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Numerical study of localization in the two-state Landau level
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A two-state model of the lowest Landau level, which includes only interband scattering, is investigated. The
localization properties are studied numerically based on the iterative Green function method. The singularity of
the density of states at the band center is examined in addition to the study of the localization length exponent.
Other extended states located away from the band center are also discussed.

I. INTRODUCTION Il. MODEL AND METHOD

Although the localized-delocalized.D) transition in the
quantqm Ha.” effep(QHE) ha§ been stgdied extensively by Hall regime is expressed by the following Hamiltonian:
numerical simulation$,there is no satisfactory theoretical
explanation for the critical behavior of the LD transiton. 1 h(r)

The usual theoretical analyses neglect the spin depen- H=ﬁ(p+eA)2+ h_(r) 0 )
dence of the Landau level. Here we consider a spin-
degenerate case: when Zeeman splitting is very small, thEhe 2x2 matrix represents two spin states. Since we con-
energy of the Landau level becomes degenerate. Under aider only the subspace of the LLL, the first term becomes
impurity potential, an electron scatters between different spirtrivial. h(r) is a random spin-impurity scattering potential
states. Recently Lee and Chafkand Wang, Lee, and W&n andh(r) is its complex conjugate. We impose the following
investigated this spin scattering in the QHE by introducing acorrelation for the random potentib(r):
two-channel network model, and they obtained the same

The two-state random scattering problem in the quantum

1)

value of the localization exponent as in the spinless case, (h(r))=(h(r))=0, 2
although the location of the extended states become different _
from the band center. (h(r)h(r"))=ws(r—r’), 3

Assuming that impurity scattering occurs only betWeenwhere( ) denotes the ensemble average. The distribution is

different spin states, and neglecting the scattering within th%aussian white noise. The matrix in Hd) has no diagonal

same spin state, Hikami, Shirai, and Wednebtained a fi-  ¢joments: there is no impurity scattering within the same spin
nite longitudinal conductivity at the band center in the lowestgta.

Landau level(LLL). They suggested that the density of |5 grder to analyze this Hamiltonian numerically, we em-
states(DOY) of this two-state LLL model is singular at the ploy MacKinnon and Kramer's iterative Green function
band center £=0) by a 1N expansion. However, the true method’ This method works also for the study of the DOS
nature of the singularity remains unsolved because there is¢# a finite systenf. Details of the calculation by this method
crossover from the semicircle law near the band center. Thimay be seen in the literatdrdand here we present its brief
particular model may correspond to the limit of a strongdescription. Let us consider ah,XL, strip geometry
spin-orbit case: at each scattering, the electron spin has (@,>L,). We impose a periodic boundary condition in the
flip to the opposite state. Hanna, Arovas, Mullen, and Grtvin y direction and use the Landau gaude= (—By,0). For a
have also tried to analyze this two-state model by calculatingure system, the LLL eigenfunctions are

the Thouless number. LEBas argued that there appear three
extended states, one at the band center and two other states.

. : . . . u (X ): ie_iknyLe_O(_knlg)z/Z'g (4)
The main purpose of this paper is to investigate further knl XY JL, '

rl
this two-state LLL model numerically, focusing especially Y ¢ _
on the DOS and the localization exponent. To evaluate th#hich are labeled with  ky=2mn/L
DOS, we employ the iterative Green function method(n=1,2,... ,LXLy/27T|§). I is the magnetic lengtk/eB/m

(MacKinnon-Kramer method which is a suitable method and we take,27.. as the unit length hereafter. We have also

for large system size and for the region near the band centegpin indices denoted b andB (spin up and downfor the
This paper is organized as follows. In Sec. Il we presenpresent two-state model.

the model and explain the iterative Green function method. Introducing real hyy by h(r)=h,(r)+ihy(r), and

Sections Il and IV are dedicated to numerical results for th%_(r):hx(r)—ihy(r), the random potential correlation Egs.

DOS and the localization exponent, respectively. The effect) and(3) becomes

of Zeeman splitting is investigated in Sec. V. Discussions

and some comments are presented in Sec. VI. (hyy(r))=0, 5)
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(BB =(hy(IN( )= 5 8(1=7). (6)

We realizeh, , putting 6-potential scatterers randomly in the
system(the typical density of the scatterers is four per unit

area 2rl?).

