effects!* Since the thermal expansion coefficients of theas well as the formula for the corrections to the Drude resis-
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tivity tensor, due to this drift, to lowest order in the modula- ] E, on . E, Om
tion amplitudes. In Sec. Il we apply this formula to typical XM :CB__UX_Y Ym= _CB_ Uy (2.5
situations, paying special attention to reasonable treatment of 0 0 ¢
the modulation fields generated by periodic arrays of microand, secondly, calculate the average drift velocity by averag-
magnets on the surface of the sample. ing Eq. (2.5 along an unperturbed cyclotron orlf&.3),

7 de| € - -
II. QUASICLASSICAL BAND CONDUCTIVITY US:I E[B_OEy(r((P))_ Rewm(r(¢@))cosp

, (2.9
A. Guiding-center drift

Within the semiclassical picture, the Weiss oscillations of N de c - - )
the magnetoresistance of a two-dimensional electrongasina Uy~ | 57|~ B_OEX(r("D))_ Reon(r(¢))sing|.
lateral superlattice, realized by a weak electrostatic potential 2.7

modulation, is related to the drift motion of cyclotron orbits. R R
Without modulation, the homogeneous magnetic fi&jcap- Here wm(f)zeBm(f)/mC is defined in analogy te, and
plied perpendicularly to the plane of the 2DEG forces thevX andv depend on the radiug; and the center position
electrons on circular orbits of radiu®. and energy r, of the selected orbit. To evaluate these integrals, we in-
Tw?R%, with w,=eBy/mc the cyclotron frequency. We sert the Fourier expansiorig.2) and obtain after a straight-
consider only electrons at the Fermi enen@y=ﬁ2k,2:/2m, forward calculation
so thatR.=vg/w., with ve=%ks/m the Fermi velocity. If _
the modulation is sufficiently weak, it will lead only to a -p_ !

I r >
minor modification of the cyclotron orbits, notably a drift of v mwcgo g(q)eq " a 28
their center coordinates or “guiding” centers. o
In order to calculate the average drift velocity of the  in which g(q)=(qy,—q,,0) and
guiding center of a cyclotron orbit, we start with Newton’s
equation of motion for the velocity=r of an electron in the = ge V-Je(R.Q) + k_FthJ 29
7 q— 0B o(Reca) 1(Rca) (2.9

x-y plane,

with o =Bo/[Bql, q=|q|, wg=eBs/mc, and J,(x) the
Bessel functions of the first kind. So far we have tacitly
assumed that the homogeneous part of the magnetic field
points into the positivez direction, i.e., By=Bge, with

>0, so thataBozl.

mi = —e[E+ (v/c) X B, (2.2)

with an in-plane electric fiel E=VV(r)/e, expressed in

terms of the potential energy(r) of the electron of charge B

—e<0, and a perpendicular magnetic field 07 ¥ 7 ] ]

B=(0 0B,+B (F)) We assume th&N/(F) andB (F) are It is interesting to keep the modulations of the electro-
0, m(r). m . ; S ! -

periodic on the same rectangular lattice with lattice constant tatic potential and of the magnetic field fixed and to invert
a,=27/Ky anda,=2m/K, the direction of the homogeneous magnetic field, i.e., to take
X 1

B,<0. Then the electrons move through the cyclotron orbits

o . in the opposite direction, so that at each point of the orbit the

V(F)= z Vdeiq‘r, Bm(F)= E Bdeiq-r, (2.2 velocity has the opposite sign. Formally, the consequences
q#0 q#0 for the average guiding center drift are seen most easily form

. . > = 2 .
and that they have zero average values, so that, iIHZEB), Eq. (2.5. The first term, i.e., the usuak(Bo)/By drift,

theﬁ sums are oveﬁz(Kan,Kyny,O) with integeran, and changes sign vyitBO. The'second drift term-vB,,/Bg, due
n, which are not simultaneously zero. to the magnetic modulation, remains, however, unchanged,

In the absence of modulations, the solutionSince together wittB, the Ve|0Ci'FY17 ch?ng)es sign. As a
F=(x(), 0) of Eq. (2.1) reads consequence, if we take, andR; in Egs. 2._8 and(2_.9) to
(x(¢).y().0) 9. (2.1 be positive, we haveg = —1 for Bo<<0. This result is also
x(@) =%y +Rsing, y(¢)=yy—Rccosp, (2.3 easily understood from the disturbed cyclotron orbits. An
electric modulation in the direction leads to cycloidic orbits

with o= t+ ¢q, and the guiding-center coordinates which drift in they direction, with local radius of curvature
Re(X)={2[Er—V(x)/m}¥% w.. When the direction 0B,
Xu=X—vylwe, Yu=Y+uvxlo (2.4 Is inverted, the electron follows the same orbit in opposite
direction, and the drift velocity changes sign. A magnetic
are constant in time. modulation in thex direction with|B,(x)|<|B,| leads to a

In the presence of modulations, we define the guidingsimilar orbit with local radius R(x)=(2mEg)Y%c/
center for each point on a modified cyclotron orbit as the[e|By+ Bn(X)|]. When the direction 0B, is inverted, the
center of the circle of curvature at that point. As is shown inorbit changes. Regions corresponding to large values of
Appendix A, we obtain results for the drift velocity of the R.(x) are interchanged with those corresponding to smaller
guiding centers, which are correct to first order in the moduvalues, but the electron also travels locally in the opposite
lation fields, if we first take Eq(2.4) as the definition for the direction, so that the overall drift velocity remains un-
guiding center and calculate its velocity from Eg.1), changed.
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B. Contribution to conductivity Fo(u)=Jo(KR,), Gp(u)=Ji(KR,)R,/(KI?)
The guiding-center drift introduces a degree of freedom in (2.13

addition to the cyclotron motion, so that an additional con-pho|g with R,=1y2n+1. With R,=R.=I%k; valid at
tribution to the velocity-velocity correlation function and, £ —E_ and a spin degeneracy factor 2, EB.12 agrees
therefore, to the diffusion tensor appears. The correspondingii, Eq. (.10 for u=v=y, Vi=Vy/2 and wg= w2 if

contribution to the conductivity tensor, which adds to the - .
-~ o g=(K,0,0) or (-K,0,0) andVs=%wg=0 otherwise. The
usual Drude conductivity, can be written in the form caseV(x) = VoCcosx andB,(x) = B, sinkx, where the phase

e2m of the magnetic modulation is shifted by2 with respect to

Ao, = vPyP 2.1 the electric one, has also been considered in Ref. 9,
nv fi2< " V>U.C.1 ( Q X

m and is called “out-of-phase” modulation. For this case,
Eq. (2.12 was obtained with W,(u)={[VoF,(u)]?
eé[.ﬁmen(u)]z}l/z, which reduces in the quasiclassical
limit also to Eq.(2.11), but with wg=wy/2i=—w_4 for
ﬁ=(K,0,0). In Sec. Il it will become clear how such phase
shifts can be realized experimentally.

