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A transformation to a moving framghe Eckardt frampis used to study the quantum states of interacting
electrons in parabolic quantum dots in the presence of a perpendicular magnetic field. The approach is moti-
vated by examining ground-state pair-correlation functions obtained by exact diagonalization. The main results
concern the physical nature of the electron states and the origin of magic numbers. Some of the states are found
to be localized about a single minimum of the potential energy. They have well-defined symmetry and are
physically analogous to molecules. They are treated approximately by antisymmetrizing Eckardt frame
rotational-vibrational states. This approach leads to selection rules that predict all the magic angular momen-
tum and spin combinations found in previous numerical work. In addition, it enables the ground-state energy
and low-lying excitations of the molecular states to be calculated to high accuracy. Analytic results for three
electrons agree very well with the results of exact diagonalization. States that are not localized about a single
minimum are also studied. They do not have distinct spatial symmetry and occur only when selection rules and
conservation laws allow tunneling between states localized on different minima. These states appear to be
small system precursors of fractional quantum Hall liquids.

I. INTRODUCTION ample, three classical electrons constrained to move in two
dimensions and confined by a central potential would have a
Quantum dots are semiconductor nanostructures in whichonfiguration in the form of a rotating equilateral triangle. It
electrons are confined by a lateral potential applied in thés less obvious that this kind of symmetry appears in quan-
plane of a two-dimensional system. For instance, a modutum mechanics; nevertheless, pair-correlation functions for
lated gate electrode close to a quantum Wwebr quantum ground states, presented in this work, do exhibit
heterojunctiof can provide the potential necessary to con-some symmetry, particularly for large angular momenta.
fine very small £10) numbers of electrons. Recent experi- This suggests that it would be useful to examine the quantum
mental work has explored phenomena such as quantum dotechanics in a moving frame of reference chosen to remove
charging! transport through dot* and far-infrared the rotational motion and make the symmetry apparent.
absorptiorf. Related theoretical studies have led to interestHowever, it is not possible to decouple the rotational motion
ing predictions such as the existence of magic angular masompletely because Coriolis forces appear in the moving
mentum and spin quantum numbers for interacting electrongame. This problem is related to the question of finding a
in dots>® These are the only possible angular momenta andeference frame to describe the vibrational motion of a rotat-
spins of the ground state and if a dot is placed in a magnetilmg molecule. There is no reference frame in which the vi-
field, transitions from one magic value to another can bédrational motion is completely decoupled from the rotational
induced by changing the magnetic field. This is predicted tanotion but there is a frame, known as the Eckardt frame, in
cause oscillations in physical properties such as electronizhich the mechanical angular momentum associated with
heat capacity, magnetizatiorf;” and luminescenéeand to  the vibrational motion vanishes to first order in
affect transport*® and optical properti¢d*?and the chemi- displacement$! This reference frame is used here to study
cal potentiaf-*~1° There is evidence that some of the pre-the quantum states of interacting electrons in quantum dots.
dicted transitions have been obserdédAnother interesting In the minimum energy state &f confined classical elec-
theoretical prediction concerns the nature of the ground statérons, each electron orbits in such a way that the electron
Under certain circumstances it is predicted to have some oconfiguration as a whole rotates rigidly and has well-defined
der whose form is determined by the equilibrium betweersymmetry. The classical excitations are vibrations about this
the confinement and the Coulomb interacttBr?® The  configuration which appear in the Eckardt frame. If the quan-
physical picture of these states is that of a molecule antum ground state is localized about one of the classical
sometimes they are described as “Wigner molecules.” Thaminima it should have the same symmetry as the classical
present work is concerned both with magic numbers ananinimum and its excitations should be quantized vibrations.
electron states. The general idea is to consider the dynamidshis is the reason for developing a theory in which the Eck-
in a moving frame of reference. This explains why the magicardt frame is used and electron states are approximated by
numbers occur, enables the “molecular” energy levels to beantisymmetrized rotational-vibrational states. It turns out that
calculated accurately, and gives insight into the physical nathis approach can be very accurate. All of the known magic
ture of the electron states. numbers emerge from selection rules that determine when an
Intuitively, it is clear that the minimum energy state of antisymmetric electron state can be constructed from the
confined classical electrons is highly symmetric. For ex-rotational-vibrational ground state. In addition, the
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rotational-vibrational energies can provide a very good ap- 1 1

proximation to the energy of the electron ground state and its H=> ( 2—*[pi+eA(ri)]2+ >m* wir?
excitations(accurate up to one part in 10 000 for three elec- =1 em

trons. There are of course quantum states which are not 1/ e? N N 1

localized about a single classical minimum. They arise from + —( )Z > +g*ugBS,, (1)
quantum tunneling between minima of different symmetry 2\4meeo] =1 2 Iri=rjl

and do not have symmetry that is characteristic of any single

minimum. The tunneling is governed by selection rules andvhere the first term is the one-electron term, the second term
conservation laws that only allow it to occur for a subset ofis the Coulomb interaction term, and the last term is the
the possible ground-state quantum numbers. Thus the groudgeman energy. The magnetic figdk is perpendicular to
states may be classified into two types: those that are locathe plane of the dot, the confinement energyiis,, m* is

ized about a single minimum, where the physical picture ighe effective electron masg; is the effectiveg factor, and
“molecular,” and those that are spread over more than one is the dielectric constant. The circular gauge is used and
minimum, where the physical picture is “liquidlike.(The the magnetic vector potentiah=(B/2)(kXxr).

term “liquidlike” is used here to describe the loss of sym- ~ Without interaction the eigenstates of the system would be

metry that occurs when states on different minima are a|antisymmetrized prOdUCtS of the states of the one-electron
lowed to mix) It turns out that the liquidlike states only Hamiltonian. These one-electron states are the well-known

occur at the same filling factors as fractional quantum HalfFOCk-Darwin states which have the form

liquids. 1

In brief, the main results of this paper are the relation ni 2 ¢\
between the magic numbers and the symmetry of classical #,,(r)= |
minima, the accuracy of the vibrational approximation for V22 [ (n+[ID L y2a

the “molecular” states, and th_e analysis of the effects of ><Lw(r2/2)\2)exp(—r2/4)\2)exp(—il b), @
tunneling. The paper opens with a summary of the current

theoretical model of quantum dotSec. I). This is followed  with energies given by

by numerical results on pair-correlation functiof@ec. Il

which are used to demonstrate the symmetry of the quantum En=2n+1+|IDAQ— w2, 3
ground states and make the intuitive remarks of the last two

paragraphs more precise. Sections IV and V deal with claswhere the L!l are associated Laguerre polynomials,
sical and quantum rotational-vibrational motion and givex?=#/(2m* (), 922w3+w§/4, and o, is the cyclotron
generalizations that are needed to apply results from molecyrequency,eB/m*. The parametei is a measure of the
lar physics to quantum dots. In particular, it is necessary tdength scale of the system, both in the interacting and non-
allow for the presence of a magnetic field, determine thenteracting case, and it is sometimes convenient to use it as
equilibrium configuration, and deal with Coriolis coupling. the length unit.

(Unlike molecules, guantum dots have strong Coriolis cou- Theoretical and numerical results are compared through-
pling and this must be treated exactly to obtain accurate resut this work. In all cases results are for GaAs dots
sults) The connection between the magic numbers and thém* =0.067,g* = —0.44, e=12.4) with a confinement en-
symmetry of the classical equilibrium configurations is madeergy of 4 meV. This is a little larger than typical experimental
in Sec. V. Section VI gives an analytic treatment of the vi-values(2—3 meVj and is deliberately chosen to allow trends
brational approximation for three electrons which is used td© be iI.Iustrated without running numerical calculations for
illustrate the general theory and demonstrate its accurac§*cessively large angular momentum values.

