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Structures of low-lying states of a four-electron system in a quantum dot
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The methods for few-body systems are introduced to extract features of structure of low-lying states of a
four-electron dot. Similarities among the states have been found, and accordingly a number of rotational bands
have been identified. Each band is characterized by a specific mode of internal oscillation. The decisive effect
of symmetry has been emphasized.
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Owing to the experimental creation of quantum dots, K12 “Hzs KR
the investigation of two-dimensional systems has become
more attractive. A number of pioneering works have been V=" u(r),
done; important phenomena, e.g., the existence of magic an- i>]

gular momenta, have been discovefetf. Since two-
dimensional systems are relatively easier to coriegdl., the
size and the number of electrons of a quantum dod to
observe(e.g., 'ghe spatialldistrit_)ution of _the electronthey U(ri-)zém*wgr? +e?/(4mer;) )
are essential in developing microtechniques. They are also : . !
essential in the theoretical aspect, because rich informatiowhich is attractive at large separatiéthue to the parabolic
on microstructures can be extracted both theoretically andonfinementbut repulsive at small separatigdue to Cou-
experimentally. lomb force; thereby there is a minimum at

This paper is a continuation of Ref. 11 dedicated particu+ o= (€%/rem*w2)¥3. Owing to the minimum, as we shall
larly to four-electron dots. The well-developed methods forsee, the system would pursue an optimal shape and size to
three-dimensional few-body systems are specialized for useptimize the binding energy.
in two-dimensional systems. The features of structure and Since the motion of the center of mass is trivigimply a
internal motion of the ground state and the low-lying excitedharmonic oscillatiop only the internal structure is discussed.
states have been extracted. The aim is to arrive at a systemio obtain the eigenenergies and eigenstatkss diagonal-
atic understanding of the low-lying spectrum. Since we ardzed in a model space spanned by a set of basis functions
interested in the global features of the dots but not the quarwith a total orbital angular momentumand a total spirs as
titative details, the emphasis is placed on the qualitative as- _
pect. The role played by the quantum-mechaniQa) sym- ?i =./Z{<p‘r’1”a,a(r12) <p‘r’¥b,b(r34)<p‘r’1vc|c( R)xflsz}, (5)
metry is particularly emphasized.

The four electrons in a dot are subjected to a paraboligvhere ¢y is a two-dimensional harmonic oscillator state
confinement. The Hamiltonian of this two-dimensional sys-with a frequencyw, an energy (2+1+1)%w, and an orbital
tem is angular momentun;*? 1, +1,+1.=L is assumed;(gls2 is

the spin part, where the spins ef ande, are coupled t®,,

whereu,,=m*/2, ug,=m*/2, ug=m*; V is the total poten-
tial energy,U(ry;) is the equivalent pairwise interaction,

P2 2

4
1 e e; ande, to s,, ands; and s, are coupled toS. When
— ' 2.2 3 4 21 1 and 5; ! _
H—Zl (Zm* +5m” wor | +i2>j amer,” W w=wj, the basis function is an exact solution fef if the
! Coulomb repulsion is removed. In practios, serves as a
wherer, is the position vector of thith electron &) origi-  variational parameter around, to minimize the eigenener-

nated from the center of the dap* is the effective mass, gies..Z is an antisymmetrizer. The antisymmetrization and
rij=|r;—r;|. The center-of-mass coordinates and the internathe calculation of related matrix elements are realized by

coordinates are then introduced. Then using two-dimensional Talmi-Moshinsky coefficiedts* It
is notable that the basis functions do not form an orthogonal
H=H¢mn+H,, (2)  set due to the antisymmetrization; hence, in practical calcu-

lation, an additional procedure of orthogonalization is
whereH, ,, is for the motion of the center of mads, is for  needed to extract linearly independent basis functions.
internal motions. Let 5, r3,, R be chosen as a set of internal ~ The accuracy of the solutions depends on how large the
coordinategshown in Fig. }, then model space is. Since we are interested only in the low-lying

0163-1829/96/536)/1082010)/$10.00 53 10820 © 1996 The American Physical Society



53 STRUCTURES OF LOW-LYING STATES OF A FOUR .. 10821

4 between the head and second state is particularly big.
The above features have a profound background of sym-
metry. If the particles form a squaf&Q with an optimal
T34 side length(close tor), then the potential energy is mini-
mized. However, the SQ may be prohibited by symmetry.
Let the eigen-wave-function dfl, be written as