where the contribution of the individual cyclotron orbits
must be averaged with respect to their center coordinat
ry over the unit cell of the superlattiC€. As shown in Ap-
pendix B, Eq.(2.10 follows from the more familiar expres-
sion for the conductivity in terms of the velocity-velocity
correlation function when the relaxation time is much ) o
larger than the period of the cyclotron motion, i.e., for D. Correction to resistivity

wcm>1. According to Eq/(2.8), the integral with respect to  From the comparison with the quantum mechanical cal-
ry reduces the double sum, introduced by the product of tweulation, we see that our quasiclassical calculation can be
components of the drift velocity, to a singte sum. This Vvalid only in the temperature windoW,<T<T,. Further

yields for the “band conductivity” tensor limitations are implied by taking the average of the modula-
tion effects over unperturbed cyclotron orbits, which, inci-
re2 . . dentally, corresponds to the neglect of Landau level mixing
AU,LFWE 9,(g,(a)].75% (21D  inthe quantum calculatioris! It implies Tw.>1 and that the
¢ q#0 correction(2.11) to the Drude conductivity can be correct
which generalizes a previous re&difor purely electrostatic Only to lowest order in the modulation strengths. Thus we
modulation. may readily transform Eq(2.11) into the corresponding

lowest-order correction to the Drudesistivity tensor. To

. ) . ) leading order in fw.) " we obtain
C. Comparison with previous calculations 9 twe)

Results similar to Eq(2.11) but for simple sinusoidal 4

f Cf»
modulations in only one direction have been obtained by Ap#v:poz_EgE a9 741% (2.14
other author§:® We want to compare explicitly with the re- e o
sult of a quantum mechanical calculation by Peeters an#here po=m/(e’ng7) is the Drude resistivity and
Vasilopoulog for V(x)=VycoKx and B, (x)=B,coKx, Ne=k&/(2m) the density of the homogeneous 2DEG with

and for one spin direction. With slightly altered notation, Eq.the mean free path (= r7ike/m.*® For sufficiently small
(22) of Ref. 9 reads values of the homogeneous magnetic field, actually for

gR.=q\¢/T7w:= 2, the Bessel functions in ER.9) may be

i e27K?|2 o[ If(E) replaced by their large-argument asymptotic expansions, so
Oy~ W; [Wh(uw)] _&—E> , (212 that
E=En 2 \172 -
with 1=(A/mwy)*? the magnetic lengthu=K??/2, and Sq= m) UBOV&COS(ch— Z)

with W, (u)=|VoF,(u) +Ao,G,(u)| the half width of the
nth Landau level. Here G,(u)=—-dF,(u)/du and ke _ T
Fn(u)=exp(=u?2)L,(u) with L,(u) a Laguerre polynomial. + Eﬁ“’ds'”( aRe— 7
To compare with our quasiclassical calculation, we first note .
that our averaging over cyclotron orbits is only meaningful if “Flat-band” conditions with.”3=0, at which theqth Fou-

the relaxation timer is sufficiently large, i.e.rw.>1. This  rier component of the modulation yields no contribution to
implies small collision broadening of the Landau levels.Ap,,, can occur only itV; and% wg have the same complex
Then, in order to smear out the quantum Shubnikov—de Hagghase, as, e.g., for pure cosine modulations. It is interesting
oscillations, the temperature must be sufficiently high, sdo note that the magnetic analog of the dimensionless ampli-
that the sum over Landau quantum numbers in(Bd.2 can  tude factorV4/Eg of the electric modulation is the ratio of
be replaced by an energy integration overtwo lengths, kr/Q)hwg/Er=2/(qRy). Here 2r/q is the
En=fhw(n+1/2), and it must be sufficiently low, that this wavelength andR;=ve/wg the “cyclotron radius” in the
integration yields only contributions from the neighborhoodmagnetic modulation field, which, in contrast to the energy
of the Fermi energy. This leads to the condifi6n quantumfiwg, both are meaningful in the classical limit.

T <T<T, with kgT,=%w/27? andT,= (ks /K) T, and When the modulations become too strong as compared to
implies thati w.<Eg so that many Landau levels are occu- A w¢, the classical orbits may be completely different from
pied. Forn>1 the asymptotic relations cyclotron orbits. For a 1D modulation, channeling along po-

}. (2.19
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tential minima may OF:CUr for the e!ectrostatic C’gsand with rﬁH:(mx,my,O) andFa the form factor, which depends
along “snake orbits” in the magnetic ca¥so that Eq.  on the shape of the micromagnets on top of the semiconduc-
(2.14) is not applicable in the limiB,— 0. For a strong 2D tor surface. Foﬁzo a linear function ok solves Eq(3.1)
modulation(“antidot lattice”) reflection from antidots may in the half spacez<’0 andz>h, corresponding to a homo-
lead to chaotic orbits. But even for a weak 2D modulat|ongeneous magnetic field in direction. Since our magnets in

ggr??i%?h??l%i&?é?fﬁrmEe(SIleg(ljjiglZSSEJr?:)?i%gt;e;lier?t;arthe layer 0<z<h cannot produce such homogeneous fields,
nal subband structure of the Landau levels with weak disperWe must putff)qu(z)=0; lrj these t‘alf spaces, th_e mlagnetlc
sion and large gapéofstadter spectrumso that the group 1UX density is given byB(r,z)=—V¢(r,z). Considering a
velocities, i.e., the quantum analog of the drift velocitiesStrictly two-dimensional model for the electron gas, we ne-
(2.8), become very small and the band conductivity is dra-9/€ct thex andy components of the magnetic flux density
matically suppressetiThe importance of these quantum ef- @1d_ calculate  the  magnetic ~ modulation  field
fects depends on the relative magnitude of collision broadBm(r)=B,(r,z=—D) from the Fourier coefficients

ening and modulation broadening of the Landau levels and
on their separatiofi w., and is hardly predictable within the