The effects of tunneling are covered in Sec. VII and the

paper closes with a discussion of the implications of this lIl. NUMERICAL CHARACTERIZATION

work (Sec. VIII). Two appendixes contain technical details. OF ELECTRON STATES

Preliminary reports of some parts of this work are available

in the literature %20 A. Correlation functions
Quantum states of interacting electrons are often charac-
terized by the electron density or the pair distribution func-
tion but these functions are unsuitable in the present case
because they only depend on distances. This means that they
Il. PARABOLIC QUANTUM DOTS are insensitive to angular correlations which turn out to be
very important in quantum dots, particularly so in the limit of

The present work is concerned with electrons that aréarge angular momentum. A better way of characterizing the
tates is to use the pair-correlation functiBgy (r,rg), de-

constrained to move in a plane and are confined by a parg- :
bolic potential applied within this plane. It is accepted that ined by the equation,

this model of a quantum dot contains all the essential physics 22

although there is evidence that some details need to be im-P (F\Tg) = (2m\7) 2 S(F—1) 8 8(r: —1g) 8er
proved before it can be used to match real experimental > "% N(N-1)\iZ ~ ' sSTN OISy
data?*?* The Hamiltonian is 4
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where the angular brackets denote the expectation value fgrairs of electrons. For aiN(— 1)-fold ring, with one electron

the state to be characterized ad’,s; ,s; denote spins. The at the centerNay=(N—1)(sy-;+1). The moment of in-
vectorr, is fixed whiler is varied so the resulting function ertia has the formy(a)=m*a?s;a/2=m*a?l, where the

of r is proportional to the probability of finding an electron at a/ are dimensionless numbers that depend on the shape of
r given that there is one ap. Roughly speaking, use of this the configuration. Minimizingg, leads to the equation

function enables rotational motion to be “frozen” which al-
lows the angular distribution to be “seen.” The normaliza- L
tion of P is chosen such that it is normalized to unity when

lo(a)
lengths are measured in units of. That s, ] O. ]
1/(277)221\1 12N [Peo(r',r'o)dr'dr'y=1, wherer’ and which determinesa. The exact solution can be found by
s= s'=1 4 I )

r'e are dimensionless. This normalization is convenient fOJ.\Ieyvton-Raphsorj iteration but an approximation useful in the
limit of large [L| is

numerical calculations and is consistent with the normaliza-

tion of the pair-distribution function used in previous wéfk. ] 1

The electron densityn (r), and pair-distribution functions, a= A\ /W+ O( ) (9)
m-lg

Oss (1), can be obtained by integratirg (r,ro): L]

2 2

€
dmeeq alg(a)

-02%=0, (8

N Physically, this means that the Coulomb interaction only has

n.(r)= P.o(r,re)drg, (5)  asmall effect on the orbit radii when the angular momentum

(1) (27\7) 32 J ss(.ro)dro is large. Unless otherwise stated all the pair-correlation func-
tions shown in the present work were calculated witon

1 the x axis withry determined from the exact solution of Eq.
gss’(r):m Pss’(r"'ro’ro)dro- (6) (8)

It may be shown that the integrals only depend avhen the

dot is parabolic; thus the angular informationRgy (r,r) is ] ) )
eliminated when it is integrated to obtaing(r) and The pair-correlation functions are calculated for ground

states of systems with different numbers of electrons. It is

Osy (r) . .
well known that the ground state only has certain magic
combinations of angular momentum and  spin
values—8101924yhich are dependent on the number of elec-

The shape oPgy(r,rq) clearly depends on,. Extensive trons. For example, the ground state of three spin-polarized
numerical studies have shown thaf (r,ry) generally takes electrons always has an angular momentum quantum number
its largest values whery is close to the radius of the clas- that is a multiple of 3. Readers unfamiliar with this feature
sical minimum energy(or equilibrium configuration. Fur- are urged to look ahead to Fig. 3 where numerical results for
ther, Py (r,rg) rotates rigidly wher is rotated so the only three interacting electrons are given. The figure shows the
nontrivial influence on the shape is vig. For up to five ground-state energy as a function of total angular momentum
electrons the classical equilibrium configuration is ringat a fixed value of the magnetic field. Small minima occur
shaped and rotates in such a way that the electrons remaivhen the angular momentum is a multiple of 3. The ground-
equidistantly spaced around the ring. For six and seven elestate angular momentum is always one of the magic num-
trons the minimum energy configuration is also ring shapeders, but the value that occurs is dependent on the magnetic
but there is one electron at the center of the ring. Theséield and the confinement energy. With increasing magnetic
configurations are the same as those found by Bedanov arigld, a series of transitions occurs in which states of increas-
Peeter® for nonrotating classical systems. In the rotatinging angular momentum become the absolute ground state.
case they correspond to the Lagrangian orbits that are wellhus it is necessary to vary the magnetic field to obtain a
known in celestial mechanié$.Indeed, the methods of ce- state with a particular angular momentum. This has been
lestial mechanics can be used to determine them, althoughdone in the present work to obtain a selection of correlation
different approach is used in the present wd8ec. I\).  functions that are typical of the high angular momentum
Once the shape of the minimum energy configuration idimit.
known it is very easy to determine its size, as defined by the Figure 1 shows pair-correlation functions for magic
radiusa of the largest orbit. The Hamiltoniaik,,, of a con-  ground states of two to seven spin-polarized electrons. The
figuration rotating about its center of mass may be written irelectron numbers, angular momenta, and magnetic fields at
the form which the states occur are indicated in the figure. The black
spots indicate and the length unit is 1.89 nm. The figure is
meant to show the qualitative form &(r,ro) and in par-
ticular its symmetry. The contours were obtained by numeri-
cally diagonalizing the Hamiltonian within the lowest Lan-
where the center of mass is stationdrys —#J is the total dau level. Because the magnetic field and angular
angular momentur, is the equilibrium moment of inertia, momentum are so large the higher Landau levels introduce
and ay is a Madelung constant which can be determinedcorrections of only a few percent. In addition it has been
from the total electrostatic energy. For &Rhfold ring with showrt® that inclusion of the higher Landau levels does not
N electronSaNzSNEEi'\'z’ll[4|sin(¢i/2)|]’1, where theg; alter the qualitative form oPg¢(r,rg). It is clear that the
are the distinct angles subtended at the center of the ring byositions of the maxima ifs(r,ry), together with the po-

C. Numerical results

B. Classical equilibrium configurations

L? e’Nay
Eoz +
2|0(a) 4776603

1| Q2+ 2o 7
+§ o(a) +7, (7)
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N=2, J=7, B=30T N=3, J=12, B=20T- N=4, J=26, B=20T momenta of the six and seven electron states are low relative
60 60 60 to those for fewer electrons. This is best viewed in terms of
50 50 50 the effective filling facto® »=N(N—1)/2J. For five elec-
40 40 trons v=0.25 while for seven electrons it is 0.37.
30 30 Figure 2 illustrates howP.(r,ry) changes when various
20 20 parameters are changed and in addition illustrates the elec-
10 10 10 tron density. All the frames are for three interacting spin-
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 polarized electrons. For comparative purposes the bottom
’ ; ’ center frame show®.(r,r,) for the J=12 state shown in
N=5, J=40, B=20T N=6,J=50,B=17.5T  N=7,J=57. B=13.8T Fig. 1. The effect of increasing is shown in the bottom left
60 60 60 frame. It is clear that both the size of the triangular ring and
50 the sharpness of the peaks increase wherincreased to 30
S0 (which corresponds to an excited stateBat 20 T). The top
0 three frames are surface plots which show the effect of
?g 0 0 changingrg. In the top center framg, is as given by Eq(8)
but in the top left frame it is decreased by 50% while in the
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 top right frame it is increased by 50%. The actual value of
ro isroh wherex=5.66 nm and the value of, is indicated

FIG. 1. Pair-correlation functiofPs (r,ry) for magic ground in Fhe figure. The main effect of changing is to change the
states of two(upper left fram to seven(lower left framg spin-  heights of the peaks. They are clearly largest wheis as

polarized interacting electrons. The black spots demgteThe x given b_y Eq.(8). The eIeCtr(_)n density of th_é= 12 state is
andy unit is 1.89 nm. shown in the contour plot in the bottom right frame. Four

Landau levels were used to calculate it to an accuracy of
Better than 1%. The density has a ring-shaped maximum

sition of the fixed electron, have the same symmetry as thWh radius is cl o the classical radi iven by(®
classical minimum energy configuration. For example, for 0se radius IS close 1o the classical radius give 9-

three electrons the two maxima and the fixed electron fornj" fact: this equation gives a radius of 16.2 nm while the
the corners of an equilateral triangle. Ring-shaped Configur_1umer|cally calculated density has its maximum at a radius

rations occur for up to five electrons but for six and sevenOf 15.6 * 0.3 nm. The uncertainty is due to the grid size

electrons there is a maximum in the center of anused in the nL_J_mericaI calculation and this is also responsible
(N—1)-fold ring. The maxima for six and seven electronsfor the small jitter on some of the density contours.

are not quite as sharp or symmetric as those for five or fewer
electrons because the six and seven electron states were cal-
culated for lower magnetic fields than those for five or fewer The symmetry ofP.(r,r,) suggests that a good physical
electrons. This was necessary because the calculation pfcture of the states characterized here is that of a rotating
Ps{r.,ro) is quite expensive but it means that the angularand vibrating molecule and the agreement of the classical

D. Motivation for Eckardt frame theory

J=12, B=20T, ry=1.44 J=12, B=20T, 1y,=2.87 J=12, B=20T, ry=4.30

J=30, B=20T J=12, B=20T J=12, B=20T
60 60 60
50 50 50
40 40 40
y - y y
30 30 30
20 20 20
10 10 10
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
X X X

FIG. 2. Pair-correlation functions and electron density for three interacting, spin-polarized electrons. The upper frames show how the

pair-correlation functionPg (r,r), for J=12 evolves whem (black spot is changed as described in the text. The lower left and center
frames showP . (r,rq) for J=30 andJ= 12 while the lower right frame shows electron density contourg foll2. Thex andy unit is 1.89
nm.



