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We study the theory of itinerant-hole photoluminescence of two-dimensional electron systems in the regime
of the magnetically induced Wigner crystal. We show that the exciton recombination transition develops
structure related to the presence of the Wigner crystal. The form of this structure depends strongly on the
separationd between the photoexcited hole and the plane of the two-dimensional electron gas. Whend is small
compared to the magnetic length, additional peaks appear in the spectrum due to the recombination of exciton
states with wave vectors equal to the reciprocal lattice vectors of the crystal. Ford larger than the magnetic
length, the exciton becomes strongly confined to an interstitial site of the lattice, and the structure in the
spectrum reflects the short-range correlations of the Wigner crystal. We derive expressions for the energies and
the radiative lifetimes of the states contributing to photoluminescence, and discuss how the results of our
analysis compare with experimental observations.

I. INTRODUCTION

Recent experimental studies of high-mobility GaAs/
Al xGa12xAs devices using itinerant-hole photoluminescence
have shown this to be a sensitive probe of the two-
dimensional electron systems formed in these devices.1 Fea-
tures in the photoluminescence spectra have been found to
correlate well with transport measurements of the integer and
fractional quantum Hall effects,2–4 and the insulating regime
observed at very low filling fraction.5–7 These studies are
particularly interesting in this low-filling-fraction regime,
where transport measurements can provide only limited in-
formation on the state of the two-dimensional electron gas.
In particular, they may provide information on the transition
to the Wigner crystal, which is the expected ground state
under these conditions. Related experimental studies of the
photoluminescence of intentionally acceptor-doped samples,
in which the photoexcited hole becomes bound to an accep-
tor, have also found structure associated with the transition
to an insulating regime.8,9 However, the signature of the in-
sulating state in those experiments is quite different from that
in the undoped devices in which the photoexcited hole is free
to move~‘‘itinerant-hole’’ photoluminescence!.

In the undoped samples, the transition to the insulating
regime is associated with the appearance of additional lines
in the photoluminescence spectrum.5–7 It has been suggested
that the appearance of these lines does indeed indicate the
formation of a magnetically induced Wigner crystal.5,6 How-
ever, the theory underlying itinerant-hole photoluminescence
in the extreme quantum limit is not well understood. Existing
theories of photoluminescence in the Wigner crystal regime
apply only to the limit in which the photoexcited hole is far
from the electron gas compared to the typical electron-
electron spacing.10,11 This condition is not appropriate for
typical devices in which itinerant-hole photoluminescence is
observed: while the asymmetry of these devices does cause
the hole to lie some distance from the electron gas, it is
believed to be close compared to the electron-electron
spacing.12

We present a theory for itinerant-hole photoluminescence

in the Wigner crystal regime that applies to systems in which
the photoexcited hole is close to the two-dimensional elec-
tron gas. We study the limit of strong magnetic field in
which all the electrons and the photoexcited hole are con-
fined to states in the lowest Landau level. To represent the
asymmetry of the quantum well, the hole is assumed to lie in
a plane a distanced away from the two-dimensional electron
gas~which is also assumed to have zero thickness!. Such a
model is common in theories of photoluminescence in the
fractional quantum Hall regime.13–15 In that regime, the
model presents an intrinsically strongly coupled many-body
problem, which, for the most part, has required numerical
investigation. For very low filling fraction and ford small
compared to the typical electron-electron spacing, certain
simplifications arise. Under these conditions, we expect that
the low-lying energy states in the presence of the photoex-
cited hole involve the formation of an exciton, with one elec-
tron strongly bound to the photoexcited hole. A well-defined
exciton can form provided the size of the exciton, set by the
magnetic length l[A\/eB, is small compared to the
electron-electron spacing. Moreover, since the exciton is
neutral, it will couple rather weakly with the other electrons.
In particular, we expect that for smalld, the presence of the
exciton will not significantly perturb the ground-state
~Wigner crystal! configuration of the other electrons, and the
exciton will behave as a rather noninvasive probe of this
crystalline state. This expectation is motivated by studies of
the classical ground state of a system of electrons in the
presence of an ionized donor impurity located a distanced
from the plane of the two-dimensional electron gas.16 It is
found that ford,0.29a ~wherea is the lattice constant of
the Wigner crystal! the system adopts a ground-state con-
figuration in which one electron is bound to the donor impu-
rity, while the remaining electrons lie close to the sites of a
triangular lattice.

In this paper, we discuss how the photoluminescence
spectrum arising from the recombination of the exciton is
affected by the presence of the crystal. We study a model in
which the exciton moves in the static potential set up by a
triangular lattice of electrons. Our analysis neglects the dy-
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namical properties of the lattice~phonon coupling!. This ap-
proximation is justified, as the structure that we will find is
on a energy scale large compared to the typical magne-
tophonon energy,O( l 2e2/ea3): the lattice can therefore be
considered to be static on the time scale necessary to define
these exciton states. In the present work we neglect exchange
processes between the electron in the exciton and those
forming the lattice; these will be considered in a separate
paper.17

The behavior of our model is strongly dependent on the
separationd. For smalld, the coupling of the exciton to the
lattice is weak; in this case, additional peaks appear to higher
energy of the main exciton line arising from the recombina-
tion of exciton states with momenta equal to reciprocal lat-
tice vectors of the crystal. The spectrum effectively carries
diffraction information on the crystal and is therefore sensi-
tive to long-range crystalline order. Asd increases, the cou-
pling becomes stronger and the low-lying exciton states be-
come increasingly confined to the interstitial regions of the
crystal. These states are less sensitive to the presence of crys-
talline order, but depend on the short-range correlations of
the electron gas. The crossover from weak to strong coupling
occurs when the~dipole! potential energy of the exciton,
O(d2e2/ea3), becomes larger than the kinetic energy cost to
confine the exciton to a size of order the lattice constant
\2/Ma2 ~whereM is the effective mass of the exciton!. We
show that this crossover occurs when the separation between
electron and hole planesd becomes larger than the magnetic
length.

