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Elasticity theory of straight dislocations in a multilayer
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The question of describing the displacement and stress fields associated with straight misfit dislocations
(MD’s) located in a multilayer involving anil heterointerfaces or free surfaces is reduced, as well as other
related problems, to the inversion of two independent sets of linear equations. The displacementffield
single translation dislocatioID) is obtained as the limit of an infinite spacing between two MD’s. The
multilayer can be limited by one or two free surfagepitaxy, thin foilg. The simplicity and the power of the
method is illustrated in solving classical but yet unsolved questions: the stress field associated with an edge
interfacial TD in a layer sandwiched between two semi-infinite meblia 2), theu fields of two different
interfacial edge TD’s in a thin bicrystaN=3), and the stress field associated with a multilayer formed by
alternating GaAs and Si layerdlE5) containing a single array of edge MD’s along one of the heterointer-
faces.

I. INTRODUCTION II. THEORY

Since the theoretical work by Koehleryho proposed to Threfa kinds of problems_ are described belsee Fig. 1
The axisOx; of a Cartesian frame runs along the lower

build multilayers made of ultrathin lamellae to improve the'nterface andOx. is the common upwards normal to the
mechanical properties of composite materials, some experk X 2 . P .
eterointerfaces. The multilayer only contains an array of

mental studies have confirmed that almost perfect thin mul-"" di isfit dislocationgMD’ ith B torb

tilayers can be prepared so as to obtain higher yield strengt r'% ICb mlsl ! |sdoca |r(])ns{ 'S)I wi fLJI'QELShVECh(:) h

relative to their bulk constituents, as well as higher ductility(P1:P2:b3), located at the particular interfase=h;, whic
eparates medium and (W+1). The period vectoA is

and toughness, e.g., Refs. 2 and 3. These exceptional pro llel 1o this interf q v the displ
erties are mainly due to an increased resistance to dislocatidif"@/€! to this interface and, consequently, the displacement

motion produced by image forces from nearby heterointer/1€!d in €ach layer is periodic with. One of the MD's is
faces. On the other hand, heterostructures which produce betlaced ax;=0. . _

ter efficiency for optoelectronic devices involve the forma- () The multilayer is built with a package of(—1) thin
tion of interfacial defects” and hence image force effects. Welded layers, sandwiched between two semi-infinite media

For this class of heterogeneous materials, the elastic profienoted 1 andN+1). For the running layej (j=1 to
erties of the dislocations are presently difficult to describeN*t1), the elastic constants arg,»;). Each interface of
To date, no exact theory is available to solve the following'ndex j separating mediunp and (j+1) is located at the
fundamental problem: What is the displacement and stred2€ightXo=h;. _ _ 3
field of a straight dislocation parallel to the interfaces of a (i) The multilayer is as described {in), but now has an
laminated medium containingy interfaces, among which Upper free surface forx;=hy. There is no medium
possible free surfa¢e®? The difficulty is revealed by the (N+1). _ _ o
number of accumulated attempts to only face the cases (i) The multilayer is as described {0, but now has two
N=1,2,3, cf. Refs. 8—23i) a bicrystal without free surface,

(i) with one free surface, i.e., an epitaxial layer on a sub-

strate, (ii ) with two free surfaces, i.e., a bicrystalline foil. N+1 AX2

Very few works deal with the casd$=3 or 42%24%gnd

only concern screw dislocations. In Refs. 8—23, different
mathematical methods were used, based either on the prop-
erties of harmonic functions, the superposition of particular
two-dimensional problems, surface virtual dislocations, or, _>, y y
more commonly, image dislocations.