53 ECKARDT FRAME THEORY OF INTERACTING ELECTRONS IN ... 10875

three-electron radius with the radius of the maximum in therjum positions(which are fixed vectojsther/ are positions
three-electron density suggests that this picture should bgsjative to the CM, and all vectors are in the Eckardt frafne.
accuﬁﬂe.'ThB Conﬂ”nsthe|nn““VerenuﬂkSlnade ”]theThGLJ-amerekﬂedto'abora&ﬂyfﬁuﬂe pOSmOn vectors Wa

Introduction and providgs the_ m_otivation for develqpin_g ari/ =R (x)R; whereR; is a laboratory position vector relative
theory in which the starting point is the classical equilibrium ——

: . ; . : tp the CM andR () is an anticlockwise rotation of the axes
configuration and in which electron states are approximate bout the normal to the plane of the dot, through an angle
by rotational-vibrational states that are localized about this L L .
configuration. The Eckardt frame then appears naturally a¥" [The notat|onR. is used here to distinguish a rotation of
the reference frame in which the equilibrium configuration is@<es from a rotationR, of a vector:R (x)=R(—x).] The
stationary. There are actually! equilibrium configurations, EUler angley, is determined from the Eckardt condition by
each corresponding to a different permutation of the electh® equation
trons. Some of these configurations are connected by permu-
tations that are equivalent to rotations but there are other —
configurations which are not connected by rotations. For ex- EI xR (x)R;=0.
ample, a configuration of three electrons at the corners of an

equilateral triangle with vertices label€t3) in a clockwise | the presence of a magnetic field the Eckardt condition is
sense can be rotated into the configuralidh?) but cannot  he same as at zero field. It can be shdppendix A) that
be rotated into the configuratiof213. The configurations his minimizes the coupling between rotational and vibra-
that cannot be connected by rotations will be cal®8®-  ti5nal motion in the same way as at zero field.
met”_cilzlg' equivalent-a term borrowed from molecular — the Hamiltonian for electrons in a parabolic quantum dot
physics™ A harmonic expansion can be done about any Ofsgparatds® into terms describing CM and relative motion
the symmetrically equivalent configurations and the quantu RM), that is, H=Hcy+Hry. The rotational-vibrational
vibrational states localized on each symmetrically equivalen otio'n is desc':ribed bifl ry Which depends on’2—2 coor-
configuration are degenerate. The electron states are then afra1es. One of these is associated with rotational motion and
p.roxw.nated by antisymmetrizing these Qegenerate .stgtes. Trﬂﬁe remaining A —3 with vibrational motion. The vibra-
vibrational states have symmetry that is characteristic of thg degrees of freedom are displacemepts, expressed
equilibrium configuration and it turns out that this symmetry; - +ha Eckardt frame. so that,=a +p;, and thé rotational

1 ] 1

leads to selection rules that restrict the angular momenturHegree of freedom is the Euler angle, What is needed here

and Spin ct?mblr]ﬁ:lonsh of the_ groung state to the knoqu the RM Hamiltonian expressed in terms of displacements.
magic numbers. Thus the magic numbers are a consequeng&g .,nyenient to anticipate that it will be used to study

of the symmetry shown in Fig. 1. Itis important to remember, i, iional motion and write it in terms of normal coordi-

that the magic numbers will emerge from an approximation, »1a5 4t the outset. Thus the displacement vectors have the

in which tunneling between symmetrically equivalent 2N-3
. . . ; neral formp; =72 iiQ; where theQ. are normal co-
minima is neglected. In reality this effect breaks the degenJc o & M= 2= QijQ; where theQ; are normal co

; . rdinates and th€);; are elements of a transformation ma-
eracy of states centered on the symmetrically equalen?rix_ The derivation of the normal coordinate Hamiltonian for

minima and can affect the magic humbers. However, it turns ero magnetic field is treated in standard @x#and the

out that the splitting of the degenerate states is very sma| . ) .
unless the total angular momentum is small. The effects o eatment is easily generalized to the case when a perpen

tunneling are examined more quantitatively in Sec. VII afterd;ggls?éazns&nﬁ:mﬂgii:n ipsreseniAppendm A. Thus the

the vibrational approximation has been treated in detalil and

compared with the results of exact diagonalization. Section

VIl also contains a discussion of symmetricaiyequivalent 1 1
L . : ‘ - . Haw== m(Lry—L, )2+ >

minima, that is, competing classical minima which have RM™ 5 RM™ Lo 2m* ¢

(10

2N-3
We

2 LRMy

PZ+V+
=1

similar energies but different types of symmetry. In this case (12)
guantum tunneling is much more important and leads to the

liquidlike states mentioned in the Introduction. where the notation is similar to that used by Wilson, Decius,
and Cross* Lgy is the RM _angular momentum,
IV. CLASSICAL ROTATIONAL-VIBRATIONAL STATES L,=2kZkPx, Z=2i;(Q;X Qi) -kQ;, and u=14/(lo
+m*2ija,-~Qiij)2. HereP; is the momentum conjugate to
Qj. lo is the equilibrium moment of inertia, and is the
Before stating the vibrational-rotational Hamiltonian it is total potential(including confinement and interaction terms
necessary to be precise about the reference frame in whigbgether with a term quadratic in the magnetic vector poten-
the vibrational motion occurs. The Eckardt frather “mol- tial). The quantityL, is an angular momentum associated
ecule fixed coordinate systerfis used because it is impos- with vibrational motion and it involves products of coordi-
sible to decouple rotational motion completely from the vi- nates and momenta. Physically, the coupling of these quan-
brational motiorf*3! The frame is constructed so that its tities occurs because Coriolis forces appear in the moving
origin is at the center of mag€M) and it rotates in such a Eckardt frame. The Hamiltonian is independentyofvhich
way that the angular momentum associated with the vibrais consistent with conservation of the RM angular momen-
tional motion vanishes to first order in displacements. In theum. Although the Hamiltonian is intended for the study of
absence of a magnetic field, the second requirement leads tibrational excitations it is at this stagexactbecause no
the Eckardt conditionZ;a; X r{ =0, where theg; are equilib- approximations have been made to the potential.

A. Classical Hamiltonian
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B. Equilibrium positions and normal modes vV C q b
The equilibrium positions are found by setting the linear cT T ( ) =iw< ' (15
momenta in Eq(11) to zero and minimizing the resulting P q

effective potential. The condition that the minimum occurs

. “USyhere T = (1/m*) 8, Vie=m* 02,8, C is the matrix of
when all the displacements are zero leads to the equation = )9k Vi @nj Ojk

SCoriolis coupling coefficients, and and p are vectors of
amplitudes. It is convenient to write this equation in the form

%1 2 Xx=iwM ™ X where,
Wx=iwM x wh
m*Lgm B
|C2) ai_Vivlri’=a1-_0- (12) vV C 0 E
W=|cT 1|, M=|_E ol (16)

These equations give all the symmetrically equivalent con- _ . . ) . )
figurations, predict the ring shapes discussed in Sec. Il and = (9 ,p") andE is the unit matrix. This type of eigenvalue
lead directly to Eq(8). They are similar to the equations that Problem is often encountered in classical mechanics, for ex-
define Lagrangian orbits in celestial mecharfics. ample, in discussions of orbital stability, and its properties
The normal modes are found in the usual way by diago.are well understood. The modes come in pairs Wltll frequen'
nalizing the matrix of second derivatives of the potential. InCies*« and they are orthogonal, in the sense thafifand
the present case there is a centrifugal term as well as thej are positive and negative frequency eigenvector compo-
potentialV. Thus the effective potential i’ =ulL2,/2+V  nents therp; -q; —d; -px =0 unlessj=Kk. If there are de-
and the elements of the second derivative matrix have thgenerate modes, linear combinations of them can be found
general form such that this property holds. The eigenvectors can be nor-
malized such that the matriX, whose columns are eigen-
, vectors, satisfies the relation
’ 3m*2LRM PV TV -1
Vgigjoagiangr m, (13 MK'M™*K=E. 17
The proofs of these statements are given in standard texts on
classical mechanicg:®® In the present workK is defined
where the¢; denote components af . Diagonalization of such that the first R—3 columns correspond to positive
this matrix gives two CM modes, one rotational mode, andrequencies, that is,
2N — 3 vibrational modes and the latter are used to evaluate o
the RM Hamiltonian[Eq. (11)]. Coriolis effects have not Q" Q
been taken into account at this stage so the normal mode K=|p+ p |, (18
frequencies do not correspond to those of the vibrational

modes. whereQ™ andP* denote matrices whose columns are posi-

tive or negative frequency eigenvector components. Further,

in the present work, all the frequencies, are real s@~ and

p~ are the complex conjugates @f andp*. ThusQ™ and
The vibrational HamiltonianH', is found by expanding P~ have the form

the RM Hamiltonian about one of the symmetrically equiva-

lent equilibrium configurations. Retaining terms of second Q =iQ"™, P =iP"*, (19

order or lower in momenta and coordinates leads to where the factors of are required to normalize the eigen-
vectors according to Eq17) and this equation itself takes