We compare the results of our model with experimental
observations of photoluminescence in the extreme quantum
limit. We find that the energy scale predicted by our model
for the splitting of the exciton transition is comparable to the
energy scale of the structure observed in experiment. We
argue that the observed peak splitting that has been associ-
ated with the Wigner crystal regime could arise from the
ground state and first excited state of a strongly confined
interstitial exciton. However, other explanations for this
splitting cannot be ruled out, and it may be that the structure
that we predict is not seen due to a lack of population of the
higher-energy exciton states. Further experimental work is
required in order to identify this structure. We argue that this
could best be observed in optical absorption experiments.

The paper is organized as follows. In the following sec-
tion we review the theory of the free two-dimensional exci-
ton in a strong magnetic field. We derive expressions for the
binding energy and effective mass of the exciton for the case
in which the electron and hole lie in planes separated byd.
In Sec. III, we study the coupling of the exciton to the peri-
odic potential set up by a Wigner crystal of other electrons.
We derive exact expressions for the matrix elements of the
periodic potential of the crystalline lattice within the basis of
free exciton states, and study the resulting low-energy exci-
ton states in the weak-coupling limit,d! l , using perturba-
tion theory about the free exciton states. In Sec. IV we study
the limit of strong coupling,d* l . To do so, we develop an
effective Hamiltonian for the motion of the exciton in a
smooth external potential. We apply this to the case in which
the potential is due to the presence of a Wigner crystal, and
study the low-energy eigenstates close to an interstitial site
of the electron crystal. For both the weak- and strong-

coupling limits we derive expressions for the energies and
relative radiative lifetimes of the low-lying energy states. In
Sec. V we discuss how these results compare with existing
photoluminescence measurements on GaAs/AlxGa12xAs
heterostructures in the extreme quantum limit. Finally, Sec.
VI contains a summary of the main points of the paper.

II. FREE TWO-DIMENSIONAL EXCITON STATES IN
STRONG MAGNETIC FIELD

The wave functions and the energy spectrum of a free
two-dimensional exciton in a strong magnetic field have
been discussed by Lerner and Lozovik.18 They built on the
work of Gor’kov and Dzyaloshinskii19 who showed that,
within the effective-mass approximation for the conduction
and valence bands, the exciton states can be described in
terms of a conserved two-dimensional momentumP. In the
limit of strong magnetic field, when the cyclotron energies of
both the electron and hole become large compared to the
typical electron-hole interaction energy, the exciton wave
function is completely specified by the momentumP and the
Landau level indices of the electron and hole. The lowest-
energy exciton state, in which the electron and hole are both
in the lowest Landau level, has the wave function19

^re ,rhuP&5
1

A2pA
eiP•~re1rh!/2ei re3rh• ẑ/2e2~re2rh2rP!2/4,

~1!

where re and rh are the electron and hole positions,
rP[ ẑ3Pl 2/\, A is the area of the system, and the vector
potential has been chosen in the symmetric gauge,
A(r)5B3r/2. We have chosen units in which\5 l51, and,
in the following, we express energies in units of
e2/4pee0l . To make the discussion more transparent, how-
ever, we reintroduce these units at appropriate points.

The energies of the free exciton states, relative to the
zero-point kinetic energy of the electron and hole, are given
by the expectation values of the electron-hole interaction
potential.18 We study a situation in which the electron and
hole move in planes separated by a distanced, such that the
interaction is

Vd
eh~r!52

e2

4pee0

1

Auru21d2
. ~2!

The interaction energy of the exciton stateuP& is therefore

Ed~P![^PuVd
eh~re2rh!uP&52E

0

`

e2u2/2e2udJ0~uuPu!du,

~3!

where J0(z) is the ordinary Bessel function. We have not
found a closed-form expression for this integral~in the limit
d50 it reduces to the expression derived in Ref. 18!. How-
ever, in what follows, we are interested in exciton states with
wave vectors on the scale of the reciprocal lattice vectors of
the crystal,O(1/a). At low filling fraction, this is much
smaller than the scale on which the energy~3! varies,
O(1/l ), so for our purposes it is sufficient to work with an
expansion
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Ed~P!.2Bd1
P2

2Md
1O~P4!, ~4!

which may be interpreted in terms of a ‘‘binding energy’’
Bd and an ‘‘effective mass’’Md ,

Bd5Ap/2ed
2/2 erfc~d/A2!, ~5a!

Bd;Ap/22d11/2Ap/2d21O~d3!, d!1, ~5b!

Bd;1/d1O~1/d2!, d@1, ~5c!

1/Md5Ap/8ed
2/2~11d2! erfc~d/A2!2d/2, ~6a!

1/Md;Ap/82d13/2Ap/8d21O~d3!, d!1, ~6b!

1/Md;1/d31O~1/d4!, d@1. ~6c!

In many ways the exciton behaves as a simple free particle
with a massMd . In particular, the velocity of an exciton in
the stateuP& is ]Ed(P)/]P.

