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A transformation to a moving frame~the Eckardt frame! is used to study the quantum states of interacting
electrons in parabolic quantum dots in the presence of a perpendicular magnetic field. The approach is moti-
vated by examining ground-state pair-correlation functions obtained by exact diagonalization. The main results
concern the physical nature of the electron states and the origin of magic numbers. Some of the states are found
to be localized about a single minimum of the potential energy. They have well-defined symmetry and are
physically analogous to molecules. They are treated approximately by antisymmetrizing Eckardt frame
rotational-vibrational states. This approach leads to selection rules that predict all the magic angular momen-
tum and spin combinations found in previous numerical work. In addition, it enables the ground-state energy
and low-lying excitations of the molecular states to be calculated to high accuracy. Analytic results for three
electrons agree very well with the results of exact diagonalization. States that are not localized about a single
minimum are also studied. They do not have distinct spatial symmetry and occur only when selection rules and
conservation laws allow tunneling between states localized on different minima. These states appear to be
small system precursors of fractional quantum Hall liquids.

I. INTRODUCTION

Quantum dots are semiconductor nanostructures in which
electrons are confined by a lateral potential applied in the
plane of a two-dimensional system. For instance, a modu-
lated gate electrode close to a quantum well1 or
heterojunction2 can provide the potential necessary to con-
fine very small (,10) numbers of electrons. Recent experi-
mental work has explored phenomena such as quantum dot
charging,1 transport through dots,3,4 and far-infrared
absorption.2 Related theoretical studies have led to interest-
ing predictions such as the existence of magic angular mo-
mentum and spin quantum numbers for interacting electrons
in dots.5,6 These are the only possible angular momenta and
spins of the ground state and if a dot is placed in a magnetic
field, transitions from one magic value to another can be
induced by changing the magnetic field. This is predicted to
cause oscillations in physical properties such as electronic
heat capacity,5 magnetization,6,7 and luminescence8 and to
affect transport9,10 and optical properties11,12 and the chemi-
cal potential.13–15 There is evidence that some of the pre-
dicted transitions have been observed.1,13Another interesting
theoretical prediction concerns the nature of the ground state.
Under certain circumstances it is predicted to have some or-
der whose form is determined by the equilibrium between
the confinement and the Coulomb interaction.16–20 The
physical picture of these states is that of a molecule and
sometimes they are described as ‘‘Wigner molecules.’’ The
present work is concerned both with magic numbers and
electron states. The general idea is to consider the dynamics
in a moving frame of reference. This explains why the magic
numbers occur, enables the ‘‘molecular’’ energy levels to be
calculated accurately, and gives insight into the physical na-
ture of the electron states.

Intuitively, it is clear that the minimum energy state of
confined classical electrons is highly symmetric. For ex-

ample, three classical electrons constrained to move in two
dimensions and confined by a central potential would have a
configuration in the form of a rotating equilateral triangle. It
is less obvious that this kind of symmetry appears in quan-
tum mechanics; nevertheless, pair-correlation functions for
quantum ground states, presented in this work, do exhibit
some symmetry, particularly for large angular momenta.
This suggests that it would be useful to examine the quantum
mechanics in a moving frame of reference chosen to remove
the rotational motion and make the symmetry apparent.
However, it is not possible to decouple the rotational motion
completely because Coriolis forces appear in the moving
frame. This problem is related to the question of finding a
reference frame to describe the vibrational motion of a rotat-
ing molecule. There is no reference frame in which the vi-
brational motion is completely decoupled from the rotational
motion but there is a frame, known as the Eckardt frame, in
which the mechanical angular momentum associated with
the vibrational motion vanishes to first order in
displacements.21 This reference frame is used here to study
the quantum states of interacting electrons in quantum dots.

In the minimum energy state ofN confined classical elec-
trons, each electron orbits in such a way that the electron
configuration as a whole rotates rigidly and has well-defined
symmetry. The classical excitations are vibrations about this
configuration which appear in the Eckardt frame. If the quan-
tum ground state is localized about one of the classical
minima it should have the same symmetry as the classical
minimum and its excitations should be quantized vibrations.
This is the reason for developing a theory in which the Eck-
ardt frame is used and electron states are approximated by
antisymmetrized rotational-vibrational states. It turns out that
this approach can be very accurate. All of the known magic
numbers emerge from selection rules that determine when an
antisymmetric electron state can be constructed from the
rotational-vibrational ground state. In addition, the
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rotational-vibrational energies can provide a very good ap-
proximation to the energy of the electron ground state and its
excitations~accurate up to one part in 10 000 for three elec-
trons!. There are of course quantum states which are not
localized about a single classical minimum. They arise from
quantum tunneling between minima of different symmetry
and do not have symmetry that is characteristic of any single
minimum. The tunneling is governed by selection rules and
conservation laws that only allow it to occur for a subset of
the possible ground-state quantum numbers. Thus the ground
states may be classified into two types: those that are local-
ized about a single minimum, where the physical picture is
‘‘molecular,’’ and those that are spread over more than one
minimum, where the physical picture is ‘‘liquidlike.’’~The
term ‘‘liquidlike’’ is used here to describe the loss of sym-
metry that occurs when states on different minima are al-
lowed to mix.! It turns out that the liquidlike states only
occur at the same filling factors as fractional quantum Hall
liquids.

In brief, the main results of this paper are the relation
between the magic numbers and the symmetry of classical
minima, the accuracy of the vibrational approximation for
the ‘‘molecular’’ states, and the analysis of the effects of
tunneling. The paper opens with a summary of the current
theoretical model of quantum dots~Sec. II!. This is followed
by numerical results on pair-correlation functions~Sec. III!
which are used to demonstrate the symmetry of the quantum
ground states and make the intuitive remarks of the last two
paragraphs more precise. Sections IV and V deal with clas-
sical and quantum rotational-vibrational motion and give
generalizations that are needed to apply results from molecu-
lar physics to quantum dots. In particular, it is necessary to
allow for the presence of a magnetic field, determine the
equilibrium configuration, and deal with Coriolis coupling.
~Unlike molecules, quantum dots have strong Coriolis cou-
pling and this must be treated exactly to obtain accurate re-
sults.! The connection between the magic numbers and the
symmetry of the classical equilibrium configurations is made
in Sec. V. Section VI gives an analytic treatment of the vi-
brational approximation for three electrons which is used to
illustrate the general theory and demonstrate its accuracy.
The effects of tunneling are covered in Sec. VII and the
paper closes with a discussion of the implications of this
work ~Sec. VIII!. Two appendixes contain technical details.
Preliminary reports of some parts of this work are available
in the literature.19,20

II. PARABOLIC QUANTUM DOTS

The present work is concerned with electrons that are
constrained to move in a plane and are confined by a para-
bolic potential applied within this plane. It is accepted that
this model of a quantum dot contains all the essential physics
although there is evidence that some details need to be im-
proved before it can be used to match real experimental
data.24,25The Hamiltonian is
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where the first term is the one-electron term, the second term
is the Coulomb interaction term, and the last term is the
Zeeman energy. The magnetic fieldBk̂ is perpendicular to
the plane of the dot, the confinement energy is\v0 , m* is
the effective electron mass,g* is the effectiveg factor, and
e is the dielectric constant. The circular gauge is used and
the magnetic vector potential,A5(B/2)(k̂3r ).

Without interaction the eigenstates of the system would be
antisymmetrized products of the states of the one-electron
Hamiltonian. These one-electron states are the well-known
Fock-Darwin states which have the form
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u l u are associated Laguerre polynomials,

l25\/(2m*V), V25v0
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2/4, andvc is the cyclotron
frequency,eB/m* . The parameterl is a measure of the
length scale of the system, both in the interacting and non-
interacting case, and it is sometimes convenient to use it as
the length unit.

Theoretical and numerical results are compared through-
out this work. In all cases results are for GaAs dots
(m*50.067,g*520.44, e512.4) with a confinement en-
ergy of 4 meV. This is a little larger than typical experimental
values~2–3 meV! and is deliberately chosen to allow trends
to be illustrated without running numerical calculations for
excessively large angular momentum values.