Since the functions Eq4) become exponentially small at

large (x—k,I2), the matrix elementsk{ k,/) can be ne-

10899

The approximation of the DOS with a finitecorresponds to
an averagéintegration of the true DOS over the finite width
€.

Ill. DENSITY OF STATES

By the iterative Green function method, we obtain the

glected for|k,l2—k,/12|>1.. We therefore introduce a cut- DOS and the localization length of a finite system. The be-

off length | .., Which is equal to 227l .. We divide the

system into cells in th& direction and the length of each cell

is chosen as$; - Then the Hamiltonian becomes

H= >

=1Nce

{DH T DH ([T DH, L (0
(7)

havior of the DOS is shown in Fig.(d). A singularity at the
band center is observed and it is consistent with the result of
the perturbative approach by theNléxpansiorf. In addition

to the singular band-center behavior, there is a hump around
E,~0.4. It is quite different behavior from the usual one-
state (spinles$ LLL case, which was exactly solved by
Wegner'® To see its band-center singularity more clearly,
we make a p,—(InE,)?> plot in the energy range

where we denote states in the cell by ket vectors. We defing0.005, 0.1 [Fig. 1(b)]. Its curve is almost straight. This

a Green function by

J>, 8

1
Gfﬁ)(E)=<|m

whereH™) is a part of the Hamiltonian composed of the first

means that the perturbative respli(E,) ~ (In|E,|)? is quite
good in the region 0.005|E,|<0.1, i.e., about 1/10 of the
bandwidth. It is interesting to clarify whether the band-center
density p,(0) is divergent or not. Our numerical approach,
however, cannot determine this point clearly due to the finite
range integration described in the previous section. Here, we

N cells. This Green function can be solved iteratively by thecalculate the DOS &, =0,0.001,0.01 with several system

following recursion formula:
N+1)__ N N+1
GiNY7=GiNHN N+ 16N TR 1. 9

N+1 N -
G§\J++1,131+1=[E_ Hyianer— HN+1,NGE\I,I)\IHN,N+1] L

(10

The localization length of a finite system, with width in
they direction M=L,/y2l.), is given by

At(E)=— InTriG e (E)7 (1D

2 NceIII cutoff

sizes and several energy resolutiansThe results are sum-
marized in Table I. The value g5,(0) slightly increases
when the system sizidl is larger or where is smaller. This
seems to imply the weak divergence of the infinite
(M—x) system. On the other hand, the dependence of the
DOS atE,;=0.001 and 0.01 oM ande is very small. So it
is considered that the (,)?> behavior near the band center
[Fig. 1(b)] is unchanged for largevl.

When the system width is narrotypically M<2),
pn(E,) near the band center becomes very siffaty. 1(c)].
It seems that if we sé¥1—0, p,(0) goes to 0. This can be
understood as follows. For the caseMi 1, |k,l2—k,/12|

The DOS can be obtained by a similar recursion formul&for differentk, andk,. is much larger thah,. So, from Eq.
for TrEHVNGS"\‘}(EHe). The details may be found in Ref. (4), the matrix elements between differelqt and k,,, are

8.

Finally, we mention the normalization of energy and the

negligible. Therefore the Hamiltonian becomes

DOS in our calculation. We measure energy by the unit en-

ergyF=2\/W and denote the normalized energyby. The

0 U1

DOS is normalized by the integration over the whole energy. —

This leads to

f T'p(TE,)dE,=1. (12)

Therefore we define the normalized DOS

pn(En)=T'p(T'Ey).

The DOS, the imaginary part of the Green function, is

represented in the smadl-0 limit as

L 1
ME e H

B 1 €
T 7 (E—H)%+ €2

o
[ 8(E—H) ase—0].