3 R
V=2 cidi=2 1234 x3 s, ()
2 i $15p 172
1
12 If the particles form a SQ, then a rotation about the c.m. by
+90° is equivalent to a cyclic permutation of the particles.
FIG. 1. The internal coordinates. Thus at a square we have
. . i(m/2)L ., S1S _81S:
states and in the qualitative aspect, the model space adopted e'tm? P (1234 = ¢, (234]). @)

is neither very large to facilitate numerical calculation, NOT 4 the other hand. sincd is antisymmetrized, from the
very small to assure the qualitative accuracy. This Isrepresentation theo;y of the symmetric group V\,IE 0 we
achieved by extending the dimension of the model space Ster?ave '
by step; in each step the new results are compared with the
previous results from a smaller space, until satisfactory con- 00 _ 1,00 n 11
vergence is achieved. For example, wHer6 and S=2, L (234D =— 2y (1234 +V3/2¢; (1234, 63
model spaces of 15, 37, and 76 dimensions have been used, 1 . 00, 1,11
stopping finally at 76. In what follows the energies are in Y (234D =V3/24 (1234 + 34 (1234.
meV, and the lengths are iny= yi/m*wy; hwy=0.01, WhenS=1, we have
m* =0.067,, ande=13.1 are adopted in the calculation.
(234D =390 (1234 + 3 (1234 — 1724} (1234),

Il. THE ENERGY SPECTRUM AND THE EFFECT

OF SYMMETRY YiA2340 = 3y{N(1234 + 3491234 + \1/29{}(1234),
1) (i) i —
Let the states be denoted &8 L (i), i=1,2,... where the l//il(2341): \/le/jgl(lzw) _ \/721,//{0(1234). 8b)

i =1 state is the lowest of the series, which is named a head
state; thei =2 state is named a second state. The energwhenS=2, we have

spectrum of low-lying states with<6 is given in Fig. 2. It

has the following featuresi) In S=0 states, the head states Y2341 = — (1234, (80)
with L even are remarkably lower than the head states lwith o ]

odd. (i) In S=1 states, the head states wlth=2 or 6 are COmbining(7) and (8), when the particles form a SQ, the
remarkably higher than the other head statéi. In S=2 following sets of homogeneous linear equations hold:
states, the head states with=2 or 6 are remarkably lower

i(m/2)L _ 00
than the other head statdi) In the above three cases, the |[© T 1/2 _ V312 L (SQ):O (if S=0)
groups of head states with remarkably low energies are mu- —v3i2 el _12] yl(SQ) ’
tually close in energy. Besides, in these states, the energy gap (99

E (in mev) $=0 s=1 . 8=2

- —_ FIG. 2. Low-lying energy
— _ — spectrum(in meV) of S=0 (at the
—_ - left), S=1 (middle), and S=2
0.65{ —0 E = > (right) states. The levels in each
t 2 ! . column have the same (marked
- under the head states
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em@t—1/2 12 12\ yMsQ E=[(paar o+ pad 3a+ weRP)/IM* 12
12 12 — 12| y1ASQ =0 .
172 Az e usQ Vur/mTR= cosx, w
V2! m*r 5= & sina cosB,
(if S=1), (9b) Vsl M* 1 34= & sina sing,
o _ where¢ is the hyper-radius specifying the size;and 3 are
(™ +1)yi(sQ=0 (if S=2), (99 nhyperangles, together withy,, F44, and R, specifying the

shape and its orientatiofwe shall neglect the discussion on

where the notation SQ denotes that the particles form a S@rientation, because the density is irrelevant Jolitis no-
In Eqg. (9), nonzero solutions exist only if the determinantsticed that the weighted distance@ZR/m* R,... are used in
are zero; i.e., only if the following equations are fulfilled: Eq. (11) to assure the invariance gfunder transformations
of different sets of internal coordinates.
Let ! be rewritten asy , and?S"1L(i) asL(i). Using

L _ oo
(e™—1)=0 (if S=0), the hypercoordinates, the equation of normalization is writ-
ten as
(e +1)(e(™L_1)=0 (if S=1), (10)
1- [ de as ajun (12
i(/ = i =
(™AL 1)=0 (if S=2). where d¢ is an _infinitesimal variation of size,

dS=da dg df,;,d75,dR is an infinitesimal variation of
It implies that a state is nonzero at SQ onlyLifis even(if ~ shapeJ arises from the transformation of arguments,
S=0), or L#4n+2 (if S=1, wheren=0,1,2,..), or L=4n
+2,... (if S=2). If it does, it is called a “SQ-accessible _ 45 ; ;
state.” Alternatively, in a SQ-inaccessible state, a nodal sur- J={¢° cose sinx coB sing Lot aahr
face exists at SQ configurations. This surface is originate