19 In view of this, it is convenient
to think of the contribution toEd(P) that is momentum de-
pendent as the ‘‘kinetic energy’’ of the exciton, even though
this energy originates from the electron-hole interaction. The
exciton is overall charge neutral, but it does carry a dipole
moment and therefore couples weakly to an external electro-
static potential. The dipole moment is of size2edẑ perpen-
dicular to the plane of the interface, and of size2erP paral-
lel to this plane. It is the dipole moment of the exciton that
will cause it to be scattered by the Wigner crystal of other
electrons. The strength of the coupling of the exciton to a
Wigner crystal with a lattice constanta is determined by the
competition between the typical dipole energy of the exciton,
d2e2/ea3, which is minimized at an interstitial site of the
lattice, and the kinetic energy cost to confine the exciton to
such a site, 1/(Mda

2). Using the asymptotic expression for
the mass~6c!, it is found that these two energies become
equal whend/ l.1/n1/10, wheren is the filling fraction of the
two-dimensional electron gas. This condition is so weakly
dependent on the filling fraction that it is accurate to say that
one expects the exciton states to cross over from being
weakly coupled to the lattice whend& l to strongly confined
to interstitial regions whend* l .

In order to understand the photoluminescence spectrum it
is essential to know both the energies of the exciton states
and the rate at which they decay to emit radiation. Within the
effective-mass approximation for the electron and hole
bands, the radiative lifetime of an exciton state depends on
two factors: the band-to-band dipole matrix element of the
host semiconductor, and a matrix element between the elec-
tron and hole envelope functions. The first contribution is
constant for all transitions. We study only the envelope term,
which is sufficient to describe the relative recombination
rates of different exciton states. The operator that describes
electron-hole annihilation may be written in second quan-
tized notation as

L̂5A2p l 2

A E d2r ĉe~r!ĉh~r!, ~7!

whereĉh andĉe are the field annihilation operators for holes
and electrons, and the wave vector of the emitted photon has

been assumed to be zero. We have chosen a convenient nor-
malization, which is arbitrary since we consider only relative
radiative decay rates. We define the ‘‘luminescence
strength’’ of a transition between any pair of~many-body!
statesu i &→u f & by

Li f5 z^ f uL̂u i & z2. ~8!

For the free exciton states discussed above~1! the only avail-
able final state is the vacuum and we find

LP5 z^vacuL̂uP& z25dP,0 . ~9!

Thus, due to momentum conservation, only theP50 exciton
state can emit a long-wavelength photon. Since the free ex-
citon states form a complete set of states for the exciton in
the lowest Landau level, the luminescence strength of a tran-
sition in which an exciton in a general stateuc& decays to
emit radiation may be found from Eq.~9! to be given by

Lc5 z^P50uc& z2. ~10!

We will use this expression in the following discussions,
which concern the exciton states in an external potential, for
which the momentum is not a good quantum number.

The relative intensity of a photoluminescence transition is
proportional to its luminescence strength multiplied by the
probability for a photoexcited hole to be in the initial state of
the transition. These probabilities are difficult to quantify:
the lifetime of the photoexcited hole can be shorter than its
equilibration time, so one may observe recombination from
high-energy nonequilibrium states. Although we are prima-
rily interested in photoluminescence, we note here that the
luminescence strengthLi f also characterizes the strength of
the transition, as observed in optical absorption, from the
stateu f & to the stateu i &. In this case, uncertainties related to
nonequilibrium populations do not arise as the lifetime of the
hole does not limit the time available for the initial states to
equilibrate.

III. EXCITON STATES IN THE PRESENCE OF A
WIGNER CRYSTAL: WEAK COUPLING LIMIT

We will now study the scattering of the exciton states~1!
by the electrons forming the Wigner crystal. As described in
the Introduction, we neglect the exchange interaction be-
tween the electron in the exciton and those forming the crys-
tal. We anticipate that this is a good approximation at low
filling fraction, when the fraction of basis states excluded
from the exciton wave function by the Pauli exclusion prin-
ciple is small; this is confirmed by numerical studies in
which the effects of exchange are included.17 The model we
discuss also correctly represents a situation in which the spin
or subband index of the electron in the exciton is different
from the corresponding index of the electrons in the two-
dimensional electron gas.

Neglecting exchange interactions, the exciton is scattered
only by the charge density

r~r!5(
a

S 2e

2p l 2
e2~r2Ra!2/2l21 r̄ D d~z!, ~11!
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which represents a system of electrons in lowest Landau
level orbitals centered at the sites$Ra% of a triangular lattice
with a lattice constanta @the filling fraction is therefore
n5(4p/A3)l 2/a2#. The magnitude ofr̄ is chosen to provide
a uniform neutralizing positive background. The resulting
external potential energies of the electron and hole are

Ve~re!1Vh~rh!5E r~r!
e

4pee0
F 21

ure2ru

1
1

A~rh2r!21d2
Gd2r. ~12!

The motion of the exciton in this potential is fully de-
scribed by the matrix elements of all interactions within the
basis of free exciton states~1!:

HP8,P[^P8uVeh~re2rh!1Ve~re!1Vh~rh!uP&. ~13!

The first term is diagonal in this basis and gives rise to the
free exciton energy~3!, ~4!. The last two terms describe the
scattering. Due to the discrete translational symmetry of the
crystal, the only matrix elements that are nonzero are those
between states that differ by a reciprocal lattice vector of the
crystal,$K%. Since we are ultimately interested in states that
can emit radiation, and which therefore from Eq.~10! must
contain some component of the zero-momentum free exciton
state, we need only study the basis statesuK& in which the
wave vector of the exciton is a reciprocal lattice vector. After
a lengthy but straightforward process we find

HK8,K5dK8,KEd~K!1~12dK8,K!n
e23~K2K8!2/4

uK2K8u

3@eiK3K8• ẑ/22e2uK2K8ude2 iK3K8• ẑ/2#. ~14!