Below, a global approach is developed, based on the
properties of the differential equations of elasticity for peri- 2
odic solutions. It proves to be particularly powerful since the ] o) X
displacement fieldi can be computed for any values. The
stress field is then derived from derivation and application of
the Hooke law. In addition, the approach can account for the FIG. 1. Conventions and symbols describing an array of misfit
particular positions of the heterointerfaces and the isotropidislocations in a multilayer witiN heterointerfaces andN(+ 1)
elasticity constants of each layer. media.

j (,vj) Pj, Qj, R;,S;

1
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free surfaces fox,=h;=0 and forx,=hy. There are no The general expression af as a complex Fourier series

media 1 and N+ 1). versus the coordinate of the Cartesian fram@®x;x,x3 will
From solutions of problemsi)—(iii), solutions of other now be written. Inside a layer of indgx the displacement

related problems are immediately derived, e.g., those fofield can then be expressed, with=27/A andi as the

which the MD’s are slightly off the heterointerface in an square root of-1,

infinite bicrystal*! in which case the MD network is consid- o

ered as located along a fictitious interface separating two ul) = ylmeimex (1)

identical media N=2). Another case corresponds to a very —

large A [in comparison with the length separating the two  The three functions'™ only depend orx,. They are

more distant interfaces or free surféa), transforming the  found explicitly in two steps: first, from the insertion ¢f)

elastic field around a MD into that of a single translationintg the differential equations of elasticity which leads to a

dislocation(TD). - system of three differential equations involving the three
Let us now detail the boundary conditions of problemsfunctionsu(kj,m) and, second, from the solutions of this sys-

(i)—(iii), and express the route to obtain the displacemen[tem as partlv described in Ref. 10. Drobping the erscrint
field u, (k=1,23). For all the solid-solid interfaces, the (| S partly cescribec in =et. .. ropping the stperscrip

<A . J),m) for simplicity, these solutions are
transmission of the forces is assumed. For a free surface, n
stress is applied. Transmission of thédield is also assumed, U= (P+Qmaoxy)e” "2+ (R+Smuwx,)e™2,  (2)
except for the particular interface of index For this inter- . _ —MeXs D _
face, along which lies the MD arrayx{=h,,), the accommo- U2=ilP+Q(3=4») + Qmaxple ™72 —i[R=S(3~4v)
dation of the misfit is required and, heneg,is constrained +Smwx,]e™*2, ©)
to accommodate the misfit. This latter point merits special e mox Mox
attention. As described in Ref. 10 and experimentally veri- Us=Te 2+Ue™™, )
fied at a near-atomic scale in Refs. 7 and 26, this conditiosvhereP, Q, R, S, T, andU are coefficients depending only
requires, alongx,=h,, first, a sawtooth change of On the boundary conditions specified for probl@m (ii), or
Au=[u{"V—u™]; second,Au =0 in the middle point (iii). In the following, the interface of indek separates the

between two MD's(In Ref. 26, the first line of Eqi4) must WO consecutive layerg, and (+1). The boundary condi-
read K*=K =[1—-L (3—4v)—L*"(3—4v")]/2) In tions in displacement concerning the particular interface

terms of a continuous distribution of infinitesimal disloca- &0ng which lies the MD arrayxe=h,) are such that

tions over a period\, the net Burgers vector is zero and “ b,
long-range stresses are also zero. These imposed conditions uMt Y —ym=2» S—em (m#0). (5)

reflect the presence of atomic structural units repeating along
the interface via a gradual elastic deformation due to the Now, the boundary conditions in displacements and
preservation of the atomic neighbors despite the misfit bestresses attached to any given interface of index
tween the lattice$26-%° j(1<j=<N) can be expressed as the following six equations:

( P(i+1)/6j+th(j+l)/e]'+ejR(j+l)+e]'hjS(j+l)_ PJ/e]_hJQJ /ei_e]'Rj_ejhij: 5Jn|b1/(2m’77), (6)
P(j+1)/ej+(3+ hj—4v(j+1))Q(j+l)/ej—ejR(j+1)+ej(3—hj—4v(j+1))3(j+1)— PJ/e]+(_3_hJ+4VJ)QJ /ej+e]R]

(I)< _SJP(J+1)/eJ+SJ(_2_h]+2V(J+l))Q(]+1)/e]_e]S]R(JJrl)‘l‘e]SJ(Z_hJ_ZV(J+1))SJ+1+ P] /eJ