2
- - T Tid.m -a—0lz—h/2|
guasiclassical approach. Bq(2) axay[Iq m;+am,]Fqe ' @3

If one concentrates the magnetization of the metallic posts in
their centers, i.e., assumes ideal magnetic dipoles, one can
A. Modulation model immediately calculate the Fourier coefficients of the lattice
sum of the magnetic dipole fields to obtain E§.3) with
Fq=1. For the magnetized circular cylinders one obtains

IIl. EXAMPLES

We now want to adapt Eq2.14) to typical experimental
situations met in a Al_,Ga,As-GaAs heterostructure with
Iithographically_patterned surface_. A periodic array of one- 23,(qro) sinh(gh/2)
or zero-dimensional ferromagnetic structures on the surface Fe= ,
creates a periodic magnetic field in the plane of the 2DEG Ao qh/z
located at some distance below the surface. Strong modulgith J, the Bessel function, and for cylinders with rectangu-
tion effects have been observed for one-dimensional latticegy pasig®
of parallel metal(Dy) strips! and for square lattices of Dy
postst® sin(ayb,/2) sin(qyb,/2) sinh(qh/2)

In order to model the magnetic stray fields of such struc- q= a,0,/2 ayby/2 qh2 3.9

. xMx! yMy
tures, we take the surface as thg plane and the semicon-
ductor in the half space<0, with the two-dimensional elec- If the cylinders merge in thg direction, i.e., foby=a,, Eq.
tron gas located in a plane=—D<0. For a rectangular (3.5 reduces to the form factor for the 1D strip lattice,
lattice we assume at the lattice sites-(n,a,,n,a,,0), for . .
all integer valuesn, and ny, replica of a cyIi)r/1d¥er at the F-= sin(qxb,/2) sinf(gh/2) (3.6)
origin, with heighth, 0<z<h, and either a circular basis of IO g,by/2 qh/2
radius ro, x?+y2<r3, or a rectangular basis with
Ix|]<by/2 and|y|<b,/2. For a one-dimensional modulation
we use metal strips with rectangular cross sections, located
0<z<h, |x—n,a,|<b,/2 (for all integersn,) and transla-

(3.9

We want to emphasize some features of these resi)lBhe
spatial orientation of the magnetization of the micromagnets
@ktermines the complex phases of the Fourier coefficients. A

tional invariant in they direction. For the sake of simplicity, magne“z?“.'on in the Q|rect|on m=0) !eads to re"?" Fou-
we assume that these metal structures are homogeneou%\?r coefﬁments, th‘f‘t I, to a pure cosine expansion of the

. ) R - odulation magnetic field, whereas a magnetization parallel
n;nagnetlzed, with a magnet|zat|dt/|(r,22=Mo inside and to the plane of the 2DEGnf,=0) leads to purely imaginary
M(r,z)=0 outside the metal. We tak@ to represent the coefficients, i.e., a sine expansiai) For the strip lattice
magnetic moment of a unit cell. Then, the “magnetic chargepnly the magnetization perpendicular to the strip axes is rel-
density” —V-M is concentrated on the boundary faces ofevant. A magnetization in thg direction has no effect. A
the metal structures, and acts as the source of the static magragnetization with the direction ah=mg(sing,0,cos) re-

netic field H(r,z)=B—47M=—V ¢, where the scalar po- sults in a complex phase factor eig)( (iii) For our idealized

tential ¢ satisfies Poisson’s equation in the form periodic model without lateral confinement, the average of
o the modulation field over a unit cell vanishes in each plane of
Ap=47V-M. (3.1 constantz, and the amplitude decreases exponentially with

the distance of that plane from the surfacezat0. Since
with increasing distance the contributions from the indi-
vidual micromagnets decrease only with an inverse power
?aw, the field contributions of more and more micromagnets
- must interfere destructively in order to produce the exponen-
spacegz<0 andz>h, and forg#0, tial decrease. For a real laterally confined system this implies
that finite-size effects become more important with increas-
ing distance from the surface. In any plarre —D the av-
erage modulation field produced by a finite array of micro-

The solution of Eq(3.1) with the standard boundary condi-

tions of Maxwell’s theory is a straightforward problem of
magnetostatic. Defining two-dimensional Fourier expansion
as in Eq.(2.2), we obtain for the scalar potential in the half

q-my
iq +m,sgre

2
bq(2)= —

-a—0d|z—h/2|
aa, Fee . (3.2
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magnets on the surface must still vanish, as the average field
of a single dipole on the surface does. But if one calculates
the average only over a part of the plane, say the area below
the finite array of micromagnet§.e., essentially over the
“sample”), the cancellation due to destructive interference
will in general not be complete. Especially the average taken
in a unit cell of afinite array will no longer vanish.

The array of micromagnets attached to the surface of the
semiconductor heterostructure not only allows us to apply a
magnetic modulation field to the 2DEG, it also is the source
of an effective electric modulation. The reason for this is the
difference in the thermal expansion coefficients of the metal-
lic magnets and the semiconductor, which results, at the low
temperatures of the experiments, in a stress-induced bending
of the conduction band edge.

Theoretical as well as experimental investigations have
showrt®* that the stress-induced potential energy under a
strip centered ak=0 has a central peak and two side ex-
trema of opposite sign, similar to the second derivative of a
Gaussian,V(x) = — VoA d2exp(—x2\3)/dx¥]. To simulate
stress effects in the 1D modulation case, we repeat this an-
satz for all strips and obtain the Fourier coefficients FIG. 1. Magnetoresistance vs scaled magnetic field for one-

dimensional harmonic electric and magnetic modulations,
Vq =V0\/;()\/ax)()\qx)ze_“‘qx)z/“e_'mX‘, (3.7 V(X)=Vgcos@x) and B,(x)=RdBJexp(ax)], respectively, with
* Vo=vEre and (g /q)hw%: vEru, and the scaling factor
where we have introduced the required exponeatdépen-  @=2/(yq\;)?. The solid curves labeleds(u)=(1,0) and(0,1)
dence by hand. To get the potential close to the form obtefer to purely electric and purely magnetic modulations, respec-
tained in Ref. 13, we choose= bX/\/g_ tively. The long-dashed lines Igbeléﬂ,l) refer to in-phgse cosine
To simulate the stress-induced potential below a circulag()d“'at'ons’ the dash-dotted lines labeledi(1) to cosine modu-

. - . - - .. lations with phase difference, and the short-dashed lines labeled
cylinder we choose the rotational invariant second derivativ 1j) to modulations with phase difference?. In (b) the results of

o > 2 2y 2
of a Gaussian, i.eY(r)=—VoA“Aexp(-r/\%). On a rect- (5 are shown in greater detail, and the electric and magnetic flat-
angular lattice this leads to the Fourier coefficients band conditions are indicated by open and filled triangles, respec-
tively.