III. NUMERICAL CHARACTERIZATION
OF ELECTRON STATES

A. Correlation functions

Quantum states of interacting electrons are often charac-
terized by the electron density or the pair distribution func-
tion but these functions are unsuitable in the present case
because they only depend on distances. This means that they
are insensitive to angular correlations which turn out to be
very important in quantum dots, particularly so in the limit of
large angular momentum. A better way of characterizing the
states is to use the pair-correlation functionPss8(r ,r0), de-
fined by the equation,
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~2pl2!2

N~N21! K (iÞ j
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where the angular brackets denote the expectation value for
the state to be characterized ands,s8,si ,sj denote spins. The
vector r0 is fixed while r is varied so the resulting function
of r is proportional to the probability of finding an electron at
r given that there is one atr0 . Roughly speaking, use of this
function enables rotational motion to be ‘‘frozen’’ which al-
lows the angular distribution to be ‘‘seen.’’ The normaliza-
tion of P is chosen such that it is normalized to unity when
lengths are measured in units ofl. That is,
1/(2p)2(s51

N (s851
N *Pss8(r 8,r 80)dr 8dr 8051, where r 8 and

r 80 are dimensionless. This normalization is convenient for
numerical calculations and is consistent with the normaliza-
tion of the pair-distribution function used in previous work.26

The electron density,ns(r ), and pair-distribution functions,
gss8(r ), can be obtained by integratingPss8(r ,r0):

ns~r !5
N

~2pl2!2(s8
E Pss8~r ,r0!dr0 , ~5!

gss8~r !5
1

2pl2E Pss8~r1r0 ,r0!dr0 . ~6!

It may be shown that the integrals only depend onr when the
dot is parabolic; thus the angular information inPss8(r ,r0) is
eliminated when it is integrated to obtainns(r ) and
gss8(r ).

B. Classical equilibrium configurations

The shape ofPss8(r ,r0) clearly depends onr0 . Extensive
numerical studies have shown thatPss8(r ,r0) generally takes
its largest values whenr 0 is close to the radius of the clas-
sical minimum energy~or equilibrium! configuration. Fur-
ther,Pss8(r ,r0) rotates rigidly whenr0 is rotated so the only
nontrivial influence on the shape is viar 0 . For up to five
electrons the classical equilibrium configuration is ring
shaped and rotates in such a way that the electrons remain
equidistantly spaced around the ring. For six and seven elec-
trons the minimum energy configuration is also ring shaped
but there is one electron at the center of the ring. These
configurations are the same as those found by Bedanov and
Peeters22 for nonrotating classical systems. In the rotating
case they correspond to the Lagrangian orbits that are well
known in celestial mechanics.27 Indeed, the methods of ce-
lestial mechanics can be used to determine them, although a
different approach is used in the present work~Sec. IV!.
Once the shape of the minimum energy configuration is
known it is very easy to determine its size, as defined by the
radiusa of the largest orbit. The Hamiltonian,E0 , of a con-
figuration rotating about its center of mass may be written in
the form
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where the center of mass is stationary,L[2\J is the total
angular momentum,I 0 is the equilibrium moment of inertia,
and aN is a Madelung constant which can be determined
from the total electrostatic energy. For anN-fold ring with
N electronsaN5sN[( i51

N21@4usin(fi/2)u#21, where thef i

are the distinct angles subtended at the center of the ring by

pairs of electrons. For an (N21)-fold ring, with one electron
at the center,NaN5(N21)(sN2111). The moment of in-
ertia has the formI 0(a)5m* a2( iai8

2[m* a2I 08 , where the
ai8 are dimensionless numbers that depend on the shape of
the configuration. MinimizingE0 leads to the equation
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which determinesa. The exact solution can be found by
Newton-Raphson iteration but an approximation useful in the
limit of large uLu is

a5A uLu
m* I 08V

1OS 1

uLu D . ~9!

Physically, this means that the Coulomb interaction only has
a small effect on the orbit radii when the angular momentum
is large. Unless otherwise stated all the pair-correlation func-
tions shown in the present work were calculated withr0 on
thex axis with r 0 determined from the exact solution of Eq.
~8!.

C. Numerical results

The pair-correlation functions are calculated for ground
states of systems with different numbers of electrons. It is
well known that the ground state only has certain magic
combinations of angular momentum and spin
values5–8,10,19,24which are dependent on the number of elec-
trons. For example, the ground state of three spin-polarized
electrons always has an angular momentum quantum number
that is a multiple of 3. Readers unfamiliar with this feature
are urged to look ahead to Fig. 3 where numerical results for
three interacting electrons are given. The figure shows the
ground-state energy as a function of total angular momentum
at a fixed value of the magnetic field. Small minima occur
when the angular momentum is a multiple of 3. The ground-
state angular momentum is always one of the magic num-
bers, but the value that occurs is dependent on the magnetic
field and the confinement energy. With increasing magnetic
field, a series of transitions occurs in which states of increas-
ing angular momentum become the absolute ground state.
Thus it is necessary to vary the magnetic field to obtain a
state with a particular angular momentum. This has been
done in the present work to obtain a selection of correlation
functions that are typical of the high angular momentum
limit.

Figure 1 shows pair-correlation functions for magic
ground states of two to seven spin-polarized electrons. The
electron numbers, angular momenta, and magnetic fields at
which the states occur are indicated in the figure. The black
spots indicater0 and the length unit is 1.89 nm. The figure is
meant to show the qualitative form ofPss(r ,r0) and in par-
ticular its symmetry. The contours were obtained by numeri-
cally diagonalizing the Hamiltonian within the lowest Lan-
dau level. Because the magnetic field and angular
momentum are so large the higher Landau levels introduce
corrections of only a few percent. In addition it has been
shown19 that inclusion of the higher Landau levels does not
alter the qualitative form ofPss(r ,r0). It is clear that the
positions of the maxima inPss(r ,r0), together with the po-
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sition of the fixed electron, have the same symmetry as the
classical minimum energy configuration. For example, for
three electrons the two maxima and the fixed electron form
the corners of an equilateral triangle. Ring-shaped configu-
rations occur for up to five electrons but for six and seven
electrons there is a maximum in the center of an
(N21)-fold ring. The maxima for six and seven electrons
are not quite as sharp or symmetric as those for five or fewer
electrons because the six and seven electron states were cal-
culated for lower magnetic fields than those for five or fewer
electrons. This was necessary because the calculation of
Pss(r ,r0) is quite expensive but it means that the angular

momenta of the six and seven electron states are low relative
to those for fewer electrons. This is best viewed in terms of
the effective filling factor,28 n5N(N21)/2J. For five elec-
tronsn50.25 while for seven electrons it is 0.37.

Figure 2 illustrates howPss(r ,r0) changes when various
parameters are changed and in addition illustrates the elec-
tron density. All the frames are for three interacting spin-
polarized electrons. For comparative purposes the bottom
center frame showsPss(r ,r0) for the J512 state shown in
Fig. 1. The effect of increasingJ is shown in the bottom left
frame. It is clear that both the size of the triangular ring and
the sharpness of the peaks increase whenJ is increased to 30
~which corresponds to an excited state atB520 T!. The top
three frames are surface plots which show the effect of
changingr0 . In the top center framer 0 is as given by Eq.~8!
but in the top left frame it is decreased by 50% while in the
top right frame it is increased by 50%. The actual value of
r 0 is r 08l wherel55.66 nm and the value ofr 08 is indicated
in the figure. The main effect of changingr 0 is to change the
heights of the peaks. They are clearly largest whenr 0 is as
given by Eq.~8!. The electron density of theJ512 state is
shown in the contour plot in the bottom right frame. Four
Landau levels were used to calculate it to an accuracy of
better than 1%. The density has a ring-shaped maximum
whose radius is close to the classical radius given by Eq.~8!.
In fact, this equation gives a radius of 16.2 nm while the
numerically calculated density has its maximum at a radius
of 15.6 6 0.3 nm. The uncertainty is due to the grid size
used in the numerical calculation and this is also responsible
for the small jitter on some of the density contours.

D. Motivation for Eckardt frame theory

The symmetry ofPss(r ,r0) suggests that a good physical
picture of the states characterized here is that of a rotating
and vibrating molecule and the agreement of the classical

FIG. 1. Pair-correlation functionPss8(r ,r0) for magic ground
states of two~upper left frame! to seven~lower left frame! spin-
polarized interacting electrons. The black spots denoter0 . The x
andy unit is 1.89 nm.

