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The question of describing the displacement and stress fields associated with straight misfit dislocations
~MD’s! located in a multilayer involving anyN heterointerfaces or free surfaces is reduced, as well as other
related problems, to the inversion of two independent sets of linear equations. The displacement fieldu of a
single translation dislocation~TD! is obtained as the limit of an infinite spacing between two MD’s. The
multilayer can be limited by one or two free surfaces~epitaxy, thin foils!. The simplicity and the power of the
method is illustrated in solving classical but yet unsolved questions: the stress field associated with an edge
interfacial TD in a layer sandwiched between two semi-infinite media (N52), theu fields of two different
interfacial edge TD’s in a thin bicrystal (N53), and the stress field associated with a multilayer formed by
alternating GaAs and Si layers (N55) containing a single array of edge MD’s along one of the heterointer-
faces.

I. INTRODUCTION

Since the theoretical work by Koehler,1 who proposed to
build multilayers made of ultrathin lamellae to improve the
mechanical properties of composite materials, some experi-
mental studies have confirmed that almost perfect thin mul-
tilayers can be prepared so as to obtain higher yield strengths
relative to their bulk constituents, as well as higher ductility
and toughness, e.g., Refs. 2 and 3. These exceptional prop-
erties are mainly due to an increased resistance to dislocation
motion produced by image forces from nearby heterointer-
faces. On the other hand, heterostructures which produce bet-
ter efficiency for optoelectronic devices involve the forma-
tion of interfacial defects4–7 and hence image force effects.

For this class of heterogeneous materials, the elastic prop-
erties of the dislocations are presently difficult to describe.
To date, no exact theory is available to solve the following
fundamental problem: What is the displacement and stress
field of a straight dislocation parallel to the interfaces of a
laminated medium containingN interfaces, among which
possible free surface~s!? The difficulty is revealed by the
number of accumulated attempts to only face the cases
N51,2,3, cf. Refs. 8–23:~i! a bicrystal without free surface,
~ii ! with one free surface, i.e., an epitaxial layer on a sub-
strate,~iii ! with two free surfaces, i.e., a bicrystalline foil.
Very few works deal with the casesN53 or 4,22,24,25 and
only concern screw dislocations. In Refs. 8–23, different
mathematical methods were used, based either on the prop-
erties of harmonic functions, the superposition of particular
two-dimensional problems, surface virtual dislocations, or,
more commonly, image dislocations.

Below, a global approach is developed, based on the
properties of the differential equations of elasticity for peri-
odic solutions. It proves to be particularly powerful since the
displacement fieldu can be computed for anyN values. The
stress field is then derived from derivation and application of
the Hooke law. In addition, the approach can account for the
particular positions of the heterointerfaces and the isotropic
elasticity constants of each layer.

II. THEORY

Three kinds of problems are described below~see Fig. 1!.
The axisOx1 of a Cartesian frame runs along the lower
interface andOx2 is the common upwards normal to the
heterointerfaces. The multilayer only contains an array of
periodic misfit dislocations~MD’s! with Burgers vectorb
(b1 ,b2 ,b3), located at the particular interfacex25hn which
separates mediumn and (n11). The period vectorL is
parallel to this interface and, consequently, the displacement
field in each layer is periodic withL. One of the MD’s is
placed atx150.

~i! The multilayer is built with a package of (N21) thin
welded layers, sandwiched between two semi-infinite media
denoted 1 and (N11). For the running layerj ( j51 to
N11), the elastic constants are (m j ,n j ). Each interface of
index j separating mediumj and (j11) is located at the
heightx25hj .

~ii ! The multilayer is as described in~i!, but now has an
upper free surface forx25hN . There is no medium
(N11).

~iii ! The multilayer is as described in~i!, but now has two

FIG. 1. Conventions and symbols describing an array of misfit
dislocations in a multilayer withN heterointerfaces and (N11)
media.
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free surfaces forx25h150 and forx25hN . There are no
media 1 and (N11).

From solutions of problems~i!–~iii !, solutions of other
related problems are immediately derived, e.g., those for
which the MD’s are slightly off the heterointerface in an
infinite bicrystal,11 in which case the MD network is consid-
ered as located along a fictitious interface separating two
identical media (N52). Another case corresponds to a very
largeL @in comparison with the length separating the two
more distant interfaces or free surface~s!#, transforming the
elastic field around a MD into that of a single translation
dislocation~TD!.