Vazvo(w)\zlaxay)()\q)ze‘(W)z"‘e"Zq‘, (3.9
region of small values of the applied magnetic fiddg,

where we tak9\=p/\/§. since there our calculation scheme is not applicable.
In Fig. 1 the solid curves labeled (1) =(1,0) and(0,1)
B. One-dimensional modulation give the resistance change due to only electric and only mag-

. . . . netic modulation, respectively. According to the values of
_We first consider the simplest description of one-y,o geseel functions for zero argument, the magnetoresis-
d|men3|(_)nal _Iateral_ superlattices in terms of purely harmomqance due to the magnetic modulation approaches zero for
modulation fields, L.e., we take largeBg (Apocl/BS), whereas that due to the electric modu-
lation saturates, such as the cuidg0) in Fig. 1(a), which
approaches the value 0.5. In the case of only electric modu-

o 0 . . . . lation, Ap vanishes at the “electrical flat-band conditions”
with g =2/a andB,, either real, for a cosine, or imaginary, a/2R.= 1.306, 0.569, ... , indicated by the open triangles

for a sine modulation. The strip modulation discussed above “_. .
reduces to this simple form if the distanEe between the :cnnFég(')r]f?)' ;’::jaya?ere gféﬁig;kne?obéégelgereﬁ 0; th(raosi(_assel
2DEG and the surface becomes comparable with the perio#ated b 0 ' 9 7 PP

a or larger. According to Eq(2.14) only Ap,, is different y

from zero, whereas the other tensor components of the resis- 2R.~a(he—1/4), Ae=1.2,.... (3.10
tance are not changed by the modulation. In Fig. 1 we show ) _ ]

the resultingA py, in two different regimes of the applied For purely magnetic modulatio p vanishes at the mag-
homogeneous magnetic fieB}. Since a common amplitude Netic flat—band_ cond_|t|ona/2RC=0.820, 0.448,.. .., indi-
factor in the electric and the magnetic modulation does nofated by the filled triangles. They are determined by the ze-
change the shape of the magnetoresistance curves, we wrf@es of J; and are, according to Eq2.19, accurately
Vo= yEge and d(F/q)thm: yEgu, with womzeB%/mc, approximated by

and divide the resistance correction k¢ y)?/2. Note that - _

in the lower panel of Fig. 1 as well as in all the following 2R~a(A\pt1/4), Ap=12,.... (3.1
magnetoresistance plots the magnetic field scale starts atFar A, and\, larger than 1, Eqg3.10 and(3.11) approxi-
finite value ofa/2R, and not ata/2R.=0. We suppress the mate the correct values with an error of less than 1%.

V(x)=Vocogqx), Bn(x)=RgB%e'%¥], (3.9
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The long-dashed curve, labelétl,1), refers to the case
where electric and magnetic modulation are in phase. For
B, larger than the last electric flat-band condition
(a/2R.>4/3), all contributions to E(2.9) are positive, and,
for very largeB, values, this magnetoresistance curve ap-
proaches the curve for pure electric modulation from above.
For B, values between the last electric and the last magnetic
flat-band condition (4/3a/2R.>4/5), the Bessel function
Jo in EqQ. (2.9) assumes negative values whilgis still posi-
tive. Here the effects of electric and magnetic modulation
interfere destructively and cancel each other at that value of
By where the magnetoresistance due to a purely electric
modulation equals that of a purely magnetic modulation. If
we turn on the magnetic modulation continuously, so that
wu increases from O to 1, the long-dashed curve evolves from
that with pure electric modulation in such a manner that the
zeroes shift from the electric flat-band conditions towards the
corresponding magnetic flat-band conditions with=\.,

i.e., to smaller values dB.

If we keep the modulations fixed, invert the direction of

the applied homogeneous field{— —B,), and plot the

B (x)/(21M,)
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magnetoresistance versiliB,|, we obtain the dash-dotted

curves labeled £ 1,1). The same result is obtained if we ¢ veriod a in the x_directi f stri hich h the width
keepB, positive and change the relative sign betwagn D' P°rioc a 1n e x direction of STps, Wich have the Wi
dBC | lectri d fi . d b,=0.6a and are homogeneous in thedirection. A homogeneous
an_ m? !.e., Superpos_e electric and magnetic c0§|ne mo ur'nagnetization of modulud is taken in thez direction perpen-
lations with a phase difference af. Now theBg regions of i jjar to the surfacéeft panels, or in thex direction parallel to
constructive and destructive interference are interchangege syrfacqright panels. The strip heights are chosen ab/a=

For large B, values the dash-dotted curve approaches thg os (solid lines, 0.1 (dotted lineg, 0.2 (dashed-dotted lingsand
curve for purely electric modulation from below. If we turn .4 (dashed lines The x dependence oB, is shown in planes at

on the magnetic modulation gradually, the dash-dotted curvgistances=0.05, 0.1a, and 0.2 (from top to botton below the
evolves from that for purely electric modulation in such asurface plane at=0.
manner that the zeroes shift to larggg values, i.e., from
electric flat-band condition with a certaiy, to the magnetic
flat-band condition with A,,=\.—1, for A,>1. Since
J1(0)=0, we may extend this statement to the cage 1, if
we define the magnetic flat-band condition fqy=0 as the
limit 2R./a—0. Equation(3.11) corresponds to the large-
argument expansion of the Bessel functions, see(E45), dominantly to the lowest harmonics.
which is not applicable for R./a<<3/4. A more realistic situation is considered in Fig. 3. The

This asymmetry under inversion of the direction of the magnetic field is calculated according to E¢&23) and(3.6)
applied homogeneous magnetic field has been observed far a lattice with perioda,=a of strips which are homoge-
experiment! and it has been exploited to determine the signneous in they direction. The stress-induced electrostatic po-
of the stress-induced electrostatic potential from the knowrential is modeled by Eq3.7). In the upper panels the ho-
direction of the magnetic modulation field. mogeneous magnetization of the strips is assumed irx the

