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We present analytical results for the compressibility of the interacting electron gas within the Hartree-Fock
approximation. For the three-dimensional and the ideally two-dimensional electron gas, the well-known results
from the literature are found. For the finite width effects in the two-dimensional~quantum well! and the
one-dimensional~quantum wire! electron gas, analytical results are described. The explicit form of the inter-
action potential between the charged carriers enters into the expression for the compressibility: finite-width
effects reduce the corrections induced by interaction effects. Our predictions could be tested by capacitance
measurements.

I. INTRODUCTION

For the interacting three-dimensional electron gas, it is
well known that analytical results for the ground-state energy
can be obtained within the Hartree-Fock approximation
~HFA!.1,2 The same is true for the ideally two-dimensional
electron gas, where extension effects are neglected.3 The
compressibility also can be calculated analytically. For het-
erostructures and quantum wells4–6 and for quasi-one-
dimensional systems,7 analytical results for the exchange en-
ergy are not available. In general, one calculates the
exchange energy for such systems, and the compressibility is
obtained by the first and second~numerical! derivative of the
exchange energy with respect to the carrier density.5,6 The
HFA is, as the lowest-level approximation for many-body
effects, of considerable importance, and research on this
topic is still going on.8

The influence of many-body effects on the compressibil-
ity has recently been measured in GaAs quantum wells,6 and
within these measurements the importance of exchange ef-
fects has been demonstrated. Finite-width effects for the
compressibility concerning these experiments have been dis-
cussed in Ref. 5. However, the compressibility was calcu-
lated by the method described above.

In this paper we present a direct method to calculate the
compressibility, which uses the fact that the exchange energy
is given in terms of the static structure factor, and that the
static structure factor depends on the electron density. We
find that in one-dimensional systems the static structure fac-
tor is such a simple function that we obtain an analytical
result for the compressibility. Moreover, for two-
dimensional systems we derive an equation which can be
used very easily by experimenters, and which allows them to
calculate finite-width effects for the compressibility by
evaluating an integral. In addition, an approximate expres-
sion is derived which is in good agreement with the exact
result.

The paper is organized as follows. The model and theory
are described in Sec. II. In Sec. III we present the analytical
and numerical results. We discuss our theory in comparison
to experiments in Sec. IV, and we conclude in Sec. V. In the

Appendix we give some additional results for systems where
the confinement depends on the electron density.

II. MODEL AND THEORY

For an interacting electron gas ind dimensions, the den-
sity parameterr s is given by the carrier densityNd as r s
5@3/4pN3a*

3#1/3, r s5@1/pN2a*
2#1/2, and r s51/2N1a* ,

respectively.r s is the mean particle distance in units of the
effective Bohr radius.a*5«L /m* e

2 is the effective Bohr
radius defined with the effective electron massm* , back-
ground dielectric constant«L , and electron chargee. For the
Planck constant we useh/2p51. The energy scale is the
effective Rydberg, defined by Ry*51/2m* a* 2. The elec-
tron densitiesNd define the Fermi wave numberkF via N3

5gvkF
3/3p2, N25gvkF

2/2p, and N152gvkF /p. gv is the
valley degeneracy. The Fourier transform of the interaction
potential between the carriers is written asV(q). Explicitly,
we use V(q)54pe2/«Lq

2 for d53, V(q)
52pe2F(qb)/«Lq for d52, and V(q)5e2f (qb)/2«L for
d51. F(qb) is the form factor for width effects and for the
ideally two-dimensional electron gas, where width effects are
neglectedF(qb)51. b is the width parameter of the quan-
tum well. For quasi-one-dimensional systems, the width ef-
fects are always important, and are described byf (qb). b is
the width parameter of the wire. We assume that the width
parameter does not depend on the electron density. In sys-
tems whereb depends on the electron density, our results
become quite complicated, and are given in the Appendix.

Within the HFA the ground-state energy«HFA per particle
can be expressed as1,2

«HFA~r s!5«kin~r s!1«ex~r s!. ~1!

