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Energy transfer between quantum wells is of fundamental interest and also contributes to the dynamical
response of devices based on multiple quantum wells. We report the observation of efficient energy transfer at
low temperatures between unequal GaAs quantum wells separated by a thick~10–30 nm! Al0.3Ga0.7As barrier.
The transfer efficiency is about 30% for transfer from the narrow well to the wide well~Stokes transfer!, about
1022% for the anti-Stokes transfer, and nearly independent of temperature~2–80 K! and barrier thickness.
Tunneling, thermal excitation, and impurity-related transitions cannot explain these observations. We present a
calculation for transfer efficiency using Fo¨rster-type dipole-dipole interaction between excitons and between
excitons and free carriers in quantum wells, and show that this dipole-dipole transfer process can reproduce the
observed temperature dependence and the magnitudes of the transfer efficiency. This process has not been
considered previously for energy transfer between quantum wells.

I. INTRODUCTION

Energy transfer between quantum wells separated by a
barrier plays an important role in determining the dynamics
of quantum well devices, such as quantum well laser diodes,
quantum well optical modulators, and SEED’s~self-electro-
optic effect devices!. The energy-transfer process is also of
fundamental interest in semiconductor physics. Competition
between the energy transfer and decay~of population or co-
herence! determines the optical response of the quantum
wells. Therefore, one can obtain information on these pro-
cesses from the optical response. Among the various energy-
transfer processes, tunneling between wells and thermal ex-
citation over the barriers have been expected to play a
dominant role.

Tunneling of carriers1,2 has been investigated in detail for
both resonant and off-resonant conditions by various optical
methods, such as time-resolved luminescence, four-wave
mixing, pump-probe absorption, and photocurrent spectros-
copy. These studies have shown that tunneling carries the
excitation efficiently between quantum wells separated by a
thin ~typically less than 5 nm! barrier, but the energy-transfer
time increases exponentially with barrier thickness.

Thermal activation over the barrier3 is important at suffi-
ciently high temperatures. At room temperature, for example,
a fraction of carriers gains energy higher than the barrier by
thermal excitation. These carriers can escape the potential
well and contribute to the energy transfer. The energy-
transfer rate~the inverse of energy transfer time! is expected
to show activation-type dependence on temperature with ac-
tivation energy of barrier height.

One might expect that the quantum wells separated by a
thick barrier would be independent at low temperature, be-
cause the energy transfer is inefficient by tunneling and ther-
mal excitation. In this paper, however, we will present quan-
tum well luminescence results that show evidence of
efficient energy transfer between wells separated by thick
~10–30 nm! barrier at low temperature~2–80 K!.4 We pro-

pose that the dipole-dipole interaction between the wells,
which does not need the overlapping of wave functions or
thermal activation to escape the well, plays an important role
in the energy transfer for such conditions. Energy transfer by
the dipole-dipole interaction has been investigated exten-
sively since first proposed by Fo¨rster,5 and extended by
Dexter.6 The studies include phonon-assisted processes7,8 in
paramagnetic crystals~ruby, for example! and interaction be-
tween a sensitizer and band electrons.9 These researchers
have shown that this Fo¨rster-type energy transfer is quite
effective for molecules in a solution, in crystals, and in thin-
film multilayers. For quantum wells, however, it has not been
considered except for energy transfer between the localized
excitons at the islands in a single quantum well layer,10 as a
particular source of exciton linewidth,11 and as the dominant
exciton-exciton interaction mechanism in single quantum
wells.12,13 Recently, the influence of dipole-dipole coupling
between quantum wells on the linear optical properties, for
four-wave-mixing signals, and coherent and incoherent
transport through the barrier has been investigated
theoretically.14

II. EXPERIMENT

We have investigated three different GaAs/Al0.3Ga0.7As
quantum well samples, each consisting of a 10-nm-thick
wide well ~WW! and a 5-nm-thick narrow well~NW! sepa-
rated by barriers of thicknessd530, 20, and 10 nm in
samplesA, B, andC respectively. SampleA has only one pair
of WW and NW, whereas samplesB andC contain ten pairs
separated by 50-nm barriers. These wells and barriers are
nominally undoped. We have measured cw photolumines-
cence~PL! and photoluminescence excitation~PLE! at vari-
ous excitation and detection energies as a function of tem-
perature and excitation density. The samples were excited by
a tunable cw Ti-doped sapphire laser. The luminescence was
analyzed by a monochromator and detected by photon count-
ing.
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Figure 1~a! shows the PL spectrum excited at 1720 meV,
i.e., higher than the lowest interband transition energies in
both the WW and NW quantum wells. Two peaks corre-
sponding to WW and NW excitons were observed~the NW
luminescence was split because of well width fluctuation!.
The energy separation between the NW and WW excitons is
about 60 meV. Figure 1~b! shows the PLE spectrum of the
WW heavy-hole exciton in sampleA at 40 K. The WW lu-
minescence is clearly enhanced by the excitation of the NW
exciton energy~peak labeledI2!. The I2 peak persists when
the window of detection is changed to the center of the WW
exciton. These observations provide convincing evidence for
energy transfer from NW to WW~Stokes-type transfer!. This
enhancement was observed even at 2 K for all three samples.
We define here three quantities:I1 , the WW exciton lumi-
nescence intensity by direct excitation~excitation at the WW
energy!, I2 , the WW exciton luminescence intensity by en-
ergy transfer from the NW~excitation at the NW exciton!,
and the ratioI2/I1 . We will refer to this ratio as the transfer
efficiency for the Stokes-type transfer. The contribution from
the continuum states of the WW must be subtracted to obtain
I2 . The transfer efficiency is closely related to the transfer
time ttr :