While the above expressions for the matrix elements are
exact and therefore fully describe the behavior of our model,
in their present form they are not useful for analytic pur-
poses. To obtain some insight into the properties of this sys-
tem we therefore introduce some approximations. In what
follows, we develop a perturbation theory ind/ l , based on
the free exciton states, which is valid in the limit of low
filling fraction.

Consider the cased50 in which the hole moves in the
same plane as the electrons. In this limit, the zero-
momentum exciton state is not scattered by the potential, and
is therefore an exact energy eigenstate

HK8,K505Ed50~0!dK8,0 . ~15!

All other energy eigenstates must be orthogonal to this state,
so from Eq.~10! they must have zero luminescence strength.
There is therefore only a single line in the photolumines-
cence spectrum. Moreover, this line appears at the same en-
ergy as the exciton line in the absence of the two-
dimensional electron gas. This recovers a restricted version
of the general result that when electrons and holes are con-
fined to the lowest Landau level and move in the same plane,
photoluminescence contains no spectroscopic information on
the state of the two-dimensional electron gas.20,13

Although the free exciton state with zero momentum is an
exact energy eigenstate of the system atd50, other free
exciton states are not. There do remain nonzero off-diagonal
matrix elements coupling these states. However, in the limit
of small filling fraction, this coupling may be neglected for
the lowest-energy states: states with small momenta
uKu;1/a, are only coupled by off-diagonal terms of order
( l /a)3, whereas the energy spacing between these states is of
order\2/(Md50a

2);( l /a)2. We choose to work in an ex-
pansion in small filling fraction, and neglect terms of order
( l /a)3 and higher. Within this approximation, the free exci-
ton states are eigenstates of the Hamiltonian atd50.

We now study the deviations fromd50 within a pertur-
bation expansion in the separationd. Expanding the Hamil-
tonian in this parameter, we find

HK8,K.dK8,KF2Bd1
K2

2 SAp

8
2d1

3

2
Ap

8
d2D G

1~12dK8,K!nd1O~1/a3!1O~d3/a2!. ~16!

To lowest order ind all states are coupled by a matrix ele-
ment (12dK8,K)nd. This leads to a mixing of the radiative
state,uK50&, with all other exciton states of reciprocal lat-
tice vector; if these states become populated on photoexcita-
tion, each will contribute an additional line to the photolu-
minescence spectrum. The strongest new line arises from the
six lowest-lying energy states, atuKu54p/(A3a). Within
degenerate perturbation theory, these states are split into a
fivefold degenerate level shifted in energy by2nd, and a
single state shifted by15nd. We now apply first-order per-
turbation theory to calculate the mixing ofuK50& into these
states. This amplitude is zero for the five degenerate states,
and equal toA6nd for the single state split off from these
five. The luminescence spectrum therefore consists of a
strong spectral line from what was the free zero-momentum
exciton state, at an energy~relative to the band-gap plus zero
point kinetic energy! and with a luminescence strength

E052Bd , ~17!

L0512O~d2!, ~18!

and an additional line arising from the exciton states with the
smallest nonzero reciprocal lattice vector, with an energy and
luminescence strength

E152Bd1
~4p/A3a!2

2 FAp

8
2d1

3

2
Ap

8
d2G15nd,

~19!

L15U A6nd

~1/2!Ap/8~4p/A3a!2
U2536

p3d
2. ~20!

The next line to higher energy arises from the six states at
uKu54p/a, and has a luminescence strength that is smaller
than this by a factor of@(4p/A3)/(4p)#451/9.

Thus, for smalld the presence of the crystal causes peaks
to appear in the photoluminescence spectrum to higher en-
ergy than the main exciton line. The energy spacing between
these peaks is primarily determined by the effective mass of
the exciton and the reciprocal lattice vectors of the Wigner
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crystal, with a small correction due to the coupling to the
lattice potential. The luminescence strengths of these higher-
energy exciton states are small compared to the lowest-
energy exciton transition, and will therefore give rise to
much weaker spectral features. The luminescence strengths
of these features grow asd increases. However, at the same
time, the exciton becomes more strongly coupled to the lat-
tice potential, so the energies of these states deviate from the
energies of the reciprocal lattice vector excitons. Once the
coupling is larger than the spacing between the free exciton
states,nd*1/Mda

2, the corrections to these energies be-
come large, and the above perturbation theory breaks down.
This condition is equivalent to the strong-coupling condition,
d* l , that we derived earlier. In the strong-coupling limit, a
quite different approach is required to describe the low-
energy exciton states.

IV. EXCITON STATES IN THE STRONG-COUPLING
LIMIT: THE INTERSTITIAL EXCITON

We now turn to the limit of strong exciton-lattice cou-
pling, in which the kinetic energy of the exciton is small
compared to its dipole potential energy in the lattice. If we
were to neglect the kinetic energy completely, then the
ground state of the system would be the same as that of the
classical ground state of electrons in the presence of an ion-
ized donor impurity:16 the exciton, with its weak dipole mo-
ment, would position itself at an interstitial site of the lattice,
and, ford,0.29a, the remaining electrons would form an
essentially undeformed Wigner crystal. The exciton does,
however, have some residual dynamics. In this section we
develop an effective Hamiltonian that describes the motion
of the center of the exciton in a smooth external potential.
We then apply this to the potential close to an interstitial site
of the Wigner crystal~12!, and study the energies and lumi-
nescence strengths of the low-energy states. Those who do
not care to follow the derivation of the effective theory may
proceed to Sec. IV B without loss of continuity.

