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Compressibility of the electron gas: Analytical results for width effects
within the Hartree-Fock approximation

L. Calmels and A. Gold
Laboratoire de Physique des Solides, Univér§itil-Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
(Received 8 September 1995

We present analytical results for the compressibility of the interacting electron gas within the Hartree-Fock
approximation. For the three-dimensional and the ideally two-dimensional electron gas, the well-known results
from the literature are found. For the finite width effects in the two-dimensiémpahntum well and the
one-dimensionafquantum wirg electron gas, analytical results are described. The explicit form of the inter-
action potential between the charged carriers enters into the expression for the compressibility: finite-width
effects reduce the corrections induced by interaction effects. Our predictions could be tested by capacitance
measurements.

[. INTRODUCTION Appendix we give some additional results for systems where
the confinement depends on the electron density.
For the interacting three-dimensional electron gas, it is
well known that analytical results for the ground-state energy Il. MODEL AND THEORY
can be obtained within the Hartree-Fock approximation
(HFA).}2 The same is true for the ideally two-dimensional
electron gas, where extension effects are negletfEde

compressibility also can be calculated analytically. For het tivel is th ticle dist . its of th
erostructures and quantum wéil§ and for quasi-one- 'SoPCCHVEY LIS T Mean paricie distance In units ol the
: . : effective Bohr radiusa* =¢ /m*e“ is the effective Bohr
dimensional systemsanalytical results for the exchange en- ~ = : ) .
. radius defined with the effective electron mas3, back-

ergy are not available. In general, one calculates the ; .

wchan nerav for h svstems. and th moressibilit round dielectric constarf, , and electron charge For the
eb{t: a gebe tE g?_/ ? sm:jc systems, a de.cot' P esfsth Y Blanck constant we use/27=1. The energy scale is the
obtained by the first and secofiimerica) derivative of the effective Rydberg, defined by Ry=1/2m*a*2. The elec-

exchange energy with respect to the carrier derisityhe tron densitiedNy define the Fermi wave numbé&g via N3
HFA is, as the lowest-level approximation for many-body:g k¥/3m2, N,=g,k&/2m, and Ny=2g,ke/m. g, is the
v ! v ! v : v

effe_ct_s, o_f”cor_1$|derr§ble importance, and research on thl\§alley degeneracy. The Fourier transform of the interaction
topic is still going on. potential between the carriers is written\agy). Explicitly,

The influence of many-body effects on the compressibilyo use V(q)=4mes g2 for d=3 V(q)

ity has recently been measured in GaAs quantum Welfsj =2me?F(qb)/e,q for d=2, and V(q)=e?f(qb)/2s_ for
within these measurements the importance of exchange efy— 1 F(qb) is the form factor for width effects and for the
fects has been demonstrated. Finite-width effects for thgjeally two-dimensional electron gas, where width effects are
compressibility concerning these experiments have been digreglectede(qb)=1. b is the width parameter of the quan-
cussed in Ref. 5. However, the compressibility was calcutum well. For quasi-one-dimensional systems, the width ef-
lated by the method described above. fects are always important, and are described (mb). b is

In this paper we present a direct method to calculate théne width parameter of the wire. We assume that the width
compressibility, which uses the fact that the exchange energyarameter does not depend on the electron density. In sys-
is given in terms of the static structure factor, and that th@ems whereb depends on the electron density, our results
static structure factor depends on the electron density. Wgecome quite complicated, and are given in the Appendix.

find that in one-dimensional systems the static structure fac- \ithin the HEA the ground-state energy:, per particle
tor is such a simple function that we obtain an analyticalcan be expressed’ss

result for the compressibility. Moreover, for two-

dimensional systems we derive an equation which can be Enra(ls) = ekin(Te) T eadrs). 1)

used very easily by experimenters, and which allows them to

calculate finite-width effects for the compressibility by The kinetic energy per particle of ddimensional electron

evaluating an integral. In addition, an approximate expresgas is given as eyn(rs)/Ry* =C(d)/r:, with C(3)

sion is derived which is in good agreement with the exact=2.20994%3, C(2)=1/g,, andC(1)=0.205642. The ex-

result. change energy is calculated by taking into account the Cou-
The paper is organized as follows. The model and theorjomb interaction between electrons and the exchange hole

are described in Sec. Il. In Sec. lll we present the analyticatlue to the Fermi statistic. Our calculation holds for dimen-

and numerical results. We discuss our theory in comparisosionsd=1, 2, and 3. In order to obtain analytical results for

to experiments in Sec. IV, and we conclude in Sec. V. In thehe compressibility, we do not take into account zero mo-