+(2+h;—2v,)Q; /e, + &R, +&/(—2+h;+2v,)S,=0, (8)
SiP(+1)/€+8(1+hj=2v41))Q(j+1) /€~ &SR+ 1)t €S(1—hj=2p(41))Sj+1)~ P /g

| +(—1—h;+22)Q;/e;+&R;+e(—1+h;+2v))S =0, ©)

mn Ti+v/eteUry—Ti/e—eUj=d,bs/(2mm), (10)

Ti+n/etesjUi1)—sT;/ej—eU;=0, (11)

where §j, is the Kronecker symbolgj=exp(mwh;), and and(ll) formed by Eqs(6)—(9) and(10) and(11), it is con-

Si=m(+1)/ 1 - cluded that the edge and screw components of the MD’s
Finally, the complete set of boundary conditions relativehave independent effects on the elastic field.
to all theN interfaceqincluding possible free surfa(®] are For problem(i), the convergence of the stress field in the

expressed in repeating Eg6)—(11) for j=1 to N. The two semi-infinite media 1 and N+1) requires
nonzero second members of the equations only appear fét=S=U=0 for the medium N+1) andP=Q=T=0 for
j=n. From the consideration of the independent systéins medium 1. The MD array can be located on any heterointer-
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face of indexn (1=n=<N). As a result, a system ofN6
linear equations with unknowns has to be solved 4 ' ' ' ' ' ' " (a)
(denoted ®&-6N). Note that this system split into (hm)| .«
two smaller independent system$\ 4N (edge componeht P

and 2N-2N (screw componeit For problem(ii), there is
no upper medium, and the MD array can be located on .='.ff;II

any heterointerface of index such that :n<N. But A f il
the convergence in the lower medium requires |l ALl
P=Q=T=0 for medium 1. Two smaller independent sys- | ::::::

tems, (N-2)-(4N-2) (edge componept and B8 p...ooooooocrniIIiIiIIIIIII
(2N—l)(2N—l), have to be solved. For pr0b|e(ﬁi), ...............................
there is no semi-infinite media 1 andl¢1), and the MD 6
array can be located on any heterointerface of ingeguch

that 1<n<<N. The number of heterointerfaces separating the

-8 -4 0 4 (hm) -8

thin layers is (—2). Two independent systems, 4 )
(4N_4)(4N_4) and (Z\I_Z)(ZN_Z), have to be (nm)-+:::i:t:++++ti:::::++:::::::::+_
SOlVed. ::++++++A|++++**+++""*+++++++++++::
1.5 F++++++++++++*++*++*++++++++++++3
r+++++++++:.:‘:‘L:fj_ﬁ::‘:':.:::+++++++<
I“ APPLICATIONS f.+:+:+:+:+:+'+-+~+- Ly o+.+.+:+:+:+:+:+
N R
To illustrate the power of this approach, three numerical ce LI
appli i IMORTRAN DFrOAram. b e e v e o AL gy * 5 5 T e e,
ppllcailons have been performed usingp&®TRAN program, a5l Al,Cu . ! R
with N=2, 3, and 5. R SRS SOOI SRR 1
The first example is related to the problem of a S
Al/Al ,Cu(#) thin bicrystal containing an edge interfacial g
TD, i.e., problem(iii ) with N=3 and two free surfaces. If the 8
method of surface virtual dislocations can derive the stress ) 4 0 4 (m) -

field 22 it does not yield easily to the displacement field

Two kinds of Burgers vectors are considered, perpendicu-  fiG, 2. N=3. Displacement fields in thin bicrystalline foils
lar to the interfacdFig. 2@)] or parallel[Fig. 2b)]. These  Al/Al ,Cu due to an edge interfacial dislocation. Tihéeld is three
figures depict both the initial undeformed stdtbe three times larger for convenience. The free surfaces and the nonde-
horizontal line$ and the surrounding two-dimension@D)  formed heterointerface are represented by the three horizontal lines
displacement fields. The isotropic elasticity constants of thet level —5, 0, and 2.5 nmb is normal(a) or parallel(b) to the
crystals were calculated from the anisotropic elastic conheterointerface.