I2

I1
5

1

11t tr /t2

a2L2
a1L1

, ~1!

wheret2 is the NW exciton lifetime,a1 anda2 are the ab-
sorption coefficients, andL1 andL2 are the well thicknesses
for the WW ~subscript 1! and NW ~subscript 2!. Observed
values for the transfer efficiency are'30%, which shows
fairly strong energy transfer from NW to WW. Using the
values ofa2/a1 measured by Masumotoet al.,15 we obtain
values forttr/t2 of approximately 10. The transfer efficiency
is nearly independent of temperature and does not show any
apparent dependence on the barrier thickness, as summarized
in Fig. 2.

Figures 1~c! and 1~d! show the energy transfer from WW
to NW ~anti-Stokes type transfer! in sampleA at 40 K. The
PLE spectrum for the NW luminescence is shown in Fig.
1~c! and the PL spectrum excited at the WW exciton energy
is depicted in Fig. 1~d!. As seen in the figures, the lumines-
cence at the NW exciton energy was also enhanced by the
excitation at the WW energy. The luminescence spectrum at
the NW exciton energy reproduces the doublet structure seen
in Fig. 1~a!, which indicates that the observed luminescence
is due to NW exciton recombination. The enhancement was
observed for all the samples at 2–80 K. When the tempera-
ture was higher than 80 K, the tail of the WW luminescence
covered the NW luminescence, as seen in Fig. 3. The exciton
temperature estimated from the WW luminescence tail was
less than 5 K higher than the lattice temperature. We define
the transfer efficiency by the ratioI2/I1 . This time, the di-
rect excitation luminescence intensityI1 is the excitation
peak at the NW exciton energy and the energy-transfer-
related luminescence intensityI2 is the excitation peak at the
WW exciton in the PLE spectrum. We can use the relation,
Eq. ~1!, by redefining the indices as 1→N and 2→W. We
can estimate the transfer time from the PL spectrum, but we
need the ratio of the quantum efficiency between WW and
NW. This ratio depends on sample quality and may bring
about uncertainty in the result for transfer times. Therefore,
we use the transfer efficiency values obtained from the PLE

FIG. 1. ~a! Photoluminescence~PL! spectrum of sampleA
~d530 nm! at 40 K excited at 1720 meV. WW denotes lumines-
cence from wide-well excitons, whereas NW denotes luminescence
from narrow-well excitons.~b! Photoluminescence excitation~PLE!
spectrum for luminescence from the wide-well excitons. The line
‘‘window’’ shows the position of the monochromator spectral win-
dow. I 1 denotes the intensity of the WW PL for excitation at the
WW, and I 2 denotes the intensity of the WW PL for excitation at
the NW exciton. The peak at 1640 meV is due to thee2-hh2 tran-
sition in the WW.~c! PLE spectrum for the NW exciton lumines-
cence.I 1 andI 2 denote intensity of the NW PL for excitation at the
NW and WW, respectively.~d! PL spectrum excited at the wide-
well exciton energy. Luminescence from the narrow-well excitons
was induced by this excitation.

FIG. 2. Summary of transfer efficiency for exciton energy trans-
fer. Open symbols, Stokes transfer; filled symbols, anti-Stokes
transfer. SampleA ~d530 nm!: circles; SampleB ~d520 nm!: tri-
angles; SampleC ~d510 nm!: inverted triangles.
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for further analysis. Figure 2 shows a summary of transfer
efficiency values. The anti-Stokes energy-transfer efficiency
was 1023 times that of the Stokes transfer. The efficiency
was again nearly independent of temperature. The values are
more scattered from sample to sample than for Stokes trans-
fer.

In order to estimate the transfer probability 1/ttr from Eq.
~1!, we have measured the lifetimes of the WW and NW
excitons in all samples, as a function of temperature by time-
resolved luminescence.16 Figure 4 shows the measured exci-
ton lifetimes. The lifetime values in a single quantum well
~sampleA! are 1

10 to
1
2 of those in multiple quantum wells

~samplesB andC!. The lifetime for the WW excitons de-
crease as the temperature increases, whereas the lifetime for
the NW excitons increases. The temperature dependence of
the lifetime is smaller in sampleA than in samplesB andC.

