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The methods for few-body systems are introduced to extract features of structure of low-lying states of a
four-electron dot. Similarities among the states have been found, and accordingly a number of rotational bands
have been identified. Each band is characterized by a specific mode of internal oscillation. The decisive effect
of symmetry has been emphasized.

I. INTRODUCTION

Owing to the experimental creation of quantum dots,1–3

the investigation of two-dimensional systems has become
more attractive. A number of pioneering works have been
done; important phenomena, e.g., the existence of magic an-
gular momenta, have been discovered.4–10 Since two-
dimensional systems are relatively easier to control~e.g., the
size and the number of electrons of a quantum dot! and to
observe~e.g., the spatial distribution of the electrons!, they
are essential in developing microtechniques. They are also
essential in the theoretical aspect, because rich information
on microstructures can be extracted both theoretically and
experimentally.

This paper is a continuation of Ref. 11 dedicated particu-
larly to four-electron dots. The well-developed methods for
three-dimensional few-body systems are specialized for use
in two-dimensional systems. The features of structure and
internal motion of the ground state and the low-lying excited
states have been extracted. The aim is to arrive at a system-
atic understanding of the low-lying spectrum. Since we are
interested in the global features of the dots but not the quan-
titative details, the emphasis is placed on the qualitative as-
pect. The role played by the quantum-mechanical~QM! sym-
metry is particularly emphasized.

The four electrons in a dot are subjected to a parabolic
confinement. The Hamiltonian of this two-dimensional sys-
tem is
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wherer i is the position vector of thei th electron (ei) origi-
nated from the center of the dot,m* is the effective mass,
r i j5ur i2r j u. The center-of-mass coordinates and the internal
coordinates are then introduced. Then

H5Hc.m.1HI , ~2!

whereHc.m. is for the motion of the center of mass,HI is for
internal motions. Letr12, r34, R be chosen as a set of internal
coordinates~shown in Fig. 1!, then
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wherem125m* /2, m345m* /2, mR5m* ; V is the total poten-
tial energy,U(r i j ) is the equivalent pairwise interaction,
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which is attractive at large separation~due to the parabolic
confinement! but repulsive at small separation~due to Cou-
lomb force!; thereby there is a minimum at
r 05(e2/p«m*w 0

2)1/3. Owing to the minimum, as we shall
see, the system would pursue an optimal shape and size to
optimize the binding energy.

Since the motion of the center of mass is trivial~simply a
harmonic oscillation!, only the internal structure is discussed.
To obtain the eigenenergies and eigenstates,HI is diagonal-
ized in a model space spanned by a set of basis functions
with a total orbital angular momentumL and a total spinS as

f̃ i5A$wnal a
w ~r12!wnbl b

w ~r34!wncl c
w ~R!xs1s2

S %, ~5!

where w nl
w is a two-dimensional harmonic oscillator state

with a frequencyw, an energy (2n1 l11)\w, and an orbital
angular momentuml ;12 l a1 l b1 l c5L is assumed;xs1s2

S is

the spin part, where the spins ofe1 ande2 are coupled tos1,
e3 and e4 to s2, and s1 and s2 are coupled toS. When
w5w0 , the basis function is an exact solution ofHI if the
Coulomb repulsion is removed. In practice,w serves as a
variational parameter aroundw0 to minimize the eigenener-
gies.A is an antisymmetrizer. The antisymmetrization and
the calculation of related matrix elements are realized by
using two-dimensional Talmi-Moshinsky coefficients.12–14 It
is notable that the basis functions do not form an orthogonal
set due to the antisymmetrization; hence, in practical calcu-
lation, an additional procedure of orthogonalization is
needed to extract linearly independent basis functions.

The accuracy of the solutions depends on how large the
model space is. Since we are interested only in the low-lying
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states and in the qualitative aspect, the model space adopted
is neither very large to facilitate numerical calculation, nor
very small to assure the qualitative accuracy. This is
achieved by extending the dimension of the model space step
by step; in each step the new results are compared with the
previous results from a smaller space, until satisfactory con-
vergence is achieved. For example, whenL56 andS52,
model spaces of 15, 37, and 76 dimensions have been used,
stopping finally at 76. In what follows the energies are in
meV, and the lengths are ina05A\/m*w0; hw050.01,
m*50.067me , and«513.1 are adopted in the calculation.