. . 2 . g
purely from symmetry, it is named an inherent nodal surfacgrom Eq.(12), it is clear thatd|¢, | is the probability den-

(INS), which was found to be decisive to the structures ofSity of the_ syster_n at a given size, orientation, an_d shape.
few-body systemd!15-17:19 However, in practice, the measurement should be blind to the

Now the main features of the spectrum can be easily eXpermutation of particles. Hence, the shape density is for-

plained, where all the SQ-accessible head states are remar@-""IIy defined as

ably lower. In these head states, the wave function is 1 1

smoothly distributed around a SQ without nodal surface. In Ss=3r > J|¢L|2:(_I > J) |y |2, (14)
this way the potential energy can be optimized and the inter- N! <5 N! %5

nal excitation is avoide¢the furiousness of an internal exci- where the summation runs over all the permutations, Mnd

f[ation is measure(_j by the_numbgr of nodal surfaces CO”“_””.‘%Q the number of particles. lir’s, the physics is contained in
in the wave function Besides, since these states have simi 2, J'is simply a factor of modification arising from ge-

lar internal structures, they are close in energy as shown i metry

Fig. 2 (in our model, the energy for collective rotation is Let the maximum of /5 be denoted by/Y: the shape
smal). Furthermore, since the structures o_f these states aWhere.VS arrives at™M is %amed a preferredséhape Among
very stable, they should be harder to excite, resulting in Fhe préferred shapes,sthe one with the largeltis named a

larger energy gap. most probable shape. It was found that the wave functions
are usually distributed sharply around the preferred shapes
(as shown latgr hence the geometric feature can be demon-

strated by the preferred shapes.

In order to have a systematic understanding of the spec- The preferred shapes f&@=2 states are listed in the sec-
trum, let us analyze the wave functions in detail. When theond column of Table I; the associated¥ are listed in the
system is subjected to a strong magnetic field, the spins dhird column. For each preferred shape characteristic lengths
electrons will be aligned and accordingly the spatial waveare defined in Fig. 3 and are given in the fourth column.
function is totally antisymmetric. This is just the case of It was shown in Table | that some stafgsg., the 21)
S=2. Hence, the case @=2 is more important than the statd have only one preferred shape, and thereby dominated
S=0 andS=1 cases. For this reason, we shall mainly discusdy one kind of geometric structure. In other states, different
the S=2 case. In what follows the discussions are limited togeometric structures coexigt.g., in the 11) statd. It was
the S=2 andL <6 cases except in the last section. found that some states are surprisingly very similar to each

It is well known that the size of a few-body system can beother both in shape and in size. For example, ttl® and
evaluated in terms of the hyper-radius. Hence, let us intro4(1) states are similar;(2) and 1) are similar; 11), 3(1),
duce the hypercoordinaté%which are defined from the in- and K1) are similar; and so on. The detailed features of the
ternal coordinates as low-lying states will be discussed as follows.

* 3
(13

Ill. THE SHAPE DENSITY



We have

are SQ accessible. From Table | it is confirmed that ttig 2

and §1) are
SQ states.

STRUCTURES OF LOW-LYING STATES OF A FOUR .. 10823

TABLE I. The preferred shapes. CET denotes the centered-equilateral triangle. The characteristic lengths
are referred to Fig. 3.

Maximal values of

L(i) state Preferred shapes the shape density Characteristic lengths

0(1) Diamond 2.29 d;=5.0,d,=7.8

0(2) Rectangle 2.10 h=3.8, s=5.7

0(3) CET 3.20 h=3.8

1(1) Shield 1.93 d=7.2, h;=1.5, h,=4.5
Trapezoid 1.46 w=4.6, $;,=3.5, 5,=6.3

21 Square 4.62 s=4.63

2(2) Shield 1.45 d=8.1, h;=0.3, h,=3.9
Square 0.80 s=4.95

2(3) Square(smallep 2.01 s=3.82
Square(largen 1.73 s=5.50

3(1) Shield 1.78 d=7.3, h;=1.3, h,=4.3
Trapezoid 1.06 w=4.7, 5,=3.6, s,=6.4

3(2) CET 2.98 h=3.9

3(3) CET 2.98 h=4.0

4(1) Diamond 2.08 d;=5.0, d,=7.8

4(2) Rectangle 1.56 h=3.8, s=5.7

5(1) Shield 1.75 d=7.1, h;=15, h,=45
Trapezoid 1.65 w=4.7,s,=3.5, 5,=6.3

6(1) Square 457 s=4.64

6(2) Shield 1.60 d=7.9, h;=—0.4, h,=4.6
Square 0.85 s=4.95
CET 1.36 h=3.9

6(3) CET 1.90 h=4.0
Diamond 1.49 d;=4.1, d,=8.2

IV. THE HEAD STATES (S=2) larity of these two states is explicit. The curves fdi3)2

A. The SQ states 21) and 6(1) contain two peaks, thus it is a coexistence of a small SQ and

a large SQ. The peaks in the curves )2 6(2), and &3)