Let us now detail the boundary conditions of problems
~i!–~iii !, and express the route to obtain the displacement
field uk (k51,2,3). For all the solid–solid interfaces, the
transmission of the forces is assumed. For a free surface, no
stress is applied. Transmission of theu field is also assumed,
except for the particular interface of indexn. For this inter-
face, along which lies the MD array (x25hn), the accommo-
dation of the misfit is required and, hence,uk is constrained
to accommodate the misfit. This latter point merits special
attention. As described in Ref. 10 and experimentally veri-
fied at a near-atomic scale in Refs. 7 and 26, this condition
requires, along x25hn , first, a sawtooth change of
Duk5@uk

(n11)2uk
(n)#; second,Duk50 in the middle point

between two MD’s.„In Ref. 26, the first line of Eq.~4! must
read K15K25@12L2(324n2)2L1(324n1)#/2.… In
terms of a continuous distribution of infinitesimal disloca-
tions over a periodL, the net Burgers vector is zero and
long-range stresses are also zero. These imposed conditions
reflect the presence of atomic structural units repeating along
the interface via a gradual elastic deformation due to the
preservation of the atomic neighbors despite the misfit be-
tween the lattices.7,26,29

The general expression ofuk as a complex Fourier series
versus the coordinatex1 of the Cartesian frameOx1x2x3 will
now be written. Inside a layer of indexj , the displacement
field can then be expressed, withv52p/L and i as the
square root of21,

uk
~ j !5(

2`

`

Uk
~ j ,m!eimvx1. ~1!

The three functionsUk
( j ,m) only depend onx2 . They are

found explicitly in two steps: first, from the insertion of~1!
into the differential equations of elasticity which leads to a
system of three differential equations involving the three
functionsUk

( j ,m) and, second, from the solutions of this sys-
tem, as partly described in Ref. 10. Dropping the superscript
( j ,m) for simplicity, these solutions are

U15~P1Qmvx2!e
2mvx21~R1Smvx2!e

mvx2, ~2!

U25 i @P1Q~324n!1Qmvx2#e
2mvx22 i @R2S~324n!

1Smvx2#e
mvx2, ~3!

U35Te2mvx21Uemvx2, ~4!

whereP, Q, R, S, T, andU are coefficients depending only
on the boundary conditions specified for problem~i!, ~ii !, or
~iii !. In the following, the interface of indexj separates the
two consecutive layers,j and (j11). The boundary condi-
tions in displacement concerning the particular interface
along which lies the MD array (x25hn) are such that10

uk
~n11!2uk

~n!5(
2`

`
ibk
2pm

eimvx1 ~mÞ0!. ~5!

Now, the boundary conditions in displacements and
stresses attached to any given interface of index
j (1< j<N) can be expressed as the following six equations:

~I!5
P~ j11! /ej1hjQ~ j11! /ej1ejR~ j11!1ejhjS~ j11!2Pj /ej2hjQj /ei2ejRj2ejhjSj5d jnib1 /~2mp!, ~6!

P~ j11! /ej1~31hj24n~ j11!!Q~ j11! /ej2ejR~ j11!1ej~32hj24n~ j11!!S~ j11!2Pj /ej1~232hj14n j !Qj /ej1ejRj

1ej~231hj14n j !Sj5d jnb2 /~2mp!, ~7!

2sjP~ j11!/ej1sj~222hj12n~ j11!!Q~ j11! /ej2ejsjR~ j11!1ejsj~22hj22n~ j11!!Sj111Pj /ej

1~21hj22n j !Qj /ej1ejRj1ej~221hj12n j !Sj50, ~8!

sjP~ j11! /ej1sj~11hj22n~ j11!!Q~ j11! /ej2ejsjR~ j11!1ejsj~12hj22n~ j11!!S~ j11!2Pj /ej

1~212hj12n j !Qj /ej1ejRj1ej~211hj12n j !Sj50, ~9!

~II ! H T~ j11! /ej1ejU ~ j11!2Tj /ej2ejU j5d jnb3 /~2mp!,

T~ j11! /ej1ejsjU ~ j11!2sjTj /ej2ejU j50,

~10!

~11!

where d jn is the Kronecker symbol,ej5exp(mvhj), and
sj5m ( j11) /m j .

Finally, the complete set of boundary conditions relative
to all theN interfaces@including possible free surface~s!# are
expressed in repeating Eqs.~6!–~11! for j51 to N. The
nonzero second members of the equations only appear for
j5n. From the consideration of the independent systems~I!

and~II ! formed by Eqs.~6!–~9! and~10! and~11!, it is con-
cluded that the edge and screw components of the MD’s
have independent effects on the elastic field.

