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A two-state model of the lowest Landau level, which includes only interband scattering, is investigated. The
localization properties are studied numerically based on the iterative Green function method. The singularity of
the density of states at the band center is examined in addition to the study of the localization length exponent.
Other extended states located away from the band center are also discussed.

I. INTRODUCTION

Although the localized-delocalized~LD! transition in the
quantum Hall effect~QHE! has been studied extensively by
numerical simulations,1 there is no satisfactory theoretical
explanation for the critical behavior of the LD transiton.

The usual theoretical analyses neglect the spin depen-
dence of the Landau level. Here we consider a spin-
degenerate case: when Zeeman splitting is very small, the
energy of the Landau level becomes degenerate. Under an
impurity potential, an electron scatters between different spin
states. Recently Lee and Chalker2 and Wang, Lee, and Wen3

investigated this spin scattering in the QHE by introducing a
two-channel network model, and they obtained the same
value of the localization exponent as in the spinless case,
although the location of the extended states become different
from the band center.

Assuming that impurity scattering occurs only between
different spin states, and neglecting the scattering within the
same spin state, Hikami, Shirai, and Wegner4 obtained a fi-
nite longitudinal conductivity at the band center in the lowest
Landau level ~LLL !. They suggested that the density of
states~DOS! of this two-state LLL model is singular at the
band center (E50) by a 1/N expansion. However, the true
nature of the singularity remains unsolved because there is a
crossover from the semicircle law near the band center. This
particular model may correspond to the limit of a strong
spin-orbit case: at each scattering, the electron spin has to
flip to the opposite state. Hanna, Arovas, Mullen, and Girvin5

have also tried to analyze this two-state model by calculating
the Thouless number. Lee6 has argued that there appear three
extended states, one at the band center and two other states.

The main purpose of this paper is to investigate further
this two-state LLL model numerically, focusing especially
on the DOS and the localization exponent. To evaluate the
DOS, we employ the iterative Green function method
~MacKinnon-Kramer method!,7 which is a suitable method
for large system size and for the region near the band center.

This paper is organized as follows. In Sec. II we present
the model and explain the iterative Green function method.
Sections III and IV are dedicated to numerical results for the
DOS and the localization exponent, respectively. The effect
of Zeeman splitting is investigated in Sec. V. Discussions
and some comments are presented in Sec. VI.

II. MODEL AND METHOD

The two-state random scattering problem in the quantum
Hall regime is expressed by the following Hamiltonian:

H5
1

2m
~p1eA!21S 0 h~r !

h̄~r ! 0 D . ~1!

The 232 matrix represents two spin states. Since we con-
sider only the subspace of the LLL, the first term becomes
trivial. h(r ) is a random spin-impurity scattering potential
andh̄(r ) is its complex conjugate. We impose the following
correlation for the random potentialh(r ):

^h~r !&5^h̄~r !&50, ~2!

^h~r !h̄~r 8!&5wd~r2r 8!, ~3!

where^ & denotes the ensemble average. The distribution is
Gaussian white noise. The matrix in Eq.~1! has no diagonal
elements: there is no impurity scattering within the same spin
state.

In order to analyze this Hamiltonian numerically, we em-
ploy MacKinnon and Kramer’s iterative Green function
method.7 This method works also for the study of the DOS
of a finite system.8 Details of the calculation by this method
may be seen in the literature1,9 and here we present its brief
description. Let us consider anLx3Ly strip geometry
(Lx@Ly). We impose a periodic boundary condition in the
y direction and use the Landau gauge:A5(2By,0). For a
pure system, the LLL eigenfunctions are

ukn~x,y!5
1

ALy
e2 ikny

1

AAp l c
e2~x2knl c

2
!2/2l c

2
, ~4!

which are labeled with kn52pn/Ly
(n51,2, . . . ,LxLy/2p l c

2). l c is the magnetic lengthAeB/m
and we takeA2p l c as the unit length hereafter. We have also
spin indices denoted byA andB ~spin up and down! for the
present two-state model.