II. THE ENERGY SPECTRUM AND THE EFFECT
OF SYMMETRY

Let the states be denoted as2S11L( i ), i51,2,... where the
i51 state is the lowest of the series, which is named a head
state; thei52 state is named a second state. The energy
spectrum of low-lying states withL<6 is given in Fig. 2. It
has the following features:~i! In S50 states, the head states
with L even are remarkably lower than the head states withL
odd. ~ii ! In S51 states, the head states withL52 or 6 are
remarkably higher than the other head states.~iii ! In S52
states, the head states withL52 or 6 are remarkably lower
than the other head states.~iv! In the above three cases, the
groups of head states with remarkably low energies are mu-
tually close in energy. Besides, in these states, the energy gap

between the head and second state is particularly big.
The above features have a profound background of sym-

metry. If the particles form a square~SQ! with an optimal
side length~close tor 0!, then the potential energy is mini-
mized. However, the SQ may be prohibited by symmetry.
Let the eigen-wave-function ofHI be written as
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If the particles form a SQ, then a rotation about the c.m. by
690° is equivalent to a cyclic permutation of the particles.
Thus at a square we have

ei ~p/2!LcL
s1s2~1234!5c2

s1s2~2341!. ~7!

On the other hand, sinceC is antisymmetrized, from the
representation theory of the symmetric group, whenS50 we
have
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WhenS52, we have

cL
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Combining ~7! and ~8!, when the particles form a SQ, the
following sets of homogeneous linear equations hold:
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2)/2 ei ~p/2!L21/2
DcL

00~SQ!
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11~SQ!

50 ~ if S50!,

~9a!

FIG. 1. The internal coordinates.

FIG. 2. Low-lying energy
spectrum~in meV! of S50 ~at the
left!, S51 ~middle!, and S52
~right! states. The levels in each
column have the sameL ~marked
under the head states!.
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where the notation SQ denotes that the particles form a SQ.
In Eq. ~9!, nonzero solutions exist only if the determinants
are zero; i.e., only if the following equations are fulfilled:

~eipL21!50 ~ if S50!,

~eipL11!~ei ~p/2!L21!50 ~ if S51!, ~10!

~ei ~p/2!L11!50 ~ if S52!.

It implies that a state is nonzero at SQ only ifL is even~if
S50!, or LÞ4n12 ~if S51, wheren50,1,2,...!, or L54n
12,... ~if S52!. If it does, it is called a ‘‘SQ-accessible
state.’’ Alternatively, in a SQ-inaccessible state, a nodal sur-
face exists at SQ configurations. This surface is originated
purely from symmetry, it is named an inherent nodal surface
~INS!, which was found to be decisive to the structures of
few-body systems.11,15–17,19

Now the main features of the spectrum can be easily ex-
plained, where all the SQ-accessible head states are remark-
ably lower. In these head states, the wave function is
smoothly distributed around a SQ without nodal surface. In
this way the potential energy can be optimized and the inter-
nal excitation is avoided~the furiousness of an internal exci-
tation is measured by the number of nodal surfaces contained
in the wave function!. Besides, since these states have simi-
lar internal structures, they are close in energy as shown in
Fig. 2 ~in our model, the energy for collective rotation is
small!. Furthermore, since the structures of these states are
very stable, they should be harder to excite, resulting in a
larger energy gap.

III. THE SHAPE DENSITY

In order to have a systematic understanding of the spec-
trum, let us analyze the wave functions in detail. When the
system is subjected to a strong magnetic field, the spins of
electrons will be aligned and accordingly the spatial wave
function is totally antisymmetric. This is just the case of
S52. Hence, the case ofS52 is more important than the
S50 andS51 cases. For this reason, we shall mainly discuss
theS52 case. In what follows the discussions are limited to
theS52 andL<6 cases except in the last section.

It is well known that the size of a few-body system can be
evaluated in terms of the hyper-radius. Hence, let us intro-
duce the hypercoordinates,18 which are defined from the in-
ternal coordinates as

j5@~m12r 12
2 1m34r 34

2 1mRR
2!/m* #1/2,

AmR /m*R5j cosa,
~11!