A. Effective Hamiltonian

In order to derive an effective Hamiltonian for the motion
of an exciton in a smooth external potential, we extend the
approach of Gor’kov and Dzyaloshinskii19 to include the po-
tential energiesVe(re) andV

h(rh) felt by the electron and
hole. We start from the full Hamiltonian for the interacting
electron-hole pair in a uniform magnetic field:

H5
~pe1eAe!

2

2me
1

~ph2eAh!
2

2mh
1Veh~re2rh!1Ve~re!

1Vh~rh!, ~21!

and work in the symmetric gauge. We transform to a new set
of coordinates, the first of which is the momentum defined in
Ref. 19; the remaining coordinates are the position of the
center of mass and a momentum and position describing the
internal motion

P[pe1ph2
e

2
B3~re2rh!, ~22!

Rc[
mere1mhrh
me1mh

, ~23!

p[
mhpe2meph
me1mh

1
e

2
B3Smere1mhrh

me1mh
D , ~24!

r[re2rh . ~25!

The center of mass and the internal coordinates behave as
independent, canonically conjugate pairs. In terms of these
new coordinates, the Hamiltonian is

H5
~P1eB3r!2

2M
1

~p1ge/2B3r!2

2m
1Veh~r!

1Ve~Rc1hhr!1Vh~Rc2her!, ~26!

whereM[me1mh , m[memh /(me1mh), g[(mh2me)/
(me1mh), andha[ma /(me1mh).

First consider the free exciton,Ve5Vh50. The Hamil-
tonian is independent ofRc , so the momentumP is con-
served and can be replaced by its eigenvalue to leave a
Hamiltonian for the internal coordinates,r andp. If the in-
teraction potentialVeh(r) is neglected in relation to the ki-
netic energy, the internal motion consists of Landau level
orbits centered onrP[ ẑ3Pl 2/\. This is the neglect of Lan-
dau level coupling, and is the simplification used in Refs.
18,19; in the lowest Landau level, it leads to the states that
we have discussed above~1!.

We now introduce the potentials,Ve andVh, and follow a
similar approximation. The momentum is no longer con-
served. However, provided the potential is sufficiently weak,
the momentum only changes slowly compared to the rapid
cyclotron motion. The motion can then be treated adiabati-
cally, with the fast internal motion fixed in the lowest Lan-
dau level and adjusting to follow the slowly changing
momentum. This procedure is analogous to the Born-
Oppenheimer approximation in the theory of molecular
dynamics,21 where the fast electronic degrees of freedom
are eliminated to provide an effective theory for the slow
atomic coordinates. In the same way, we obtain aneffective
Hamiltonian for the operatorsP andRc . Before we write
down this Hamiltonian, we make one last change of vari-
ables. It is convenient to work is terms of the coordinate
R[(re1rh)/2 rather than the center of mass. This avoids any
irrelevant mass dependence in our analysis~‘‘irrelevant’’
since both electron and hole are restricted to the lowest Lan-
dau level!. This transformation does not affect the commu-
tation relation of the position and momentum coordinates.
The effective Hamiltonian in terms of these coordinates is
found to be

H5\vm/21Ed~P!1E $Ve@R1~r81rP!/2#

1Vh@R2~r81rP!/2#%
e2r82/2l2

2p l 2
d2r8, ~27!

where\vm/25\eB/2m is the zero-point kinetic energy of
the electron and hole, andEd(P) is the dispersion relation~3!
arising from their mutual attraction.
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To convert this expression into a more convenient form,
we make use of the simplifications available in the problem.
As we are interested in small momenta,O(1/a)!1/l , we
expand the dispersion relation to quadratic order. Also, pro-
vided the exciton is not very close to a lattice site, the po-
tentialsVe and Vh are smooth on the length scale of the
magnetic length, and it is a good approximation to expand
these terms in the integral of Eq.~27! to first order in
(r81rP). We find

H.\vm/22Bd1
P2

2Md
1Ve~R!1Vh~R!

2
1

2
P•@¹Ve~R!2¹Vh~R!#3 ẑ. ~28!

This is a general expression for the motion of the exciton in
smooth external potentials, and in a strong magnetic field.
An expression for the massMd was calculated earlier~6!.
Since the position and momentum operators are canonically
conjugate coordinates, the energy eigenstates of the exciton
follow from the solutions of the Schro¨dinger equation with
the Hamiltonian~28!; it is to be understood that the final
term of this expression is symmetrized in the position and
momentum operators, such that the Hamiltonian is Hermit-
ian. Two approximations were used to derive this expression.
Firstly, the rapid cyclotron motion was assumed to adiabati-
cally follow the changing momentum; this is valid provided
the spacing between the energy levels arising from the
center-of-mass motion is small compared to the cyclotron
energy\vm ~no Landau level coupling!. Secondly, we ex-
panded the external potential to first order in (r81rP), ne-
glecting terms of orderl 2¹2V.