13

U1 0

Uo 0 (14)

with  basis {|k;A),|kiB),|k,A),|ksB)Y, ...} and each
vi(j=1,2,...) follows the same distribution independently.
Sinceh, andh, are independent, Re() and Im{;) must be
independent variables. We assume that the distribution of
Re(@;) and Im(;) is GaussiarP¢(«):

Po(a)xe 2’

(15
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FIG. 1. (a) The DOS for a two-state LLL
model with interspin(interband disorder. System
size isM=12 andNg,=5% 10, which means
L,=12\2ml,,L,=10°227l, (I, is the mag-
netic length, and we choose=5x10"3. Exact
solution for the usual one-state LLL model is a
solid line. (b) The DOS near the band center:
pn-(INE,)? plot. (c) The DOS for the narrow limit
(M=1,2). The solid line is Eq(18) with a=5.5
for the best fit.

Since the Hamiltonian Eq14) is already block diagonalized So we get the eigenvalue= =+ |v|. Then the eigenvalue dis-
and each X 2 block is statisticaly independent, it is enough tribution P(\), i.e., the density of states, is given by

to take out one block. The eigenvaluesatisfy the equation

-0. (16)

-\ v
v -\

POV= | dugdols0— o)+ 50+ o) PeoRIPu(v).

17
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TABLE I. The DOS near the band cent@veraged over five
samples Upper: E,=0; middle: E,=0.001; lower: E,,=0.01.

Typical system lengtiNg is 1x 10,

NUMERICAL STUDY OF LOCALIZATION IN THE TWO-STATE ...

M
. 8 16 - Aw(E,=0.0001)
1.04+0.05 1.13-0.02 1.16-0.02
5x 104 1.00+0.02 0.97-0.02 0.97-0.01
0.72+0.04 0.69-0.01 0.68-0.01
1.06+0.06 1.38-0.07 1.59-0.04 profile  of
1x10° 1.03+0.08 0.97-:0.03 0.96-0.01
0.73+0.06 0.67-0.03 0.68-0.02
0.89+0.10 152-0.14 1.83-0.03
5x10°5 0.99+0.04 095004  0.970.03
0.71+0.03 0.68-0.04  0.68-0.04

In polar coordinates for positive. [of course, P(—\)

=P(\)],

This suggests that the DOS vanishe&gt 0 and increases

linearly.

A comparison between EL8) and the numerical results

P()\)OCZﬂ-J rdré(A—r)e 2"
0

*[\|e

—an?

(18)
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TABLE Il. System width dependence of the renormalized local-
ization lengthA , near the band center.

M 8 16 32

1.1%+0.02 1.14-0.03 1.140.06

IV. LOCALIZATION EXPONENT

Next, we discuss the localization property. An overall
the renormalized localization length
Am(En) =Am(E)/M is presented in Fig. 2Ny is the local-
ization length of a finite strip with widtiM.) At first sight,

we recognize the existence of three extended states at
E,=0,£0.365. We analyze these data with the one-
parameter scaling relation

Aw(En)=1(&(En)/M)

and determine the localization lengf(E,,).

As can be seen in Fig. 2, the critical region of the LD
transition at the band center is very narrow and the finite size
effect influences these data strongly. For a small-width sys-
tem, the peak location of, is notE,=0. When the system
width M becomes larger, the peak location shifts toward
E,=0. On the other hand\, at E,,=0.0001, which is the
closest to the band center in the present study, is almost
independent of widtiM (see Table I. This implies scale
invariance and hence the existence of an extended state at the
band center in spite of the small system sizes. For the odd
behavior of the peak of\,,, application of the standard

(19

for M=1,2 is shown in Fig. (c). TheM =1 case appears to
be well approximated by Eq(18). Note that vanishing

pn(0) is due to the measure of the random variables, i.e., the
presence of two independent disordeng ,fy). It does not
depend on whether the distributiét is Gaussian. Therefore
we can recognize it as a kind of level repulsion.
This explains also the existence of a hump in Fi@).1it Ay
is known that pure off-diagonal disorder causes a singular
DOS at the band center. The one-dimensional tight-binding
model with off-diagonal disorder, which was studied in Ref.
11, is one example. Our DOS in Fig(al can be regarded as

== o O
X0+ <

a superposition of a band-center enhancement caused by off-

diagonal disorder an&e 2E’-type behavior that is seen in @
the narrow limit.