Am12/m* r 125j sina cosb,

Am34/m* r 345j sina sinb,

wherej is the hyper-radius specifying the size;a andb are
hyperangles, together withr̂ 12, r̂ 34, and R̂, specifying the
shape and its orientation~we shall neglect the discussion on
orientation, because the density is irrelevant to it!. It is no-
ticed that the weighted distancesAmR /m*R,... are used in
Eq. ~11! to assure the invariance ofj under transformations
of different sets of internal coordinates.

Let c L
11 be rewritten ascL , and

2S11L( i ) asL( i ). Using
the hypercoordinates, the equation of normalization is writ-
ten as

15E dj dS JucLu2, ~12!

where dj is an infinitesimal variation of size,
dS5da db dr̂12dr̂34dR̂ is an infinitesimal variation of
shape,J arises from the transformation of arguments,

J5j5 cosa sin3a cosb sinb
m* 3

m12m34mR
. ~13!

From Eq.~12!, it is clear thatJucLu
2 is the probability den-

sity of the system at a given size, orientation, and shape.
However, in practice, the measurement should be blind to the
permutation of particles. Hence, the shape density is for-
mally defined as

S S5
1

N! (
p
JucLu25S 1

N! (
p
JD ucLu2, ~14!

where the summation runs over all the permutations, andN
is the number of particles. InS S , the physics is contained in
ucLu2, J is simply a factor of modification arising from ge-
ometry.

Let the maximum ofS S be denoted byS S
M; the shape

whereS S arrives atS S
M is named a preferred shape. Among

the preferred shapes, the one with the largestS S
M is named a

most probable shape. It was found that the wave functions
are usually distributed sharply around the preferred shapes
~as shown later!, hence the geometric feature can be demon-
strated by the preferred shapes.

The preferred shapes forS52 states are listed in the sec-
ond column of Table I; the associatedS S

M are listed in the
third column. For each preferred shape characteristic lengths
are defined in Fig. 3 and are given in the fourth column.

It was shown in Table I that some states@e.g., the 2~1!
state# have only one preferred shape, and thereby dominated
by one kind of geometric structure. In other states, different
geometric structures coexist@e.g., in the 1~1! state#. It was
found that some states are surprisingly very similar to each
other both in shape and in size. For example, the 0~1! and
4~1! states are similar; 2~1! and 6~1! are similar; 1~1!, 3~1!,
and 5~1! are similar; and so on. The detailed features of the
low-lying states will be discussed as follows.
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IV. THE HEAD STATES „S52…

A. The SQ states 2„1… and 6„1…

We have pointed out in Sec. III that theL52 and 6 states
are SQ accessible. From Table I it is confirmed that the 2~1!
and 6~1! are dominated by the SQ structure; they are named
SQ states. LetS S be observed in the subspace of SQ as
shown in Fig. 4. It is obvious that in this subspaceS S is
nonzero only ifL52 or 6. The curves for 2~1! and 6~1! in
Fig. 4 are remarkably sharp; these two curves are nearly
identical. Thus the SQ structure is well defined and the simi-

larity of these two states is explicit. The curves for 2~3!
contain two peaks, thus it is a coexistence of a small SQ and

a large SQ. The peaks in the curves for 2~2!, 6~2!, and 6~3!
are lower; these states are coexistences of a SQ and other
shapes.

Evidently, all the SQ-accessible head states would do their
best to pursue the SQ structure to lower their energy. Hence,
not only the 2~1! and 6~1!, but all the head states withL52
14n would have the same SQ structure; accordingly they
form a very stable~much lower in energy! rotational band

FIG. 3. The preferred shapes found inS52
states, where characteristic lengths are labeled.
~c! and ~e! are centered structures.

TABLE I. The preferred shapes. CET denotes the centered-equilateral triangle. The characteristic lengths
are referred to Fig. 3.