stants given in Refs. 30 and 31 for Al afidaccording to an

averaging method described in the Appendix of Ref. 32. Rethe ¢, field. The nonsymmetry of the curves relatively to
sults areun=26.5 GPa,vy=0.347, andu,=40.46 GPa, the planex,=0 is due to a composite effect of the sandwich,
v,=0.31. Other data are the foIIOWing: thicknesses of th%ince for a homogeneous medium, the symmetry is
two layers 5 nm ¢) and 2.5 nm(Al); lattice parameter for  opserved® As for the first example, the ratia/h was taken

Al, ay=0.4045 nmi® In the Cartesian frame used, equal to 10 for these calculatiofimstead of infinity.

Oxy I [010]Al and Ox; Il [001]Al, b is 1/ 101]Al for Fig. The third example is a multilayer witN=5, formed by
2(a) and 1/2110JAl for Fig. 2(b). The periodA has been four thin alternating GaAs and Si layers sandwiched between
taken as ten times the total thickness of the bicrystal, i.e., 7.5yo semi-infinite media GaAs and Si. The choice of this

nm. Theseu fields generate the free surface curvatures andheterostructure results from the number of works presented
around the dislocation cores, the deformations of lattices of

pseudosquares of black point® pelow) or small black
crossesAl above. In the initial states, these points are sepa-
rated by a spacing equal to 0.5 nm, and the two lattices of
crosses and points are continuous. The displacement fields of
the crystals are exaggerated by a factor of 3 for a better
visual representation. Along the heterointerfaces, the lattices

X2 T Al
\
formed by the crosses and points are discontinuous, as ex- A P\\/ AlCu X1
\ _* L.

pected for a translation dislocation.

The second example deals with the dislocated sandwich 3 Al
problem (N=2, no free surfaces solved by Chou for a MM
screw translation dislocatiol§. The sandwich is described in

Fig. 3 by Al/AI,Cu(6)/Al, b=1/7011JAl || Ox,, and a

thicknessh of the ¢ crystal equal to 2 nm. Figure 3 illustrates  F|G. 3. N=2. An Al,Cu layer is sandwiched between two semi-
the equistress curvas;;= =30x 10’ Pa obtained from the infinite Al crystals. Equistress curves,;=+ 30X 10’ Pa corre-
numerical solution of Eqs.5)—(8). These curves stop sponding to an edge dislocation perpendicular to the heterointer-
abruptly at the upper heterointerface due to discontinuity irface.
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idea of the changes of the stresses and o5, (curves in

GaAs Si GaAs Si GaAs Si black dots close to the MD core(,=d=4 nm), where they
(1$50 07 ] diverge. Theo; stress curve shows noticeable discontinui-
1001 a) ties when crossing the heterointerfaces @h nm)
j X,=0,2,6,8, conversely to the,, stress curve which re-
50 < \ mains continuous.
0 | A 87 To appreciate the stress redistribution effect in the
L~ Y, multilayer, the same calculations have been performed but
-S0 \_]‘I for an elastically homogeneous medium with averagend
-100 v values. In this particular case, the stresses can be derived
150 ll X2 analytically from the two first expressiof82b) in Ref. 10 in

0 2 4 6 8 (nm) 10 which g=1. The result is

b
(15220 (x1o7pa)l( 011:2/‘(XlZ)[W(Xz_d)F3—AF139r(Xz—d)]/(l—V),
100 / (12)
V.
52/ 0op=2mu(by IA2) (Xo—d)Fs/(—14v), (13
50 ,/ in which
100 W4 Fi={(sinol—d)lie)-142, (14
X2
-150 o 2 4 & smmio F3=—[1-coshw|x,—d|)cog wx,)]/(2¢?), (15)
(b) ¢=cosiw|x,—d|)—cog wx,), (16)