C. Vibrational modes

2N-3 2N-3 2N-3 L2N-3 the form
H’:Zm* 1_21 sz—l— jzl kgl Cijij+7j21 wﬁijz, —iQT*TPT4{pt*TQ+ Qt*Tpt* —pt*TQ+*
(14) Q+TP+_ P+TQ+ +iQ+TP+* _iP+TQ+~k
whereCj=(—Lgru/l0)ZiQjj ><Qik~lz is a Coriolis coupling E O
coefficient andw,; is the frequency of th¢th normal mode. =lo g/ - (20
Equation (14) gives the zeroth-order term in a systematic

expansion of the Hamiltonian in powers ofl#and at large

angular momentum the corrections té’ are of order V. QUANTUM ROTATIONAL-VIBRATIONAL STATES

1/\J|Lgruml. This can be shown by arranging the Taylor expan-

sions ofu andV in powers of I/, and using the approxi-

mation |Lgy|=QI, which follows from Eq.(9). The quantum RM Hamiltonian can be derived the same
The vibrational modes are determined by assuming hamway as the classical one; however, the noncommutativity of

monic time dependence and using the Hamiltonian equationguantum coordinates and momenta leads to the presence of

of motion. This leads to the following eigenvalue probleman extra term called the Watson tefit/ %8 This has the

for the vibrational frequenciesy, form —#2u/8 but it is of order 1l gy, so does not contribute

A. Quantum Hamiltonian
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to the vibrational Hamiltonian to the order considered herefor all j. It is easy to verify that this requirement is satisfied

Thus the quantum RM Hamiltonian has the same form as thethen

classical ondEq. (11)]. It depends on the angular momen-

tum operator—i%d/dx but does not depend op Therefore i 2N-3 2N-3

the RM wave function has the exact factorization f_(Q,, ... Q. a)=exp == 2> 2> AwQQ |,

Yam=expiJrmx) frv, Where fgy is a function of 2h =1 02,

2N—3 normal coordinates. Making this separation and per- (22

forming a harmonic expansion leads to the quantum vibra-

tional Hamiltonian which is given by Eq14) with the clas-  whereA=(Q"") !PT is a symmetric matrix. The symme-

sical variables replaced by operators. try follows from the orthogonality condition
PTTQ"—Q*™P"=0 [Eq. (20)].

B. Quantum vibrational states

To find the quantum vibrational states it is necessary to C. Symmetry properties of vibrational states
diagonalize the Hamiltonian defined by Ed.4) in which

coordinates and momenta are coupled. The classical vibra- The symmelry properties Of. the wbrgtlonal states are
tional Hamiltonian can be simplified by a canonical needed to simplify the construction of antisymmetric states.

transformatiod®>3 and a similar transformation can be S usual, the symmetry operators of the normal mode

used to diagonalize the quantum Hamiltonian, but as far aE|amiltonian are spatial transformations of the displacement

the author is aware this has not been mentioned in the ”teri/_ectors combined with permutations of the points to which

ture. To diagonalize the quantum Hamiltonian new operator he displacements are atjtacf?@d’.hat IS, a symmetry opera-
are defined by the relations lon, O, transforms the displacements according to

i - - P =0py-1(i), (23
ar:ﬁik: _ijTPk+ ijTQky ! P
1 Oa=ay, (24)
aj=— TP —PETQy.
! \/%; Qi PP Qi where the second equation defines the permutatigil,.
The equilibrium structures considered here hawold ro-
Rational symmetry and their point group is generally,, .
. . q f th it b The only spatial symmetries of the vibrational Hamiltonian
tonian 'f expressed In terms of them It Decomes,. giations because the Coriolis coupling breaks mirror
2jhwj(aj a;+1/2). Thus all the states of the system can bégymmetry. Therefore the spatial symmetry groupidfis the

expressed as powers of thé operating on the ground state. cyclic group,C,,. The full symmetry group oH' also con-
The ground state itself is determined from the condition thatains mirror operatorsy, combined with time reversat,

These operators obey the commutation relation
[a].ax 1=[aj,a]=0,[aj,a, ]= &« and when the Hamil-

it is annihilated by all thea;, that is, It is important to know how the quantum vibrational
IN-3 states transform under rotations. The matrix that transforms
E i.i_erTi_PfTQ fod Q . Qon_3)=0 the normal modes is block diagonal and its blocks are the
& i Ik gQ, Ik k| TESIRLy e 2N 3) T irreducible representatidfirrep) matrices of the point group.

(21 The matrix that transforms them is

1( DQ 0 ) ( _iQ+*TDQP++iP+*TDQQ+ Q+*TDQP+*_P+*TDQQ+* )
K™ K= ;

0 DQ Q+TDQP+_P+TDQQ+ +iQ+TDQP+* _iP+TDQQ+* (25)
|
whereDo=Dg(R) is the matrix that transforms the normal D, O
modes,Re C,,, and the right-hand side has been obtained 0 D* (26)
with the aid of Eqs(17—-19. A symmetry operation cannot a

mix raising and lowering operators; otherwise it would not

leave the Hamiltonian invariant. Therefore the off-diagonalThe matrixD,=D,(R) is diagonal when all the vibrational
blocks in Eq.(25 must vanish. The two diagonal blocks are modes are nondegenerate. Because all the irrefi3,ofre
complex conjugates of each other becallzgR) is real.  one dimensional, degeneracy in the present case can only be
Therefore, the transformation matrix for the raising and low-due to the presence of the antiunitary operatieosin the

ering operators has the general form full symmetry group ofH’. Dimmock and Wheelé? have
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shown that the presence of antiunitary operations in a groughe R; changes the Euler angle. For those permutations that
does not cause additional degeneracy wheR((70)?)  are equivalent to rotation®, in the sense of Eq24) the
=ng, Where the sum is over all antiunitary elements,new Euler angley’, is easy to find because

x((70)?) are characters in an irrep of the unitary subgroup,

andn, is the order of the unitary subgroup. In the present — -— ,

case g&cr)2 is always the identity operatoy((7o)?)=1 and Z g xR (x )RP“):Z 3-1i) <R (X')R;

the number of mirror operations is. Therefore the condi-
tion of Dimmock and Wheeler is satisfied. It follows that all
the vibrational modes are nondegenerate Rpds diagonal.
Further, the vanishing of the off-diagonal blocks on the right- _ _
hand side of Eq(25) implies thatD, commutes withA.  But RR(x')=R (x' —¢); therefore,x’= x+ ¢ where ¢ is
Thus the ground vibrational state is symmetric under rotathe angle of the rotatioR. After allowing for the change in
tions and the excited states change phase. The possibieit is found that the Eckardt frame displacements transform
phases are given by the irreps®f, and in the present work according to the equation

these irreps are labeled by an integer such that an anti- R

clockwise rotation through 2/m is represented by P =R Py 3D

exp(2mik,/m). These simple transformation properties of theang on comparing this with Eq23) it can be seen that a
vi_bra_tional states lead to a simple solution of the a”tisymmepermutation that is equivalent to a rotation changes the dis-
trization problem. placements by the inverse of the rotation to which it is
equivalent. The effect of these permutationsygy, is easily
D. Antisymmetrization found because the rotational-vibrational states transform ac-

Once the vibrational states have been found, approximatg°rding to the ireps oCp,. _
eigenstates of the electrons may be obtained in the form The antisymmetrization is done by a method used to find
nuclear spin statistical weights of molecuf8sSpin func-

=R 'Y axRR(Y)R;. (30

\y:A%M,ﬂRM%p"{SZ), (27)  tions are chosen to transform like the irreps of the subgroup
of rotationally equivalent permutation§g. This group is
= Aenexp —idrmx) isomorphic toC,, and under the permutatio®g, that is

equivalent to an anticlockwise rotation throughm/2n,
foRM'nl ,,,,, oy 5(Q1 - Qon-3) ¥spidS,),  (28)  the spin  functions transform according t&rispin
_ o . = exp(—2miKs/m) pin, Where O<ks<m. They can be con-
where the antisymmetrization operatér, operates on labo- structed by means of projection operators—an example is
ratory frame electron coordinategg, is the CM wave func-  given in the next section. The symmetric group can be de-
tion (which is unaffected by antisymmetrizatiorf is the  composed into left cosets with respect @z so that
vibrational wave functionn,, . .. ,n,y_3 are the numbers of S =P,;Cr+---+ P, Cr, wheren,=N!/m and an arbitrary
quanta in each vibrational modey, is the spin function, permutation can bec written in the forp=PPL, where

andsS, is thez component of the total spitg. The antisym- PLc Cq and O<t<m. The allowed combinations of quan-

metrization either gives an antisymmetric state or zero, de- oA
9 y tum numbers are found by writingA in the form

pending on the quantum numbelgy,ns, ... Noy_3, and = ne “1 " )
S,. For the quantum number combinations that lead to antiA=(IN)Z 2 3T, F_l)PS(il)thsP_ , Wher.e the sign
symmetric states the total energy is depends on the parity d?r. Substituting this into Eq(28)
leads to