The kinetic energy per particle of ad-dimensional electron
gas is given as «kin(r s)/Ry*5C(d)/r s

2 , with C(3)
52.2099/gv

2/3, C(2)51/gv , andC(1)50.2056/gv
2 . The ex-

change energy is calculated by taking into account the Cou-
lomb interaction between electrons and the exchange hole
due to the Fermi statistic. Our calculation holds for dimen-
sionsd51, 2, and 3. In order to obtain analytical results for
the compressibility, we do not take into account zero mo-
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mentum transfer processes resulting from the local non-
neutrality in systems with finite width. Our exchange energy
does not include the Hartree energy and higher-order terms
~with band filling, the electron wave functions in the confine-
ment directions are slightly modified!. Within these approxi-
mations the exchange energy per particle is given by

«ex~r s!52
1

2Ld(qÞ0
V~q!@12S0~q!#, ~2a!

whereS0(q) is the static form factor1 or the static structure
factor2 of the free-electron gas.L is the length of the system.
S0(q) depends only on the variabley5q/2kF , and can be
expressed as

S0~qÞ0!512(
k
nqnk1q /N. ~2b!

nq is the Fermi distribution function at temperature zero de-
fined asnq52gv if uqu<kF andnq50 if uqu.kF andN is
the number of particles.

The compressibilitykd is given as2

1

kd
5
Ndr s
d2 H ~12d!

d«

drs
1r s

d2«

drs
2 J . ~3a!

According to Eq.~1! the compressibilitykHFAd in the HFA is
given as

1

kHFAd
5

1

k0d
2
Ndr s
d2 H ~d21!

d«ex
drs

2r s
d2«ex
drs

2 J , ~3b!

with k0d5d2/@2(21d)Nd« kin(r s)#5m* d2r s
2a* 2/@(2

1d)NdC(d)# as the compressibility of the free-electron
gas, and with m*51/2Ry* a* 2. One obtains k03

54p(4/9p)2/3gv
2/3r s

5a* 5m* for d53, k025pgvr s
4a* 4m*

for d52, andk01532gv
2r s

3a* 3m* /p2 for d51.
We note thatd«ex/drs}d«ex/dkF}dS0 /dkF}dS0 /dy,

and that an additionalr s dependence results from the fact
that 12S0(q)50 for q.2kF . For d51, 2, and 3, Eq.~3b!
can be written as

k0d

kHFAd
512

2d22kF
d

~2p!d~21d!«kin~r s!

3E ddyV~2kFy!yH ~d21!
dS0~y!

dy
2y

d2S0~y!

d2y J
~4!

andy5q/2kF . Explicitly we find

k03

kHFA3
512

2

3p S 4gv9p D 1/3r sE
0

1

dy y$2S08~y!2yS09~y!%

~5a!

for three dimensions,

k02

kHFA2
512

~2gv!
1/2

4
r sE

0

1

dy yF~2kFby!$S08~y!2yS09~y!%

~5b!

for two dimensions, and

k01

kHFA1
511

2gv
p2 r sE

0

1

dy y2f ~2kFby!S09~y! ~5c!

for quasi-one-dimensional systems.

III. RESULTS AND DISCUSSION

A. Analytical results

We note that S0(yÞ0)53y/22y3/2 for y<1 and
S0(y)51 for y.1 in three dimensions,S0(yÞ0)
52$arcsin(y)1y(12y2)1/2%/p for y<1 andS0(y)51 for
y.1 in two dimensions, andS0(yÞ0)5uyu for uyu<1 and
S0(y)51 for uyu.1 in one dimension. Accordingly, for
y<1, we get for (d21)dS0(y)/dy2yd2S0(y)/d

2y the
simple expressions 3 ford53, 4/@p(12y2)1/2# for d52,
and yd(y21) for d51. For y.1 we find 0 in all dimen-
sions. It is the simple formS09(y)52d(y21) for one di-
mension, which allows us to derive analytical results for
quasi-one-dimensional systems; see Eq.~5c!.

With our analytical results we can calculatek0d /kHFAd in
an explicit form. We find2

k03

kHFA3
512

1

p S 4gv9p D 1/3r s ~6!

for three dimensions,

k02

kHFA2
512

~2gv!
1/2

p
r sE

0

1

dy F~2kFby!
y

~12y2!1/2
~7!

for two dimensions, and

k01

kHFA1
512

2gv
p2 r sf ~2kFb! ~8!

for quasi-one-dimensional systems. Equation~7! for two-
dimensional systems and Eq.~8! for one-dimensional sys-
tems are the fundamental results of this paper. Note that a
negative compressibility for larger s does not imply an insta-
bility: the positive background charge in the jellium model
stabilizes the system. A negative compressibility of the elec-
tronic systems was seen in the experiment.6

For ideally two-dimensional systems, whereF(qb)51,
with *0

1dy y/(12y2)1/251 we obtain the well-known result

k02

kHFA2
512

~2gv!
1/2

p
r s . ~9!