are lower; these states are coexistences of a SQ and other
3hapes.

Evidently, all the SQ-accessible head states would do their

pointed out in Sec. Il that the=2 and 6 states

dominated by the SQ structure; they are name
Let”s be observed in the subspace of SQ as

shown in Fig. 4. It is obvious that in this subspagg is best to pursue the SQ structure to lower their energy. Hence,
nonzero only ifL=2 or 6. The curves for @) and §1) in  Not only the 21) and &1), but all the head states with=2
Fig. 4 are remarkably sharp; these two curves are nearly 4N would have the same SQ structure; accordingly they
identical. Thus the SQ structure is well defined and the simiform a very stablgmuch lower in energyrotational band

AN

i' (b) (c) FIG. 3. The preferred shapes found $+2

(a) _ states, where characteristic lengths are labeled.

(hy>0)

(c) and(e) are centered structures.

S

Zayanus il
h,

| ”
(@) ~-(e)- - (£) (g)

(hy <0)
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1

FIG. 6. An intuitive picture of the diamond-SQ-diamoxiD-
SQ-D mode of oscillation.

N
,I A \(' %(3) From the above analysis, thélp and 41) are expected to
;o " y N have the diamond structure. This is true as shown in Table I.
;A by N Furthermore, let/5 be plotted in the subspace of diamonds
r Y e+ Y 6(2) with the side length being fixed as shown in Fig[véhere
1/ ‘;"/ A 2(2) the curves for £21) and 1) have been omittgd This figure
/ /’ i ‘\ /l-6'(’3') BN \ shows us that the curves fof1) and 41) are remarkably
- et o ARSI higher and similar to each other. Thus both states are domi-
2 4 6 s nated by the diamond and have similar internal structures.

Incidentally, the’”5 of higherL =0 and 4 states are too small
to be seen in Fig. 5; thus the diamond is not preferred by
these excited states.

The diamond is not a stable configuration. If a diamond is
transformed to a SQY would be lower. In classical mechan-
ics, there is a periodic oscillation as shown in Fig. 6, where
the increase of length of a diagonal matches the decrease of
another diagonal so that a flattened diamond is changed to a
SQ, and then to a sharpened diamond, and vice versa. This is

B. The diamond states (1) and 4(1)
L named a diamond-SQ-diamoKid-SQ-D) oscillation. In our
In a SQ, the bond of a side is stronger than the bond of ?QM system, let”’s be observed in the subspace of diamonds

diagonal. Hencg, ifa .SQ is changed to a diamonq with theas a function ofl; andd, plotted in Fig. 7. In Fig. ), the
lengths of the side being unchanged, the energy increase g%intA is associated with Fig.(8), B with 6(b), andC with

small because only the two weaker bonds of the diagonal ; : - ;
are concerned. For this reason, the diamond shape will be trg(c)' Since the configuration shown itie can be changed to

first choice of SQ-inaccessible head states. For a diamond,oqc) via a rotation by 90° together with a cyclic permutation

tation by 180° | valent to two interch f the particles, the former causes no effectin4n states,
rotation by IS equivaient 1o two interc Langgs O Palyhile the latter causes a change in sigrbia2 states. Hence
ticles; the former operation induces an factt-, while the

the wave functions ah andC must have opposite signs. The
latter causes no change $+2 states. Thus we have point B (a SQ is a node forl = 4n states due to being SQ

inaccessible. Thus, alon§-B-C, the wave function varies
from a peak to an antipeak via a node; it is similar to a linear
harmonic oscillator with one quantum of excitation. Hence,
the Q1) state contains the D-SQ-D mode of oscillation with
one node.

FIG. 4. /5 as a function of the side length of a square.
r1o=ray=R=s andrJlr4, r 2L R are assumed. The ordinate is in
arbitrary unit. A dashed line is fot =2 and dotted line fol. =6
states.