2N-3 1
E=Ecm(Nem . Jem) +Eot+ X ni+s hwi+9* 1ugBS,, ot — 2t s '

=1 T=> (+1)lex Jamtkset > niky(i)

(29 t=0 =1

where E¢y, is the energy of the center of masy;, and Mo o
Jow are the radial and angular momentum quantum numbers X(l/N!)lPCM;l (—1)"sPs¢prmispins (32

of the CM, andE, is the classical equilibrium energy given
by Egs.(7) and(8). Thus the total energy can be found very and it is clear thaW’ vanishes unless
simply once the allowed combinations of quantum numbers

have been identified. 2l . 0 mod m, m odd
The difficulty with antisymmetrizing the function in Eq. Jrmt kst izl Nik(D=1 o mod m. m even
(28) is that most permutations transform the Euler angle and - ’ '(33)

normal modes in a complicated way. However, the transfor-

mation properties are very simple under the subgroup of pefEquation(33) is a necessary condition for the antisymmetri-
mutations that are equivalent to rotations and the physicatation to give a nonzero result and provided that the func-
reason for this is that these permutations cannot change otions Psirmispin are independent it is also sufficient as
symmetrically equivalent minimum into another. To find the shown by Wilsorf® An alternative way of proving suffi-
effect of these permutations on the Eckardt frame displacesiency is to use the Frobenius reciprocity theorem. If the
ments first consider their effect on the Euler angle. In EqfunctionsPsi/ruispin are independent they form a basis for
(10) the g are fixed vectors; therefore, any permutation ofthe representatioirep) of Sy induced by the irrepl’, of
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Cr in which Py is represented by-1. According to the m* [ 30%+ w? -3(02%-wd)
reciprocity theorem the number of times the induced rep con- V“”’:T s 2 5. 2 |
tains the antisymmetric irrep is equal to the number of times —3(Q°~wr) 30+ or

the rep ofCr subduced from the antisymmetric irep 8§  wherew, =|Lgy|/l,. The second derivative matrix is easily

contains . This number is (1)S{ ;' (=1)(£1)'=1.  diagonalized. Its eigenvectors form the columns of the ma-
Therefore Eq(32) gives an antisymmetric state only when trix,

Eqg. (33) is satisfied. Physically, Eq32) expressesl as a

linear combination of rotational-vibrational states localized 1 1 0 O
on then. symmetrically equivalent minima. 111 -1 0 o
The magic numbers are a direct consequence of E3j. — ) (37
For a ground state the number of quanta in each vibrational J210 0 11
mode is zero andqy=0. Therefore the angular momentum 0O 0 -1 1

and spin combinations of ground states are restricted to those , , .
that satisfy J+ks=0 mod m when m is odd and The first column is a radial mode whose frequency is given

J+k=m/2 mod m when m is even. For spin-polarized bBY w?=30%+ w?, the next two columns are bending modes

states this condition is particularly simple becausg;, is ~ Whose frequency is given .W§:(392_wr2)/21 and the fi-
symmetric ancks=0. Then the possible angular momenta ofnal column is a pure rotational mode of frequeney. The
the ground state are J=N(N—1)/2+kN and fadial mode has no angL_JIar dlsplacements. _The bendlpg
J=N(N—1)/2+k(N—1) wherek is an integer, foN and Modes do have angular displacements in addition to radial
(N—1)-fold symmetry, respectively. This is in exact agree-displacements but the displacement pattern is not unique be-
ment with Fig. 1, earlier resulf&® and a recent composite cause the bending modes are degenéfdteThe first three
fermion approacA™*2A further discussion is given in Secs. columns give the vibrational degrees of freedom and are
VIl and VIII after the accuracy of the vibrational approxima- Used to find the vibrational mode frequencies. The corre-
tion has been tested for the three-electron case. sponding normal coordinates are denotedQy, Q,, and
Q3, respectively.

It is interesting to compare the present results with those
VI. THREE INTERACTING ELECTRONS of Schweigert and Peetef$who have calculated the normal

A. Normal modes modes of up to 50 parabolically confined classical interacting

electrons in the absence of a magnetic field and at zero an-
gular momentum. They find that the radial mode has fre-
quency\/gwo independent of the electron number and this is
identical to the zero field and zero angular momentum limit
treatment of molecules witlC;, symmetry*® but in the of w;. Atfinite angular momentum and in the presence of a
present case it is simpler to use Jacobi coordinates to e"m[pagnetlg f'e.ld It canzlie sr;ownzt_hat t2he rzadle;I mode fre-
nate the CM motion at the outset. It has been verified thalu€Ncy i given byw; =307+ w;=30"+Lgy/l5 for all
this approach gives the same results as the standard one. THIECITON numbers. In contrast to the zero angular momentum
Jacobi coordinates are given by the orthogonal transformé£aS€ this has some electron number dependence beigause

The equilibrium configuration of three electrons is an
equilateral triangle with the radius of each electron orbit
given by Eq.(8). Standard methods for finding the normal
modes are described in the literatdfeéncluding a detailed

tion depends omN.
u, l/\/f _1/\/5 0 r B. Vibrational modes
The vibrational frequencies are obtained from the solution
u 1/y6 16 —2/3 r
2= V6 V6 2 (349 of the eigenvalue problem defined in E45) and the defi-
Us N3 13 1N3 rs nition of the Coriolis coupling coefficients given in Sec.

IV C. All the Coriolis coupling coefficients excefi,; and

C3, vanish. Physically, this means that Coriolis coupling has
no effect on the radial mode but splits the degenerate bend-
ing modes. The splitting is given by the solution of

whereus; is the redundant CM coordinate, andu, are best
expressed in polar coordinates witi=a#@ as the angular
coordinate ané the radius given by E(8). The advantage

of this is that mixed derivatives such a%v’/auiaej’ vanish m* w2 0 o ®
and the second derivative matrix has the block diagonal 2 '
form, 0 m* w% —w, iw
—io  —o, 1m* o |=0 (38)
Vo O (35) 15) —iw 0 1/m*
0 Vg '

which has been obtained from E@.5) with the aid of the
relationC,;= — C3,= w, , Where the sign o€,; corresponds
to a negative angular momentumlLgy,=—%Jgy and
Jrm=>0 for the cases of interest heér& he solutions of Eq.

, (36) (38 arewi =(w,* w,)? and the corresponding eigenvectors
give the matrice®* andP™:

After some tedious calculations it is found thdt, and
Vy, are given by

m* [ 902+ w?  3(Q%+w?)
V=

41302+ 0) 902+ 02
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_ i/m 0 0 TABLE I. Combinations oflgy, n_, andS satisfying the con-
! ] . dition Jgy+n_+ks=0 mod 3. TheS value for each combination
Qf= 0 —il(2Vym* w,) —i/(2ym* wy) | | of Jgy andn_ is given.
— * *
0 U2ym*wz)  IN2NM* w2) 39 Jau=0 mod 3 Jay=1 mod 3 Jgy=2 mod 3
— n_=2 mod 3 1/2 3/2 1/2
Vm* /2 0 0 n_=1 mod 3 172 1/2 312
pt= 0 Vm* w,/2 Vm* w,/2 |, n_=0 mod 3 32 1/2 1/2
0 —i \/m* (,()2/2 i \/m* 0)2/2
where the columns correspond to modes with frequencie§hosen to be th& =0 function in Eq.(41) which leads to
wy, @, , andw_ , respectively. states withS=3/2 and S,=3/2 and thek;=1 andk;=2

The importance of Coriolis coupling can be seen by comfunctions in Eq.(42) which lead to states witl$=1/2 and
paring the frequencies of the vibrational modes with those off;=1/2. The remaining spin functions simply give states
the normal modes. Equatid®) gives w,~(; thus the Co- with different Zeeman energies. What is of_ particu_lar _interest
riolis coupling terms are at least of ordef, which is not hgre are the_grqund—state and th.e Iow—Iymg excitations. At
small. Further, in the high magnetic-field limi2=w/2. high magnetic flgld .aII the !ow—lymg excitations are intra-
This leads to the relations;~w,~w, and w_=0. Thus Landa_u-level excitations Whlch have a few quantaiaf_ .