In Eq. ~7! the termy/(12y2)1/2 becomes singular fory51.
Therefore, we replaceF(2kFby) in Eq. ~7! by F(2kFb), and
obtain the approximate result

k02

kHFA2
512

~2gv!
1/2

p
r sF~2kFb! , ~10!

which gives experimenters a good estimate about the impor-
tance of width effects. In the following we present some
numerical results for quantum wells and quantum wires.

B. Numerical results: Two-dimensional systems

In quantum wells~QW’s! of width w, the form factor
with x5qw for the width effects can be written as9
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F~x!5
1

4p21x2 H 3x1
8p2

x
2
32p4

x2
12exp~2x!

4p21x2 J .
~11!

Numerical results for the inverse compressibility of quantum
wells according to Eq.~7! are shown in Fig. 1 for different
well widths. 1/kHFA2 increases with increasing well width.
This means that many-body effects are weaker in quantum
wells with larger widths.

Equation~7! can be used to obtain asymptotical results for
large and small densities. WithF(x→0)512(1/3
25/4p2)x1O(x2),9 for 2kFw!1 @r s@r s*5(8/gv)

1/2w/
a* ] we obtain

k02

kHFA2
512

~2gv!
1/2

p
r sH 11~2/gv!

1/2S 5

8p
2

p

6 D w

r sa*
J .
~12!

With F(x→`)53/x, for 2kFw@1 @r s!r s* # we find

k02

kHFA2
512

3

4
gv
a*

w
r s
2 , ~13!

which is the expression for largew and ~or! large density.
Equations~12! and~13! are valid for a two-dimensional elec-
tron gas with only the lowest subband occupied: the inter-
subband energyE21'3Ry* a* 2p2/w2 decreases with in-
creasingw, andE21 must be larger than the Fermi energy
«F in order that the one-subband calculation is still valid.
This condition leads tokFw,31/2p'5.4. This condition
works against the validity range of Eq.~13!: kFw@1/2. We
conclude that the validity range of Eq.~13! becomes
0.5!kFw,5.4 (0.26<r sa* /w!2.83). For kFw.5.4 the
one-subband approximation is not justified, and all subbands
have to be taken into account. Equation~13! has a very small
range of validity; see Fig. 2 forw5a* . Nevertheless, we
think Eq. ~13! shows that finite-width effects cannot be ne-
glected at high density: compare Eqs.~13! and ~9!.

In Fig. 2 we compare the various approximate expressions
for the inverse compressibility of a quantum well of width

w5a* . We mention that the analytical result@Eq. ~10!# is in
very good agreement with the exact result@Eq. ~7!#; see Fig.
2. Equation~12! is also in very good agreement with the
exact result forr s.1. In Fig. 2 the relevant parameter is
r s*52.8.

Some analytical and numerical results for heterostruc-
tures, where the confinement parameter depends on the elec-
tron density, are given in the Appendix.

C. Numerical results: Quasi-one-dimensional systems

For quasi-one-dimensional systems we study two models.
First, we study cylindrical wires~CW’s! where the confine-
ment potential is zero forur u,R0 and infinite for ur u.R0 .
The width parameterb corresponds toR0 . The form factor
with x5qR0 is written as10

f ~x!5
144

x2 F 1102
2

3x2
1

32

3x4
264

I 3~ uxu!K3~ uxu!
x4 G . ~14!

I 3(x) andK3(x) are the modified Bessel functions of order
3.11 Numerical results for the inverse compressibility versus
r s are shown in Fig. 3 for different wire radii. The solid dots
in Fig. 3 represent the inverse compressibility forR05a* ,
when correlation effects are taken into account.12 Note that
the results within the HFA are in reasonable agreement with
the solid dots in order to argue that the HFA can be used to
estimate many-body effects for the compressibility. The con-
dition that only the lowest subband is occupied is expressed
as r s.0.25R0 /gva* .