(the SQ bang This explains the well-known magic angular
momenta 2,6,10,... in spin-aligned four-electron dofs:!

(1—€™) ¢ (DIA)=0, (19

where the label DIA denotes the diamond. Equat{Gb)
tells us thatyy (DIA) is nonzero only ifL is even. Hence,
among the SQ-inaccessible states, onlyliked4n states are
DIA accessible.

(b)

7.5 9.0

4.5 6.0 7.5 9.0 4.5

FIG. 5. .75 as a function of the diagonal, of diamonds. The T12
other diagonatl, is constrained byd;/2)?+ (d,/2)>=s?. s is the
side length of the diamonds fixed at an optimal value 4.63. The FIG. 7..75 as a function of 1, andrs,. R=0 andr,Lr3, are

6.0

vertical arrow designates a squai, € d,=v2s). A solid line is
for L=0, dashed line fot. =2, dash-dot line fot. =4, and dotted
line for L=6 states.

assumed, thusq, and ry, are the diagonals of a diamond. The
contours give 20%, 50%, and 80% of the maximum in each figure.
The dotted line is a nodal line.
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1{1) 3(1) 2(2) 2(2)

-7.0 - -
8.1 12 ryp=7-4 > r)5=8-2 ry2=7-0
6.6 E

(a) {b)
34 6(2) 6(3) 6(3) 12 3 4

. > ' F1277-8 *1277-0 £1p78-2
6.6 o
5.2 /\ - .
OV @D (o
- w | '
. t) : )
: —TtY L (]
1 2 3 4 1 2 3 4

e)
1 2 3 4

r

R

FIG. 8..5 as a function oR andr 34 with r 1, given at a specified value,Lr3, andRIlr3, are assumed. Refer to the caption of Fig. 7.
When a pair of subfigures belong to the same dtabeand (d), (f) and (g)], the larger maximum of the pair is used as the scale for the
contours.

If Fig. 7(a) is replotted for the @) state, the contour the vertical diagonal. There is a peakAtassociated with
diagram is changed scarcely. This is expected to be true fdfig. 9a). Let C be the partner point oA arising from
other L=4n head states with a largdr. Thus, the second R——R, then it is associated with Fig.(®. There should
rotational band based on D-SQ-D oscillation is suggestedalso be a peak a€, because Fig. 8 is unchanged under
Since one quantum of internal excitation is contained in th(R——R. The pointB at R=0 is associated with a diamond
D-SQ-D band, it should be explicitly higher than the SQ[Fig. Ab)]; thus B is a node forL odd states. The wave

band as shown in Fig. 2. functions atA and C have opposite sign&ue to the QM
symmetry. Thus, an evolution along-B-C implies an os-
C. L odd states cillation (associated with the variation &) with one node,

o ] _and accordingly an up-shielfFig. 9a)] is changed to a
Let the regular shapes be divided into two types. The firsjoyn_shield9(c)] via a diamond, and vice versa. It is named
type is invariant under a space inversigvith respect to the 5 gH.p-sH mode; in this mode, the two particles at the top

c.m,), while the second type is not. Evidently, the first type is3nq bottom of a diamond shift as a whole upward and down-
better in geometric symmetry; it contains the SQ, the recty,g.q repeatedly.

angle, the diamond, and the parallelogram. The second type gimilarly, by observing” in the subspace of trapezoids,

contains the shieldiFig. 3(d)] and the trapezoifiFig. 3f)]. 5 mode of oscillation is found around the trapezoid as shown

Let one particle be put at each vertex; then in the first type & Fig. 10, where an up-trapezoid is transformed to a down-

space inversion is equivalent to two interchanges of pa”ide%apezoid via a SQ. It is named a TR-SQ-TR mode; in this

The former provides a factorr (parity), while the latter  node the extension of the upper side of a trapezoid matches

causes no change i8=2 states. Hence, only even-parity {he contraction of the lower side, and vice versa.

states(i.e., L even are allowed to pursue the first type, all |t was found that the features of thé13 and 51) states

the odd-parity state8.e., L odd can only pursue the second e very similar to the () state. For example, Fig.(8) is

type. In fact, it is shown in Table I that all thé1), 3(1), and oy the 31) state, which is very similar to(8). This is natu-

5(1) states are a coexistence of a shield and a trapezoid. 5| pecause they are constrained in the same way by the QM
Let the shape density be plotted in the subspace ofymmetry. Thus the third rotational band composed of all the

sh|elds. In Fig. 8g), r1p Serves as the horizontal diagonal in | "~ on 41 head states based on a coupling of the SH-D-SH

Fig. 3(d), which is given at an optimal valueg, serves as  mode and the TR-SQ-TR mode is suggested. Although both

the L odd band and the D-SQ-D band contain one node in

(a) (b) (c)

FIG. 9. The shield-diamond-shie{&H-D-SH mode of oscilla-
tion. FIG. 10. The trapezoid-SQ-trapezqifR-SQ-TR mode.
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(a) (b) {c)

FIG. 11. The rectangle-SQ-rectangREC-SQ-REC mode.

their internal oscillations, however, the former is less sym

metric in shape, resulting in having a higher energy as show

in Fig. 2.