For problem~i!, the convergence of the stress field in the
two semi-infinite media 1 and (N11) requires
R5S5U50 for the medium (N11) andP5Q5T50 for
medium 1. The MD array can be located on any heterointer-
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face of indexn (1<n<N). As a result, a system of 6N
linear equations with 6N unknowns has to be solved
~denoted 6N•6N). Note that this system split into
two smaller independent systems: 4N•4N ~edge component!
and 2N•2N ~screw component!. For problem~ii !, there is
no upper medium, and the MD array can be located on
any heterointerface of indexn such that 1<n,N. But
the convergence in the lower medium requires
P5Q5T50 for medium 1. Two smaller independent sys-
tems, (4N22)•(4N22) ~edge component! and
(2N21)•(2N21), have to be solved. For problem~iii !,
there is no semi-infinite media 1 and (N11), and the MD
array can be located on any heterointerface of indexn, such
that 1,n,N. The number of heterointerfaces separating the
thin layers is (N22). Two independent systems,
(4N24)•(4N24) and (2N22)•(2N22), have to be
solved.

III. APPLICATIONS

To illustrate the power of this approach, three numerical
applications have been performed using aFORTRANprogram,
with N52, 3, and 5.

The first example is related to the problem of a
Al/Al 2Cu(u) thin bicrystal containing an edge interfacial
TD, i.e., problem~iii ! with N53 and two free surfaces. If the
method of surface virtual dislocations can derive the stress
field,22 it does not yield easily to the displacement fieldu.
Two kinds of Burgers vectorsb are considered, perpendicu-
lar to the interface@Fig. 2~a!# or parallel@Fig. 2~b!#. These
figures depict both the initial undeformed state~the three
horizontal lines! and the surrounding two-dimensional~2D!
displacement fields. The isotropic elasticity constants of the
crystals were calculated from the anisotropic elastic con-
stants given in Refs. 30 and 31 for Al andu, according to an
averaging method described in the Appendix of Ref. 32. Re-
sults aremAl526.5 GPa,nAl50.347, andmu540.46 GPa,
nu50.31. Other data are the following: thicknesses of the
two layers 5 nm (u) and 2.5 nm~Al !; lattice parameter for
Al, aAl50.4045 nm.33 In the Cartesian frame used,
Ox1 i @010#Al and Ox2 i @001#Al, b is 1/2@101#Al for Fig.
2~a! and 1/2@110#Al for Fig. 2~b!. The periodL has been
taken as ten times the total thickness of the bicrystal, i.e., 7.5
nm. Theseu fields generate the free surface curvatures and,
around the dislocation cores, the deformations of lattices of
pseudosquares of black points (u below! or small black
crosses~Al above!. In the initial states, these points are sepa-
rated by a spacing equal to 0.5 nm, and the two lattices of
crosses and points are continuous. The displacement fields of
the crystals are exaggerated by a factor of 3 for a better
visual representation. Along the heterointerfaces, the lattices
formed by the crosses and points are discontinuous, as ex-
pected for a translation dislocation.

The second example deals with the dislocated sandwich
problem (N52, no free surfaces!, solved by Chou for a
screw translation dislocation.18 The sandwich is described in
Fig. 3 by Al/Al 2Cu(u)/Al, b51/2@011#Al i Ox2 , and a
thicknessh of theu crystal equal to 2 nm. Figure 3 illustrates
the equistress curvess1156303107 Pa obtained from the
numerical solution of Eqs.~5!–~8!. These curves stop
abruptly at the upper heterointerface due to discontinuity in

the s11 field. The nonsymmetry of the curves relatively to
the planex250 is due to a composite effect of the sandwich,
since for a homogeneous medium, the symmetry is
observed.30As for the first example, the ratioL/h was taken
equal to 10 for these calculations~instead of infinity!.

The third example is a multilayer withN55, formed by
four thin alternating GaAs and Si layers sandwiched between
two semi-infinite media GaAs and Si. The choice of this
heterostructure results from the number of works presented

FIG. 2. N53. Displacement fields in thin bicrystalline foils
Al/Al 2Cu due to an edge interfacial dislocation. Theu field is three
times larger for convenience. The free surfaces and the nonde-
formed heterointerface are represented by the three horizontal lines
at level25, 0, and 2.5 nm.b is normal ~a! or parallel ~b! to the
heterointerface.

FIG. 3.N52. An Al 2Cu layer is sandwiched between two semi-
infinite Al crystals. Equistress curvess1156303107 Pa corre-
sponding to an edge dislocation perpendicular to the heterointer-
face.
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in the literature on these materials, e.g., Refs. 5–7. In this
example, the intensities of the normal stresses have been
evaluated along the axisOx2 , as described in the Cartesian
frame, shown in Fig. 1. The five heterointerfaces are located
at ~in nm! x250,2,4,6,8. In Figs. 4~a! and 4~b!, their posi-
tions are marked by the thick vertical lines. A single array of
edge MD’s withb51/2̂ 110&Si i Ox1 is assumed to be lo-
cated along the interfacex254 nm. From the lattice param-
eters of GaAs@0.5653 nm~Ref. 34!# and Si@0.4045 nm~Ref.
33!#, the length misfit is 4%, and the corresponding period
L is 9.7 nm. On the other hand,b150.3838 nm,
b25b350. The isotropic elasticity constants of the two crys-
tals have been calculated from the anisotropic elasticity con-
stants given in Refs. 30 and 35 and the procedure indicated
in the appendix of Ref. 32. As a result, the isotropic con-
stants aremGaAs546.01 GPa,nGaAs50.24,mSi566.11 GPa,
nSi50.23. Figures 4~a! and 4~b! show curves which give an