FIG. 2. Pair-correlation functions and electron density for three interacting, spin-polarized electrons. The upper frames show how the
pair-correlation function,Pss8(r ,r0), for J512 evolves whenr0 ~black spot! is changed as described in the text. The lower left and center
frames showPss8(r ,r0) for J530 andJ512 while the lower right frame shows electron density contours forJ512. Thex andy unit is 1.89
nm.
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three-electron radius with the radius of the maximum in the
three-electron density suggests that this picture should be
accurate. This confirms the intuitive remarks made in the
Introduction and provides the motivation for developing a
theory in which the starting point is the classical equilibrium
configuration and in which electron states are approximated
by rotational-vibrational states that are localized about this
configuration. The Eckardt frame then appears naturally as
the reference frame in which the equilibrium configuration is
stationary. There are actuallyN! equilibrium configurations,
each corresponding to a different permutation of the elec-
trons. Some of these configurations are connected by permu-
tations that are equivalent to rotations but there are other
configurations which are not connected by rotations. For ex-
ample, a configuration of three electrons at the corners of an
equilateral triangle with vertices labeled~123! in a clockwise
sense can be rotated into the configuration~312! but cannot
be rotated into the configuration~213!. The configurations
that cannot be connected by rotations will be calledsym-
metrically equivalent—a term borrowed from molecular
physics.29 A harmonic expansion can be done about any of
the symmetrically equivalent configurations and the quantum
vibrational states localized on each symmetrically equivalent
configuration are degenerate. The electron states are then ap-
proximated by antisymmetrizing these degenerate states. The
vibrational states have symmetry that is characteristic of the
equilibrium configuration and it turns out that this symmetry
leads to selection rules that restrict the angular momentum
and spin combinations of the ground state to the known
magic numbers. Thus the magic numbers are a consequence
of the symmetry shown in Fig. 1. It is important to remember
that the magic numbers will emerge from an approximation
in which tunneling between symmetrically equivalent
minima is neglected. In reality this effect breaks the degen-
eracy of states centered on the symmetrically equivalent
minima and can affect the magic numbers. However, it turns
out that the splitting of the degenerate states is very small
unless the total angular momentum is small. The effects of
tunneling are examined more quantitatively in Sec. VII after
the vibrational approximation has been treated in detail and
compared with the results of exact diagonalization. Section
VII also contains a discussion of symmetricallyinequivalent
minima, that is, competing classical minima which have
similar energies but different types of symmetry. In this case
quantum tunneling is much more important and leads to the
liquidlike states mentioned in the Introduction.

IV. CLASSICAL ROTATIONAL-VIBRATIONAL STATES

A. Classical Hamiltonian

Before stating the vibrational-rotational Hamiltonian it is
necessary to be precise about the reference frame in which
the vibrational motion occurs. The Eckardt frame30 or ‘‘mol-
ecule fixed coordinate system’’29 is used because it is impos-
sible to decouple rotational motion completely from the vi-
brational motion.21,31 The frame is constructed so that its
origin is at the center of mass~CM! and it rotates in such a
way that the angular momentum associated with the vibra-
tional motion vanishes to first order in displacements. In the
absence of a magnetic field, the second requirement leads to
the Eckardt condition,( iai3r i850, where theai are equilib-

rium positions~which are fixed vectors!, the r i8 are positions
relative to the CM, and all vectors are in the Eckardt frame.32

The r 8i are related to laboratory frame position vectors via
r i85R̄ (x)Ri whereRi is a laboratory position vector relative
to the CM andR̄ (x) is an anticlockwise rotation of the axes
about the normal to the plane of the dot, through an angle
x. @The notationR̄ is used here to distinguish a rotation of
axes from a rotation,R, of a vector:R̄ (x)5R(2x).# The
Euler angle,x, is determined from the Eckardt condition by
the equation

(
i
ai3R̄ ~x!Ri50. ~10!

In the presence of a magnetic field the Eckardt condition is
the same as at zero field. It can be shown~Appendix A! that
this minimizes the coupling between rotational and vibra-
tional motion in the same way as at zero field.

The Hamiltonian for electrons in a parabolic quantum dot
separates5,33 into terms describing CM and relative motion
~RM!, that is, H5HCM1HRM . The rotational-vibrational
motion is described byHRM which depends on 2N22 coor-
dinates. One of these is associated with rotational motion and
the remaining 2N23 with vibrational motion. The vibra-
tional degrees of freedom are displacements,ri , expressed
in the Eckardt frame, so thatr 8i5ai1ri , and the rotational
degree of freedom is the Euler angle,x. What is needed here
is the RM Hamiltonian expressed in terms of displacements.
It is convenient to anticipate that it will be used to study
vibrational motion and write it in terms of normal coordi-
nates at the outset. Thus the displacement vectors have the
general formri5( j51

2N23Qi j Qj where theQj are normal co-
ordinates and theQi j are elements of a transformation ma-
trix. The derivation of the normal coordinate Hamiltonian for
zero magnetic field is treated in standard texts29,34 and the
treatment is easily generalized to the case when a perpen-
dicular magnetic field is present~Appendix A!. Thus the
classical RM Hamiltonian is
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where the notation is similar to that used by Wilson, Decius,
and Cross:34 LRM is the RM angular momentum,
Lv5(kZkPk , Zk5( i j (Qi j3Qik)• k̂Qj , and m5I 0 /(I 0
1m*( i jai•Qi j Qj )

2. HerePj is the momentum conjugate to
Qj , I 0 is the equilibrium moment of inertia, andV is the
total potential~including confinement and interaction terms
together with a term quadratic in the magnetic vector poten-
tial!. The quantityLv is an angular momentum associated
with vibrational motion and it involves products of coordi-
nates and momenta. Physically, the coupling of these quan-
tities occurs because Coriolis forces appear in the moving
Eckardt frame. The Hamiltonian is independent ofx which
is consistent with conservation of the RM angular momen-
tum. Although the Hamiltonian is intended for the study of
vibrational excitations it is at this stageexact because no
approximations have been made to the potential.
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B. Equilibrium positions and normal modes

The equilibrium positions are found by setting the linear
momenta in Eq.~11! to zero and minimizing the resulting
effective potential. The condition that the minimum occurs
when all the displacements are zero leads to the equations

m* LRM
2

I 0
2 ai2“ iVur

i85ai
50. ~12!

These equations give all the symmetrically equivalent con-
figurations, predict the ring shapes discussed in Sec. III and
lead directly to Eq.~8!. They are similar to the equations that
define Lagrangian orbits in celestial mechanics.27

The normal modes are found in the usual way by diago-
nalizing the matrix of second derivatives of the potential. In
the present case there is a centrifugal term as well as the
potentialV. Thus the effective potential isV8[mLRM

2 /21V
and the elements of the second derivative matrix have the
general form

Vj ij j
8 5

3m* 2LRM
2

I 0
3 aj i

aj j
1

]2V

]j i]j j
, ~13!

where thej i denote components ofr i8 . Diagonalization of
this matrix gives two CM modes, one rotational mode, and
2N23 vibrational modes and the latter are used to evaluate
the RM Hamiltonian@Eq. ~11!#. Coriolis effects have not
been taken into account at this stage so the normal mode
frequencies do not correspond to those of the vibrational
modes.

C. Vibrational modes

The vibrational Hamiltonian,H8, is found by expanding
the RM Hamiltonian about one of the symmetrically equiva-
lent equilibrium configurations. Retaining terms of second
order or lower in momenta and coordinates leads to
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whereCjk[(2LRM /I 0)( iQi j3Qik• k̂ is a Coriolis coupling
coefficient andvn j is the frequency of thej th normal mode.
Equation ~14! gives the zeroth-order term in a systematic
expansion of the Hamiltonian in powers of 1/a and at large
angular momentum the corrections toH8 are of order
1/AuLRMu. This can be shown by arranging the Taylor expan-
sions ofm andV in powers of 1/I 0 and using the approxi-
mation uLRMu.VI 0 which follows from Eq.~9!.

The vibrational modes are determined by assuming har-
monic time dependence and using the Hamiltonian equations
of motion. This leads to the following eigenvalue problem
for the vibrational frequencies,v,

S V C

CT T D S qpD 5 ivS 2p

q D , ~15!

whereTjk5(1/m* )d jk , Vjk5m*vn j
2 d jk , C is the matrix of

Coriolis coupling coefficients, andq and p are vectors of
amplitudes. It is convenient to write this equation in the form
Wx5 ivM21x where,

W5S V C

CT T D , M5S 0 E

2E 0 D , ~16!

xT5(qT,pT) andE is the unit matrix. This type of eigenvalue
problem is often encountered in classical mechanics, for ex-
ample, in discussions of orbital stability, and its properties
are well understood. The modes come in pairs with frequen-
cies6v and they are orthogonal, in the sense that ifqj

6 and
pj

6 are positive and negative frequency eigenvector compo-
nents thenpj

2
•qk

12qj
2
•pk

150 unlessj5k. If there are de-
generate modes, linear combinations of them can be found
such that this property holds. The eigenvectors can be nor-
malized such that the matrix,K, whose columns are eigen-
vectors, satisfies the relation

MKTM21K5E. ~17!