The short-dashed curves in Fig. 1 are obtained fodirection, i.e., parallel to the plane of the 2DEG and perpen-
(e,u)=(1)), i.e., an electrical cosine and a magnetic sinedicular to the axes of the strips. In the lower panels it is taken
modulation(phase differencer/2). In this case the contribu- in thez direction, perpendicular to the strips and to the plane
tions of the purely electric and the purely magnetic modula-of the 2DEG. As is seen in the left panels in Fig. 3, the fields
tion simply add, without any interference. In this case therecontain higher harmonics. These have as consequence that
are no zeroes of the magnetoresistance or corresponding fldte magnetoresistance curves in the lower right panel do not
bands in the quantum mechanical descripfidinis is alsoin  go down to zero at their minima. The dash-dotted line, pre-
agreement with recent experiments in which the Dy stripssenting the result for purely electrostatic modulation, has
were magnetized in the direction perpendicular to their axeminima at slightly lowerB, values as those given by the
and parallel to the plane of the 2DE®. ideal flat-band condition(3.10), e.g., neara/2R.=1.22 in-

The harmonic approximation of the magnetic modulationstead ofa/2R.=1.31. As the amount of magnetic modula-
field considered in Fig. 1 is an oversimplification and doestion is increased £=0.5, 1.0, 1.25 the minima shift to-
not hold in the existing experiments, where the distance bewards the magnetic flat-band conditions wikh,=\. as
tween the 2DEG and the surface is only 10-20 % of thediscussed above. At the magnetic flat-band conditions all the
perioda of the strip lattice. Figure 2 gives an impression of curves with the same amount of electric modulatier=(l)
the stray field generated by a strip lattice as a function of théntersect each other at the same value for the magnetoresis-
strip height for a given strip widtb,=0.6a. For a homoge- tance. This indicates that the higher harmonics of the mag-

FIG. 2. Magnetic modulation fiel&,(x) produced by a lattice

neous magnetization of a given vali#,, the amplitude of

the modulation field in any plane below the surface increases
with increasing height of the strips, but tlxedependence
becomes smoother, since the added magnetized material has
a larger distance from this plane and thus contributes pre-
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sistance(right panel$ for a one-dimensional latticgeriod a,=a) ”""'.',{.".’f&‘}‘ jy’lllllllll[’}.‘&s““\\\\\:\\ = 1.0
of magnetized strips of width,=0.6a and heighth=0.4a, and a - ”l”'.'."';'.',zf.'}f{,‘&& 0.5
two-dimensional electron gas &t —0.1a. The fields are given by 0.0 05 & 0.0
Eq. (3.7 with Vo=yEre and by Egs. (3.3, (3.6) with 10 4157 05
B_m=2_7-r|rf1|/(a§ay). The magnetic r_nomenﬁ is taken in thex A N
direction in the upper panels and in tkedirection in the lower :”:".'0’3“\\\\‘\\\\\\\\\\\\\\“‘\‘\\“\‘ ,:if\“\\\\\\\\\
panels. Its magnitude is chosen so thaakd/2w)heB,/ AN ”'MWMW‘
mc=vyEgu. In the right panels, the dash-dotted lines refer to € 2 ’;‘f,‘\\\\‘\‘\\\\\“\\gg{\\\\\\\\}\\\)\‘)‘;\‘\‘\st "".f::és\\\x\\\\\\\\\‘\‘\\\\“,‘.;:}%
purely electric modulation, i.e..e(x)=(1,0), the dotted lines to = 1 "5:’:‘3\\\\\\\\\\\\\\\\\\\\\‘\‘\‘\;3;.;,,:,{“:\\\\‘\‘“\ \\\\3:‘3\‘\\&‘\\\\\\\\\\\\\\“ o
purely magnetic modulationg(x)=(0,1), and the solid lines to a X &\\\\\\\‘\\\\\\\\‘\\\\\W”#}ﬁ\‘\\\\\\\\\\\\‘\‘&{:} 5
mixed modulation with the indicatede (1) values. The scaling a" ‘t\:‘“‘\\\\\\}““ "é::‘:‘:‘z%“‘\\\\\\\\\\\\\\\\\\\“sf""" -
factor isa=2a%/(2my\)2 -1 ¥ NNy 1.0
05 0'5\@

netic modulation are less effective than those of the electric 3

modulation, as is to be expected from E2,.9). In contrast to X/4a 10 45 w05

the resistance curves in the lower panel, those in the upper

panel do notintersecteach other at the magnetic flat-band  FIG. 4. Modulation fields in the plane of the two-dimensional
conditions, although they all assume there the same valueslectron system due to a square lattice of homogeneously magne-
namely, those for the purely electric modulation. This char+ized circular cylinders on the sample surface. Top: stress-induced
acteristic difference between the two directions of magnetielectrostatic potential energy in the model of E88). Middle and
zation is a direct consequence of the different complexottom: normal component of the periodic magnetic field due to a
phases of the Fourier coefficients in both cases, and has rexagnetization of the cylinders in the direction perpendicular

cently been observed in experimefs. (middle) and in thex direction paralle(botton) to the plane of the
2DEG. Sample parameters are given in the text.

C. Square lattice of magnetized cylinders
, . , oo . part of Fig. 4. The magnetic modulation is calculated from
In samples W|th a two-dimensional periodic array of mi- Egs.(3.39 and (3.4, with a,=a,=a and Bm=2w|rﬁ|/a3.
cromagnets, an in-plane component of the magnetization We first take the maan tizy i tor in tkez ol
leads to an anisotropic magnetoresistance tensor. In contrast = 2 gne "’T'O” vec or_m &P a_ne,_
to the case of 1D strip arrays, where the anisotropy is triviam:|m|(5'”_‘9’0’5039)_- The resulting magnetic modulation is
(only Ap,,#0), now in general bothAp,, and Ap,, are wsuah;ed in the middle part of F_|g. 4 for a magnetization in
nonzero and different from each other. Thus, in addition tghe z direction (6=0), perpendicular to the plane of the
the size and the form of the micromagnets, and to the relativé ?EG, and in the lower part of Fig. 4 for a magnetization in
magnitude of stress-induced electrostatic and of magnetigeXx direction (6= =/2). Itis seen that, at the given distance
modulations, therientation of the magnetization will influ- beétween the 2DEG and the surface, the modulation fields
ence the magnetoresistance curves. Among the huge numpdf!l have a lot of harmonic content and are not simply sinu-
of possible experimental situations, we will choose only aSoidal. Whereas the modulation field fé=0 is invariant
few typical examples, with parameters that are accessible tdnder rotations along the axis at multiples ofm/2, the
the experiment. modulated magnetic field,(r,z= —D) for §= /2 is seen
We consider a square lattice, with periadsay,a=500 to be very anisotropic, without rotational symmetry. Its
nm), of circular cylinders with radiup=0.2% and height maximum variation along a line in thedirection is at most
h=0.4a on the sample surface in the plame=0, and a half as large as the maximum variation along the lines in the
2DEG in the planeg= —0.2a below the surface. The stress- x direction corresponding to constant, integer values of
induced potential is modeled by E(B.8) with Vo=yEre  y/a. The modulation in the direction is only due to higher
and kept fixed in the following. It is visualized in the upper harmonics with periods shorter than since according to
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FIG. 5. Magnetoresistance for simple superpositions of the
modulation fields depicted in Fig. 4. Solid lines for pure electric, FIG. 6. Magnetoresistance curves for different tilt angles of the
(1’0)' and pure magneticy (oz)” modu|ati0n due to magnetization magnetization betWeen tmdirection (0:00) and theX dil’ection
in the z direction, dash-dotted lines for constructive, (2)1;and ~ (6=90°). The upper curve@ashed-dottedshowA py, the lower
destructive, € 1,1:z), superpositions of these modulations. Theseones(dashedishowApy,; a as in Fig. 3.
four lines represent isotropic situations withp,,=Ap,,. The
dashed lines are for magnetization in the direction with,
(1,1x), and without, (0,1%), superposition of the electric modu-
lation. Scaling parameter as in Fig. 3.