w; andw. correspond to inter-Landau-level excitations andEquation(40) shows that the intra-Landau-level mode has

w_ corresponds to an intra-Landau-level excitation. Thes& =1; therefore, the condition for an antisymmetric state

are precisely the excitations one would expect on physicdiEd- (33)] reduces talgy+n_+ks=0 mod 3, wheren_ is

grounds. In contrast, the high field limit of the bending modethe number of quanta dfw_ . The allowed combinations of

frequency,w,~w./2, does not correspond to any physical Jru. N-, andS are given in Table I.

excitation frequency. Thus the normal mode frequencies give

a poor approximation to the excitation spectrum and it is D. Comparison with numerical results

necessary to take account of Coriolis coupling. Before the approximate results can be compared with the
The symmetry properties of the vibrational states are eas-

ily obtained from Eqs(25) and (39). After taking into ac- re§ults of an exact diagonalization, it is necessary to de.ter-
. ; : mine how the RM quantum numbers in Table | combine with
count the coordinate transformations defined by EG3)

and (34) it is found that the transformation matrd, for a the quantum numbers of the CM. When the t_otal a’Fg“'ar
: : S momentum is magic the ground RM state combines with the
27/3 anticlockwise rotation is

ground CM state Jc=0) to give the overall ground state

1 0 0 so J=Jgru- At nonmagic angular momenta there are two
. possibilities. Either the state of lowest overall energy is a

0 exg—27i/3) 0 : (400 magic RM state withlgy,<J combined with an excited CM

0 0 exp2mil3) state withcy=J—Jrm, OF it is @ nonmagic RM state with

J=Jrm cOmbined with the CM ground state. In all cases the

Both the diagonal form and the nondegeneracy of the V_ibraéipproximate ground-state energy can be written in the form
tional modes are in accordance with the general discussion o

Sec. V C. The vibrational ground state follows from Egs. Erc=En(00) +Ent+E.+0*unBS,+E 43
(39 and (22: fee(Qr,Qz,Qs)=exp{—m*[wQ+wy(QR o5~ Eou( 00T Eot Bt 07 aBS B 109
+Q3)1/2%}. This happens to be the same as the normawhere Ecy(0,0) is the ground-state energy of the CM and
mode ground state and is clearly symmetric underE,is the quantum zero point energy of the vibrational states.

24/3-fold rotations. The energyE, vanishes wherd is magic. Otherwise it is
either a CM excitation energy or the energy of the minimum
C. Antisymmetrization number of vibrational quanta in the RM ground state, de-

. L . . pending on which of these two energies is the lowest. For
reg]:(rei ?igtr'f)g?g:ér'z\‘/’ﬂtl)on_l_'hsiscfg'ﬁﬁegu; ?ﬁiﬁﬂggntso tH;ﬁthree electrons the CM excitations are found to occur only
P P S Lo q P when S=3/2 and J=1 mod 3. In this caselcy=1,
transform according to the irreps @ and they can be Jry=J—1, and Eq3) givesE,=#(Q — w,/2). At all other
obtained with the aid of the projection operator RV ’ 942 9 X co

_ . J,S combinationsE, is a multiple ofi w_ as shown in Table
m-1_tpt _ ’ X

(1/m) ¢ & P, Wheree = exp(2miks/m). Exceptforanor-  “r oy amole E =% whenS=3/2 andJ=2 mod 3.
malization factor this gives

Ground-state energies calculated from Et) are shown
s,=% |111) (41) in Figs. 3 and 4(upper framesfor S=3/2 andS=1/2, re-
' spectively. Each figure shows the ground-state energy as a
_ 1. 2 function of the total angular momentu, that is, the lowest
S=z [TTh+ellin+ed1in), 42 energy for eacld. The magnetic field is 20 T so the absolute
for S,>0 and there are similar functions f8<0. Because ground state has a relatively large angular momentum and
the spatial part of the Hamiltonian is independent of spin, ithe vibrational approximation might be expected to work

is only necessary to consider spin functions for one of thegeasonably well. The diamonds give the results of an exact
possibleS, values for each distinct value &. These are numerical diagonalization, the squares give the results of the
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FIG. 3. Comparison of numerical and approximate ground-state G- 4. Comparison of numerical and approximate ground-state
energies for three interacting electrons with sBin3/2 at magnetic  energies for three interacting electrons with spin1/2 at magnetic
field B=20 T. The upper frame shows the ground-state energyi€!d B=20 T. The upper frame shows the ground-state energy
against the total angular momentum quantum nundbdihe lower  adainst the total angular momentum guantum nundbé&the lower
frame gives the lowest RM excitation against the relative angulaff@me gives the lowest RM excitation against the relative angular
quantum numbedey, . quantum numbedgy, .

approximation, and the lines are to guide the eye. Clearly, thdz,,=2 mod 3 andiw_, otherwise. The diamonds in the
approximate and exact results agree very well indeed. Thigures give exact numerical results, the squares give ap-
minima at the magid values are well reproduced and the proximate results, and the lines are to guide the eye. There
numerical and approximate points are almost indistinguishare no exact results atzy,=10 andJgy<8 because there
able throughout thd range whenS=1/2 and forJ greater are no intra-Landau-level excitations in these cases. The ex-
than about 10 whe®=23/2. As an example of the accuracy act results are broadly in agreement with the approximate
at largeJ, the numerical ground-state energyJat30 and ones. WherS=1/2 (Fig. 4) the approximation is very good
S=3/2 is 74.13410.0001 meV while the approximate en- and, in particular, the oscillations in the excitation energy are
ergy is 74.13320.0002 meV. The uncertainty in the numeri- well reproduced. WheB= 3/2 the approximation is accurate
cal result is due to the truncation of the basis at four Landato about 8% in the large angular momentum limit, but at low
levels and the finite number of iterations used to find theangular momenta the numerical excitation energy fluctuates
energy eigenvalue, while the uncertainty in the approximatelthough the general trend is in agreement with the approxi-
result is due to the finite number of the Newton-Raphsormation. The fluctuations could be caused by tunneling be-
steps used to solve E(). The high accuracy at largkis  tween symmetrically equivalent minima or by anharmonic-
probably due to the fact that all first order matrix elements ofity. They coincide with the range df values where only two
the anharmonic terms in the RM Hamiltonian vanish. ThusS=3/2 RM states can be constructed from the zeroth Landau
the higher-order corrections to the energy, which at first sighlevel ¢, (except forJ=10) and they are much less apparent
are of order 1{|Lgry|, are actually of order L/ . Never- in the S=1/2 case when the Hilbert space is larger.
theless, the accuracy of the approximation at ldvis re- The curves labeled “minimum{Figs. 3 and #show the
markable. energy obtained by setting,=0 in Eq. (43). This gives a

RM excitation energies are also shown in Figs. 3 and 4ower bound to the total energy and serves to illustrate the
(lower frame$. The figures show the lowest RM excitation small energy scale of the magic number effects.
energy as a function of the relative angular momentumf w_=0.76 meV when)= 12 which is about 1% of the total
Jrm- The excitation energies can be deduced from Table lenergy. FurtherE,, depends weakly od unlessJ=0. The
WhenS= 3/2 the excitation energy isfid»_ for all values of  only term that is both large and stronglydependent is the
Jrm but whenS=1/2 the excitation energy isfdv_ when  classical minimum ternk;y; thus thel value of the absolute
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ground state is essentially determined by classical physic8hus the transition field is linear id and the spacing be-
together with the requirement thabe a magic number. This tween transitions ifndependenof J. This explains the near

is consistent with the observation that the position of theregularity of transition fields which is found in results of
density maximum is very close to the classical orbit radiusexact diagonalizatio$for largeB. In the case of the three-
(Sec. 11l). An approximation to the ground-stalevalue can  €lectron system considered here the mean spacing, calculated
be found by approximating, with the aid of Eq.(9). This by sampling the exact ground-statevalue at 0.1 T intervals

gives in the range 15-25 T, with thg factor set to zero, is
1.55+-0.05 T while the spacing predicted by E@6) is
) 70 1.548 T. By generalizing Eq$7) and(8) to arbitrary power-
Eo=| |Lau|Q+L @Oc n e Nay /m7lg 1 law potentials it can be shown that the regular spacing only
0 RM RM 2] " 4meey V |Lgyl ILrml?/  occurs for certain special potentials, particularly the combi-

(44)  nation of r? confinement with ¥/ interactions. Thus mea-
surements of the transition fields could provide an experi-
WhenLgy= —7%Jgy andJgy=0 the valueJ*, of Jgy that mental probe of the potentials in real dots. Another

minimizesE, is given by interesting feature of the present results is the oscillation of
the RM intra-Landau-level excitation energy of tBe-1/2
2 m* 1.0 states. Exper_lmenta_l _observat|on o_f th.|s effect would require
J*3/2:E e Nay - 0 ] (45)  aprobe that is sensitive to RM excitations, such as measure-
2 Ameeq h7(Q)— wcl2) ment of a thermodynamic property, together with a Igw