The proofs of these statements are given in standard texts on
classical mechanics.27,35 In the present work,K is defined
such that the first 2N23 columns correspond to positive
frequencies, that is,

K5S Q1 Q2

P1 P2D , ~18!

whereQ6 andP6 denote matrices whose columns are posi-
tive or negative frequency eigenvector components. Further,
in the present work, all the frequencies,v, are real soq2 and
p2 are the complex conjugates ofq1 andp1. ThusQ2 and
P2 have the form

Q25 iQ1* , P25 iP1* , ~19!

where the factors ofi are required to normalize the eigen-
vectors according to Eq.~17! and this equation itself takes
the form

S 2 iQ1* TP11 iP1* TQ1 Q1* TP1*2P1* TQ1*

Q1TP12P1TQ1 1 iQ1TP1*2 iP1TQ1* D
5S E 0

0 ED . ~20!

V. QUANTUM ROTATIONAL-VIBRATIONAL STATES

A. Quantum Hamiltonian

The quantum RM Hamiltonian can be derived the same
way as the classical one; however, the noncommutativity of
quantum coordinates and momenta leads to the presence of
an extra term called the Watson term.29,37,38 This has the
form 2\2m/8 but it is of order 1/LRM so does not contribute
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to the vibrational Hamiltonian to the order considered here.
Thus the quantum RM Hamiltonian has the same form as the
classical one@Eq. ~11!#. It depends on the angular momen-
tum operator2 i\]/]x but does not depend onx. Therefore
the RM wave function has the exact factorization
cRM5exp(2iJRMx) fRM , where fRM is a function of
2N23 normal coordinates. Making this separation and per-
forming a harmonic expansion leads to the quantum vibra-
tional Hamiltonian which is given by Eq.~14! with the clas-
sical variables replaced by operators.

B. Quantum vibrational states

To find the quantum vibrational states it is necessary to
diagonalize the Hamiltonian defined by Eq.~14! in which
coordinates and momenta are coupled. The classical vibra-
tional Hamiltonian can be simplified by a canonical
transformation27,35,36 and a similar transformation can be
used to diagonalize the quantum Hamiltonian, but as far as
the author is aware this has not been mentioned in the litera-
ture. To diagonalize the quantum Hamiltonian new operators
are defined by the relations

aj
15

i

A\
(
k

2Qjk
2TPk1Pjk

2TQk ,

aj5
1

A\
(
k
Qjk

1TPk2Pjk
1TQk .

These operators obey the commutation relations
@aj

1 ,ak
1#5@aj ,ak#50, @aj ,ak

1#5d j ,k and when the Hamil-
tonian is expressed in terms of them it becomes
( j\v j (aj

1aj11/2). Thus all the states of the system can be
expressed as powers of theaj

1 operating on the ground state.
The ground state itself is determined from the condition that
it is annihilated by all theaj , that is,

F (
k51

2N23
\

i
Qjk

1T ]

]Qk
2Pjk

1TQkG fGS~Q1 , . . . ,Q2N23!50,

~21!

for all j . It is easy to verify that this requirement is satisfied
when

fGS~Q1 , . . . ,Q2N23!5expS i

2\ (
k51

2N23

(
k851

2N23

Lkk8QkQk8D ,
~22!

whereL5(Q1T)21P1T is a symmetric matrix. The symme-
try follows from the orthogonality condition
P1TQ12Q1TP150 @Eq. ~20!#.

C. Symmetry properties of vibrational states

The symmetry properties of the vibrational states are
needed to simplify the construction of antisymmetric states.
As usual, the symmetry operators of the normal mode
Hamiltonian are spatial transformations of the displacement
vectors combined with permutations of the points to which
the displacements are attached.29 That is, a symmetry opera-
tion, O, transforms the displacements according to

ri85Orp21~ i ! , ~23!

Oai5ap~ i ! , ~24!

where the second equation defines the permutation,p( i ).
The equilibrium structures considered here havem-fold ro-
tational symmetry and their point group is generallyCmv .
The only spatial symmetries of the vibrational Hamiltonian
are rotations because the Coriolis coupling breaks mirror
symmetry. Therefore the spatial symmetry group ofH8 is the
cyclic group,Cm . The full symmetry group ofH8 also con-
tains mirror operators,s, combined with time reversal,t.

It is important to know how the quantum vibrational
states transform under rotations. The matrix that transforms
the normal modes is block diagonal and its blocks are the
irreducible representation~irrep! matrices of the point group.
The matrix that transforms them is

K21S DQ 0

0 DQD K5S 2 iQ1* TDQP
11 iP1* TDQQ

1 Q1* TDQP
1*2P1* TDQQ

1*

Q1TDQP
12P1TDQQ

1 1 iQ1TDQP
1*2 iP1TDQQ

1* D , ~25!

whereDQ[DQ(R) is the matrix that transforms the normal
modes,RPCm , and the right-hand side has been obtained
with the aid of Eqs.~17–19!. A symmetry operation cannot
mix raising and lowering operators; otherwise it would not
leave the Hamiltonian invariant. Therefore the off-diagonal
blocks in Eq.~25! must vanish. The two diagonal blocks are
complex conjugates of each other becauseDQ(R) is real.
Therefore, the transformation matrix for the raising and low-
ering operators has the general form

S Da 0

0 Da* D . ~26!

The matrixDa[Da(R) is diagonal when all the vibrational
modes are nondegenerate. Because all the irreps ofCm are
one dimensional, degeneracy in the present case can only be
due to the presence of the antiunitary operationsts in the
full symmetry group ofH8. Dimmock and Wheeler39 have
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shown that the presence of antiunitary operations in a group
does not cause additional degeneracy when(x„(ts)2…
5ng , where the sum is over all antiunitary elements,
x„(ts)2… are characters in an irrep of the unitary subgroup,
and ng is the order of the unitary subgroup. In the present
case (ts)2 is always the identity operator,x„(ts)2…51 and
the number of mirror operations ism. Therefore the condi-
tion of Dimmock and Wheeler is satisfied. It follows that all
the vibrational modes are nondegenerate andDa is diagonal.
Further, the vanishing of the off-diagonal blocks on the right-
hand side of Eq.~25! implies thatDQ commutes withL.
Thus the ground vibrational state is symmetric under rota-
tions and the excited states change phase. The possible
phases are given by the irreps ofCm and in the present work
these irreps are labeled by an integerkv , such that an anti-
clockwise rotation through 2p/m is represented by
exp(2pikv /m). These simple transformation properties of the
vibrational states lead to a simple solution of the antisymme-
trization problem.

D. Antisymmetrization

Once the vibrational states have been found, approximate
eigenstates of the electrons may be obtained in the form

C5ÂcCMcRMcspin~Sz!, ~27!

5ÂcCMexp~2 iJRMx!

3 f JRM ,n1 , . . . ,n2N23
~Q1 . . . ,Q2N23!cspin~Sz!, ~28!

where the antisymmetrization operator,Â, operates on labo-
ratory frame electron coordinates,cCM is the CM wave func-
tion ~which is unaffected by antisymmetrization!, f is the
vibrational wave function,n1 , . . . ,n2N23 are the numbers of
quanta in each vibrational mode,cspin is the spin function,
andSz is thez component of the total spin,S. The antisym-
metrization either gives an antisymmetric state or zero, de-
pending on the quantum numbersJRM ,n1 , . . . ,n2N23 , and
Sz . For the quantum number combinations that lead to anti-
symmetric states the total energy is

E5ECM~nCM ,JCM!1E01 (
i51

2N23 S ni1 1

2D\v i1g*mBBSz ,

~29!

whereECM is the energy of the center of mass,nCM and
JCM are the radial and angular momentum quantum numbers
of the CM, andE0 is the classical equilibrium energy given
by Eqs.~7! and~8!. Thus the total energy can be found very
simply once the allowed combinations of quantum numbers
have been identified.

The difficulty with antisymmetrizing the function in Eq.
~28! is that most permutations transform the Euler angle and
normal modes in a complicated way. However, the transfor-
mation properties are very simple under the subgroup of per-
mutations that are equivalent to rotations and the physical
reason for this is that these permutations cannot change one
symmetrically equivalent minimum into another. To find the
effect of these permutations on the Eckardt frame displace-
ments first consider their effect on the Euler angle. In Eq.
~10! the ai are fixed vectors; therefore, any permutation of

theRi changes the Euler angle. For those permutations that
are equivalent to rotations,R, in the sense of Eq.~24! the
new Euler angle,x8, is easy to find because

(
i
ai3R̄ ~x8!Rp~ i !5(

i
ap21~ i !3R̄ ~x8!Ri

5R21(
i
ai3RR̄ ~x8!Ri . ~30!

But RR̄ (x8)5R̄ (x82f); therefore,x85x1f wheref is
the angle of the rotationR. After allowing for the change in
x it is found that the Eckardt frame displacements transform
according to the equation

ri85R21rp~ i ! , ~31!

and on comparing this with Eq.~23! it can be seen that a
permutation that is equivalent to a rotation changes the dis-
placements by the inverse of the rotation to which it is
equivalent. The effect of these permutations oncRM is easily
found because the rotational-vibrational states transform ac-
cording to the irreps ofCm .