For an interacting electron gas thdimensions, the den-
sity parameter g is given by the carrier densitiy asrq
=[3/4nNza*3 r =[1/mN,a*2]'2 and r =1/2Na*,
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mentum transfer processes resulting from the local non-
neutrality in systems with finite width. Our exchange energy
does not include the Hartree energy and higher-order terms
(with band filling, the electron wave functions in the confine-for quasi-one-dimensional systems.
ment directions are slightly modifiedwithin these approxi-

Ko1

29, 1
1+ e[ ay yrakbysiy (50
0

KHFAL

mations the exchange energy per particle is given by

1
sel 9=~ 5ra2, V(A[1-S(a)], (22

whereSy(q) is the static form factdror the static structure
factor® of the free-electron gas. is the length of the system.
So(q) depends only on the variable=qg/2k., and can be

expressed as

So(qqéO):l—}k‘, NgNk+ /N (2b)

Ill. RESULTS AND DISCUSSION

A. Analytical results

We note that Sy(y#0)=3y/2—y%2 for y<1 and
So(y)=1 for y>1 in three dimensions,Sy(y#0)
=2{arcsinf) +y(1—y?)Y3/x for y<1 andSy(y)=1 for
y>1 in two dimensions, an&y(y+0)=|y| for |y|<1 and
So(y)=1 for |y|>1 in one dimension. Accordingly, for
y<1, we get for —1)dSy(y)/dy—yd?Sy(y)/d?y the
simple expressions 3 fod=23, 4[ w(1—y?)?] for d=2,
andyés(y—1) for d=1. Fory>1 we find 0 in all dimen-
sions. It is the simple forngy(y)=—&(y—1) for one di-

ng is the Fermi distribution function at temperature zero de-Mension, which allows us to derive analytical results for

fined asn,=2g, if |g|<kr andny=0 if |g|>kg andN is

the number of particles.
The compressibilityk is given a$

1 Ngrs de dzs]

—?{“‘d)drs“sa—rg (39

According to Eq(1) the compressibilitycyepg in the HFA is

given as
1 1 Ngrs degy  d%eqy
=———i(d-1)5—-rs——;, (3b
Kurad Kod  d {( )drs s drg (3b)

with Kkog=0%/[2(2+d)Nge kin(rs)]=m*d?r2a* /[ (2

+d)NyC(d)] as the compressibility of the free-electron
One obtains «q3

gas, and with m*=1/2Ry*a*?.
=47 (4197)2%g? r 3a* Sm* for d=3, kq,=mg,rea**m*

for d=2, andko,=32g%r3a* 3m*/x2 for d=1.
We note thatdeg,/drgocdeg, /dkecd Sy /dkecd S, /dy,

guasi-one-dimensional systems; see &g).
With our analytical results we can calculatgy/ kpaq in
an explicit form. We find

Ko3 1/4g, 13
KHFA3 m\ 9T
for three dimensions,
Ko2 (2g,)"? fl y
=1- r dy F(2keb 7
KHFA2 w soy( Fy)m()
for two dimensions, and
Ko1 29,
=1— —rf(2keb 8
s = L7z sf(2keb) ®

for quasi-one-dimensional systems. Equati@h for two-
dimensional systems and E() for one-dimensional sys-
tems are the fundamental results of this paper. Note that a

and that an additionals dependence results from the fact Negative compressibility for large; does not imply an insta-

that 1—- Sy5(q) =0 for q>2kg. Ford=1, 2, and 3, Eq(3b)
can be written as

d-2)d
Kod 27 kg

nera L (2m2+ Den(Te)

dSy(y)  d?Sy(y)
Xf ddyV(ZkFy)y[(d—l) WV
4
andy=q/2kg . Explicitly we find
Ko3 B 2 4gu 1/3 1 , ,
P @( 977) rsjo dy Y{2S5(y) —yS(y)}
(5a

for three dimensions,

Ko2

(2g,)"% (1
-1- = rsfo dy yR(2keby){So(y) —yS(y)}
(5b)

KHFA2

for two dimensions, and

bility: the positive background charge in the jellium model
stabilizes the system. A negative compressibility of the elec-
tronic systems was seen in the experinfent.