Introducing real hx,y by h(r )5hx(r )1 ihy(r ), and

h̄ (r )5hx(r )2 ihy(r ), the random potential correlation Eqs.
~2! and ~3! becomes

^hx,y~r !&50, ~5!
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^hx~r !hx~r 8!&5^hy~r !hy~r 8!&5
w

2
d~r2r 8!. ~6!

We realizehx,y puttingd-potential scatterers randomly in the
system~the typical density of the scatterers is four per unit
area 2p l c

2).
Since the functions Eq.~4! become exponentially small at

large (x2knl c
2), the matrix elements (kn ,kn8) can be ne-

glected foruknl c
22kn8l c

2u@ l c . We therefore introduce a cut-
off length l cutoff , which is equal to 2A2p l c . We divide the
system into cells in thex direction and the length of each cell
is chosen asl cutoff . Then the Hamiltonian becomes

H5 (
I51,Ncell

$uI &HI ,I^I u1uI &HI ,I11^I11u1uI11&HI11,I^I u%,

~7!

where we denote states in the cell by ket vectors. We define
a Green function by

GI ,J
~N!~E!5K IU 1

E2H ~N!UJL , ~8!

whereH (N) is a part of the Hamiltonian composed of the first
N cells. This Green function can be solved iteratively by the
following recursion formula:

G1,N11
~N11!5G1,N

~N!HN,N11GN11,N11
~N11! , ~9!

GN11,N11
~N11! 5@E2HN11,N112HN11,NGN,N

~N! HN,N11#
21.

~10!

The localization length of a finite system, withM width in
the y direction (M5Ly /A2p l c), is given by

lM
21~E!52

1

2Ncelll cutoff
lnTruG1,Ncell

~Ncell!~E!u2. ~11!

The DOS can be obtained by a similar recursion formula
for Tr(J51,NGJ,J

(N)(E1 i e). The details may be found in Ref.
8.

Finally, we mention the normalization of energy and the
DOS in our calculation. We measure energy by the unit en-
ergyG52Aw and denote the normalized energy byEn . The
DOS is normalized by the integration over the whole energy.
This leads to

E Gr~GEn!dEn51. ~12!

Therefore we define the normalized DOS by
rn(En)[Gr(GEn).

The DOS, the imaginary part of the Green function, is
represented in the smalle→0 limit as

2
1

p
Im

1

E1 i e2H

5
1

p

e

~E2H !21e2
@→d~E2H ! ase→0#.

~13!

The approximation of the DOS with a finitee corresponds to
an average~integration! of the true DOS over the finite width
e.

III. DENSITY OF STATES

By the iterative Green function method, we obtain the
DOS and the localization length of a finite system. The be-
havior of the DOS is shown in Fig. 1~a!. A singularity at the
band center is observed and it is consistent with the result of
the perturbative approach by the 1/N expansion.4 In addition
to the singular band-center behavior, there is a hump around
En;0.4. It is quite different behavior from the usual one-
state ~spinless! LLL case, which was exactly solved by
Wegner.10 To see its band-center singularity more clearly,
we make a rn–(lnEn)

2 plot in the energy range
@0.005, 0.1# @Fig. 1~b!#. Its curve is almost straight. This
means that the perturbative resultrn(En);(lnuEnu)2 is quite
good in the region 0.005,uEnu,0.1, i.e., about 1/10 of the
bandwidth. It is interesting to clarify whether the band-center
densityrn(0) is divergent or not. Our numerical approach,
however, cannot determine this point clearly due to the finite
range integration described in the previous section. Here, we
calculate the DOS atEn50,0.001,0.01 with several system
sizes and several energy resolutionse. The results are sum-
marized in Table I. The value ofrn(0) slightly increases
when the system sizeM is larger or whene is smaller. This
seems to imply the weak divergence of the infinite
(M→`) system. On the other hand, the dependence of the
DOS atEn50.001 and 0.01 onM ande is very small. So it
is considered that the (lnuEnu)2 behavior near the band center
@Fig. 1~b!# is unchanged for largerM .