) o factor to ensure that all thé values allowed a6=1/2 oc-
The optimal value oflgy, is either[J*] or [J* ]+ 1, depend-  ¢yrred.

ing on which of these values gives the lowest valueegf
where[J*] denotes the integer part df. For three elec- VIl. GENERAL FEATURES OF N-ELECTRON DOTS
trons and the parameters used to obtain Figs. 3 and 4, Eq.
(45) givesJ* =13.15. The optimal value qfgy turns out to
be 13 which corresponds t6=1/2. For the exact results The treatment of the magic numbdiBg. (33)] is based
shown in Figs. 3 and 4 the ground-stdtealue without the on the approximation that tunneling between symmetrically
Zeeman energy is indeed 13, but the Zeeman term reducesjuivalent minima is neglected. The results obtained so far
the energy of thes=3/2 state so the actual ground-stdte suggest that this effect is indeed small when the angular mo-
value is 12. mentum is large, but to assess the general applicability of Eq.
The most interesting experimental consequences of thed3) it is necessary to examine what happens when the an-
results in Figs. 3 and 4 concern the magnetic-field depengular momentum is small. For more than three electrons Eq.
dence of the ground state. As mentioned in Secs. | and 11I(33) predicts that ground states for different valuesSafan
the ground-state angular momentum increases in a steplikee degenerate in the absence of Zeeman splitting and the
way with magnetic field~81%1%24Essentially, this is because physical origin of this is the degeneracy of vibrational states
the field compresses the wave function, leading to an inlocalized on symmetrically equivalent minima. The degener-
crease of Coulomb energy which can be compensated by tiae levels are split by tunneling between symmetrically
expansion of the wave function which accompanies an inequivalent minima and the importance of this effect can be
crease of angular momentum. Maksym, Hallam, and tfeis assessed quantitatively by exactly diagonalizing the Hamil-
have used exact diagonalization to give a detailed analysis dénian to compute the splitting. For example, in the case of
this effect and it is interesting to see how it emerges from thdour electrons Eq(33) predicts that degenerate ground states
approximations developed here. Both the increase of Couwsccur atS=0 andS=2 whenJ=2 mod 4 and aS=0 and
lomb energy and the compensating effect of increasing th&=1 whenJ=0 mod 4. Numerical results indicate that the
angular momentum are contained in the classical energgplitting of these levels rapidly decreases witHt is at most
given by Eg. (44). A transition occurs when 5% of the total energy and is typically much smaller. For the
Eo(J,B)=E(J+1,B) or approximately whewE,/dJ=0. S=0 and S=2 levels the splitting is about 2.5 meV for
Thus the transition fields can be found by substituting integed=2 at 2 T, 0.9 meV forJ=6 at 5 T, and 0.13 meV for
values forJ* in Eq. (45). The right-hand side of this equa- J=14 at 10 T and the splittings of tt&=0 andS=1 levels
tion is a monotonically increasing function Bf This means are about a factor of 2 smaller. At the highest field this is less
that all J values should occur in sequence as the field ighan the Zeeman splitting. This suggests that the effect of
increased but in fact the Zeeman contribution to the totatunneling between symmetrically equivalent minima is rela-
energy favors spin-polarized states and suppresses sometbfely small except at very small angular momenta and the
the J values associated with other spin polarizations. Ongredictions of Eq(33) should be accurate for fields above a
example of this is the suppression of the 13 state men- few Tesla. This is the field range where “molecular” states
tioned in the preceding paragraph and others are given bgccur and the general conclusion that the “molecular” states
Maksym and ChakraborfyA more interesting property of are insensitive to tunneling is in agreement with the work of
the transitions emerges from the high-field limit of £45),  Hausler and Kramet!

A. Origin of magic nhumbers

which may be written in the form Another question is whether the ground states of electrons
in a central confining potential and interacting via arbitrary
m*[ 1 e®Nay \/mTI(’) -2/3 pair potentials have the same magic numbers as the states of

J* (46)  electrons in a parabolic dot. These systems have the same
rotational and permutational symmetry as parabolic dots and

T e 2.2 4meeg 73w
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can be treated in the way described in Sec. V except that it imetric so the terms of ordee(+ eh) vanish. The remaining
no longer possible to separate the CM motion. This does nadum reduces toN(N— 1)—22p;11(N— p)cosp(d— ),

affect the symmetry classification of the vibrational states ofvhich has maxima whendg(— ¢,) =27k/N, wherek is an

its consequences. Thus the occurrence of magic numbers iﬁteger «+0). The global maxima occur whee= /2| . For
not restricted to systems with parabolic confinement and, | \_cjectron clusted =J/N and because of the relation
Coulomb interactions and should be a very general phenon;\-z:ﬁ/(Zm*Q) the condition for a maximum is equivalent

enon. - : 1o 1,Q1=%J. Therefore the maxima oP(r,rg) in the high
It is interesting to compare the present approach to mag'gngular momentum limit havdl-fold symmetry and occur

numbers with earlier results due to Maksym and . . ) X
Chakrabortyf These authors observed that when the exacg/hen bothr andr,, take the approximate orbit radius given

Hamiltonian is diagonalized in a Slater determinant basis y Eq. (9). Compact clusters ofN-1) electrons can be

certain special determinants occur in spin-polarized grounélnalyzed in a similar way except that onlj—1 of the
states only if theid values are magic. FOX<5 the special Single-electron states are taken to have large angular mo-

determinants have all the electrons in a compact cluster irr]ngnta.lhen the symmetry i~ 1)-fold with a peak at the

the zeroth Landau level. That is, all the occupied single-or'gin’I =J/(N—1) and the maxima again occur at the ra-

electron orbitals have=0 and are adjacent in angular mo- dius given by Eq(9). Thus the pair-correlation functions of
mentum space. For example, in the calculations leading t e compact cluster states have (_axactly 'ghe symmetry that
Fig. 1, the determinan6é 7 8 9 10 occurs with a probability avors a low Coulomb energy. This explains the large &
of 13% in theJ=40 state of five electrons at 20 T. For change energy that appears when the Coulomb energy 1S ex-
N>5, when (N— 1)-fold symmetry occurs, the special deter- pressed as a sum of matrix eI_ements b_etween eigenstates of
minants have one electron witlh-0 and the remaining elec- angular momentum and provides the link between the ap-
trons in a compact cluster, for exampl6, 8 9 10 11 12 proach of Maksym and Chakraborty and the present one.
occurs with a probability of 18% in thd=50 state of six _ _ ) o
electrons at 17.5 TFig. 1). In each case the probability of B. Systems with competing classical minima
the compact clusters is about a factor of 2 greater than that of The physical picture of a “molecular” ground state local-
the next most probable state. Maksym and Chakrabortyzed about one classical equilibrium configuration breaks
showed that the Coulomb energy of the compact clustedown when there are competing classical minima. Then tun-
states is reduced by an exchange contribution whose magnieling between symmetrically inequivalent minima can re-
tude is exceptionally large. This leads to a reduction in thesult in the quantum ground state being a mixture of states
total energy and makes the magicvalues favorable. It is  with different types of symmetry. These are the liquidlike
easy to calculate the possiklevalues of the compact cluster states mentioned in Secs. | and Ill. Because the electron-
states and show that they are in agreement with the exprestectron interaction conserves angular momentum and spin,
sions for the magic numbers of spin-polarized systems givethe mixing can only occur in special cases when more than
in Sec. V C. Further insight into the properties of the com-one type of symmetry is allowed to occur at the same set of
pact cluster states can be obtained by calculating the paimagic numbers. Thus the classification of the possible magic
correlation functionPgg(r,rp). When the system is spin- numbers and symmetry types can be used to predict whether
polarized the pair-correlation function for an arbitrary Slaterthe ground state is molecular or not.
determinant composed of Fock-Darwin states is given by The six-electron system is the smallest in which classical
equilibrium configurations with different symmetry have
(2m\?)? 2 2 similar energieé® It is discussed here as an example of the
P(r,ro)= N(N—l)% | g (D11, (o) effects that can occur when minima compete. The two pos-
sible classical equilibrium configurations are a fivefold ring
= P (N Yo, (Fo)* i (Fo) ¥n (1), (A7) with one electron at the center and a sixfold ring. For
J=45 and the parameters used for the calculations leading to
where the spin indices o have been suppressed. This Fig. 1, the difference between the energies of these two con-
cumbersome expression is analyzed in Appendix B. It iSigurations is only about 0.57 meV, so at first sight it is un-
shown there that it is stationary wher-r. Further, when reasonable to expect that the quantum ground state is local-
all the ¢,; haven=0 and largd the stationary value can be ized about either one of them. However, according to the
approximated by rules developed in Sec. V C, fivefold symmetry with full spin
polarization requires that=0 mod 5 and sixfold symmetry
requiresJ=3 mod 6. Both types of symmetry occur only
exp{ —2(x— \/T)Z} when J=15,45,75.... Thus the liquidlike states can only
occur at this restricted set df values and molecular states
occur at otherd values. This is illustrated in Fig. 5 which