For ideally two-dimensional systems, wheféqb)=1,
with [3dy y/(1—y?)Y?=1 we obtain the well-known result

K02 (Zgu)ll2
=1- rs. (9
KHFA2 ™

In Eq. (7) the termy/(1—y?)*2 becomes singular foy=1.
Therefore, we replaceé(2kgby) in Eq. (7) by F(2kgb), and
obtain the approximate result
Koz 1 (2g,)"?
KHFA2

rF(2keb) (10)

which gives experimenters a good estimate about the impor-
tance of width effects. In the following we present some
numerical results for quantum wells and quantum wires.

B. Numerical results: Two-dimensional systems

In quantum wells(QW's) of width w, the form factor
with x=qw for the width effects can be written s
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FIG. 1. Inverse compressibility /e, (in units of the inverse FIG. 2. Inverse compressibility &/,-5, (in units of the inverse

compressibility of the free-electron gaskdf) vs random phase compressibility of the free-electron gaskdf) vs RPA parameter
approximation(RPA) parameter ¢ of a quantum well of widthw r, of a quantum well of widtiw=a*. The solid line corresponds to

for w=4a*, w=2a*, w=a*, andw=0. Eq. (7). The dotted line corresponds to the approximate expression
according to Eq(10). The dashed and dashed-dotted lines corre-
- 1 3 8m? 327* 1—exp(—x) spond to Eqgs(12) and(13).
= + —_
) 222 | 2% x> 47’ +x°

w=a*. We mention that the analytical res{iig. (10)] is in
1D very good agreement with the exact reg@t. (7)]; see Fig.
Numerical results for the inverse compressibility of quantum?- Equation(12) is also in very good agreement with the
wells according to Eq(7) are shown in Fig. 1 for different €Xact result forrg>1. In Fig. 2 the relevant parameter is

well widths. Lkyea, increases with increasing well width. s =2.8.

This means that many-body effects are weaker in quantum Some analytical and numerical results for heterostruc-
wells with larger widths. tures, where the confinement parameter depends on the elec-

Equation(7) can be used to obtain asymptotical results fortron density, are given in the Appendix.
large and small densities. WithF(x—0)=1—(1/3

_ 5/47.,2)X+ O(XZ),9 for 2kpw<1 [rs>r§ - (8/gv)1/2W/ C. Numerical results: Quasi-one-dimensional systems
a*] we obtain For quasi-one-dimensional systems we study two models.
" First, we study cylindrical wiresCW's) where the confine-
Koz _,_ (29,) e 1+ (20,017 S mow ment potential is zero fojr|<R, and infinite for|r|>R,.
KHEA2 T s 9v 8w 6)raa* The width parameteb corresponds tdr,. The form factor
(12 with x=qR, is written as®
With F(x—)=23/x, for 2kew>1 [re<r?] we find 1441 2 32 I3(|xDKs(]x])
- —_ — 64—
A 0=l 3t %« 14
Ko _, S & 5> - .
e LT 2% s (13 13(x) andK4(x) are the modified Bessel functions of order