When the system width is narrow~typically M,2),
rn(En) near the band center becomes very small@Fig. 1~c!#.
It seems that if we setM→0, rn(0) goes to 0. This can be
understood as follows. For the case ofM,1, uknl c

22kn8l c
2u

for differentkn andkn8 is much larger thanl c . So, from Eq.
~4!, the matrix elements between differentkn and kn8 are
negligible. Therefore the Hamiltonian becomes

H5S 0 v1
v̄1 0

0 v2
v̄2 0

�

0

D ~14!

with basis $uk1A&,uk1B&,uk2A&,uk2B&, . . . % and each
v j ( j51,2, . . . ) follows the same distribution independently.
Sincehx andhy are independent, Re(v j ) and Im(v j ) must be
independent variables. We assume that the distribution of
Re(v j ) and Im(v j ) is GaussianPe(a):

Pe~a!}e2aa2. ~15!
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Since the Hamiltonian Eq.~14! is already block diagonalized
and each 232 block is statisticaly independent, it is enough
to take out one block. The eigenvaluesl satisfy the equation

U2l v

v̄ 2l
U50. ~16!

So we get the eigenvaluel56uvu. Then the eigenvalue dis-
tribution P(l), i.e., the density of states, is given by

P~l!5E
2`

`

dvRdv I@d~l2uvu!1d~l1uvu!#Pe~vR!Pe~v I !.

~17!

FIG. 1. ~a! The DOS for a two-state LLL
model with interspin~interband! disorder. System
size isM512 andNcell553104, which means
Ly512A2p l c ,Lx51052A2p l c ( l c is the mag-
netic length!, and we choosee5531023. Exact
solution for the usual one-state LLL model is a
solid line. ~b! The DOS near the band center:
rn-(lnEn)

2 plot. ~c! The DOS for the narrow limit
(M51,2!. The solid line is Eq.~18! with a55.5
for the best fit.
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In polar coordinates for positivel @of course, P(2l)
5P(l)#,

P~l!}2pE
0

`

rdrd~l2r !e2ar2

}ulue2al2. ~18!

This suggests that the DOS vanishes atEn50 and increases
linearly.

A comparison between Eq.~18! and the numerical results
for M51,2 is shown in Fig. 1~c!. TheM51 case appears to
be well approximated by Eq.~18!. Note that vanishing
rn(0) is due to the measure of the random variables, i.e., the
presence of two independent disorders (hx ,hy). It does not
depend on whether the distributionPe is Gaussian. Therefore
we can recognize it as a kind of level repulsion.

This explains also the existence of a hump in Fig. 1~a!. It
is known that pure off-diagonal disorder causes a singular
DOS at the band center. The one-dimensional tight-binding
model with off-diagonal disorder, which was studied in Ref.
11, is one example. Our DOS in Fig. 1~a! can be regarded as
a superposition of a band-center enhancement caused by off-
diagonal disorder andEe2aE2-type behavior that is seen in
the narrow limit.

IV. LOCALIZATION EXPONENT

Next, we discuss the localization property. An overall
profile of the renormalized localization length
LM(En)5lM(E)/M is presented in Fig. 2. (lM is the local-
ization length of a finite strip with widthM .) At first sight,
we recognize the existence of three extended states at
En50,60.365. We analyze these data with the one-
parameter scaling relation

LM~En!5 f „j~En!/M … ~19!

and determine the localization lengthj(En).
As can be seen in Fig. 2, the critical region of the LD

transition at the band center is very narrow and the finite size
effect influences these data strongly. For a small-width sys-
tem, the peak location ofLM is notEn50. When the system
width M becomes larger, the peak location shifts toward
En50. On the other hand,LM at En50.0001, which is the
closest to the band center in the present study, is almost
independent of widthM ~see Table II!. This implies scale
invariance and hence the existence of an extended state at the
band center in spite of the small system sizes. For the odd
behavior of the peak ofLM , application of the standard

FIG. 2. The renormarized localization length for severalEn .
Length of the systemNcell is 33104.

FIG. 3. ~a! The renormalized localization length vsj(En)/M for
the LD transition atEn50. ~b! j vs En .

TABLE II. System width dependence of the renormalized local-
ization lengthLM near the band center.

M 8 16 32

LM(En50.0001) 1.1160.02 1.1460.03 1.1460.06

TABLE I. The DOS near the band center~averaged over five
samples!. Upper: En50; middle: En50.001; lower: En50.01.
Typical system lengthNcell is 13104.