FIG. 4. N=5. Heterogeneous multilayer material formed by al- sSgn,—d)=—1 or +1, according to X,—d)<0 or >0,
ternating six media GaAs and Si. The misfit dislocation array lies arespectively.
X,=4 nm. Changes of théa) o, stress andb) o,, stress, along For a periodA tending to infinity, Eqs(12) and(13) lead
x1=0 (see Fig. 1 In a homogeneous material with averaged elasticto the well-knowno,; and o5, expressions of a single TD,
constants, these stresses are contingousses marked by thin ar- see Ref. 30. FoA=9.7 nm, Egs(12) and(13) lead to the
rows). continuous curves indicated in Fig(a} by small arrows. In
. ) . _the middles of the layers 2 and 5, these curves cut the curves
in the literature on these materials, e.g., Refs. 5-7. In thig, pjack dots. However, close to the heterointerfaces of indi-
example, the intensities of the normal stresses have begys 1.2 4,5 the values obtained toy; are considerably dif-

evaluated along the ax®x,, as described in the Cartesian ferent(see Table)L In contrast to these departures, g
frame, shown in Fig. 1. The five heterointerfaces are locateqayes are not sensitively differefgee Fig. 4b)].

at (in nm) x,=0,2,4,6,8. In Figs. @) and 4b), their posi-
tions are marked by the thick vertical lines. A single array of
edge MD’s withb=1/2110Sill Ox, is assumed to be lo-
cated along the interface,=4 nm. From the lattice param- The displacement field generated by a regular array of
eters of GaA$0.5653 nm(Ref. 34] and Si[0.4045 nm(Ref.  misfit dislocations MD’s located in a multilayer material in-
33)], the length misfit is 4%, and the corresponding periodvolving any numbemN of heterointerfaces or free surfaces,

A is 9.7 nm. On the other handb;=0.3838 nm, has been obtained in a Fourier series form from periodical
b,=b;=0. The isotropic elasticity constants of the two crys- solutions of the differential equations of elasticity. To respect
tals have been calculated from the anisotropic elasticity corthe limiting boundary conditions along the heterointer-
stants given in Refs. 30 and 35 and the procedure indicatefdices, coupling equations between the Fourier series attached
in the appendix of Ref. 32. As a result, the isotropic con-to each layer have to be established. With respect to the
stants arqugaa=46.01 GPapga=0.24, us=66.11 GPa, variety of methods presented in the literaftifé to cope
vg;=0.23. Figures &) and 4b) show curves which give an with interface problems foN=1,2,3,4, see Refs. 8-25, the

IV. SUMMARY AND CONCLUSIONS

TABLE I. o4, values in a multilayer GaAs/Si wittN=5. Heterointerfaces are located By. Two
assumptions are used: an elastically heterogeneous and of a homogeneous medium with averaged elastic
constants. Note the strong; discontinuities for the multilayer.

X5 (in nm) 0 2 6 8
(multilayen
o (in 10’ Pa uni} —-19.9~37.7 50.8/56.5 23.6/2.6 4.7/16.1

(homogeneous medium
o4 (in 107 Pa unil -18.8 23.6 —-23.6 18.8
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present approach treats all of these problems in a simple aras any thickness for each layer. The main limitation is the
global way. As examples of the power of the method, threeconsuming time to invert the two sets of linear E¢®—(8)

very different and apparently unsolved problems have beeand(9) and(10). For the case of a unique TD, thefield is
treated, forN=2, 3, and 5; one of them involving two free obtained at the limit of a large period, before the total
surfaces N=3). For N=5, the multilayer is formed by al- thickness of the multilayer. The numerical precision will de-
ternating GaAs and Si crystals. Numerical results indicate pend on the number of harmonic terms retained in the calcu-
considerably redistribution of some stresses close to the hefation of the Fourier series and, consequently, numerical con-
erointerfacegsee Table), as compared to the assumption of vergence tests are required. Finally, let us say that this
an elastically homogeneous multilayer. With the present apapproach also opens a new way to take account of the full
proach, anyN value can be taken into consideration, as wellanisotropic elasticity of the layers.
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