has pronounced minima at the magnetic flat-band conditions,
whereasA p,, assumes much smaller valugeeing nonzero
only due to higher harmonigsnd has even a maximum at
the magnetic flat-band conditioa/2R,~0.8. The long-

Eq. (3.3 only Fourier coefficients8; with g,#0 are non- dashed lines labeled (1x); indicate the result obtained for a
zero. At larger distances, where only the fundamental perisuperposition of this magnetic modulation with the stress-
odicities survive, the position dependence of this modulationnduced electric modulation. Here the contributions to the
field reduces toxsin(2mx/a), whereas the position depen- magnetoresistance due to magnetic and electric modulation
dence of the electrostatic potential and that of the modulatiosimply add(the sign ofog  is irrelevant since the Fourier
due to a magnetization in thedirection reduce to the form coefficients describing the magnetic modulation are purely
o[ cos(2rx/a)+cos(2ry/a)]. imaginary.

In Fig. 5 we show the magnetoresistance curves calcu- Experimentally it seems impossible to measure a magne-
lated for simple combinations of these modulation fields. Wetoresistance curve for a magnetic modulation due to a mag-
describe the amplitude of the magnetic modulation in termsetization which is strictly parallel to the 2DEG, since the
of u, defined by (2rkg /a)neB,,/mc=yEgu, and scale the applied homogeneous fiell, will always produce & com-
factor y? out of the resistance results as before. The solichonent of the magnetization. It is, therefore, of interest to
curve labeled1,0) presents the result for the stress modula-follow the change of the magnetoresistance as the magneti-
tion only. Due to the higher harmoni¢see upper panel of zation is tilted with respect to the surface normal. Such a
Fig. 4) only a shallow minimum appears near the electricyariation is shown in Fig. 6. We takei=|m|(sin6,0,cod)
flat-band conditiora/2R.~1.3, and an additional minimum and, with our usual convention for the amplitudes of the
occurs near the magnetic flat-band conditiaf2R.~0.8.  modulation field, ¢, ) =(—1,1), so that we have a destruc-
This minimum is due to the harmonics with wave vectorstive interference between the electric modulation and the

q=(%2,=2)m/a, which yield zero contribution at the flat- magnetic modulation due to the component ofm for
band  condition qR.=m(A—1/4), with \=2 and  g/2R >1.31. The solid line in Fig. 6 indicatesp,,=Ap,y

gq= \/5(277/a). The solid line labeled (0,%) refers to purely
magnetic modulation due to magnetization in ghdirection.

for #=0°. The dash-dotted lines refer &= 30°, the dotted
lines to #=45°, etc. The upper lines represexy,,, which

The finite values of the magnetoresistance at the magnetfer large values oB, (a/2R.>1.5) increases with increas-

flat-band conditiona/2R.~ 0.8 indicates higher harmonics.
The dash-dotted lines labeled (1zZ1land (—1,1;2) referto a
superposition of these two fields with equatg =+1 in
Eq.(2.9] and opposite«(-Bo= —1) phases, respectively. It is
easily seen from Eq43.3) and(3.4) that, for magnetization
only in thez direction, B and thereford.”5| in Eq. (2.14

depend only onlq|. As a consequencel pyx=Apy, and
Apyy=Apy,=0, i.e., the tensohp is isotropic.

ing tilt angle 6. The lower lines indicaté p,,, which in the
region of the maximum close ta/2R.=1.5 decreases with
increasingé.

In all situations we have considered so far, the symmetry
|'y(*qx,qy)|:|'7(quqy)|' which follows from Eq.(3.3) for
m,=0, leads with Eq(2.14 to Ap,,=Ap,,=0. This is no
longer true if the magnetization has finikeandy compo-
nents, i.e.mym,#0. From Eqs(3.3 and(2.14 we obtain

The magnetoresistance components for a purely magnetic

modulation due to a magnetization in tlxedirection are

indicated by the short-dashed lines in Fig. 5, labeled

(0,1;x). The strong anisotropy is obviousp,, is rather
similar to the solid line labeled (0,2}, [the difference being
only due to higher harmonics, see E3.3) and(3.4)] and

Apeylpo=mmP X [a,a,F3(2)31(qR,)1?
Oy ,Oy>0

(3.12
with  Fg(z)=Fgexp(-qz—h/2]) and the prefactor
P=(4m\¢he)?/(Eraaymec)®. Note thatApy,=Apy,, SO
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FIG. 7. Magnetoresistance curves for different tilt angles of the > 0.5 B
magnetization between the direction (¢#=0°) and the direction B -0.14 - 0.14
x=y in the x-y plane (#=90°). The upper curves show the diag- 0.0l | i
onal contributionsAp,,=Ap,,, the lower ones the off-diagonal ) B -0.71 - -0.42
contributions Ap,,=Ap,,. Same line styles refer to equal tilt ) EE
angles,Ap,,(0°)=0, « as in Fig. 3. The black triangles indicate 0. : . o 15 | M -129 - -1.00
the magnetic flat-band conditions as in Fig. 1. it
) Bl -186 - -1.57
that the tenson p is real and symmetric and can be diago- i
nalized by a rotation of the coordinate axes, and that only B 243 - -2.14
higher harmonicgwith g,#0 and q,#0) contribute. It is =_3 0B e BT
also interesting to note that these off-diagonal contributions © ' '
are independent of thecomponent of the magnetization and =
of the electric modulation. As a consequence, the plot of