The antisymmetrization is done by a method used to find
nuclear spin statistical weights of molecules.40 Spin func-
tions are chosen to transform like the irreps of the subgroup
of rotationally equivalent permutations,CR . This group is
isomorphic toCm and under the permutation,PR , that is
equivalent to an anticlockwise rotation through 2p/m,
the spin functions transform according toPRcspin
5exp(22piks/m)cspin, where 0<ks,m. They can be con-
structed by means of projection operators—an example is
given in the next section. The symmetric group can be de-
composed into left cosets with respect toCR so that
SN5P1CR1•••1Pnc

CR , wherenc5N!/m and an arbitrary

permutation can be written in the formp5PsPR
t , where

PR
t PCR and 0<t,m. The allowed combinations of quan-

tum numbers are found by writingÂ in the form
Â5(1/N!)(s51

nc ( t50
m21(21)Ps(61)tPsPR

t , where the sign
depends on the parity ofPR . Substituting this into Eq.~28!
leads to

C5 (
t50

m21

~61! texpF22p i t

m S JRM1ks1 (
i51

2N23

nikv~ i !D G
3~1/N! !cCM(

s51

nc

~21!PsPscRMcspin, ~32!

and it is clear thatC vanishes unless

JRM1ks1 (
i51

2N23

nikv~ i ![H 0 mod m, m odd

m/2 mod m, m even.
~33!

Equation~33! is a necessary condition for the antisymmetri-
zation to give a nonzero result and provided that the func-
tions PscRMcspin are independent it is also sufficient as
shown by Wilson.40 An alternative way of proving suffi-
ciency is to use the Frobenius reciprocity theorem. If the
functionsPscRMcspin are independent they form a basis for
the representation~rep! of SN induced by the irrep,G, of

10 878 53P. A. MAKSYM



CR in which PR is represented by61. According to the
reciprocity theorem the number of times the induced rep con-
tains the antisymmetric irrep is equal to the number of times
the rep ofCR subduced from the antisymmetric irrep ofSN
contains G. This number is (1/m)( t50

m21(61)t(61)t51.
Therefore Eq.~32! gives an antisymmetric state only when
Eq. ~33! is satisfied. Physically, Eq.~32! expressesC as a
linear combination of rotational-vibrational states localized
on thenc symmetrically equivalent minima.

The magic numbers are a direct consequence of Eq.~33!.
For a ground state the number of quanta in each vibrational
mode is zero andJCM50. Therefore the angular momentum
and spin combinations of ground states are restricted to those
that satisfy J1ks[0 mod m when m is odd and
J1ks[m/2 mod m when m is even. For spin-polarized
states this condition is particularly simple becausecspin is
symmetric andks50. Then the possible angular momenta of
the ground state are J5N(N21)/21kN and
J5N(N21)/21k(N21) wherek is an integer, forN and
(N21)-fold symmetry, respectively. This is in exact agree-
ment with Fig. 1, earlier results,5,6 and a recent composite
fermion approach.41,42A further discussion is given in Secs.
VII and VIII after the accuracy of the vibrational approxima-
tion has been tested for the three-electron case.

VI. THREE INTERACTING ELECTRONS

A. Normal modes

The equilibrium configuration of three electrons is an
equilateral triangle with the radius of each electron orbit
given by Eq.~8!. Standard methods for finding the normal
modes are described in the literature,34 including a detailed
treatment of molecules withC3v symmetry,43 but in the
present case it is simpler to use Jacobi coordinates to elimi-
nate the CM motion at the outset. It has been verified that
this approach gives the same results as the standard one. The
Jacobi coordinates are given by the orthogonal transforma-
tion

S u1
u2
u3
D 5S 1/A2 21/A2 0

1/A6 1/A6 2A2/3
1/A3 1/A3 1/A3 D S r1

r2
r3
D , ~34!

whereu3 is the redundant CM coordinate.u1 andu2 are best
expressed in polar coordinates withu85au as the angular
coordinate anda the radius given by Eq.~8!. The advantage
of this is that mixed derivatives such as]2V8/]ui]u j8 vanish
and the second derivative matrix has the block diagonal
form,

SVuu 0

0 Vuu
D . ~35!

After some tedious calculations it is found thatVuu and
Vuu are given by

Vuu5
m*

4 S 9V21v r
2 3~V21v r

2!

3~V21v r
2! 9V21v r

2 D , ~36!

Vuu5
m*

4 S 3V21v r
2 23~V22v r

2!

23~V22v r
2! 3V21v r

2 D ,
wherev r5uLRMu/I 0 . The second derivative matrix is easily
diagonalized. Its eigenvectors form the columns of the ma-
trix,

1

A2 S 1 1 0 0

1 21 0 0

0 0 1 1

0 0 21 1

D . ~37!

The first column is a radial mode whose frequency is given
by v1

253V21v r
2 , the next two columns are bending modes

whose frequency is given byv2
25(3V22v r

2)/2, and the fi-
nal column is a pure rotational mode of frequencyv r . The
radial mode has no angular displacements. The bending
modes do have angular displacements in addition to radial
displacements but the displacement pattern is not unique be-
cause the bending modes are degenerate.34,43 The first three
columns give the vibrational degrees of freedom and are
used to find the vibrational mode frequencies. The corre-
sponding normal coordinates are denoted byQ1 , Q2 , and
Q3, respectively.

It is interesting to compare the present results with those
of Schweigert and Peeters,23 who have calculated the normal
modes of up to 50 parabolically confined classical interacting
electrons in the absence of a magnetic field and at zero an-
gular momentum. They find that the radial mode has fre-
quencyA3v0 independent of the electron number and this is
identical to the zero field and zero angular momentum limit
of v1 . At finite angular momentum and in the presence of a
magnetic field it can be shown that the radial mode fre-
quency is given byv1

253V21v r
253V21LRM

2 /I 0
2 for all

electron numbers. In contrast to the zero angular momentum
case this has some electron number dependence becauseI 0
depends onN.

B. Vibrational modes

The vibrational frequencies are obtained from the solution
of the eigenvalue problem defined in Eq.~15! and the defi-
nition of the Coriolis coupling coefficients given in Sec.
IV C. All the Coriolis coupling coefficients exceptC23 and
C32 vanish. Physically, this means that Coriolis coupling has
no effect on the radial mode but splits the degenerate bend-
ing modes. The splitting is given by the solution of

Um*v2
2 0 iv v r

0 m*v2
2 2v r iv

2 iv 2v r 1/m* 0

v r 2 iv 0 1/m*
U50, ~38!

which has been obtained from Eq.~15! with the aid of the
relationC2352C325v r , where the sign ofC23 corresponds
to a negative angular momentum (LRM52\JRM and
JRM.0 for the cases of interest here!. The solutions of Eq.
~38! arev6

2 5(v26v r)
2 and the corresponding eigenvectors

give the matricesQ1 andP1:
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Q15S 2 i /A2m*v1 0 0

0 2 i /~2Am*v2! 2 i /~2Am*v2!

0 21/~2Am*v2! 1/~2Am*v2!
D ,

~39!

P15S Am*v1/2 0 0

0 Am*v2/2 Am*v2/2

0 2 iAm*v2/2 iAm*v2/2
D ,

where the columns correspond to modes with frequencies
v1 , v1 , andv2 , respectively.

The importance of Coriolis coupling can be seen by com-
paring the frequencies of the vibrational modes with those of
the normal modes. Equation~9! givesv r.V; thus the Co-
riolis coupling terms are at least of orderv0 , which is not
small. Further, in the high magnetic-field limitV.vc/2.
This leads to the relationsv1.v1.vc andv2.0. Thus
v1 andv1 correspond to inter-Landau-level excitations and
v2 corresponds to an intra-Landau-level excitation. These
are precisely the excitations one would expect on physical
grounds. In contrast, the high field limit of the bending mode
frequency,v2.vc/2, does not correspond to any physical
excitation frequency. Thus the normal mode frequencies give
a poor approximation to the excitation spectrum and it is
necessary to take account of Coriolis coupling.

The symmetry properties of the vibrational states are eas-
ily obtained from Eqs.~25! and ~39!. After taking into ac-
count the coordinate transformations defined by Eqs.~37!
and ~34! it is found that the transformation matrixDa for a
2p/3 anticlockwise rotation is

S 1 0 0

0 exp~22p i /3! 0

0 0 exp~2p i /3!
D . ~40!

Both the diagonal form and the nondegeneracy of the vibra-
tional modes are in accordance with the general discussion of
Sec. V C. The vibrational ground state follows from Eqs.
~39! and ~22!: fGS(Q1 ,Q2 ,Q3)5exp$2m* @v1Q1

21v2(Q2
2

1Q3
2)]/2\%. This happens to be the same as the normal

mode ground state and is clearly symmetric under
2p/3-fold rotations.

C. Antisymmetrization

The antisymmetrization is carried out according to the
prescription of Sec. V D. This requires spin functions that
transform according to the irreps ofCR and they can be
obtained with the aid of the projection operator
(1/m)( t50

m21« tPR
t , where«5exp(2piks/m). Except for a nor-

malization factor this gives

Sz5
3
2 : u↑↑↑&, ~41!