L( i ) state Preferred shapes
Maximal values of
the shape density Characteristic lengths

0~1! Diamond 2.29 d155.0,d257.8
0~2! Rectangle 2.10 h53.8, s55.7
0~3! CET 3.20 h53.8
1~1! Shield 1.93 d57.2, h151.5, h254.5

Trapezoid 1.46 w54.6, s153.5, s256.3
2~1! Square 4.62 s54.63
2~2! Shield 1.45 d58.1, h150.3, h253.9

Square 0.80 s54.95
2~3! Square~smaller! 2.01 s53.82

Square~larger! 1.73 s55.50
3~1! Shield 1.78 d57.3, h151.3, h254.3

Trapezoid 1.06 w54.7, s153.6, s256.4
3~2! CET 2.98 h53.9
3~3! CET 2.98 h54.0
4~1! Diamond 2.08 d155.0, d257.8
4~2! Rectangle 1.56 h53.8, s55.7
5~1! Shield 1.75 d57.1, h151.5, h254.5

Trapezoid 1.65 w54.7, s153.5, s256.3
6~1! Square 4.57 s54.64
6~2! Shield 1.60 d57.9, h1520.4, h254.6

Square 0.85 s54.95
CET 1.36 h53.9

6~3! CET 1.90 h54.0
Diamond 1.49 d154.1, d258.2
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~the SQ band!. This explains the well-known magic angular
momenta 2,6,10,... in spin-aligned four-electron dots.4–7,11

B. The diamond states 0„1… and 4„1…

In a SQ, the bond of a side is stronger than the bond of a
diagonal. Hence, if a SQ is changed to a diamond with the
lengths of the side being unchanged, the energy increase is
small because only the two weaker bonds of the diagonals
are concerned. For this reason, the diamond shape will be the
first choice of SQ-inaccessible head states. For a diamond, a
rotation by 180° is equivalent to two interchanges of par-
ticles; the former operation induces an factoreipL, while the
latter causes no change inS52 states. Thus we have

~12eipL!cL~DIA !50, ~15!

where the label DIA denotes the diamond. Equation~15!
tells us thatcL ~DIA ! is nonzero only ifL is even. Hence,
among the SQ-inaccessible states, only theL54n states are
DIA accessible.

From the above analysis, the 0~1! and 4~1! are expected to
have the diamond structure. This is true as shown in Table I.
Furthermore, letS S be plotted in the subspace of diamonds
with the side length being fixed as shown in Fig. 5@where
the curves for 2~1! and 6~1! have been omitted#. This figure
shows us that the curves for 0~1! and 4~1! are remarkably
higher and similar to each other. Thus both states are domi-
nated by the diamond and have similar internal structures.
Incidentally, theS S of higherL50 and 4 states are too small
to be seen in Fig. 5; thus the diamond is not preferred by
these excited states.

The diamond is not a stable configuration. If a diamond is
transformed to a SQ,V would be lower. In classical mechan-
ics, there is a periodic oscillation as shown in Fig. 6, where
the increase of length of a diagonal matches the decrease of
another diagonal so that a flattened diamond is changed to a
SQ, and then to a sharpened diamond, and vice versa. This is
named a diamond-SQ-diamond~D-SQ-D! oscillation. In our
QM system, letS S be observed in the subspace of diamonds
as a function ofd1 andd2 plotted in Fig. 7. In Fig. 7~a!, the
pointA is associated with Fig. 6~a!, B with 6~b!, andC with
6~c!. Since the configuration shown in 6~a! can be changed to
6~c! via a rotation by 90° together with a cyclic permutation
of the particles, the former causes no effect inL54n states,
while the latter causes a change in sign inS52 states. Hence
the wave functions atA andC must have opposite signs. The
point B ~a SQ! is a node forL54n states due to being SQ
inaccessible. Thus, alongA-B-C, the wave function varies
from a peak to an antipeak via a node; it is similar to a linear
harmonic oscillator with one quantum of excitation. Hence,
the 0~1! state contains the D-SQ-D mode of oscillation with
one node.

FIG. 4. S S as a function of the side lengths of a square.
r 125r 345R5s andr12ir34, r12'R are assumed. The ordinate is in
arbitrary unit. A dashed line is forL52 and dotted line forL56
states.

FIG. 5. S S as a function of the diagonald1 of diamonds. The
other diagonald2 is constrained by (d1/2)

21(d2/2)
25s2. s is the

side length of the diamonds fixed at an optimal value 4.63. The
vertical arrow designates a square (d15d25&s). A solid line is
for L50, dashed line forL52, dash-dot line forL54, and dotted
line for L56 states.

FIG. 6. An intuitive picture of the diamond-SQ-diamond~D-
SQ-D! mode of oscillation.