3.1 Numerical results for the inverse compressibility versus
which is the expression for large and (or) large density. I are shown in Fig. 3 for different wire radii. The solid dots
Equationg12) and(13) are valid for a two-dimensional elec- in Fig. 3 represent the inverse compressibility Ry=a*,
tron gas with only the lowest subband occupied: the interwhen correlation effects are taken into accotfritlote that
subband energyE,;~3Ry*a*2xm2/w? decreases with in- the results within the HFA are in reasonable agreement with
creasingw, andE,; must be larger than the Fermi energy the solid dots in order to argue that the HFA can be used to
e in order that the one-subband calculation is still valid.estimate many-body effects for the compressibility. The con-
This condition leads tkew<3Y?7~5.4. This condition dition that only the lowest subband is occupied is expressed
works against the validity range of E(L3): kew>1/2. We — asrg>0.2R,/g,a*.
conclude that the validity range of Ed13) becomes Second, we study quantum wires where the confinement
0.5<krw<5.4 (0.26<r.a*/w<2.83). For kew>5.4 the potential is described by an oscillator potenti@Ww) with
one-subband approximation is not justified, and all subband#idth parameterc. The form factor withx=qc is written
have to be taken into account. Equatids) has a very small as?®
range of validity; see Fig. 2 fow=a*. Nevertheless, we _ 2 2
think Eq. (13) shows that finite-width effects cannot be ne- F(x)=2E,(x%)exp(x%), (19
glected at high density: compare E@$3) and (9). whereE, (x) is related to the exponential-integral functitin.

In Fig. 2 we compare the various approximate expressionslumerical results for the inverse compressibility for the os-
for the inverse compressibility of a quantum well of width cillator confinement are given in Fig. 4. Note that many-body
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FIG. 3. Inverse compressibility &/,za; (in units of the inverse
compressibility of the free-electron gas«d{) vs RPA parameter
rs of a cylindrical quantum wire of widthR, for Ry=4a*,
Ry=2a*, Ry=a*, Ry=a*/2, andRy=a*/5. The solid dots rep-
resent the inverse compressibility f®=a* with exchange and
correlation taken into accouRef. 12.
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In confined systems the electron density can be large, and
can be varied within one sample. In GaAs quantum wells
with a* =100 A, the valuer¢=1 corresponds to a density
N=3.2x10'" cm™~2. Experiments are made in the density
range N=(0.5-7x10'" cm~2 (corresponding to
0.7<r¢<2.5) withw~ (1-3a*. These facts open up a sys-
tematic study of many-body effects. In general one finds that
1/k<1/kea for d=3 due to correlation effects. However, in
confined systems the correlation enérgys no longer a
monotonic function of the carrier density, and in systems
with finite width the relation <<1/k.es iS not always
valid. For details of quantum wire systems, where correlation
effects are taken into account, see Ref. 12.

Information about the compressibility is available via ca-
pacitance measuremeritdhe capacitanc&y per volume
L9 of the interacting electron gas is a function of the chemi-
cal potential u: LYCy=(1/e?)du/dNg.** With 1/k4
=Nidu/dNg,? one finds

L 1 Ko

—_—= . 16
Cy €°pod(er) kg (18

effects are somewhat smaller in wires with oscillator con-€f is the Fermi energy, angyy(e¢) the density of states of

finement than in wires with infinite confinement for
[r|>Rg; compare Fig. 3 with Fig. 4 foc=R,. For the os-

the free-electron gas at the Fermi energy: poq(eg)
=Nyd/2er. Neglecting many-body effectskfy/xg=1),

cillator model the condition that only the lowest subband isone obtainsCq< pgg(eg) With po(eg) =const, andog (&)

occupied can be written ag>mc/4g,a*.

IV. COMPARISON WITH EXPERIMENTS

«1/eX?. Note that if koq/kq<O, the capacitance also be-
comes negative.

Capacitance measurements of two-dimensional electron
system&* indicate that information about many-body ef-

Within the HFA the correlation effects are neglected, andf€cts can be obtained by such measurements. Capacitance

this approximation is only valid forg<1. In general, how-

measurements of quantum wires have been used to obtain

ever, it is fair to say that correlation effects, important forinformation about the subband structuthe density of

r<>1, do not dramatically modifyyq/«y; see Refs. 2, 5,

state$ and modifications of this subband structure with in-

and 12, and our Fig. 3. The analytical results presented ifr€asing magnetic fieft?:'® x5/, =1 is used for the analy-
this paper can be used to estimate the importance of manyis of these experiments. This is justified for large wire ra-
body effects, and should be helpful to experimenters. Oflius and large density. We suggest that capacitance
course, the main motivation of this paper was to calculate thé'€asurements of quantum wires with only one subband oc-
effects of a finite width in low-dimensional systems. Our cupied could be used to study many-body effétte factor

results are for zero temperature; finite-temperature effectsoi/«1) in one-dimensional systems. We note, however, that
can be calculated following the lines given in Ref. 8. the Hartree contribution, which depends on the distribution

of the dopant ions, have been neglected in our calculation.
We also mention thapy;(eg) is not constant if the density
varies; however, this factor is independent of the confine-
ment, whileky,/ x; depends on the confinement and the car-
rier density. This might help to interpret experimental results
using Eq.(16).