10
M/(§/6(En = 0.05))

Au ¢/¢(E, = 0.05)

1
02 03 04 05 06 07 08 09 1
E,

(b)

FIG. 2. The renormarized localization length for seveggl.
Length of the systenN is 3X 10%.

0.001 0.01
E,

FIG. 3. (a) The renormalized localization length ¢6E,)/M for
the LD transition aE,=0. (b) £ vsSE,,.
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FIG. 5. The illustration of a random potentiah,(,h,). The
random potential is expressed by a two-dimensional vector field
(arrows. Solid lines, dashed lines, and dotted lines are @ojui-
lines, which correspond to smalh|, large |h|, and critical
[h|(=]h|.), respectively.

1
E, —0.365

(b)

FIG. 4. (a) The renormalized localization length ¢6E,)/M for
the LD transition at,,=0.365. The solid line is the scaling curve on the range of scatterers. A recent study of HuckestEin,

however, reveals that there exists an irrelevant operator in
g tfg ggg'State LLL casealculated by the same methoth) £ vs the case of higher Landau levels and that the seemingly non-

universal behavior is due to the finite size effect of the irrel-
one-parameter scaling relation E(L9) is inappropriate. €evant field. We consider that this is also the case for the LD
Nevertheless, when we try it only with the data which lie in transition atE; of the two-state LLL and, therefore, that the
the region of the right side of the peak, we obtain the expouniversality class is the same as that of the one-state LLL.
nentr=0.26+0.02[Fig. 3@ and 3b)]. This value violates The existence of three extended states can be understood
the Chayest al. inequality’? which givesy=2/d (whered following Lee’'s semiclassical argumeéhtWe consider
is the spatial dimensignOf course this value is a tentative Smooth disorder, i.e., the length scale of variation of the
one and if larger systems are accessed, it may be possibfésorder potential is much larger than the magnetic length.
that the exponent will change into a value which satisfies (In our numerical study, this is not the case, but we believe
the Chayest al. inequality. Anyway, we cannot go further the qualitative features are not unchang&ut now the dis-
in the present study. order has two component$,(x,y),hy(x,y)). An example

We analyze the LD transition ne#t,=0.365 with the Of the disorder potential is seen in Fig. 5. There are some

one-parameter scaling relation E@9). From the data of the Vvortices, which correspond to,=h,=0. In the semiclassi-
large{E,,| region, we obtain the scaling curve [iRig. 4(a)], cal treatment, an electron’s guiding center moves along
the critical energyE., = 0.365, and the localization exponent equienergy lines. Since we restrict the Hilbert space to the
v=3.1+0.2[Fig.4b)]. The data in the regiop0.1,0.35 are lowest Landau level, the electron energy is given by the sec-
strongly affected by the crossover between the two LD tranend term of Eq.(1), i.e., E=*|h| [|h|={(hi+ hi)]. This
sitions, hence we do not apply the scaling relation to the datanergy can be regarded as Zeeman coupling to a random
in this region.[The shapes of\ y-E,, curves in narrow sys- pseudomagnetic fieldh{,h,), and its sign corresponds to
tems are highly asymmetric arourks];, but in the widest spin parallel or antiparallel to this local pseudomagnetic
system of the present studyi(=32), the curve is almost field. Therefore equienergy lines are equal to dhlilines.
symmetric aroundE.; .] In Fig. 4(a), we also depict the scal- So a low{E| electron moves with a vortex inside, and a
ing curve of the LD transition of the one-state LLL with high{E| electron moves with a vortex outside. At an inter-
short-range scattering. Although the exponent3.1 does mediate energy, an electron’s motion will spread over the
not agree with the usual one-state LLL value 2.3, the twowhole system because there is a critical vdhig where the
scaling curves are quite similar. The limiting value equi{h| lines percolatésee Fig. 5. This picture leads to the
limy_..Ay Of the two-state model is about 1.2, close to thatextended state &,= =E_;. In this way, the LD transition
of the one-state model, 1.13. These features remind us of tre E,,= = E; is essentially the percolation of a random field
LD transition of the one-state higher Landau levels. Severalh, ,h,). This is the same story for the usual one-stafgn-
studies reported nonuniversal behavior of the localizationesg model which is described in the Chalker-Coddington
length exponent in higher Landau levels, that is, dependenagetwork model* Therefore it is suggested that the univer-
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1
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T 0.4
0.2