B. Motion in the Wigner crystal: harmonic approximation

We now use the formalism developed in the previous sub-
section to study the motion of the exciton in a Wigner crys-
tal. We therefore introduce the electrostatic interactions~12!
as the external potentials in the effective Hamiltonian~28!.
This expression for the effective Hamiltonian requires the
external potential to vary slowly on the scale of the exciton
size l . We therefore expect this formalism to provide an
appropriate description of the low-energy states whend* l ,
in which the exciton remains far from the interstitial sites.
However, we still assume thatd/a!1, and expand the effec-
tive Hamiltonian in this parameter to find

H5
P2

2Md
1

e2

8pee0
(
a

d2

uR2Rau3
1

e2

4pee0

l 2P

\
•(

a
ẑ

3
R2Ra

uR2Rau3
, ~29!

where the sums run over the triangular lattice sites$Ra%, and
the final term should be interpreted as the symmetrized prod-
uct of the momentum-dependent and position-dependent fac-
tors. We have dropped the constant binding energy2Bd and
the zero-point kinetic energy\vm/2 and have also neglected
a constant energy2nd, which arises from the dipole mo-
ment of the exciton in the electric field of the neutralizing
positive background. Each of the terms appearing in this ef-

fective Hamiltonian has a simple intuitive interpretation. The
first two terms simply represent the kinetic energy of the
exciton and the dipole energy for the exciton to be centered
at the positionR. The final term is less familiar, but also
arises from a dipole energy: in this case, due to the in-plane
dipole moment of the exciton, which is of a size2erP for an
exciton with momentumP. The resulting contribution to the
Hamiltonian resembles the first-order coupling of a charged
particle to a vector potential.

We have argued that for larged/ l the exciton is confined
at the interstitial sites of the triangular lattice. We now study
the low-lying states of this effective Hamiltonian within the
simplest approximation, in which the potential is expanded
to harmonic order about an interstitial site. Keeping only the
contributions to the confinement potential arising from the
nearest three lattice electrons, we find

H5
P2

2Md
1
1

2

243A3
4

d2

a5
R22

9A3
2

1

a3
~R3P!• ẑ, ~30!

plus a constant energy of 11.57d2/a3 due to the dipole en-
ergy at the interstitial site of the triangular lattice.16 We have
again sete2/4pee0l5\5 l51. Due to the rotational invari-
ance of this Hamiltonian, its eigenstates may be classified by
their angular momenta,R3P• ẑ. We restrict attention to
states withzeroangular momentum, since only these states
can emit long-wavelength radiation. The zero angular mo-
mentum states of the two-dimensional harmonic oscillator
have the wave functions and energies

cn
sho~R!5

1

ApR0
2
e2R2/2R0

2
Ln~R

2/R0
2!, ~31!

En5\V~2n11!, ~32!

where

\V5A243A3
4

d2

a5
e2

4pee0

\2

Md
~33a!

→
d@ lA243A3

4

l 6

a5d

e2

4pee0l
, ~33b!

R05S 4

243A3
4pee0
e2

\2a5

d2Md
D 1/4 ~34a!

→
d@ lS 4

243A3
a5

d5D 1/4l , ~34b!

andLn(z) are the Laguerre polynomials. The expressions
for d@ l follow from the asymptotic expansion of the effec-
tive mass~6c!. Note that the two-dimensional harmonic os-
cillator states with zero angular momentum are spaced in
energy bytwice the oscillator quantum,\V.

Radiative recombination occurs from each of these states.
For consistency with the definition of the luminescence
strength in the weak-coupling limit, we construct states con-
sisting of a superposition of harmonic oscillator states,
placed at each interstitial site of a crystal with an areaA. The
only such linear combination with nonzero luminescence
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strength is the state in which all states are combined with the
same amplitude and phase. From Eq.~9! we find that the
luminescence strength of such a state constructed fromcn

sho

is

Ln[
4

A3a2
U E d2Rcn

sho~R!U2516pR0
2

A3a2
. ~35!

Note that this is independent of the indexn, so the ground
state and all excited states have the same luminescence
strengths.22 Such behavior contrasts with the weak-coupling
limit for which the lowest-energy exciton state is much more
strongly coupled to radiation than the higher-energy states.
As the spacingd is increased from zero, so that the system
evolves from the weak-coupling to the strong-coupling limit,
the higher-energy exciton transitions grow in luminescence
strength from zero~optically inactive! to eventually attain
the same strength as the lowest-energy exciton state.

In summary, within the harmonic approximation for the
potential at an interstitial site of the lattice, the exciton con-
tribution to the photoluminescence spectrum consists of a
series of lines that are uniformly spaced and have relative
intensities given by the relative populations of the states.
This approximation is valid provided the typical size of the
exciton state is small compared to the lattice constant. From
Eq. ~34a!, one finds that this depends only very weakly on
the filling fraction, and occurs whend* l . This is the same
as the strong-coupling condition under which the perturba-
tion expansion of the previous section failed.

V. EXPERIMENTAL COMPARISONS

Several groups have reported studies of the itinerant-hole
photoluminescence spectra of the two-dimensional electron
systems formed in high-mobility GaAs/AlxGa12xAs
devices.1,2,5–7 Measurements on single heterojunctions and
single quantum wells show qualitatively the same behavior
in photoluminescence: in the fractional quantum Hall regime
two spectral lines are observed; as the filling fraction is re-
duced below aboutn51/6, the higher-energy peak is found
to split to form a doublet. The filling fraction below which
this doublet structure appears correlates well with the filling
fraction at which transport measurements show a transition
to an insulating state.5 This has motivated claims that the
doublet is associated with the formation of a magnetically
induced Wigner crystal.5,6 However, the origin of this dou-
blet is still not well understood. In this section, we discuss
whether this doublet can be accounted for in terms of the
structure that we predict. We will compare the energy split-
ting of the doublet with the energy difference between the
two lowest-lying exciton states of our model that are opti-
cally active.