FIG. 7. S S as a function ofr 12 and r 34. R50 andr12'r34 are
assumed, thusr 12 and r 34 are the diagonals of a diamond. The
contours give 20%, 50%, and 80% of the maximum in each figure.
The dotted line is a nodal line.
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If Fig. 7~a! is replotted for the 4~1! state, the contour
diagram is changed scarcely. This is expected to be true for
other L54n head states with a largerL. Thus, the second
rotational band based on D-SQ-D oscillation is suggested.
Since one quantum of internal excitation is contained in the
D-SQ-D band, it should be explicitly higher than the SQ
band as shown in Fig. 2.

C. L odd states

Let the regular shapes be divided into two types. The first
type is invariant under a space inversion~with respect to the
c.m.!, while the second type is not. Evidently, the first type is
better in geometric symmetry; it contains the SQ, the rect-
angle, the diamond, and the parallelogram. The second type
contains the shield@Fig. 3~d!# and the trapezoid@Fig. 3~f!#.
Let one particle be put at each vertex; then in the first type a
space inversion is equivalent to two interchanges of particles.
The former provides a factorp ~parity!, while the latter
causes no change inS52 states. Hence, only even-parity
states~i.e., L even! are allowed to pursue the first type, all
the odd-parity states~i.e.,L odd! can only pursue the second
type. In fact, it is shown in Table I that all the 1~1!, 3~1!, and
5~1! states are a coexistence of a shield and a trapezoid.

Let the shape density be plotted in the subspace of
shields. In Fig. 8~a!, r 12 serves as the horizontal diagonal in
Fig. 3~d!, which is given at an optimal value,r 34 serves as

the vertical diagonal. There is a peak atA associated with
Fig. 9~a!. Let C be the partner point ofA arising from
R→2R, then it is associated with Fig. 9~c!. There should
also be a peak atC, because Fig. 8 is unchanged under
R→2R. The pointB at R50 is associated with a diamond
@Fig. 9~b!#; thus B is a node forL odd states. The wave
functions atA andC have opposite signs~due to the QM
symmetry!. Thus, an evolution alongA-B-C implies an os-
cillation ~associated with the variation ofR! with one node,
and accordingly an up-shield@Fig. 9~a!# is changed to a
down-shield@9~c!# via a diamond, and vice versa. It is named
a SH-D-SH mode; in this mode, the two particles at the top
and bottom of a diamond shift as a whole upward and down-
ward repeatedly.

Similarly, by observingS S in the subspace of trapezoids,
a mode of oscillation is found around the trapezoid as shown
in Fig. 10, where an up-trapezoid is transformed to a down-
trapezoid via a SQ. It is named a TR-SQ-TR mode; in this
mode, the extension of the upper side of a trapezoid matches
the contraction of the lower side, and vice versa.

It was found that the features of the 3~1! and 5~1! states
are very similar to the 1~1! state. For example, Fig. 8~b! is
for the 3~1! state, which is very similar to 8~a!. This is natu-
ral because they are constrained in the same way by the QM
symmetry. Thus the third rotational band composed of all the
L52n11 head states based on a coupling of the SH-D-SH
mode and the TR-SQ-TR mode is suggested. Although both
the L odd band and the D-SQ-D band contain one node in

FIG. 8. S S as a function ofR andr 34 with r 12 given at a specified value.r12'r34 andRir34 are assumed. Refer to the caption of Fig. 7.
When a pair of subfigures belong to the same state@~c! and ~d!, ~f! and ~g!#, the larger maximum of the pair is used as the scale for the
contours.

FIG. 9. The shield-diamond-shield~SH-D-SH! mode of oscilla-
tion. FIG. 10. The trapezoid-SQ-trapezoid~TR-SQ-TR! mode.
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their internal oscillations, however, the former is less sym-
metric in shape, resulting in having a higher energy as shown
in Fig. 2.

All the head states are well divided into three rotational
bands according toL54n12, 4n, and 2n11. These bands
are based on a SQ, a diamond, and a coexistence of a shield
and a trapezoid, respectively. The first band does not contain
internal excitation~without nodal surface!, while the other
two contain one quantum of internal excitation~with a nodal
surface!. How the states are classified into these bands is
determined by the QM symmetry, and not by the dynamical
parameters adopted.

V. THE STATES HIGHER THAN THE HEAD STATES
„S52…

We are not going into a comprehensive discussion; in-
stead, certain higher states are selected to reveal specific
modes of excitation.