Sz5
1
2 : u↑↑↓&1«u↓↑↑&1«2u↑↓↑&, ~42!

for Sz.0 and there are similar functions forSz,0. Because
the spatial part of the Hamiltonian is independent of spin, it
is only necessary to consider spin functions for one of the
possibleSz values for each distinct value ofS. These are

chosen to be theks50 function in Eq.~41! which leads to
states withS53/2 andSz53/2 and theks51 and ks52
functions in Eq.~42! which lead to states withS51/2 and
Sz51/2. The remaining spin functions simply give states
with different Zeeman energies. What is of particular interest
here are the ground-state and the low-lying excitations. At
high magnetic field all the low-lying excitations are intra-
Landau-level excitations which have a few quanta of\v2 .
Equation ~40! shows that the intra-Landau-level mode has
kv51; therefore, the condition for an antisymmetric state
@Eq. ~33!# reduces toJRM1n21ks[0 mod 3, wheren2 is
the number of quanta of\v2 . The allowed combinations of
JRM , n2 , andS are given in Table I.

D. Comparison with numerical results

Before the approximate results can be compared with the
results of an exact diagonalization, it is necessary to deter-
mine how the RM quantum numbers in Table I combine with
the quantum numbers of the CM. When the total angular
momentum is magic the ground RM state combines with the
ground CM state (JCM50) to give the overall ground state
so J5JRM . At nonmagic angular momenta there are two
possibilities. Either the state of lowest overall energy is a
magic RM state withJRM,J combined with an excited CM
state withJCM5J2JRM , or it is a nonmagic RM state with
J5JRM combined with the CM ground state. In all cases the
approximate ground-state energy can be written in the form

EGS5ECM~0,0!1E01Ezp1g*mBBSz1Ex , ~43!

whereECM~0,0! is the ground-state energy of the CM and
Ezp is the quantum zero point energy of the vibrational states.
The energyEx vanishes whenJ is magic. Otherwise it is
either a CM excitation energy or the energy of the minimum
number of vibrational quanta in the RM ground state, de-
pending on which of these two energies is the lowest. For
three electrons the CM excitations are found to occur only
when S53/2 and J[1 mod 3. In this caseJCM51,
JRM5J21, and Eq.~3! givesEx5\(V2vc/2). At all other
J,S combinationsEx is a multiple of\v2 as shown in Table
I, for example,Ex5\v2 whenS53/2 andJ[2 mod 3.

Ground-state energies calculated from Eq.~43! are shown
in Figs. 3 and 4~upper frames! for S53/2 andS51/2, re-
spectively. Each figure shows the ground-state energy as a
function of the total angular momentum,J, that is, the lowest
energy for eachJ. The magnetic field is 20 T so the absolute
ground state has a relatively large angular momentum and
the vibrational approximation might be expected to work
reasonably well. The diamonds give the results of an exact
numerical diagonalization, the squares give the results of the

TABLE I. Combinations ofJRM , n2 , andS satisfying the con-
dition JRM1n21ks[0 mod 3. TheS value for each combination
of JRM andn2 is given.

JRM[0 mod 3 JRM[1 mod 3 J RM[2 mod 3

n2[2 mod 3 1/2 3/2 1/2
n2[1 mod 3 1/2 1/2 3/2
n2[0 mod 3 3/2 1/2 1/2
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approximation, and the lines are to guide the eye. Clearly, the
approximate and exact results agree very well indeed. The
minima at the magicJ values are well reproduced and the
numerical and approximate points are almost indistinguish-
able throughout theJ range whenS51/2 and forJ greater
than about 10 whenS53/2. As an example of the accuracy
at largeJ, the numerical ground-state energy atJ530 and
S53/2 is 74.134160.0001 meV while the approximate en-
ergy is 74.133260.0002 meV. The uncertainty in the numeri-
cal result is due to the truncation of the basis at four Landau
levels and the finite number of iterations used to find the
energy eigenvalue, while the uncertainty in the approximate
result is due to the finite number of the Newton-Raphson
steps used to solve Eq.~8!. The high accuracy at largeJ is
probably due to the fact that all first order matrix elements of
the anharmonic terms in the RM Hamiltonian vanish. Thus
the higher-order corrections to the energy, which at first sight
are of order 1/AuLRMu, are actually of order 1/L RM . Never-
theless, the accuracy of the approximation at lowJ is re-
markable.

RM excitation energies are also shown in Figs. 3 and 4
~lower frames!. The figures show the lowest RM excitation
energy as a function of the relative angular momentum,
J RM . The excitation energies can be deduced from Table I.
WhenS53/2 the excitation energy is 3\v2 for all values of
JRM but whenS51/2 the excitation energy is 2\v2 when

JRM[2 mod 3 and\v2 , otherwise. The diamonds in the
figures give exact numerical results, the squares give ap-
proximate results, and the lines are to guide the eye. There
are no exact results atJRM510 andJRM<8 because there
are no intra-Landau-level excitations in these cases. The ex-
act results are broadly in agreement with the approximate
ones. WhenS51/2 ~Fig. 4! the approximation is very good
and, in particular, the oscillations in the excitation energy are
well reproduced. WhenS53/2 the approximation is accurate
to about 8% in the large angular momentum limit, but at low
angular momenta the numerical excitation energy fluctuates
although the general trend is in agreement with the approxi-
mation. The fluctuations could be caused by tunneling be-
tween symmetrically equivalent minima or by anharmonic-
ity. They coincide with the range ofJ values where only two
S53/2 RM states can be constructed from the zeroth Landau
levelcnl ~except forJ510) and they are much less apparent
in theS51/2 case when the Hilbert space is larger.

The curves labeled ‘‘minimum’’~Figs. 3 and 4! show the
energy obtained by settingEx50 in Eq. ~43!. This gives a
lower bound to the total energy and serves to illustrate the
small energy scale of the magic number effects.
\v2.0.76 meV whenJ512 which is about 1% of the total
energy. Further,Ezp depends weakly onJ unlessJ.0. The
only term that is both large and stronglyJ dependent is the
classical minimum term,E0; thus theJ value of the absolute

FIG. 3. Comparison of numerical and approximate ground-state
energies for three interacting electrons with spinS53/2 at magnetic
field B520 T. The upper frame shows the ground-state energy
against the total angular momentum quantum numberJ. The lower
frame gives the lowest RM excitation against the relative angular
quantum numberJRM .

FIG. 4. Comparison of numerical and approximate ground-state
energies for three interacting electrons with spinS51/2 at magnetic
field B520 T. The upper frame shows the ground-state energy
against the total angular momentum quantum numberJ. The lower
frame gives the lowest RM excitation against the relative angular
quantum numberJRM .
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ground state is essentially determined by classical physics
together with the requirement thatJ be a magic number. This
is consistent with the observation that the position of the
density maximum is very close to the classical orbit radius
~Sec. III!. An approximation to the ground-stateJ value can
be found by approximatingE0 with the aid of Eq.~9!. This
gives

E0.S uLRMuV1LRM
vc

2 D1
e2NaN

4pee0
Am* I 08V

uLRMu
1OS 1

uLRMu2D .
~44!

WhenLRM52\JRM andJRM>0 the value,J* , of JRM that
minimizesE0 is given by

J* 3/25
1

2

e2NaN

4pee0

Am* I 08V
\3/2~V2vc/2!

. ~45!

The optimal value ofJRM is either@J* # or @J* #11, depend-
ing on which of these values gives the lowest value ofE0 ,
where @J* # denotes the integer part ofJ* . For three elec-
trons and the parameters used to obtain Figs. 3 and 4, Eq.
~45! givesJ*513.15. The optimal value ofJRM turns out to
be 13 which corresponds toS51/2. For the exact results
shown in Figs. 3 and 4 the ground-stateJ value without the
Zeeman energy is indeed 13, but the Zeeman term reduces
the energy of theS53/2 state so the actual ground-stateJ
value is 12.

The most interesting experimental consequences of the
results in Figs. 3 and 4 concern the magnetic-field depen-
dence of the ground state. As mentioned in Secs. I and III,
the ground-state angular momentum increases in a steplike
way with magnetic field.5–8,10,19,24Essentially, this is because
the field compresses the wave function, leading to an in-
crease of Coulomb energy which can be compensated by the
expansion of the wave function which accompanies an in-
crease of angular momentum. Maksym, Hallam, and Weis24

have used exact diagonalization to give a detailed analysis of
this effect and it is interesting to see how it emerges from the
approximations developed here. Both the increase of Cou-
lomb energy and the compensating effect of increasing the
angular momentum are contained in the classical energy
given by Eq. ~44!. A transition occurs when
E0(J,B)5E0(J11,B) or approximately when]E0 /]J50.
Thus the transition fields can be found by substituting integer
values forJ* in Eq. ~45!. The right-hand side of this equa-
tion is a monotonically increasing function ofB. This means
that all J values should occur in sequence as the field is
increased but in fact the Zeeman contribution to the total
energy favors spin-polarized states and suppresses some of
the J values associated with other spin polarizations. One
example of this is the suppression of theJ513 state men-
tioned in the preceding paragraph and others are given by
Maksym and Chakraborty.6 A more interesting property of
the transitions emerges from the high-field limit of Eq.~45!,
which may be written in the form

B5
m*

e F 1

2A2
e2NaN

4pee0

Am* I 08
\3/2v0

2 G22/3

J* . ~46!