For numerical comparisons of our theory with experi-
ment, we will focus on the results of Goldyset al.presented
in Ref. 5. This paper reports studies of the photolumines-
cence spectrum of a high-mobility GaAs/AlxGa12xAs het-
erostructure with density 3.231010 cm22. Specifically we
will concentrate on a field ofB512.5 T, which is appropri-
ate for Fig. 4~a! of Ref. 5 for which the doublet structure,
with a splitting of 0.5 meV, is well developed. Under these
conditions, the filling fraction isn50.1, corresponding to a

magnetic length ofl572 Å and a lattice constant of
a5600 Å for the triangular Wigner crystal.

The most uncertain parameter that enters our model is the
spacingd. This distance is expected to depend on the details
of the band bending in the vicinity of the interface, and may
even vary with magnetic field.12 We will assume values of
d550 and 100 Å as small and large estimates for this quan-
tity. These are consistent with recent numerical studies of the
binding of an exciton to the interface of a single
heterojunction.12 Note that these values are also consistent
with the conditiond,0.29a, which is required by our theory
in order that the exciton does not strongly deform the crystal.

The smaller of these two separations,d550 Å, is less
than the magnetic length, so we expect our weak-coupling
formulas to be appropriate. In the weak-coupling limit, the
difference in energy between the main exciton line and the
lowest-energy optically active state is primarily determined
by the free exciton energy at a wave vector equal to the
smallest nonzero reciprocal lattice vectoruKu54p/(A3a).
Taking the dielectric constant of GaAs to bee512.53, we
find from Eq.~3! that the energy spacing is 1.3 meV.

The larger spacing,d5100 Å, satisfiesd. l , and we
should therefore use our strong-coupling formulas, which
state that the energy spacing between adjacent optically ac-
tive exciton states is 2\V where\V is given by Eq.~33a!.
Using the appropriate value for the effective mass of the
exciton~6a!, this evaluates to an energy spacing of 0.7 meV
at d5100 Å. Under these conditions, the characteristic size
of the ground-state wave function isR05150 Å, which is
smaller than, but comparable to, the distance to the closest
saddle point of the crystal potential,a/A125170 Å. This
indicates that, under these conditions, the harmonic approxi-
mation is at the limit of its validity.

An exact calculation of the energy spacings predicted by
our model for these two cases is likely to lead to energies
that are slightly smaller than the above estimates:17 devia-
tions from the weak-coupling limit will tend to push the
energy spacing towards the~smaller! energy spacing one
would obtain by using the strong-coupling theory, away from
the strong-coupling limit, the use of the harmonic approxi-
mation will overestimate the strength of the confinement po-
tential and hence also overestimate the energy spacing. We
also expect a small reduction of both energies due to the
finite thicknesses of the electron and hole subband wave
functions in a real device. Even allowing for these reduc-
tions, the resulting energy spacings remain larger than the
expected zone-boundary magnetophonon energy,
0.2 meV.23 Our neglect of the dynamical properties of the
Wigner crystal is therefore a consistent assumption.

The energy separation between the lowest two optically
active states in our model is on the same scale as the ob-
served energy splitting of the doublet, 0.5 meV.5 It is there-
fore possible that this structure is due to the splitting of the
exciton peak as described by our model. Note that, if it is
indeed correct to attribute this structure to the predictions of
our model, one must assume that the experimental system is
in the strong-coupling limit, in which the exciton is strongly
confined to an interstitial site. There are two important rea-
sons for this, in addition to the fact that the experimental
energy spacing~0.5 meV! compares more favorably with a
spacing ofd5100 Å than with smaller values. Firstly, it is
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observed that the intensities and the radiative lifetimes of the
two peaks forming the doublet are similar.5 The lumines-
cence strengths of the two transitions must therefore be com-
parable. In the weak-coupling limit, all higher-energy exci-
ton states have a much smaller luminescence strength than
the lowest-energy exciton line; one must go to the strong-
coupling limit before these become equal@see Eq.~35! and
the following discussion#. Secondly, the observed energies of
the two transitions forming the doublet are independent of
the temperature of the substrate over the range 0.123 K.5

Since the Wigner crystal is expected to melt at a temperature
of 0.3 K at these densities,24 one cannot attribute this struc-
ture to a nearly free exciton state: the energy of this state
would be sensitive to the changing long-range correlations at
the melting transition. Instead, it is appropriate to attribute
this structure to a strongly confined interstitial exciton, which
is only sensitive to the short-range correlations of the elec-
tron gas.

Although it is possible that the doublet structure is due to
the splitting of the exciton transition, as described by our
model, there are certain problems with this interpretation.
Firstly, it is not clear that one should even observe any mea-
surable signal from the higher-energy exciton states: these
states lie more than 0.5 meV above the lowest-energy exci-
ton transition, so, if the exciton were to be in thermal equi-
librium, the expected populations of these states would be
vanishingly small. Secondly, assuming that there is some
non-equilibrium population of the higher-energy exciton
states, one would perhaps expect to see more than one addi-
tional line ~recall that for a strongly confined interstitial ex-
citon all excited states have the same luminescence strength!.
Furthermore, this is not the only possible explanation for this
structure. For instance, the recombination from a negatively
charged exciton, which has been resolved in low-density
GaAs wells at weak field25,26 and in CdTe quantum wells in
strong magnetic field,27 also may be expected to appear in
these systems, and has not as yet been identified. We are
therefore cautious to ascribe the observed doublet to the line
splitting predicted by our model, which may not appear in
these experiments due to a lack of population of the higher-
energy exciton states. Further experiments are required in
order to identify this structure. In particular, a study of the
optical absorption spectrum would be very valuable in this
respect. The exciton transitions that we have discussed will
present much stronger spectral features in this experiment
than in photoluminescence since the population factors,
which reduce the observed intensities of high-energy exciton
states in photoluminescence, are removed.