V. CONCLUSION

4] /KHFM

We have derived quasianalytical results for the compress-
ibility of two-dimensional interacting electron gases with fi-
nite width, and analytical results for the compressibility of
quasi-one-dimensional interacting electron gases. Our results
should be useful for experimenters, and can be tested in ex-
periments via capacitance measurements.

ACKNOWLEDGMENTS

The “Laboratoire de Physique des Solid&RS 11} is
“Laboratoire associeau Centre National de la Recherche
Scientifigue(CNRS.”

FIG. 4. Inverse compressibility &/,za; (in units of the inverse
compressibility of the free-electron gas3{) vs the RPA param-
eterrg of a quantum wire with an oscillator confinement of width
parametec for c=4a*, c=2a*, c=a*, c=a*/2, andc=a*/5.
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APPENDIX

1. Two-dimensional systems

In order to derive Eq(5b) for two-dimensional systems,
we assumed that the width parameter is independent of the
electron density. If the width parameter is density dependent,

we derive
1/2
Ko2
p =1- 23/2j dy F(2kgby)K(rs,y), (Ala)
HFA2
with
K(rs,y)={a(rdySy(y) + B(roy*sy(y)
+y(rel1-Se(y) - (Alb)
The coefficientsy, 8, andy are expressed as
3’ 4rip? rip ,
a(rs)_1+ b - b2 b ’ (A a)
2rb’ r2b’?
B(rs)=—1+ b ——bz—, (A2b)
and
réb’ 2r2b’2  rip” o
with b’ =db/drs andb”=d?b/dr2. Whenb is independent

of rg, one obtainsx(r)=1, B(rs)— —1, andy(rs)=0, and
Eq. (Ala) becomes equal to E¢5h).

For GaAs heterostructuréblS) with vanishing depletion
densityNp , wherebocr2?, the form factor is given by

L. CALMELS AND A.

GOLD 53

FIG. 5. Inverse compressibility &/;z5» (in units of the inverse
compressibility of the free-electron gas«3j) vs the RPA param-
eterrg of a heterostructure with a width parametersolid line).

The dashed-dotted line represents the approximate result according
to Eq.(Ab). The dashed line represents the ideally two-dimensional
electron gas with a zero width according to E8).

Numerical results for the inverse compressibility of HS
with Np=0 according to Eqs(A4) and (A5) are shown in
Fig. 5. The difference between the curves corresponding to
Egs.(A4) and (A5) is due to the density dependence of the
width. We note that, for heterostructures, the density depen-
dence of the width is important.

2. One-dimensional systems

If the width parameter depends on the electron density,
the compressibility of one-dimensional systems, as given in
Eq. (8), has to be generalized. We find

Koy 201 S{f(Zka)a(rS)
KHFAL
F(x) —gl 1+9 +32 (A3)
X)= =X+ =X 1
(1?7 8" 8 + [ dy fakebyraeg +yxralf, (a0
The width parameter is written @s (b/a*)® °
=2I’§/[33(1+ 32Np/11IN,)]. For the inverse compressibil- ith
ity, we obtain
112, 2rb’ rip’?
Ko _y 28] f dy F(2keby) arg=1= ==+ g (A7)
KHFA2
. y
X |4 —8 arcsirty) + m} (A4) 2r2b/2 rgbn
Y Bry)= —, (A7b)
Within the approximatior (2kgby) =F(2kgb), the inte-
gral in Eq.(A4) can be calculated. From EA4) we derive  and
the approximate result
2r2p”  6r2p’'?  4rb’
2 1/2 _ S _ s S
Koz g g;) roF (2keb), (A5) W=~ *p (A7)

KHFA2

which is identical to the approximate result given in EL),
where density effects of the width have been neglected.

When b is independent ofrg, one obtainsa(ry)=1,
B(rg)=0, andy(r)=0, and Eq.(8) is found.
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