Second, we study quantum wires where the confinement
potential is described by an oscillator potential~OW! with
width parameterc. The form factor withx5qc is written
as13

f ~x!52E1~x
2!exp~x2!, ~15!

whereE1(x) is related to the exponential-integral function.
11

Numerical results for the inverse compressibility for the os-
cillator confinement are given in Fig. 4. Note that many-body

FIG. 1. Inverse compressibility 1/kHFA2 ~in units of the inverse
compressibility of the free-electron gas 1/k02) vs random phase
approximation~RPA! parameterr s of a quantum well of widthw
for w54a* , w52a* , w5a* , andw50.

FIG. 2. Inverse compressibility 1/kHFA2 ~in units of the inverse
compressibility of the free-electron gas 1/k02) vs RPA parameter
r s of a quantum well of widthw5a* . The solid line corresponds to
Eq. ~7!. The dotted line corresponds to the approximate expression
according to Eq.~10!. The dashed and dashed-dotted lines corre-
spond to Eqs.~12! and ~13!.
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effects are somewhat smaller in wires with oscillator con-
finement than in wires with infinite confinement for
ur u.R0; compare Fig. 3 with Fig. 4 forc5R0 . For the os-
cillator model the condition that only the lowest subband is
occupied can be written asr s.pc/4gva* .

IV. COMPARISON WITH EXPERIMENTS

Within the HFA the correlation effects are neglected, and
this approximation is only valid forr s,1. In general, how-
ever, it is fair to say that correlation effects, important for
r s.1, do not dramatically modifyk0d /kd ; see Refs. 2, 5,
and 12, and our Fig. 3. The analytical results presented in
this paper can be used to estimate the importance of many-
body effects, and should be helpful to experimenters. Of
course, the main motivation of this paper was to calculate the
effects of a finite width in low-dimensional systems. Our
results are for zero temperature; finite-temperature effects
can be calculated following the lines given in Ref. 8.

In confined systems the electron density can be large, and
can be varied within one sample. In GaAs quantum wells
with a*5100 Å, the valuer s51 corresponds to a density
N53.231011 cm22. Experiments are made in the density
range N5(0.5–7!31011 cm22 ~corresponding to
0.7,r s,2.5) withw;~1–3!a* . These facts open up a sys-
tematic study of many-body effects. In general one finds that
1/k,1/kHFA for d53 due to correlation effects. However, in
confined systems the correlation energy4,5 is no longer a
monotonic function of the carrier density, and in systems
with finite width the relation 1/k,1/kHFA is not always
valid. For details of quantum wire systems, where correlation
effects are taken into account, see Ref. 12.

Information about the compressibility is available via ca-
pacitance measurements.3 The capacitanceCd per volume
Ld of the interacting electron gas is a function of the chemi-
cal potential m: Ld/Cd5(1/e2)dm/dNd .

14 With 1/kd

5Nd
2dm/dNd ,

2 one finds

Ld

Cd
5

1

e2r0d~«F!

k0d

kd
. ~16!

«F is the Fermi energy, andr0d(«F) the density of states of
the free-electron gas at the Fermi energy«F : r0d(«F)
5Ndd/2«F . Neglecting many-body effects (k0d /kd51),
one obtainsCd}r0d(«F) with r02(«F)5const, andr01(«F)
}1/«F

1/2. Note that if k0d /kd,0, the capacitance also be-
comes negative.

Capacitance measurements of two-dimensional electron
systems6,14 indicate that information about many-body ef-
fects can be obtained by such measurements. Capacitance
measurements of quantum wires have been used to obtain
information about the subband structure~the density of
states! and modifications of this subband structure with in-
creasing magnetic field.15,16k01/k151 is used for the analy-
sis of these experiments. This is justified for large wire ra-
dius and large density. We suggest that capacitance
measurements of quantum wires with only one subband oc-
cupied could be used to study many-body effects~the factor
k01/k1) in one-dimensional systems. We note, however, that
the Hartree contribution, which depends on the distribution
of the dopant ions, have been neglected in our calculation.
We also mention thatr01(«F) is not constant if the density
varies; however, this factor is independent of the confine-
ment, whilek01/k1 depends on the confinement and the car-
rier density. This might help to interpret experimental results
using Eq.~16!.