A. The rectangle states 0„2… and 4„2…

A SQ can be varied in different ways with the inversion-
invariance remained. One is a variation of the lengths of the
diagonals leading to a diamond~as shown in Fig. 6!; one is a
variation of the angleu between the two diagonals leading to
a rectangle~as shown in Fig. 11!. Now the diamond has
already been adopted by the 0~1!,4~1!,... states. It is natural
to think that the rectangle may be adopted by the 0~2!,4~2!,...
states.

It is shown in Table I that the most probable shapes of the
0~2! and 4~2! states are rectangles. In Fig. 12,S S of all the
L52 and 4, i51–3 states are plotted in the subspace of
rectangles as a function ofu. There are two peaks atA andC
associated with Figs. 11~a! and 11~c!, respectively. The point
B at u590° is associated with a SQ and is a node forL54n
states. The wave functions atA andC have opposite signs
@due to the QM symmetry; in detail, Fig. 11~a! can be
changed to 11~c! via a rotation by 90° together with a cyclic
permutation of particles#. The evolution fromA to C implies
an oscillation as shown in Fig. 11. It is named a REC-SQ-
REC mode. Figure 12 shows that the curves for the 0~2! and
4~2! states are similar, while the curves for the other states
are too small to be seen. It is suggested that the 0~2! and 4~2!
states are the lowest members of a rectangle band character-
ized by the REC-SQ-REC mode.

B. Single-particle oscillation and 2„2… and 6„2… states

It has been stated that the 2~1! state is a SQ state. One
may naturally think that the 2~2! state may be dominated by
an inversion-invariant excitation, in particular by the
D-SQ-D mode. However, this is not true. Table I tells us that
the 2~2! state is a coexistence of a shield and a SQ, the
former is more important. This arises because, in the
D-SQ-D mode, the wave functions at the two configurations
associated with Figs. 6~a! and 6~c! have the same sign in
S52 andL52 states~due to the QM symmetry!. It implies
that at least two nodes would be contained if the D-SQ-D
mode is adopted. Hence, the D-SQ-D mode is not very ad-
vantageous.

Since the most probable shape of the 2~2! state is a shield,
let S S of 2~2! be observed in the subspace of shields as
shown in Figs. 8~c! ~r 1258.2! and 8~d! ~r 1257.0!. Where
point A in 8~c! is associated with the shape in the solid line
in Fig. 13~a!, pointC in Fig. 8~d! is associated with the SQ
in the dotted line in Fig. 13~a!. There is a nodal surface lying
betweenA andC; this surface is not originated from the QM
symmetry but from a pure dynamical background.15 It in-
duces an evolution fromA to C, and back toA, which is
essentially an oscillation of one particle relative to the other
three as shown in Fig. 13~a!. Hence, it is named a single-
particle mode. Incidentally, the D-SQ-D mode with two
nodes is also found in the 2~2! state as shown in Fig. 5 and in
Fig. 7~b!. However, theS S at the SQ is only 0.80, much
smaller than 1.45 of the shield. Hence, the D-SQ-D mode is
not the main mode while the single-particle mode is. Since at

FIG. 11. The rectangle-SQ-rectangle~REC-SQ-REC! mode.

FIG. 12. S S as a function ofu ~marked in Fig. 11! in the sub-
space of rectangles.r 125r 3457.83 andR50 are assumed. The
solid line is forL50, the dash-dotted line is forL54 states.

FIG. 13. An intuitive picture to show the single-particle oscilla-
tion.
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least three bonds are involved in the single-particle mode,
this mode is energetic, resulting in a big gap between the
second state and the head state.

The 6~2! state is found to be also dominated by the single-
particle mode as shown in Fig. 8~e!. Besides, the D-SQ-D
mode with two nodes is also contained in 6~2!. Thus, 6~2! is
similar to 2~2!. However, the peak atA in Fig. 8~e! is more
shifted to the right, thus it is associated with a centered tri-
angle shown by the solid lines in Fig. 13~b!. Hence, the
amplitude of the single-particle mode in 6~2! is larger than
the one in 2~2!. The 2~2!,6~2!,10~2!,... states are suggested to
form a rotational band mainly based on the single-particle
mode.