idea of the changes of the stressess11 and s22 ~curves in
black dots! close to the MD core(x25d54 nm!, where they
diverge. Thes11 stress curve shows noticeable discontinui-
ties when crossing the heterointerfaces at~in nm!
x250,2,6,8, conversely to thes22 stress curve which re-
mains continuous.

To appreciate the stress redistribution effect in the
multilayer, the same calculations have been performed but
for an elastically homogeneous medium with averagem and
n values. In this particular case, the stresses can be derived
analytically from the two first expressions~32b! in Ref. 10 in
which q51. The result is

s1152mS b1L2D @p~x22d!F32LF1sgn~x22d!#/~12n!,

~12!

s2252pm~b1 /L
2!~x22d!F3 /~211n!, ~13!

in which

F15$~@sinh~vux22du!#/f!21%/2, ~14!

F352@12cosh~vux22du!cos~vx1!#/~2f2!, ~15!

f5cosh~vux22du!2cos~vx1!, ~16!

sgn(x22d)521 or 11, according to (x22d),0 or .0,
respectively.

For a periodL tending to infinity, Eqs.~12! and~13! lead
to the well-knowns11 ands22 expressions of a single TD,
see Ref. 30. ForL59.7 nm, Eqs.~12! and ~13! lead to the
continuous curves indicated in Fig. 4~a! by small arrows. In
the middles of the layers 2 and 5, these curves cut the curves
in black dots. However, close to the heterointerfaces of indi-
ces 1,2,4,5, the values obtained fors11 are considerably dif-
ferent ~see Table I!. In contrast to these departures, thes22
values are not sensitively different@see Fig. 4~b!#.

IV. SUMMARY AND CONCLUSIONS

The displacement fieldu generated by a regular array of
misfit dislocations MD’s located in a multilayer material in-
volving any numberN of heterointerfaces or free surfaces,
has been obtained in a Fourier series form from periodical
solutions of the differential equations of elasticity. To respect
the limiting boundary conditions along theN heterointer-
faces, coupling equations between the Fourier series attached
to each layer have to be established. With respect to the
variety of methods presented in the literature8–25 to cope
with interface problems forN51,2,3,4, see Refs. 8–25, the

FIG. 4. N55. Heterogeneous multilayer material formed by al-
ternating six media GaAs and Si. The misfit dislocation array lies at
x254 nm. Changes of the~a! s11 stress and~b! s22 stress, along
x150 ~see Fig. 1!. In a homogeneous material with averaged elastic
constants, these stresses are continuous~curves marked by thin ar-
rows!.

TABLE I. s11 values in a multilayer GaAs/Si withN55. Heterointerfaces are located byx2 . Two
assumptions are used: an elastically heterogeneous and of a homogeneous medium with averaged elastic
constants. Note the strongs11 discontinuities for the multilayer.

x2 ~in nm! 0 2 6 8

~multilayer!
s11 ~in 107 Pa unit! 219.9/237.7 50.8/56.5 23.0/22.6 4.7/16.1

~homogeneous medium!
s11 ~in 107 Pa unit! 218.8 23.6 223.6 18.8
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present approach treats all of these problems in a simple and
global way. As examples of the power of the method, three
very different and apparently unsolved problems have been
treated, forN52, 3, and 5; one of them involving two free
surfaces (N53). ForN55, the multilayer is formed by al-
ternating GaAs and Si crystals. Numerical results indicate a
considerably redistribution of some stresses close to the het-
erointerfaces~see Table I!, as compared to the assumption of
an elastically homogeneous multilayer. With the present ap-
proach, anyN value can be taken into consideration, as well

as any thickness for each layer. The main limitation is the
consuming time to invert the two sets of linear Eqs.~5!–~8!
and~9! and~10!. For the case of a unique TD, theu field is
obtained at the limit of a large periodL, before the total
thickness of the multilayer. The numerical precision will de-
pend on the number of harmonic terms retained in the calcu-
lation of the Fourier series and, consequently, numerical con-
vergence tests are required. Finally, let us say that this
approach also opens a new way to take account of the full
anisotropic elasticity of the layers.
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