VI. SUMMARY

We have presented a model of photoluminescence in the
presence of a magnetically induced Wigner crystal, for sys-
tems in which the photoexcited hole lies close to the inter-
face. This model predicts a splitting of the exciton transition
due to the scattering of the exciton by the electrons forming
the Wigner crystal. We studied the behavior of our model as
a function of the separationd. For d, l , the exciton is
spread over many unit cells of the crystal. Additional peaks
with small luminescence strength can appear in the photolu-
minescence spectrum, arising from higher-energy states in
which the exciton has a wave vector equal to a reciprocal
lattice vector of the crystal. The spectrum carries diffraction
information and is therefore sensitive to long-range crystal-
line order. Ford. l , the exciton becomes strongly confined
to an interstitial region. We studied this limit by developing
an effective theory for the center-of-mass motion of the ex-
citon. Within the harmonic approximation for the potential at
an interstitial site, the spectrum consists of an equally spaced
set of peaks with relative intensities determined by the rela-
tive populations of the various states.

We discussed the photoluminescence experiments of Ref.
5 and showed that the energy splitting of the doublet, which
has been associated with the presence of a Wigner crystal, is
comparable to the energy splitting we expect from our model
for d.100 Å. We argued that this could be due to the re-
combination from a interstitial exciton. However, other ex-
planations are also possible, and further experimental inves-
tigation is required to identify the structure our model
predicts. In particular, this could best be observed in optical
absorption spectroscopy.

ACKNOWLEDGMENTS

While preparing this work for publication, I learned of
work by J. R. Chapman, N. F. Johnson, and V. N. Nicopou-
los, proposing an interpretation of the photoluminescence ex-
periments that is somewhat different from that presented
here.28 I am grateful to R.G. Clark, A. Turberfield, and D.
Heiman for stimulating my interest in this problem and for
helpful subsequent discussions. I would also like to thank Dr.
John Chalker for much help with the development and pre-
sentation of this work, and Professor Bertrand Halperin and
the Physics Department at Harvard University for their hos-
pitality and for many useful discussions on this and related
topics. This work was supported in part by DENI and in part
by the NATO Science Fellowship Programme.

*Present address: Institut Laue-Langevin, B.P. 156, 38042
Grenoble, Cedex 9, France.

1R. G. Clark, inLow Dimensional Electronic Systems: New Con-
cepts, edited by G. Bauer, F. Kuchar, and H. Heinrich, Springer
Series in Solid-State Sciences Vol. 111~Springer-Verlag, Berlin,
1992!, pp. 239–255.

2A. J. Turberfieldet al., Phys. Rev. Lett.65, 637 ~1990!.
3M. Dahl et al., Phys. Rev. B45, 6957~1992!.
4B. B. Goldberget al., Surf. Sci.263, 9 ~1992!.
5E. M. Goldyset al., Phys. Rev. B46, 7957~1992!; see also R. G.
Clark et al., Physica B201, 301 ~1994!, and references therein.

6I. N. Harriset al., Europhys. Lett.29, 333 ~1995!.
7D. Heimanet al., Physica B201, 315 ~1994!.
8H. Buhmannet al., Phys. Rev. Lett.66, 926 ~1991!.
9I. V. Kukushkinet al., Phys. Rev. Lett.72, 3594~1994!.
10H. A. Fertig, D. Z. Liu, and S. D. Sarma, Phys. Rev. Lett.70,

1545 ~1993!; D. Z. Liu, H. A. Fertig, and S. D. Sarma, Phys.
Rev. B48, 11 184~1993!.

11D. Z. Liu, H. A. Fertig, and S. D. Sarma, Solid State Commun.
95, 435 ~1995!.

12N. A. Viet and J. L. Birman, Phys. Rev. B51, 14 337~1995!.
13V. M. Apalkov and E. I. Rashba, Phys. Rev. B46, 1628~1992!.

53 10 811THEORY OF EXCITON RECOMBINATION FROM THE . . .



14X. M. Chen and J. J. Quinn, Phys. Rev. B50, 2354~1994!.
15J. Zang and J. L. Birman, Phys. Rev. B51, 5574~1995!.
16I. M. Ruzin, S. Marianer, and B. I. Shklovskii, Phys. Rev. B46,

3999 ~1992!.
17N. R. Cooper and N.-G. Zhang~unpublished!.
18I. V. Lerner and Y. E. Lozovik, Zh. E´ksp. Teor. Fiz.78, 1167

~1978! @Sov. Phys. JETP51, 588 ~1980!#.
19L. P. Gor’kov and I. E. Dzyaloshinskii, Zh. E´ksp. Teor. Fiz.53,

717 ~1967! @Sov. Phys. JETP26, 449 ~1969!#.
20A. H. MacDonald, E. H. Rezayi, and D. Keller, Phys. Rev. Lett.

68, 1939~1992!.
21L. D. Landau and E. M. Lifshitz,Quantum Mechanics~Perga-

mon, London, 1958!.

22This can only apply for harmonic oscillator states withn less than
n max;a2/R0

2 , which have a size small compared to the lattice
constant. For higher-energy states the harmonic approximation
fails: the luminescence strengths of these states will be less than
that predicted by the harmonic approximation.
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