Pr

1.2 E,

FIG. 6. The DOS in the case of Zeeman splittidg=0.1
(M=12, N.=20000, ande=5x10"3). Equation (24) is ex-
pressed by a solid line.

sality class of the LD transition &,=E_; is the same as in

the one-state case. But how about the extended state at
E=0? In this picture,E=0 corresponds toh|=0, i.e., a

vortex core. Following Lee’s argument, each vortex has an
exact E=0 state and its energy spectrum is symmetric Awm
aroundE=0. So each exadE=0 state can hybridize and 01 L %jk .
spread over the whole system and it leads to the extended ]
state atE=0. But this picture cannot tell us about its local- %eK
ization exponent. +

L 1 PR | " al "l "
0.0001  0.001  0.01 0.1 1 10 100
M[é

V. EFFECT OF ZEEMAN SPLITTING (b) /

b
coll
DTS o
* 4+ 0o
]

So far, the two state8 andB (spin up and down states
are completely degenerate. In this section we put an energy .
difference 2A between theA and B states. This can be
achieved by adding the following term to Ed):

o sl

The effect on the DOS is easily understood within the

FIG. 7. (a) The renormarized localization length for sevekg|
he A=0.5 case(b) The scaling curve foA=0, 0.3, and 0.5.

N 2En (Ee_ En)(Ee+ En)
(B = =N E AN E 1A

(20 (24

where E.=yA?+1. The energy gap ifi—A,A] is never

lowest-order perturbation of disorder strengthThe Dyson
equation becomes up to order

GA:GOA+WGAGBGOA! GB:GOB+WGBGAGOB'

(21
Here, we denote the renormalized Green functiodand
B state electrons bg, andGg and the bare one b, and
GOB y i.e., GOA: 1/(E+ A) and GOB: 1/(E_ A) . The SOIU'
tion is

_ 1_ \ 1_4WGOAGOB 1_ \/1_4WGOAGOB

Ca 2w Gopg B~ 2WGon
(22)
The DOS is given by
1
p(E)=—5_IM[Ga(E)+Gs(E)]. (23

After some normalization, we get

filled with off-diagonal disorder, and the DOSB{=*+A is
more enhanced than in the=0 case; in fact, it diverges as
|E,+A|~Y2 (but is still normalizablg The next order term
of the perturbational series can be carried out as in Ref. 4,
but it only leads to weaker divergence, as|Ejp-A)>.

Numerical results are depicted in Fig. 6 with the lowest-
order perturbation results Eq24). Their coincidence is
good. The numerical results indicate a small tail of the DOS
in the region —A,A]. But this is artificial, arising from the
integration nature of the method, described in Sec. II, and
divergence oE,=A.

We study the localization length exponent for
A=0.3,0.5. For example, the renormalized localization

TABLE Ill. E;; and the localization exponents far=0, 0.3,
and 0.5.

A 0 0.3 0.5

Ec 0.365 0.48 0.62
v 3.1+0.2 2.8-0.2 3.0:0.2
VAZ+[E¢(0)]2 0.365 0.472 0.619
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length vsE, for A=0.5 is presented in Fig(&®. We can see tivity oy . In Ref. 6, Lee conjectures that,, does not jump
the  existence of the  extended states  atat the band center.
E,=*0.62=*+E(A=0.5). From the scaling plot for Throughout this paper, we do not consider the scattering
E,=E.1, we obtain the exponent=3.0=0.2, which is al-  within the same spin state. When we introduce this intraspin
most the same value as in the zero Zeeman splitting casegattering in addition, we think that the extended state at
and its scaling curve is in good coincidence with the zerdE,=0 will be destroyed, but that the extended states at
Zeeman ong¢Fig. 7(b)]. We conclude that Zeeman splitting E,= *E_, will survive. This £ E_, state corresponds to the
does not change the universality class of the LD transition atlelocalized states in the two-channel network médeo
E,=E.1. We summarize the critical enerds;, and its ex- we think that our results for the two-state model do not con-
ponenty for A=0, 0.3, 0.5 in Table Ill. But, unfortunately, tradict the two-channel network model.
the behavior neaE,=A is obscure, and we cannot deter- The singular behavior at the band center originates in the
mine whether théE,= + A state is localized or extended. reflection symmetry of the Hamiltonian E€f):