C. The centered equilateral triangle„CET… states

The CET@Fig. 3~c!# has good geometric symmetry. How-
ever, in this shape only three bonds can be optimized. Hence,
it is less advantageous in binding. Nonetheless, in higher
states, this shape will compete with other shapes. When the
particles form a CET, a rotation by 120° is equivalent to a
cyclic permutation of three particles. The former induces a
ei (2p/3)L factor in the wave function, while the latter causes
no effect inS52 states, thus we have11,19

~12ei ~2p/3!L!cL~CET!50. ~16!

Equation~16! implies that CET is allowed only inL53n
states. In fact, it is shown in Table I that the CET states do
emerge in higherL50, 3, and 6 states.

Let theS S be plotted in the subspace of CET as shown in
Fig. 14. It is shown that, among allL<6, S52, and i<3
states, there are four states, i.e., the 0~3!, 3~2!, 3~3!, and 6~3!,
dominated by this structure; they also have similar size. In
the 6~2! state the CET is less important than a shield~with a
negativeh1!; both in the CET or in the shield one particle
has penetrated into the interior of the other three due to the
large-amplitude single-particle oscillation. It is noticeable

that the CET is more favorable in theL53 states than in the
L50 or 6 states. In the former, the CET competes with
inversion-variant shapes: thus it can emerge in the second
state. In the latter, it has to compete with the SQ~if L56!, or
the diamond~if L50!, thereby it has more difficulty emerg-
ing.

A strong oscillation was found in the 3~2!, 3~3!, and 6~3!
states as shown in Fig. 15, where an up CET is transformed
to a down CET via a diamond, and vice versa. For example,
S S of the 6~3! state are plotted in Figs. 8~f! and 8~g! with
r 1257.0 and 8.2, respectively. PointA in Fig. 8~f! is associ-
ated with the CET in Fig. 15~a!; pointB in 8~g! is associated
with the diamond in 15~b!. There is a nodal surface lying
betweenA and B. The evolution fromA to B implies an
increase ofr 12 and a decrease ofR, so that particles 1 and 2
@Fig. 15~a!# move outward and 3 and 4 move downward;
accordingly, the up CET is transformed to the diamond~the
diamond is lower in potential energy!. Then, the pair 3 and 4
keeps going down, and the diamond is transformed to a
down CET, and vice versa. This is named a CET-D-CET
mode.

D. The breathing mode

It was well known that the breathing mode~extension and
contraction of size! exists in three-dimensional systems. For
example, it was named a monopole excitation in nuclear
theory.20 Now, this mode is found in the 2~3! state as shown
in Table I and Fig. 4; it reveals that the monopole excitation
exists also in two-dimensional systems. Since all bonds are
involved in breathing, this mode is energetic, thereby it ap-
pears only in high excited states. There may be a rotational
band based on breathing modes. However, since only a shape
with good geometric symmetry can be stable enough to be
free from deformation during an energetic oscillation, the
breathing is likely to occur only in SQ states. Hence, the
candidates of this band will be the 2~3!,6~4! or 6~5!,10~3!,...;
this suggestion is left to be checked.

VI. FINAL REMARKS

~1! Each state has its own feature of geometric structure
and internal motion. When the wave function is smoothly
distributed around a most probable shape, it is recognized as
a small oscillation around this shape as an equilibrium shape,
e.g., a SQ in the 2~1! state. When the wave function contains
nodal surfaces, the internal motion becomes energetic. There
are two types of nodal surfaces.15 One arises purely from the
constraints of the QM symmetry, the other one arises simply
from dynamics without symmetry background. The first type

FIG. 14. S S as a function ofh @marked in Fig. 3~c!# in the
subspace of CET.

FIG. 15. A large-amplitude oscillation transforming an up CET
to a down CET.
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~INS! is particularly important because it usually locates at
configurations with good geometric symmetry, and thus with
lower potential energyV. Once an INS exists, the wave func-
tion can only be distributed by the two sides, and thereby a
specific mode of oscillation is induced. In this sense, al-
though the QM cannot tell us exactly how the particles
move, however, the mode of motion can be understood from
the structure of the nodal surfaces. For example, 0~1! is
dominated by a diamond with the D-SQ-D mode induced by
the INS at SQ.