M
e 8 16 32

1.0460.05 1.1360.02 1.1660.02
531024 1.0060.02 0.9760.02 0.9760.01

0.7260.04 0.6960.01 0.6860.01
1.0660.06 1.3860.07 1.5960.04

131024 1.0360.08 0.9760.03 0.9660.01
0.7360.06 0.6760.03 0.6860.02
0.8960.10 1.5260.14 1.8360.03

531025 0.9960.04 0.9560.04 0.9760.03
0.7160.03 0.6860.04 0.6860.04
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one-parameter scaling relation Eq.~19! is inappropriate.
Nevertheless, when we try it only with the data which lie in
the region of the right side of the peak, we obtain the expo-
nentn50.2660.02 @Fig. 3~a! and 3~b!#. This value violates
the Chayeset al. inequality,12 which givesn>2/d ~whered
is the spatial dimension!. Of course this value is a tentative
one and if larger systems are accessed, it may be possible
that the exponentn will change into a value which satisfies
the Chayeset al. inequality. Anyway, we cannot go further
in the present study.

We analyze the LD transition nearEn50.365 with the
one-parameter scaling relation Eq.~19!. From the data of the
large-uEnu region, we obtain the scaling curve in@Fig. 4~a!#,
the critical energyEc150.365, and the localization exponent
n53.160.2 @Fig.4~b!#. The data in the region@0.1,0.35# are
strongly affected by the crossover between the two LD tran-
sitions, hence we do not apply the scaling relation to the data
in this region.@The shapes ofLM-En curves in narrow sys-
tems are highly asymmetric aroundEc1 , but in the widest
system of the present study (M532), the curve is almost
symmetric aroundEc1 .# In Fig. 4~a!, we also depict the scal-
ing curve of the LD transition of the one-state LLL with
short-range scattering. Although the exponentn53.1 does
not agree with the usual one-state LLL value 2.3, the two
scaling curves are quite similar. The limiting value
limM→`LM of the two-state model is about 1.2, close to that
of the one-state model, 1.13. These features remind us of the
LD transition of the one-state higher Landau levels. Several
studies reported nonuniversal behavior of the localization
length exponent in higher Landau levels, that is, dependence

on the range of scatterers. A recent study of Huckestein,1,13

however, reveals that there exists an irrelevant operator in
the case of higher Landau levels and that the seemingly non-
universal behavior is due to the finite size effect of the irrel-
evant field. We consider that this is also the case for the LD
transition atEc1 of the two-state LLL and, therefore, that the
universality class is the same as that of the one-state LLL.

The existence of three extended states can be understood
following Lee’s semiclassical argument.6 We consider
smooth disorder, i.e., the length scale of variation of the
disorder potential is much larger than the magnetic length.
~In our numerical study, this is not the case, but we believe
the qualitative features are not unchanged.! But now the dis-
order has two components„hx(x,y),hy(x,y)…. An example
of the disorder potential is seen in Fig. 5. There are some
vortices, which correspond tohx5hy50. In the semiclassi-
cal treatment, an electron’s guiding center moves along
equienergy lines. Since we restrict the Hilbert space to the
lowest Landau level, the electron energy is given by the sec-
ond term of Eq.~1!, i.e., E56uhu @ uhu5A(hx21hy

2)#. This
energy can be regarded as Zeeman coupling to a random
pseudomagnetic field (hx ,hy), and its sign corresponds to
spin parallel or antiparallel to this local pseudomagnetic
field. Therefore equienergy lines are equal to equi-uhu lines.
So a low-uEu electron moves with a vortex inside, and a
high-uEu electron moves with a vortex outside. At an inter-
mediate energy, an electron’s motion will spread over the
whole system because there is a critical valueuhuc where the
equi-uhu lines percolate~see Fig. 5!. This picture leads to the
extended state atEn56Ec1 . In this way, the LD transition
atEn56Ec1 is essentially the percolation of a random field
(hx ,hy). This is the same story for the usual one-state~spin-
less! model which is described in the Chalker-Coddington
network model.14 Therefore it is suggested that the univer-

FIG. 4. ~a! The renormalized localization length vsj(En)/M for
the LD transition atEn50.365. The solid line is the scaling curve
of the one-state LLL case~calculated by the same method!. ~b! j vs
En20.365.