All the head states are well divided into three rotational

bands according th =4n+2, 4n, and 2h+1. These bands
are based on a SQ, a diamond, and a coexistence of a shi

and a trapezoid, respectively. The first band does not contain

internal excitation(without nodal surface while the other
two contain one quantum of internal excitatiomith a nodal
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It is shown in Table | that the most probable shapes of the
0(2) and 42) states are rectangles. In Fig. 12 of all the
L=2 and 4,i=1-3 states are plotted in the subspace of
rectangles as a function éf There are two peaks AtandC
associated with Figs. 14 and 1Xc), respectively. The point
B at #=90° is associated with a SQ and is a nodelfer4n
states. The wave functions Atand C have opposite signs
[due to the QM symmetry; in detail, Fig. (B can be
changed to 1(t) via a rotation by 90° together with a cyclic
permutation of particlds The evolution fromA to C implies
an oscillation as shown in Fig. 11. It is named a REC-SQ-
REC mode. Figure 12 shows that the curves for tt® and
4(2) states are similar, while the curves for the other states
are too small to be seen. It is suggested that {Bgdhd 42)

tates are the lowest members of a rectangle band character-
d by the REC-SQ-REC mode.

B. Single-particle oscillation and 22) and 6(2) states

surfacg. How the states are classified into these bands is |t nas been stated that thé12 state is a SQ state. One
determined by the QM symmetry, and not by the dynamicaly,y naturally think that the(2) state may be dominated by

parameters adopted.

V. THE STATES HIGHER THAN THE HEAD STATES
(5=2)

We are not going into a comprehensive discussion; in
stead, certain higher states are selected to reveal speci
modes of excitation.

A. The rectangle states (2) and 4(2)
A SQ can be varied in different ways with the inversion-

an inversion-invariant excitation, in particular by the
D-SQ-D mode. However, this is not true. Table | tells us that
the A2) state is a coexistence of a shield and a SQ, the
former is more important. This arises because, in the
D-SQ-D mode, the wave functions at the two configurations
associated with Figs.(é and Gc) have the same sign in

%=2 andL =2 states(due to the QM symmetjy It implies

at at least two nodes would be contained if the D-SQ-D
mode is adopted. Hence, the D-SQ-D mode is not very ad-
vantageous.

Since the most probable shape of tl{@) Ztate is a shield,
let .5 of 2(2) be observed in the subspace of shields as

invariance remained. One is a variation of the lengths of théhown in Figs. &) (r;,=8.2 and &d) (r1,=7.0. Where

diagonals leading to a diamords shown in Fig. B one is a
variation of the angle between the two diagonals leading to
a rectangle(as shown in Fig. 21 Now the diamond has
already been adopted by thélp4(1),... states. It is natural
to think that the rectangle may be adopted by t(®,8(2),...
states.

f v v s

60 90 120 150

0(in degree)

FIG. 12..75 as a function of¢ (marked in Fig. 11in the sub-
space of rectangles.;,=r3,=7.83 andR=0 are assumed. The
solid line is forL=0, the dash-dotted line is fdr=4 states.

point A in 8(c) is associated with the shape in the solid line
in Fig. 13a), point C in Fig. 8d) is associated with the SQ
in the dotted line in Fig. 1&). There is a nodal surface lying
betweenrA andC; this surface is not originated from the QM
symmetry but from a pure dynamical backgrodndt in-
duces an evolution fromA to C, and back toA, which is
essentially an oscillation of one patrticle relative to the other
three as shown in Fig. 18. Hence, it is named a single-
particle mode. Incidentally, the D-SQ-D mode with two
nodes is also found in thg2) state as shown in Fig. 5 and in
Fig. 7(b). However, the”5 at the SQ is only 0.80, much
smaller than 1.45 of the shield. Hence, the D-SQ-D mode is
not the main mode while the single-particle mode is. Since at

(a) (b)

FIG. 13. An intuitive picture to show the single-particle oscilla-
tion.
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FIG. 15. A large-amplitude oscillation transforming an up CET
to a down CET.

that the CET is more favorable in the=3 states than in the
L=0 or 6 states. In the former, the CET competes with
inversion-variant shapes: thus it can emerge in the second
state. In the latter, it has to compete with the §Q.=6), or

the diamond(if L=0), thereby it has more difficulty emerg-
ing.