Apyy, versus the applied homogeneous magnetic fig}d
should only change its magnitude but not its shape if the
relative strengths of magnetic and electric modulations are -0.5R= .
changed, in contrast to the plots of the diagonal contributions 05 v 00 05 10 15
to Ap. x/a

In Fig. 7 we present results for the symmetric case FIG. 8. Contour plots of the magnetic modulation field
=My a_nd d_lfferent tilt angle®) with respect to_tha axis, B,(X,y)/B, for magneﬁzation in thez diSaction (top), in the x
m=|m|(sind,sing,\2cos)/\2. For =0 we obtain the pre- girection (middle), and form,=m,, m,=0 (bottom). Sample pa-
vious isotropic result. For #>0 we still obtain  yameters are the same as those in the lower panels of Fig. 4. The
Apyx=Apyy, since the modulation is symmetric with regard indicated gray step code is used in all plots.
to the interchange ok andy. The main features of the
results in Fig. 7 are not difficult to understand. At the mag-
netic flat-band conditions for the fundamental period
(al2R. = 0.82, 0.45, 0.31.. . .) all thecurves for the diag-
onal magnetoresistance assume similar values, close to t
value for pure electric modulation. This indicates that,
is dominated by the fundamental period of the magneti
modulation. The minima of tha p,, curves ford=0° and

The symmetry propertp,,=Ap,, does not mean that
the resistance tensor is isotropic, since naw,,=Ap,,
ﬁ&o. Obviously this tensor can be diagonalized by a rotation
of the x and y coordinate axes byr/4, with eigenvalue
('Apxx-i- Apyy in the (1,1 direction and eigenvalue
Apyx—Apyy in the (1,-1) direction. This symmetry is eas-
45° neara/2R, = 3.3 and 0.4 are due to destructive inter- ily understood from the contour plots in Fig. 8. These show

ference between the electric modulation and the magnetig‘e variation of the magnetic modulation fiefi(x,y) for
modulation as a result of trecomponent of the magnetiza- three high-symmetry directions of the magnetization. for
tion. The values at the minima are dominated by higher harl the z direction, the pattern has the full square symmetry,
monics in the case of=0° and by contributions due to the and theAp tensor is isotropic. Fom in the x direction, the
in-plane component of the magnetization fr45°. With  pattern is symmetric under reflection at theaxis and anti-
increasingd, the interference becomes less important and theymmetric under reflection at theaxis, but it has no rota-
minimum becomes less pronounced and shifts frontional symmetry. As a result, thitp tensor is diagonal, but
a/l2R.~ 3.5 for 6=0 to a/2R.~ 2.5 for §=90°. At the  with Ap,,+Ap,,. Finally, for m in the direction(1,1,0,
same timeAp,, increases without any change of its shapethere is no mirror symmetry with respect to thandy axes,
from zero for =0° to its full value at¢=90°, saturating and theAp tensor is not diagonal. However, the pattern is
rapidly for 6>60°. The minima ofAp,, occur at the flat-  symmetrical under interchanging gfandy, so that the di-
band conditions for the harmonics with|=\2(27/a) at  agonal elements of th&p tensor are equal. This symmetry
a/l2R. =1.16, 0.63, etc. means that the pattern is symmetrical under reflection at the



53 QUASICLASSICAL CALCULATION OF MAGNETORESISTANCE ... 11073

diagonal through the origin with slope1, while it is anti-  subband structure of the Landau bafidsfstadter spectrum
symmetric under reflection at the diagonal through the origirmay reduce the group velocities considerably. A strong re-
with slope — 1. With respect to the axes of reflection sym- duction of the band conductivity observed in high-mobility
metry, theAp tensor becomes diagonal, but not isotropic. samples with a weak electric modulation has been attributed
We mention in passing that the symmetric off-diagonalto this quantum interference effétWhether there is a need
components of thé\p tensor, which are due to anisotropy, for such a quantum transport theory in the situations consid-
do contribute to dissipation, whereas the antisymmetric offered in the present work will become clear after a detailed
diagonal components of the Drude resistivity tensor, whichcomparison of future experiments with the predictions of the
describe the Hall effect, do not. Another aspect is that the&juasiclassical approach presented here.
form of the Drude resistivity tensor is invariant under rota-
tion of the coordinate axes, while thep tensor can be di- ACKNOWLEDGMENTS

agonalized by a suitable rotation. )
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We have generalized the quasiclassical theory of We'cgratefully acknowledged.

oscillations in two-dimensional electron gases to the case
superlattices defined by a combination of weak electrostatic

and magnetic fields of arbitrary shapes, but with the same APPENDIX A

lattice constants. We have adapted fields to the experimental In the presence of modulations, we define for each point
situation, where periodic arrays of nanostructured ferromag '

i d ted h ‘ f th les. We h 7 of the modified cyclotron orbit the guiding center as the
NELS are deposited on Ihe surfaces of tn€ samples. We Nagyiar of the circle which has inthe same tangent and the

idealizeq the situation in so far as we have as_sur_ned Simpl’f‘ame radius of curvatuiR as the modified orbit. In terms of
geometric shapes and homogeneous magnetization of the&g

. . L . e lengths along the orbit, this circle of curvature at the

micromagnets. In experiments, the magnetization will not be_ . ..~ o
X . . point F=r(sp) is given by
homogeneous, since the micromagnets are not of ellipsoid
shape, and it will depend in a nonlinear hysteretic manner on
the applied homogeneous magnetic field and its history. Nev-
erthel_ess, the calculated_lnterference_z effects of magnetic a_rWith o=(s—50)/R, and with {=(dr/ds)/s and i=Rd¥
electric modulations are in encouraging agreement with typi
cal features observed in recent experimehts.Especially,
tilting the magnetization with respect to the surface normal™
provides a new degree of freedom for the investigation 01‘_"” .
Weiss oscillations and may be a promising route to test ouv = —(e/m)E-t and
understanding of these transport effects in detail. 5
i imi I i I v e > > V. o

We have also d|scussed_ the limitations of this S|mp.Ie but Y=~ — | tx(Ex D)+ -txB|. (A2)
fertile approach. The restrictions to a temperature window R m c
and to relatively low values of the applied magnetic field