V. CONCLUSION

We have derived quasianalytical results for the compress-
ibility of two-dimensional interacting electron gases with fi-
nite width, and analytical results for the compressibility of
quasi-one-dimensional interacting electron gases. Our results
should be useful for experimenters, and can be tested in ex-
periments via capacitance measurements.
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FIG. 3. Inverse compressibility 1/kHFA1 ~in units of the inverse
compressibility of the free-electron gas 1/k01! vs RPA parameter
r s of a cylindrical quantum wire of widthR0 for R054a* ,
R052a* , R05a* , R05a* /2, andR05a* /5. The solid dots rep-
resent the inverse compressibility forR05a* with exchange and
correlation taken into account~Ref. 12!.

FIG. 4. Inverse compressibility 1/kHFA1 ~in units of the inverse
compressibility of the free-electron gas 1/k01) vs the RPA param-
eter r s of a quantum wire with an oscillator confinement of width
parameterc for c54a* , c52a* , c5a* , c5a* /2, andc5a* /5.
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APPENDIX

1. Two-dimensional systems

In order to derive Eq.~5b! for two-dimensional systems,
we assumed that the width parameter is independent of the
electron density. If the width parameter is density dependent,
we derive

k02

kHFA2
512

gv
1/2r s
23/2 E0

1

dy F~2kFby!K~r s ,y!, ~A1a!

with

K~r s ,y!5$a~r s!yS08~y!1b~r s!y
2S09~y!

1g~r s!@12S0~y!#%. ~A1b!

The coefficientsa, b, andg are expressed as

a~r s!511
3r sb8

b
2
4r s

2b82

b2
1
r s
2b9

b
, ~A2a!

b~r s!5211
2r sb8

b
2
r s
2b82

b2
, ~A2b!

and

g~r s!5
r sb8

b
1
2r s

2b82

b2
2
r s
2b9

b
, ~A2c!

with b85db/drs andb95d2b/drs
2 . Whenb is independent

of r s , one obtainsa(r s)51, b(r s)521, andg(r s)50, and
Eq. ~A1a! becomes equal to Eq.~5b!.

For GaAs heterostructures~HS! with vanishing depletion
densityND , whereb}r s

2/3, the form factor is given by

F~x!5
1

~11x!3 F11
9

8
x1

3

8
x2G . ~A3!

The width parameter is written as3 (b/a* )3

52r s
2/@33(1132ND/11N2)#. For the inverse compressibil-

ity, we obtain

k02

kHFA2
512

~2gv!
1/2r s

9p E
0

1

dy F~2kFby!

3F4p28 arcsin~y!1
y

~12y2!1/2G . ~A4!

Within the approximationF(2kFby)5F(2kFb), the inte-
gral in Eq.~A4! can be calculated. From Eq.~A4! we derive
the approximate result

k02

kHFA2
512

~2gv!
1/2

p
r sF~2kFb!, ~A5!

which is identical to the approximate result given in Eq.~10!,
where density effects of the width have been neglected.

Numerical results for the inverse compressibility of HS
with ND50 according to Eqs.~A4! and ~A5! are shown in
Fig. 5. The difference between the curves corresponding to
Eqs. ~A4! and ~A5! is due to the density dependence of the
width. We note that, for heterostructures, the density depen-
dence of the width is important.

2. One-dimensional systems

If the width parameter depends on the electron density,
the compressibility of one-dimensional systems, as given in
Eq. ~8!, has to be generalized. We find

k01

kHFA1
512

2gvr s
p2 H f ~2kFb!a~r s!

1E
0

1

dy f~2kFby!@b~r s!1yg~r s!#J , ~A6!

with

a~r s!512
2r sb8

b
1
r s
2b82

b2
, ~A7a!

b~r s!5
2r s

2b82

b2
2
r s
2b9

b
, ~A7b!

and

g~r s!5
2r s

2b9

b
2
6r s

2b82

b2
1
4r sb8

b
. ~A7c!

When b is independent ofr s , one obtainsa(r s)51,
b(r s)50, andg(r s)50, and Eq.~8! is found.

FIG. 5. Inverse compressibility 1/kHFA2 ~in units of the inverse
compressibility of the free-electron gas 1/k02) vs the RPA param-
eter r s of a heterostructure with a width parameterb ~solid line!.
The dashed-dotted line represents the approximate result according
to Eq.~A5!. The dashed line represents the ideally two-dimensional
electron gas with a zero width according to Eq.~9!.
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