Thus the transition field is linear inJ and the spacing be-
tween transitions isindependentof J. This explains the near
regularity of transition fields which is found in results of
exact diagonalizations44 for largeB. In the case of the three-
electron system considered here the mean spacing, calculated
by sampling the exact ground-stateJ value at 0.1 T intervals
in the range 15–25 T, with theg factor set to zero, is
1.5560.05 T while the spacing predicted by Eq.~46! is
1.548 T. By generalizing Eqs.~7! and~8! to arbitrary power-
law potentials it can be shown that the regular spacing only
occurs for certain special potentials, particularly the combi-
nation of r 2 confinement with 1/r interactions. Thus mea-
surements of the transition fields could provide an experi-
mental probe of the potentials in real dots. Another
interesting feature of the present results is the oscillation of
the RM intra-Landau-level excitation energy of theS51/2
states. Experimental observation of this effect would require
a probe that is sensitive to RM excitations, such as measure-
ment of a thermodynamic property, together with a lowg
factor to ensure that all theJ values allowed atS51/2 oc-
curred.

VII. GENERAL FEATURES OF N-ELECTRON DOTS

A. Origin of magic numbers

The treatment of the magic numbers@Eq. ~33!# is based
on the approximation that tunneling between symmetrically
equivalent minima is neglected. The results obtained so far
suggest that this effect is indeed small when the angular mo-
mentum is large, but to assess the general applicability of Eq.
~33! it is necessary to examine what happens when the an-
gular momentum is small. For more than three electrons Eq.
~33! predicts that ground states for different values ofS can
be degenerate in the absence of Zeeman splitting and the
physical origin of this is the degeneracy of vibrational states
localized on symmetrically equivalent minima. The degener-
ate levels are split by tunneling between symmetrically
equivalent minima and the importance of this effect can be
assessed quantitatively by exactly diagonalizing the Hamil-
tonian to compute the splitting. For example, in the case of
four electrons Eq.~33! predicts that degenerate ground states
occur atS50 andS52 whenJ[2 mod 4 and atS50 and
S51 whenJ[0 mod 4. Numerical results indicate that the
splitting of these levels rapidly decreases withJ. It is at most
5% of the total energy and is typically much smaller. For the
S50 and S52 levels the splitting is about 2.5 meV for
J52 at 2 T, 0.9 meV forJ56 at 5 T, and 0.13 meV for
J514 at 10 T and the splittings of theS50 andS51 levels
are about a factor of 2 smaller. At the highest field this is less
than the Zeeman splitting. This suggests that the effect of
tunneling between symmetrically equivalent minima is rela-
tively small except at very small angular momenta and the
predictions of Eq.~33! should be accurate for fields above a
few Tesla. This is the field range where ‘‘molecular’’ states
occur and the general conclusion that the ‘‘molecular’’ states
are insensitive to tunneling is in agreement with the work of
Häusler and Kramer.17

Another question is whether the ground states of electrons
in a central confining potential and interacting via arbitrary
pair potentials have the same magic numbers as the states of
electrons in a parabolic dot. These systems have the same
rotational and permutational symmetry as parabolic dots and
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can be treated in the way described in Sec. V except that it is
no longer possible to separate the CM motion. This does not
affect the symmetry classification of the vibrational states or
its consequences. Thus the occurrence of magic numbers is
not restricted to systems with parabolic confinement and
Coulomb interactions and should be a very general phenom-
enon.

It is interesting to compare the present approach to magic
numbers with earlier results due to Maksym and
Chakraborty.6 These authors observed that when the exact
Hamiltonian is diagonalized in a Slater determinant basis,
certain special determinants occur in spin-polarized ground
states only if theirJ values are magic. ForN<5 the special
determinants have all the electrons in a compact cluster in
the zeroth Landau level. That is, all the occupied single-
electron orbitals haven50 and are adjacent in angular mo-
mentum space. For example, in the calculations leading to
Fig. 1, the determinantu6 7 8 9 10& occurs with a probability
of 13% in theJ540 state of five electrons at 20 T. For
N.5, when (N21)-fold symmetry occurs, the special deter-
minants have one electron withl50 and the remaining elec-
trons in a compact cluster, for example,u0 8 9 10 11 12&
occurs with a probability of 18% in theJ550 state of six
electrons at 17.5 T~Fig. 1!. In each case the probability of
the compact clusters is about a factor of 2 greater than that of
the next most probable state. Maksym and Chakraborty
showed that the Coulomb energy of the compact cluster
states is reduced by an exchange contribution whose magni-
tude is exceptionally large. This leads to a reduction in the
total energy and makes the magicJ values favorable. It is
easy to calculate the possibleJ values of the compact cluster
states and show that they are in agreement with the expres-
sions for the magic numbers of spin-polarized systems given
in Sec. V C. Further insight into the properties of the com-
pact cluster states can be obtained by calculating the pair-
correlation functionPss8(r ,r0). When the system is spin-
polarized the pair-correlation function for an arbitrary Slater
determinant composed of Fock-Darwin states is given by

P~r ,r0!5
~2pl2!2

N~N21!(i j ucni l i
~r !u2ucnj l j

~r0!u2

2cni l i
~r !*cnj l j

~r0!*cni l i
~r0!cnj l j

~r !, ~47!

where the spin indices onP have been suppressed. This
cumbersome expression is analyzed in Appendix B. It is
shown there that it is stationary whenr5r 0 . Further, when
all thecnl haven50 and largel the stationary value can be
approximated by

P~r ,r0!5
1

2p l̄ N~N21!
exp$22~x2A2l̄ !2%

3(
i j

$12cos@~ei2ej !~f2f0!#%

3@11O~ei1ej !#, ~48!

wherelx5r5r 0 , f andf0 are polar angles,l̄ is the aver-
age angular momentum of the cluster, andei5 l i2 l̄ . For
compact clusters ofN electrons the distribution ofei is sym-

metric so the terms of order (ei1ej ) vanish. The remaining
sum reduces toN(N21)22(p51

N21(N2p)cosp(f2f0),
which has maxima when (f2f0)52pk/N, wherek is an
integer (kÞ0). The global maxima occur whenx5A2l̄ . For
an N-electron clusterl̄ 5J/N and because of the relation
l25\/(2m*V), the condition for a maximum is equivalent
to I 0V5\J. Therefore the maxima ofP(r ,r0) in the high
angular momentum limit haveN-fold symmetry and occur
when bothr and r 0 take the approximate orbit radius given
by Eq. ~9!. Compact clusters of (N21) electrons can be
analyzed in a similar way except that onlyN21 of the
single-electron states are taken to have large angular mo-
menta. Then the symmetry is (N21)-fold with a peak at the
origin, l̄ 5J/(N21) and the maxima again occur at the ra-
dius given by Eq.~9!. Thus the pair-correlation functions of
the compact cluster states have exactly the symmetry that
favors a low Coulomb energy. This explains the large ex-
change energy that appears when the Coulomb energy is ex-
pressed as a sum of matrix elements between eigenstates of
angular momentum and provides the link between the ap-
proach of Maksym and Chakraborty and the present one.

B. Systems with competing classical minima

The physical picture of a ‘‘molecular’’ ground state local-
ized about one classical equilibrium configuration breaks
down when there are competing classical minima. Then tun-
neling between symmetrically inequivalent minima can re-
sult in the quantum ground state being a mixture of states
with different types of symmetry. These are the liquidlike
states mentioned in Secs. I and III. Because the electron-
electron interaction conserves angular momentum and spin,
the mixing can only occur in special cases when more than
one type of symmetry is allowed to occur at the same set of
magic numbers. Thus the classification of the possible magic
numbers and symmetry types can be used to predict whether
the ground state is molecular or not.