FIG. 5. The illustration of a random potential (hx ,hy). The
random potential is expressed by a two-dimensional vector field
~arrows!. Solid lines, dashed lines, and dotted lines are equi-uhu
lines, which correspond to smalluhu, large uhu, and critical
uhu(5uhuc), respectively.
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sality class of the LD transition atEn5Ec1 is the same as in
the one-state case. But how about the extended state at
E50? In this picture,E50 corresponds touhu50, i.e., a
vortex core. Following Lee’s argument, each vortex has an
exact E50 state and its energy spectrum is symmetric
aroundE50. So each exactE50 state can hybridize and
spread over the whole system and it leads to the extended
state atE50. But this picture cannot tell us about its local-
ization exponent.

V. EFFECT OF ZEEMAN SPLITTING

So far, the two statesA andB ~spin up and down states!
are completely degenerate. In this section we put an energy
difference 2D between theA and B states. This can be
achieved by adding the following term to Eq.~1!:

S 2D 0

0 D
D . ~20!

The effect on the DOS is easily understood within the
lowest-order perturbation of disorder strengthw. The Dyson
equation becomes up to orderw

GA5G0A1wGAGBG0A , GB5G0B1wGBGAG0B .
~21!

Here, we denote the renormalized Green function ofA and
B state electrons byGA andGB and the bare one byG0A and
G0B , i.e., G0A51/(E1D) andG0B51/(E2D). The solu-
tion is

GA5
12A124wG0AG0B

2wG0B
, GB5

12A124wG0AG0B

2wG0A
.

~22!

The DOS is given by

r~E!52
1

2p
Im@GA~E!1GB~E!#. ~23!

After some normalization, we get

rn~En!5
2En

p
A~Ee2En!~Ee1En!

~En2D!~En1D!
, ~24!

whereEe5AD211. The energy gap in@2D,D# is never
filled with off-diagonal disorder, and the DOS atEn56D is
more enhanced than in theD50 case; in fact, it diverges as
uEn6Du21/2 ~but is still normalizable!. The next order term
of the perturbational series can be carried out as in Ref. 4,
but it only leads to weaker divergence, as (lnuEn6Du)2.

Numerical results are depicted in Fig. 6 with the lowest-
order perturbation results Eq.~24!. Their coincidence is
good. The numerical results indicate a small tail of the DOS
in the region@2D,D#. But this is artificial, arising from the
integration nature of the method, described in Sec. II, and
divergence ofEn5D.

We study the localization length exponent for
D50.3,0.5. For example, the renormalized localization

FIG. 6. The DOS in the case of Zeeman splittingD50.1
(M512, Ncell520 000, ande5531023). Equation ~24! is ex-
pressed by a solid line.

FIG. 7. ~a! The renormarized localization length for severalEn

in theD50.5 case.~b! The scaling curve forD50, 0.3, and 0.5.

TABLE III. Ec1 and the localization exponents forD50, 0.3,
and 0.5.

D 0 0.3 0.5

Ec1 0.365 0.48 0.62
n 3.160.2 2.860.2 3.060.2
AD21@Ec1(0)#

2 0.365 0.472 0.619
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length vsEn for D50.5 is presented in Fig. 7~a!. We can see
the existence of the extended states at
En560.62[6Ec1(D50.5). From the scaling plot for
En5Ec1 , we obtain the exponentn53.060.2, which is al-
most the same value as in the zero Zeeman splitting case,
and its scaling curve is in good coincidence with the zero
Zeeman one@Fig. 7~b!#. We conclude that Zeeman splitting
does not change the universality class of the LD transition at
En5Ec1 . We summarize the critical energyEc1 and its ex-
ponentn for D50, 0.3, 0.5 in Table III. But, unfortunately,
the behavior nearEn5D is obscure, and we cannot deter-
mine whether theEn56D state is localized or extended.

Those properties can be understood with the semiclassical
picture again. In the semiclassical limit~a smooth random
potential case!, an electron energy can be expressed as

E5AD21uhu2. ~25!