The preferred shapes and the associated modes of oscilla-
tion have been listed in Table I and Table II. The experimen-
tal observation of them is a great challenge to acquire a
deeper understanding of the QM.

~2! This paper provides vivid examples of how each state
pursues the best structure favorable to binding under the con-
straints of the QM symmetry and orthogonality. For example,
0~2! has to avoid the SQ because theL50 states are SQ
inaccessible, to avoid the diamond because the 0~1! state has
possessed the diamond, among the inversion-invariant
shapes, the rectangle is adopted; and accordingly a REC-SQ-
REC mode is induced by the INS at SQ. One more example
is the 2~2! state; it has to avoid the SQ because the 2~1! state
has possessed the SQ; it is not very advantageous to possess
an inversion-invariant shape because two nodal lines will be
contained@Fig. 7~b!#; consequently, the 2~2! state is a mix-
ture of an inversion-invariant shape and an inversion-variant
shape.

~3! The discovery of the monopole excitation~breathing
mode! in two-dimensional systems is noticeable. In nuclear
theory, the monopole excitation is related to the incompress-
ibility of the nuclear matter. A similar role may be played in
quantum dots.

~4! The discovery of the CET structure is noticeable.
There are two types of structures, namely, the centered struc-
ture ~e.g., the CET! and the surface structure~e.g., the con-
vex polygon!. In four-electron dots, the centered structure is
not favorable~hence, the CET emerges only in higher states!.
However, in five-electron dots, these two types of structure
are nearly equal in competition. In six-electron dots, the cen-
tered structure may even overtake the surface structure. In
seven or more electron dots, there may be more than one
particle staying in the interior; thereby the interior structure
begins to form, which has to match the surface structure.

~5! The existence of the magic angular momenta 2,6,10,...
is noticeable. They stand out because all the other head states

of spin-aligned systems are SQ inaccessible.
~6! From an analysis of the wave functions, the spectrum

can be systematically understood. It was shown that the ef-
fect of QM symmetry is decisive. We can adjust the dynami-
cal parameters to change the quantitative details, but the
qualitative features remain unchanged. For example, when a
state contains an INS at SQ@e.g., the 0~1! state#, no matter
how the parameters are adopted, the best choice is a diamond
with the D-SQ-D mode. A group of states will pursue the
same structure if they suffer the same constraints from the
QM symmetry and orthogonality @e.g., the group
0~1!,4~1!,8~1!...; or the group 0~2!,4~2!,8~2!...# resulting in
the existence of similarity. Based on the similarity, rotational
bands are naturally formed. Since rotational bands are origi-
nated from QM symmetry, not only in quantum dots, they
would widely exist in different few-body systems.

~7! Although only theS52 states have been studied in
detail, however, theS50 and 1 states are also decisively
determined by the QM symmetry.

In the S50 states, theL even states are SQ accessible.
Hence the 0~1!,2~1!,4~1!,... states form a SQ band. TheL odd
states are SQ inaccessible; besides, they also cannot have
inversion-invariant shapes~because in these shapes a rotation
by 180° is equivalent to two interchanges of particles, the
latter operation causes no effect inS50 states!. Conse-
quently, theL odd head states are explicitly higher than theL
even head states.

In the S51 states, the 0~1!,4~1!,8~1!,... form a SQ band
with even parity; the 1~1!, 3~1!, 5~1!,... form another SQ
band with odd parity.

The formation of all these bands are determined by sym-
metry. Since the symmetry is global, not only certain states
of the same system may be similar, the states of different
systems~e.g., nuclear or atomic systems! also may have
something in common.15 This will lead to a unified under-
standing to different few-body systems.
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TABLE II. The rotational bands.

Feature of internal oscillation
The states contained

in the band
Number of nodes
in oscillation

A small oscillation around a SQ 2~1!,6~1!,10~1!,... 0
Breathing of a SQ 2~3!,6~4! or 6~5!,10~3!,... 1
D-SQ-D mode 0~1!,4~1!,8~1!,... 1
SH-D-SH mode1TR-SQ-TR mode 1~1!,3~1!,5~1!,... 1
REC-SQ-REC mode 0~2!,4~2!,8~2!,... 1
Single-particle oscillation 2~2!,6~2!,... 1
A small oscillation around a CET 0~3!,... 0
CET-D-CET mode 3~2!,3~3!,6~3!,... >2
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