The six-electron system is the smallest in which classical
equilibrium configurations with different symmetry have
similar energies.45 It is discussed here as an example of the
effects that can occur when minima compete. The two pos-
sible classical equilibrium configurations are a fivefold ring
with one electron at the center and a sixfold ring. For
J545 and the parameters used for the calculations leading to
Fig. 1, the difference between the energies of these two con-
figurations is only about 0.57 meV, so at first sight it is un-
reasonable to expect that the quantum ground state is local-
ized about either one of them. However, according to the
rules developed in Sec. V C, fivefold symmetry with full spin
polarization requires thatJ[0 mod 5 and sixfold symmetry
requiresJ[3 mod 6. Both types of symmetry occur only
when J515,45,75. . . . Thus the liquidlike states can only
occur at this restricted set ofJ values and molecular states
occur at otherJ values. This is illustrated in Fig. 5 which
shows pair-correlation functions for the six-electron system.
The lower left frame (J550) is the pair-correlation function
for the ground state shown in Fig. 1 and serves as a reference
point. All the other states are the lowest-energy states at the
indicated values ofJ. The pair-correlation function at
J551 clearly corresponds to sixfold symmetry and the one
at J540 to fivefold symmetry. TheJ545 case exhibits some

53 10 883ECKARDT FRAME THEORY OF INTERACTING ELECTRONS IN . . .



loss of symmetry. The peaks on the outer ring are less sharp
than atJ540 andJ550 and the peak at the center is much
less well defined. When theseJ values are converted to ef-
fective filling factors28 with the aid of the formula,
n5N(N21)/2J, it is found that the loss of symmetry occurs
only whenn51/(2k11), wherek is a positive integer, that
is, at the same odd-denominator fractions where fractional
quantum Hall liquids occur. One can speculate that although
the occurrence of competing minima becomes more common
as the number of electrons increases, tunneling is always
restricted by selection rules and conservation laws with the
result that liquidlike states only occur at odd-denominator
filling factors.

VIII. DISCUSSION

The Eckardt frame approach allows the quantum states of
electrons in quantum dots to be understood both qualitatively
and quantitatively in a comprehensive and unified way. The
advantage of the approach is that the classical equilibrium
configuration is stationary in the Eckardt frame. This has
been used to develop a detailed treatment of molecular elec-
tron states which are localized about a single classical equi-
librium configuration and can be approximated by antisym-
metrized rotational-vibrational states. The approximation
enables the energies of the molecular states and their low-
lying excitations to be calculated accurately. In addition, the
magic numbers found in previous numerical work can be
derived quite simply from the requirement that the electron
ground state is approximated by an antisymmetrized
rotational-vibrational ground state. It is remarkable that this
approach predicts exactly the same magic numbers as com-

posite fermion theories,41,42 and this connection with the
composite fermion treatement may be a particularly fruitful
area for further study. The molecular picture breaks down in
the presence of quantum tunneling. Selection rules and con-
servation laws have been used to determine when this effect
occurs and which states are affected. Tunneling between
symmetrically equivalent minima simply lifts the spin degen-
eracy associated with certain magic angular momenta. Tun-
neling between symmetrically inequivalent minima has a
much more important effect and, when it is allowed, leads to
the formation of liquidlike states which are not localized
about a single minimum. For six electrons these states only
occur at odd-denominator filling factors, and whether they
evolve into fractional quantum Hall liquids as the number of
electrons is increased is a fascinating open question.

A possible development of the present work is to use the
Eckardt frame approach as a computational tool. Tunneling
between symmetrically equivalent minima could be taken
into account by numerically diagonalizing the Hamiltonian
in a basis of antisymmetrized states centered on the various
minima. In addition, it might be possible to devise a varia-
tional approach to include the symmetrically inequivalent
minima. The precision of the vibrational approximation for
three electrons suggests that this might enable low-lying
states of quantum dots to be calculated accurately and eco-
nomically with a relatively small basis set.

We recently received results from Ruanet al. Using a
different approach, they have related the ground-state magic
numbers to the symmetry of potential minima for up to five
spin-polarized electrons and obtained the same results as
given here.46
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APPENDIX A: THE RM HAMILTONIAN

To find the RM Hamiltonian in the presence of a magnetic
field it is sufficient to consider classical mechanics. Once the
classical Hamiltonian is available, the quantum Hamiltonian
can be obtained by standard methods.34,37,38The only issue is
the form of the conjugate momenta. These can be obtained
from the classical Lagrangian kinetic energy which has the
form,

L5(
i51

N m* v i
2

2
2eA i•vi , ~A1!

when expressed in laboratory frame velocities,vi . Separat-
ing the CM terms, transforming to Eckardt frame variables
as described by Wilson, Decius, and Cross34 and expressing
the vector potential in the symmetric gauge leads to

L5
Iv82

2
1m*v8k̂•(

i51

N

~ri3ri !1(
i51

N m* ṙ i
2

2
2
Ivc

2

8
,

~A2!

FIG. 5. Pair-correlation functionPss8(r ,r0) for six interacting,
spin-polarized electrons atB517.5 T. Pair-correlation functions for
the lowest-energy state at the indicated angular momenta are
shown. The black spots denoter0 . Thex andy unit is 1.89 nm.
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where I is the instantaneous moment of inertia,
v85ẋ2vc/2 and the Eckardt condition has been used to
eliminate( i(ai3ṙi). After expressing the displacements in
terms of normal coordinates this becomes

L5
Iv82

2
1m*v8 (

i5k

2N23

ZkQ̇k1 (
k51

2N23 m* Q̇k
2

2
2
Ivc

2

8
,

~A3!

whereZk5( i j (Qi j3Qik)• k̂Qj . Differentiating this to ob-
tain the conjugate momenta yields

Pj5
]L

]Q̇j

5m* Q̇j1m*v8Z j , ~A4!

LRM5
]L

]ẋ
5v8I1m* (

k51

2N23

ZkQ̇k . ~A5!

The Hamiltonian kinetic energy is found by substituting
these results into the expressionẋLRM1(k51

2N23Q̇kPk2L.
This gives the kinetic energy terms in Eq.~11! except that
m is given by (I2m*(kZk

2)21. The form ofm given in the
text is obtained by transforming this expression in the way
described by Watson.37

This derivation of the RM Hamiltonian is based on the
same Eckardt condition that holds for zero magnetic field. It
gives a Hamiltonian in which the lowest order coupling of
coordinates and momenta occurs in the formZkPk , which is
of second order in the displacements. Thus the zero-field
Eckardt condition leads to first-order decoupling of coordi-
nates and momenta even when a magnetic field is present. It
is instructive to consider this from another point of view.
Suppose an arbitrary linear transformation is used in place of
the transformation to normal coordinates. Then the form of
Eqs.~A2! to ~A5! is unaltered butZk acquires the extra term
( i(ai3Qik)• k̂. Consequently, the Hamiltonian acquires a
term that is linear inPk . However, when normal coordinates
are used( i(ai3Qik)• k̂ vanishes. This follows from the or-
thogonality of the transformation to normal coordinates and
is equivalent to the Eckardt condition. Therefore, the terms

linear inPk vanish when normal coordinates are used and, as
at zero field,21 use of normal coordinates necessarily implies
use of the Eckardt frame.

APPENDIX B: THE PAIR-CORRELATION FUNCTION
FOR A SLATER DETERMINANT
OF FOCK-DARWIN STATES

The Fock-Darwin states@Eq. ~2!# have the general form

cnl5~2pl2!21/2exp~2x2/4!hnl~x!exp~2 i lf!, ~B1!

wherex5r /l andhnl is real. Therefore the pair-correlation
function @Eq. ~47!# has the general form

P~r ,r0!5
1

N~N21!
exp@2~x21x0

2!/2#(
i j

hni l i
2 ~x!hnj l j

2 ~x0!

2hni l i~x!hnj l j~x0!hni l i~x0!hnj l j~x!

3cos@~ l i2 l j !~f2f0!#, ~B2!

so the x and x0 dependence ofP has the form
exp@2(x21x0

2)/2#g(x,x0). This is stationary with respect to
variations inx and x0 when xg5]g/]x and x0g5]g/]x0 .
By considering the derivatives ofhnl it can be shown that
x]g/]x5F(x,x0) and x0]g/]x05F(x0 ,x), where the first
equation definesF. It follows from these relations thatP is
stationary when x25x0

25F(x,x)/g(x,x), that is, when
x5x0 .

It is more difficult to analyze thef dependence ofP.
However, whenn50 the Fock-Darwin states have a single
maximum atx5A2l . This enablesP(r ,r0) to be simplified
in the case when all the states have largel . By expanding the
logarithm of the radial part ofc0l aboutx5A2l and apply-
ing Stirling’s approximation to the normalization factor, the
Fock-Darwin states are approximated by

c0l~r !.
1

A2pl2

1

~2p l !1/4
exp$2~x2A2l !2/2%exp~2 i lf!.

~B3!

Substituting this into Eq.~B2! and puttingx5x0 leads to

P~r ,r0!.
1

2pN~N21!(i j
1

Al i l j
exp$2~x2A2l i !22~x2A2l j !2%$12cos@~ l i2 l j !~f2f0!#%. ~B4!

Finally, putting l i5 l̄ 1ei and expanding to first order inei leads to Eq.~49! of Sec. VII A.
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