This makes a band gap in@2D,D# apparently. Denoting the
distribution function ofuhu by R(uhu), the DOS is given by

rD~E!dE5R~ uhu!duhu. ~26!

Of course, the DOS forD50 is rD50(E)5R(E). For the
Zeeman splitting case, we get

rD~E!5
E

AE22D2
rD50~E! ~27!

from the energy dispersion relation Eq.~25!. So the DOS
diverges asuE6Du21/2 and a gap in@2D,D# is not filled.
These results are consistent with the previous perturbative
calculation, Eq.~24!. The shift of the extended state energy
Ec1 is also understood. This extended state is associated with
the percolation of uhu, so the critical value uhuc is
not changed from theD50 case. This shows that the
extended state energy Ec1(D) is equal to
AD21uhuc

25AD21@Ec1(0)#
2. This picture is well supported

by our numerical simulation, as shown in Table III.

VI. SUMMARY AND DISCUSSIONS

In this paper we investigate the two-state LLL model nu-
merically. The density of states has a singularity, which is
well approxiamated by (lnuEnu)2, at the band center, and the
localization length diverges at three energies, i.e.,
En50,6Ec1 . The obtained value of the localization expo-
nent is 3.160.2 for En56Ec1 and 0.2660.02 for En50,
but the latter is not conclusive in this study because of the
narrow critical region and small system size. The transitions
at En56Ec1 are considered to belong to the conventional
quantum Hall universality class. This behavior is consistent
with the semiclassical argument for a smooth disorder poten-
tial. In spite of the present study, several questions remain
open. We do not have complete understanding of the band-
center singularity yet. Another question is the Hall conduc-

tivity sxy . In Ref. 6, Lee conjectures thatsxy does not jump
at the band center.

Throughout this paper, we do not consider the scattering
within the same spin state. When we introduce this intraspin
scattering in addition, we think that the extended state at
En50 will be destroyed, but that the extended states at
En56Ec1 will survive. This6Ec1 state corresponds to the
delocalized states in the two-channel network model.2,3 So
we think that our results for the two-state model do not con-
tradict the two-channel network model.

The singular behavior at the band center originates in the
reflection symmetry of the Hamiltonian Eq.~1!:

szHsz52H. ~28!

From this symmetry, a state of energyE has to be accompa-
nied by a state of energy2E. Of course, theE50 state is
special. Recently, Hikami and Zee15 analyzed a lattice of a
complex random matrix, which has the same reflection sym-
metry. This model also has the same singular density of
states at the band center inO(1/N2), whereN is the size of
the random matrix. The reflection symmetry Eq.~28! also
arises in some lattice systems.16,17 Consider the two-
dimensional tight-binding model on a square lattice with
one-half of a flux quantum per plaquette. Since the square
lattice is constructed of two sublatticesA and B ~bipartite
structure!, nearest-neighbor hopping attaches theA sublattice
to theB sublattice. Introducing randomness to the nearest-
neighbor hopping~due to randomness of a magnetic field!,
we obtain a two-state random scattering problem. This two-
sublattice structure plays the role of the spin freedom of our
two-state LLL model.~Of course, introducing random site
energy in the lattice system corresponds to random scattering
within the same spin state in our two-state model.! Ludwig
et al.17 studied this lattice model focusing on theE50 state.
After taking a continuum limit and mapping onto a~211!-
dimensional Dirac fermion, they considered three types of
disorder: random Dirac mass, random vector potential, and
random scalar potential. Among these models, a random vec-
tor potential model has the reflection symmetry of Eq.~28!,
which is equivalent to chiral symmetry, and corresponds to
random nearest-neighbor hopping in the original lattice sys-
tem. This model in Ref. 17 has several properties which re-
semble our two-state LLL model.~i! At E50, the DOS has a
singularity. But the singularity depends on the strength of
randomness.~ii ! The longitudinal conductivitysxx at E50
is finite. It has exactly the same value as in our two-state
LLL model.4,17 ~iii ! Its wave function atE50 is extended. It
is related to the index theorem.6,16,17It is of interest to inves-
tigate further the correspondence between our two-state
model and a random vector potential model.
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