P = TNN-1D)

XZ {1—cod(ei—€)(Pp— o)} shows pair-correlation functions for the six-electron system.
. The lower left frame §=50) is the pair-correlation function
X[1+O(g+e)], (48)  for the ground state shown in Fig. 1 and serves as a reference

_ point. All the other states are the lowest-energy states at the
whereAx=r=rg, ¢ and ¢, are polar angled, is the aver- indicated values ofJ. The pair-correlation function at
age angular momentum of the cluster, age=1;—1 . For J=51 clearly corresponds to sixfold symmetry and the one
compact clusters dfl electrons the distribution af; is sym-  atJ=40 to fivefold symmetry. Thd=45 case exhibits some
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posite fermion theorie$:*? and this connection with the

N=6, J=40, B=17.5T N=6, J=45, B=17.5T composite fermion treatement may be a particularly fruitful
60 60 area for further study. The molegular picturfa breaks down in
50 50 the presence of quantum tunneling. Selecpon rules and con-
servation laws have been used to determine when this effect
A0 Ao occurs and which states are affected. Tunneling between
30 30 symmetrically equivalent minima simply lifts the spin degen-
20 20 > eracy associated with certain magic angular momenta. Tun-
10 10 neling between symmetrically inequivalent minima has a
much more important effect and, when it is allowed, leads to
10 20 30 40 50 60 10 20 30 40 50 60 the formation of liquidlike states which are not localized
about a single minimum. For six electrons these states only
N=6, J=50, B=17.5T N=6, J=51, B=17.5T occur at odd-denominator filling factors, and whether they
evolve into fractional quantum Hall liquids as the number of
60 60 electrons is increased is a fascinating open question.
50 50 A possible development of the present work is to use the
y40 y40 Eckardt frame approach as a computational tool. Tunneling
30 30 between symmetrically equivalent minima could be taken
20 20 @nto accpunt by .numerica.lly diagonalizing the Hamiltoniqn
10 10 in a basis of ar?t!sym.metlrlzed states pentered on the various
minima. In addition, it might be possible to devise a varia-

10 20 30 40 50 60 10 20 30 40 50 60 tional approach to include the symmetrically inequivalent
X X minima. The precision of the vibrational approximation for
three electrons suggests that this might enable low-lying
FIG. 5. Pair-correlation functio.«(r,r,) for six interacting, ~ States of quantum dots to be calculated accurately and eco-

spin-polarized electrons &= 17.5 T. Pair-correlation functions for Nomically with a relatively small basis set. .

the lowest-energy state at the indicated angular momenta are We recently received results from Ruatal. Using a

shown. The black spots denatg. Thex andy unit is 1.89 nm. different approach, they have related the ground-state magic
numbers to the symmetry of potential minima for up to five

loss of symmetry. The peaks on the outer ring are less Shaﬁpm—polarﬁed electrons and obtained the same results as
than atJ=40 andJ=50 and the peak at the center is muchdiven here.

less well defined. When theskvalues are converted to ef-

fective filling factor$® with the aid of the formula, ACKNOWLEDGMENTS

v=N(N—-1)/2], itis found that the loss of symmetry occurs
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guantum Hall liquids occur. One can speculate that althoug . : . i
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restricted by selection rules and conservation laws with the

result that liquidlike states only occur at odd-denominator APPENDIX A: THE RM HAMILTONIAN

filling factors. To find the RM Hamiltonian in the presence of a magnetic

field it is sufficient to consider classical mechanics. Once the
VIIl. DISCUSSION classical Hamiltonian is available, the quantum Hamiltonian

can be obtained by standard methd4¥*®The only issue is
The Eckardt frame approach allows the quantum states Qhg form of the conjugate momenta. These can be obtained

electrons in quantum dots to be understood both qualitatively.,m the classical Lagrangian kinetic energy which has the
and quantitatively in a comprehensive and unified way. Thg, .,
advantage of the approach is that the classical equilibrium
configuration is stationary in the Eckardt frame. This has N
been used to develop a detailed treatment of molecular elec- F= E
tron states which are localized about a single classical equi- =1
librium configuration and can be approximated by antisym- . .
) . o .7 when expressed in laboratory frame velocities, Separat-
metrized rotational-vibrational states. The approximation ; |
) : ing the CM terms, transforming to Eckardt frame variables
enables the energies of the molecular states and their Iovxé-S described by Wilson. Decius. and Csnd expressin
lying excitations to be calculated accurately. In addition, the y yvison, t P 9
. . : . the vector potential in the symmetric gauge leads to
magic numbers found in previous numerical work can be
derived quite simply from the requirement that the electron
ground state is approximated by an antisymmetrized o _
rotational-vibrational ground state. It is remarkable that this 2

approach predicts exactly the same magic numbers as com- (A2)

m*v?

2

—eA;-v;, (Al)

N N x 2 2

A m*p; lw
M’k 2 (pXp)+ 2 -
i=1 1 2 8

|w/2
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where | is the instantaneous moment of inertia, linear inP, vanish when normal coordinates are used and, as
w’=y—wJ2 and the Eckardt condition has been used tcat zero field™* use of normal coordinates necessarily implies
eliminateX;(a; X p;). After expressing the displacements in use of the Eckardt frame.
terms of normal coordinates this becomes
) APPENDIX B: THE PAIR-CORRELATION FUNCTION
low'? m Q2 lo? FOR A SLATER DETERMINANT

F= T+m*w’ Z‘k 2 Qi+ k; > g OF FOCK-DARWIN STATES

2N-3 2N-3

(A3) The Fock-Darwin statekEq. (2)] have the general form
where 2= Z;;(Qj; ink)-IQQj. Differentiating this to ob-

=(2 2\ —1/2, _ 24h —il B1
tain the conjugate momenta yields Y= (25X XA () exp—il ¢), - (B1)

wherex=r/\ andh,, is real. Therefore the pair-correlation

05 . function[Eq. (47)] has the general form
Pj: v =m*Qj+m*w’»$j, (A4)
ﬁQi 1 2 2 2 2
P(r,ro)= ————exg — (x®+x3)/2] >, h2, (x)hZ, (Xo)
0% 2N-3 N(N—-1) AN i'i
_9_ * >
Lew= o =e1 M 2 2Qc (A9 — by, (Ohy ) (Xo)hn (Xo) 1 (X)

The Hamiltonian kinetic energy is found by substituting xcog (Ii=1)(d— o)1, (B2

these results into the expressigh gy+=2N13QPy— 7.
This gives the kinetic energy terms in E(.1) except that
 is given by ( —m*Ekzﬁ)‘l. The form ofu given in the
text is obtained by transforming this expression in the wa
described by Watsof.

This derivation of the RM Hamiltonian is based on the
same Eckardt condition that holds for zero magnetic field. |
gives a Hamiltonian in which the lowest order coupling of
coordinates and momenta occurs in the fatigP,, which is
of second order in the displacements. Thus the zero-fielg_|0

Eckardt condition leads to first-order decoupling of coordi-

nates and momenta even when a magnetic field is presentm?ﬁ'mum atxhz \/Z—lll t'r:hlstetnab:]eSD(rlé;O)to be swg_pllfltehd
is instructive to consider this from another point of view, ' € case when all the states have ldrgy expanding the

Suppose an arbitrary linear transformation is used in place dpgarithm of the radial part oo aboutx= @_and apply-
the transformation to normal coordinates. Then the form ofNd Stirling’s approximation to the normalization factor, the
Eqgs.(A2) to (A5) is unaltered butZ, acquires the extra term Fock-Darwin states are approximated by

2i(aX Q) - k. Consequently, the Hamiltonian acquires a 1 1

term that is linear irP . However, when normal coordinates iy (r)= — Wexp[—(X— J20212kexp(— il 6).

are used>;(a X Qyx) - k vanishes. This follows from the or- V2

thogonality of the transformation to normal coordinates and (B3)

is equivalent to the Eckardt condition. Therefore, the termsSubstituting this into Eq(B2) and puttingx=x, leads to

so the x and x, dependence ofP has the form
ex;{—(x2+x§)/2]g(x,xo). This is stationary with respect to
variations inx and X, whenxg=dg/dx and xq,g=dg/dXg.
YBy considering the derivatives df,, it can be shown that
xdgl dx=F(X,Xg) and Xydg/dxo=F(Xq,X), where the first
equation define&. It follows from these relations tha is
Stationary whenx2=x2=F(x,x)/g(x,x), that is, when
X:XO.

It is more difficult to analyze thep dependence oP.
wever, whem=0 the Fock-Darwin states have a single

1 1
P(T0)= 5 NN D2 XM~ (6 V210 = V2131~ cod (1 =) (6= o) I (84)

i

Finally, puttingli=I_+ g, and expanding to first order ig leads to Eq(49) of Sec. VII A.
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