A strong oscillation was found in thg3, 3(3), and &3)
states as shown in Fig. 15, where an up CET is transformed
to a down CET via a diamond, and vice versa. For example,
.Y of the 3) state are plotted in Figs.(8 and §g) with
r1,=7.0 and 8.2, respectively. PoiAtin Fig. 8f) is associ-
ated with the CET in Fig. 1®); point B in 8(g) is associated
with the diamond in 18). There is a nodal surface lying

least three bonds are involved in the single-particle modebetweenA andB. The evolution fromA to B implies an

. . ; o . increase of 1, and a decrease &, so that particles 1 and 2
this mode is energetic, resulting in a big gap between th‘fFig 15a)] move outward and 3 and 4 move downward:
second state and the head state. i '

The G2) state is found to be also dominated by the Single_accordmgly, the up CET is transformed to the diamdih

particle mode as shown in Fig(e. Besides, the D-SQ-D diamond is lower in potential energyThen, the pair 3 and 4

. . . ; . keeps going down, and the diamond is transformed to a
”_‘0‘?'9 with two nodes is also contalne_d '@a Thus_, €2) is down CET, and vice versa. This is named a CET-D-CET
similar to 22). However, the peak & in Fig. 8€) is more

shifted to the right, thus it is associated with a centered tri—mOde'

angle shown by the solid lines in Fig. @3. Hence, the
amplitude of the single-particle mode {2 is larger than D. The breathing mode
the one in 22). The 22),6(2),10(2),... states are suggested to ¢ a5 well known that the breathing mo@extension and

form a rotational band mainly based on the single-particle;qntraction of sizpexists in three-dimensional systems. For

mode. example, it was named a monopole excitation in nuclear
theory?® Now, this mode is found in the(3) state as shown
C. The centered equilateral triangle (CET) states in Table | and Fig. 4; it reveals that the monopole excitation

The CET[Fig. 3(c)] has good geometric symmetry. How- exists also in two-dimensional systems. Since all bonds are
ever, in this shape only three bonds can be optimized. Hencg]volved n .bre"?“h'”g’ .th's mode is energetic, thereby It ap-
it is less advantageous in binding. Nonetheless, in higheP€ars only in high excited states. There may be a rotational

states, this shape will compete with other shapes. When tH&A1d based on breathing modes. However, since only a shape

particles form a CET, a rotation by 120° is equivalent to aVith 9ood geometric symmetry can be stable enough to be

cyclic permutation of three particles. The former induces a{)r
e' @73t factor in the wave function, while the latter causes
no effect inS=2 states, thus we hat/e®

FIG. 14. .75 as a function ofh [marked in Fig. &)] in the
subspace of CET.

ee from deformation during an energetic oscillation, the
reathing is likely to occur only in SQ states. Hence, the
candidates of this band will be thé32,6(4) or 6(5),10(3),...;
this suggestion is left to be checked.

(1—e'®™3Y) ¢ (CET)=0. (16)

Equation(16) implies that CET is allowed only ih.=3n
states. In fact, it is shown in Table | that the CET states do
emerge in highet. =0, 3, and 6 states. (1) Each state has its own feature of geometric structure
Let the.”5 be plotted in the subspace of CET as shown inand internal motion. When the wave function is smoothly
Fig. 14. It is shown that, among all<6, S=2, andi<3  distributed around a most probable shape, it is recognized as
states, there are four states, i.e., t® 03(2), 3(3), and &3), a small oscillation around this shape as an equilibrium shape,
dominated by this structure; they also have similar size. Ire.g., a SQ in the @) state. When the wave function contains
the §2) state the CET is less important than a shiglith a  nodal surfaces, the internal motion becomes energetic. There
negativeh,); both in the CET or in the shield one particle are two types of nodal surfac&sOne arises purely from the
has penetrated into the interior of the other three due to theonstraints of the QM symmetry, the other one arises simply
large-amplitude single-particle oscillation. It is noticeablefrom dynamics without symmetry background. The first type