Those properties can be understood with the semiclassical
picture again. In the semiclassical lim@ smooth random o,Ho,=—H. (28)

potential casg an electron energy can be expressed as )
From this symmetry, a state of energyhas to be accompa-

7 nied by a state of energy E. Of course, th€E=0 state is
E=A®+[hl*. (25) special. Recently, Hikami and ZEeanalyzed a lattice of a
This makes a band gap jr- A,A] apparently. Denoting the complex random matrix, which has the same reflection sym-
distribution function oflh| by R(|h|), the DOS is given by ~metry. This model also has the same singular density of
states at the band center@(1/N?), whereN is the size of
_ the random matrix. The reflection symmetry E@8) also
pa(E)dE=R(|h])d]n]. 26 arises in some lattice systertfs:’ Consider the two-
Of course, the DOS foA=0 is py_o(E)=R(E). For the dimensional tight-binding model on a square lattice with
Zeeman splitting case, we get one-half of a flux quantum per plaquette. Since the square
lattice is constructed of two sublatticés and B (bipartite
structure, nearest-neighbor hopping attachesAhsublattice
pA(E)= —=—=pa-0o(E) (27)  to the B sublattice. Introducing randomness to the nearest-
VE“—A neighbor hoppingdue to randomness of a magnetic fjeld

from the energy dispersion relation E@5). So the DOS W€ obtain a two-state random scattering problem. This two-
diverges a§E=A| Y2 and a gap i —A,A] is not filled. sublattice structure plays the role of the spin freedom of our

These results are consistent with the previous perturbativivo-state LLL model.(Of course, introducing random site
calculation, Eq(24). The shift of the extended state energy €N€r9y in the lattice system corresponds to random scattering

E., is also understood. This extended state is associated withtnin the same spin state in our two-state modeldwig
the percolation of [h|, so the critical value|h|, is et al.*’ studied this lattice model focusing on the=0 state.
) C

not changed from theA=0 case. This shows that the After taking a continuum limit and mapping onto(2+1)-
extended  state  energy E. (A) is equal to dimensional Dirac fermion, they considered three types of
Cc

> T . disorder: random Dirac mass, random vector potential, and
‘/A2+ [hlc= \/.Az+ [.E‘?l(o?]z' This plcturg is well supported random scalar potential. Among these models, 2 random vec-
by our numerical simulation, as shown in Table IlI. tor potential model has the reflection symmetry of E28),
which is equivalent to chiral symmetry, and corresponds to
VI. SUMMARY AND DISCUSSIONS random nearest-neighbor hopping in the original lattice sys-

In this paper we investigate the two-state LLL model nu-tém. This model in Ref. 17 has .several properties which re-
merically. The density of states has a singularity, which jsSémble our two-state LLL mode(i) At E=0, the DOS has a
well approxiamated by ([&,[)? at the band center, and the singularity. But the smgl_JIarl_ty depends on the strength of
localization length diverges at three energies, i.e.fandomnessiii) The longitudinal conductivityr, at E=0
E,=0,+E,. The obtained value of the localization expo- IS finite. It P%s"(.—:-xactly the same value as in our two-state
nent is 3.1-0.2 for E,= = E_, and 0.26:0.02 for E,=0, LLL model.®*" (iii) Its wave function aE=0 is extended. It

but the latter is not conclusive in this study because of thdS related to the index theoreft™ /It is of interest to inves-
narrow critical region and small system size. The transitiondigate further the correspondence between our two-state
at E,= =E,, are considered to belong to the conventionalModel and a random vector potential model.

guantum Hall universality class. This behavior is consistent

with the semiclassical argument for a smooth disorder poten- ACKNOWLEDGMENT

tial. In spite of the present study, several questions remain This work was supported in part by a Grant-in-Aid for
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center singularity yet. Another question is the Hall conduc-and Culture.
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