B, — so that the Weiss oscillations are resolved but not thé‘SSUming the modulation fields to be sufficiently small, we
Shubnikov—de Haas oscillations — are obviously of a quanoPtainfi=¢&;xv/v and
tum mechanical nature. The restrictions to sufficiently large o . )
B, values and small modulation amplitudes occur already R=v/[wc+ wntev-(&XE)/(mv7)], (A3)
within the classical treatment, since here, for the perturbation - - )
of the cyclotron orbits to remain small, the forces exerted orf!N€ré @m(r) =eBy(r)/mc. Apparently the radius of curva-
the electrons by the modulation fields must be much smalleire R deviates from the unperturbed cyclotron radrysby
than the Lorentz force due to the homogeneous fjdin & sm_aII correction, which .vanllshes Imearly. with vanishing
this context it is interesting to remark that the sum in Eq.2MPlitudes of the modulation fields. According to E41),
(2.14) diverges for an electrostatic step potentiaince the the center of the circle of curvature throughs given by
Fourier coefficients in each direction decay only ag,1/ .
Obviously the electric field of the step potential has Fu=F+RA=F+ (&%) w.+ 6VFy, (A4)
S-function singularities and the corresponding force is not .
small as compared with the Lorentz force. It can also bevhich deviates from Eq(2.4) only by the terms™Mry,,
shown that, in a one-dimensional periodic Step potentia]NhiCh is of first order in the modulation fields. We want to
V(X), a|WayS orbits exist which are confined to a sing|e pe_calculate the average of the guiding-center drift velocity only
riod in the x direction and are traversed nearly with the to first order in these fields. As we see from E(&4) and
Fermi velocity in they direction. These orbits cannot be (2.5), the leading terms on the right hand side of E&4)
approximated by dr|f‘t|ng Cyc|otron OrbitS, and their contribu- lead to a result which is of first order in these fieldS, so that
tion to the magnetoresistance cannot be calculated perturbfl® average can be taken over the unperturbed cyclotron or-
tively with respect tov(x). Any attempt to do so leads to bits. To evaluate the contribution of the correction term
diverging results. sMr ), with the same accuracy, we must calculate its time
In two-dimensional superlattices a quantum mechanicatlerivative from Eq.2.1) but with the modulation fields ne-

F(s)=r+R[singt+(1—cosp)n], (A1)

ds the unit tangent and the unit normal vectors of the orbit at

Point F, respectively. With s=v=|f|, s=vf, and
7=vt+ (v?/R)A, one obtains from Newton’s equati®®.1)
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glected, i.e., here we have to take the time derivatives of thevhere ufj is a Cartesian component of the averddeft)

unperturbed cyclotron motion. Taking then the average ovevelocity along the trajectory, and has the same value for all
a cyclotron orbit, i.e., the integral with respect to the anglepossible initial conditions leading to motion along this tra-
¢ in Eqg. (2.3) between— 7 and 7, we obtain a zero result. jectory. Then it is convenient to perform the average over
This is because the time derivative @(fl)l?M along this cy- initial conditions in Eq(B1) in two steps. First, one averages

clotron orbit is justw, times its derivative with respect to the OVer all initial conditions which lead to the same trajectory,
angle. Thus, to first order in the modulation fields, the Cor_and then the average over all possible trajectories is taken.

- Thus, to leading order iff/7<1, Eg.(B1) reduces to
rection termd™®ry, in Eq. (A4) does not contribute to the g T a.(81)
averagedrift velocity. D=V} orvits- (B4)

Note that this result is consistent with the Drude conductivity

APPENDIX B of the homogeneous 2DEG. F&,=0, the velocity is a
. _ D .
In this appendix we sketch the derivation of the conduc-constant of motion,v,(t)=v,, and one obtainsD,,,

tivity formula (2.12) from the more familiar form in terms of = 37076, For Bo#0 one hasv,; =0, and, for o 7>1,
the velocity-velocity correlation function. For a spatially in- Nonzero contributions come only from higher orders in the
homogeneous, degenerate electron gas, the average curréftall parametel/r=2m/(w,7).
density as the linear response to a homogeneous electric field It is also interesting to note that, for the derivation of Eq.
can be calculated, within the relaxation time approximation(B4), we did not need an assumption about the amplitude of
of Boltzmann’s equation, from Chambers’ formélaThis  the modulations. For one-dimensional periodic electric and
yields the conductivity in the form of Einstein’s relation magnetic modulations the motion in an externally applied,
(TMFGZD(EF)D,W with D(Eg)=ng/Eg the density of homogeneous_ magnetic fieR}, is bounded in the dlrectlo_n
states at the Fermi level and of the modulation, and the velocity along any allowed trajec-
tory is a periodic function of time. Thus, E.4) is appli-
Y cable for arbitrary modulation strengths, even if the orbits
D= fo dte” (v ,(10,(0) i BD  are rather different from the unperturbed cyclotron orbits in
R the absence of modulations. The only condition is that the
the diffusion tensor. Here the velocityt) is taken along a period T be much shorter tham. This condition will be
specific trajectory of an electron with energyg, that is  violated for very small values @, but may hold again for
allowed by Newton’s equation of motion and determined byB,=0. In the regime of the Weiss oscillations we assume the
initial position(0) and velocityi(0) at timet=0, and the ~modulations to be so weak, that, within a perigd each
average is taken over all possible initial conditions for thetrajectory remains close to an unperturbed cyclotron orbit,
motion along such trajectories. When the velocity along a@nd that the averagelrift) velocity can be calculated along
given trajectory is a periodic function of time with period the latter. Consequently the average over orbits reduces to
T, as, e.g., for the cyclotron motion in a homogeneous 2DEGhe average over the centdfg of the cyclotron orbits, i.e.,
or in a 2DEG with modulation in only one lateral direction, to Eq.(2.11).

the time integral in Eq(B1) reduces to In this limit of weak modulations, where the cyclotron
orbits are only slightly modified, we may apply E@.11)
ety (T e () also to the case of two-dimensional periodic modulations.
Jo dte v, ()= fo dt 1—e 17" (B2) However, with increasing modulation strength the nature of

o o the trajectories in the two-dimensional lateral superlattice
When the period’ is much shorter than the relaxation time, changes and chaotic trajectories will occur. The velocity
the right hand side of EqB2) can be approximated, to lead- ajong such trajectories will not be a periodic function of

ing order in the small paramet@Y 7<1, by time, and the concept of an averageift) velocity along the
T trajectory loses its meaning. In such a situation By} is
If dtvM(t)=Tv2, (83) ho longer a reasonable approximation to the more general
Tlo Eqg. (B1).
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