VI. FINAL REMARKS
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TABLE Il. The rotational bands.

The states contained Number of nodes
Feature of internal oscillation in the band in oscillation
A small oscillation around a SQ (2,6(1),1002),... 0
Breathing of a SQ @),6(4) or 6(5),103),... 1
D-SQ-D mode 01),4(1),8(2),... 1
SH-D-SH mode-TR-SQ-TR mode ),3(1),5(2),... 1
REC-SQ-REC mode @),4(2),8(2),... 1
Single-particle oscillation @),6(2),... 1
A small oscillation around a CET 9),... 0
CET-D-CET mode ®),3(3),6(3),... =2

(INS) is particularly important because it usually locates atof spin-aligned systems are SQ inaccessible.

configurations with good geometric symmetry, and thus with  (6) From an analysis of the wave functions, the spectrum
lower potential energy. Once an INS exists, the wave func- can be systematically understood. It was shown that the ef-
tion can only be distributed by the two sides, and thereby dect of QM symmetry is decisive. We can adjust the dynami-
specific mode of oscillation is induced. In this sense, al-cal parameters to change the quantitative details, but the
though the QM cannot tell us exactly how the particlesqyalitative features remain unchanged. For example, when a
move, however, the mode of motion can be understood frondtate contains an INS at S@.g., the Q1) statd, no matter

the structure of the nodal surfaces. For exampld) @ oy the parameters are adopted, the best choice is a diamond
dominated by a diamond with the D-SQ-D mode induced byt the D-SQ-D mode. A group of states will pursue the

theTIrl]\lS at fSQ' dsh dth iated mod ¢ .”same structure if they suffer the same constraints from the
e preferred shapes and the associated modes of oscillg;, symmetry and orthogonality[e.g., the group

tion have been listed in Table | and Table Il. The experimen- i 2T
tal observation of them is a great challenge to acquire 0(1),4(2),8(1)...; or the group (),4(2),8(2)..] resulting in

deeper understanding of the QM. fhe existence of similarity. Based on the similarity, rotational

(2) This paper provides vivid examples of how each Statéoands are naturally formed. Since rotational bands are origi-

pursues the best structure favorable to binding under the cof@ted from QM symmetry, not only in quantum dots, they

straints of the QM symmetry and orthogonality. For example,WOUId widely exist in different few-body systems. o
0(2) has to avoid the SQ because the=0 states are SQ (7_) Although only theS=2 states have been stud.le.d in
inaccessible, to avoid the diamond because thg@ate has detail, however, thes=0 and 1 states are also decisively
possessed the diamond, among the inversion-invariarfletermined by the QM symmetry.

shapes, the rectangle is adopted; and accordingly a REC-SQ- In the S=0 states, thé. even states are SQ accessible.
REC mode is induced by the INS at SQ. One more examplé&lence the @),2(1),4(1),... states form a SQ band. Theodd

is the 42) state; it has to avoid the SQ because tff 8tate  states are SQ inaccessible; besides, they also cannot have
has possessed the SQ; it is not very advantageous to possédgersion-invariant shapébecause in these shapes a rotation
an inversion-invariant shape because two nodal lines will béoy 180° is equivalent to two interchanges of particles, the
contained[Fig. 7(b)]; consequently, the(2) state is a mix- latter operation causes no effect =0 statex Conse-
ture of an inversion-invariant shape and an inversion-varianuently, thel. odd head states are explicitly higher than the
shape. even head states.

(3) The discovery of the monopole excitatidbreathing In the S=1 states, the @),4(1),8(1),... form a SQ band
mods in two-dimensional systems is noticeable. In nuclearyith even parity; the @), 3(1), 5(1),... form another SQ
theory, the monopole excitation is related to the incompressyang with odd parity.
ibility of the nuclear matter. A similar role may be played in  The formation of all these bands are determined by sym-
quantum dots. metry. Since the symmetry is global, not only certain states

Th(4) Thet dlstcovery fOft th? CET Str”‘;tu:ﬁ IS n?t'czabtle'of the same system may be similar, the states of different
ere are wo types ol structures, namely, the centered s rugi/stems(e.g., nuclear or atomic systemalso may have

ture (e.g., the CET and the surface structufe.g., the con- ._something in commolt. This will lead to a unified under-
vex polygon. In four-electron dots, the centered structure is ; :

not favorablgthence, the CET emerges only in higher states standing to different few-body systems.
However, in five-electron dots, these two types of structure
are nearly equal in competition. In six-electron dots, the cen-
tered structure may even overtake the surface structure. In

seven or more electron dots, there may be more than one ACKNOWLEDGMENTS
particle staying in the interior; thereby the interior structure
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