Using these lifetimes and the measured transfer efficiencies,
we determine the transfer probabilities for the Stokes and
anti-Stokes transfer at various temperatures. These values are
shown for all three samples as different symbols in Figs. 5~a!
and 5~b! for the anti-Stokes and Stokes transfers, respec-
tively. The solid curves are calculated using the dipole-
dipole interaction theory developed in the next section.

III. THEORY

A. Förster-mechanism transfer rate

We first consider the dipole-dipole interaction as an
energy-transfer mechanism. In this section, we will concen-
trate on the direct exciton-to-exciton energy transfer.
Phonon-assisted transfer can be ruled out, because its tem-
perature dependence should show activation-type behavior
resulting from thermal distribution of the phonons for anti-
Stokes-type transfer. Moreover, the phonon-assisted interac-
tion should be weak, because one-phonon processes cannot
contribute to anti-Stokes energy transfer under the present
experimental conditions; the energy separation~;60 meV! is
larger than the LO phonon energy~37 meV! and the largest
acoustic-phonon energy.

Excitons can transfer to free-electron-hole states by
dipole-dipole interaction. This should be important for
Stokes transfer, because it satisfies energy conservation di-
rectly. The free electron-hole pairs rapidly~in tens of ps!
relax to excitons before recombination and contribute to the
WW exciton luminescence. For anti-Stokes transfer, how-
ever, this interaction should be negligible, because there is
no energy-conserving counterpart in the NW and the matrix
element is smaller than that of exciton-to-exciton transfer.
We can neglect transfer from free-electron-hole pairs to ex-
citons, because the free-carrier population is much smaller
than that of excitons, because of resonant excitation of exci-
tons in the WW and low temperatures.

One might think that direct exciton-to-exciton transfer
would be extremely weak, because of the wide energy sepa-
ration ~;60 meV! between the WW and NW quantum lev-
els. Nevertheless, we show below that the finite exciton line-
width yields a finite value for the overlap integral of the WW
excitons and the NW excitons. This overlap integral is essen-
tial to energy transfer via the Fo¨rster-Dexter process5,6 and
must be regarded in our context as an accounting for mul-
tiphonon processes.

We derive here the transition rate for the direct exciton-
to-exciton energy transfer important for anti-Stokes transfer.
That for energy transfer from the exciton to free-electron-
hole pair states is derived in B. First, we define the initial and
final states for exciton energy transfer in quantum wells as17

u i &5umnnK &5FN21/2(
R

eiK–R(
b

Fn~b!

3Cmn~R,R1b!]Cg2 ,
~2!

u f &5um8n8n8K 8&5Cg1FN21/2(
R8

eiK8–R8 (
b8

Fn8~b8!

3Cm8n8~R8,R81b8!],

FIG. 3. Temperature dependence of the photoluminescence line
shape for sampleA excited at the wide-well exciton energy.

FIG. 4. Exciton lifetime as a function of temperature. Open
symbols, wide-well excitons; filled symbols, narrow-well excitons.
SampleA ~d530 nm!: circles; SampleB ~d520 nm!: triangles;
SampleC ~d510 nm!: inverted triangles.
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where the states in the square brackets are linear combina-
tions of the one-electron excited states in which anm ~m8)
valence-band electron in theR ~R8! cell has been removed to
an n ~n8! conduction band in theR1b ~R81b8! cell with
center-of-mass momentumK ~K 8!. The primes indicate well
2, in which the final state resides, and no primes indicate
well 1, in which the initial state resides. FunctionsC1g and
C2g denote ground states for wells 1 and 2, respectively. The
envelope functionsFn~b! andFn8~b8! ensure that the linear
combinations are Wannier exciton states, i.e., that the Hamil-
tonian is diagonal for the individual wells. Motion in thez
direction~perpendicular to the well layer! within the wells is
ignored in this analysis. The energies of the initial and final
states are assumed to beEi(K )5E11(\2K2/2M ) and
Ef(K 8)5E21(\2K82/2M ).

The Coulomb interactionV conserves the total momen-
tumK in thex-y plane. The lattice sums overR andR8 are,
therefore, taken overRx andRy , which are aligned withRx8
andRy8. The interwell coupling induced byV,

^ f uVu i &5N21(
R,R8
~x,y!

e2 i ~K–R2K8–R8! (
b

(
b8

Fn~b!*Fn8~b8!

3^Cmn~R,R1b!C2guVuC1gCm8n8~R8,R81b8!&,
~3!

simplifies to

^ f uVu i &5dK,K 8 (
R

eiK–RFn~0!Fn8~0!

3^Cmn~0,0!C2guVuC1gCm8n8~R,R!&, ~4!

if we assume that only theb andb850 terms can contribute
to the transition moments, which is appropriate for allowed
transitions. The bracket on the right-hand side of Eq.~4! is
the coupling matrix element between states in which excita-
tion is localized at the origin of the left well and atR in the

FIG. 5. Calculated temperature dependence of
the transfer probability foranti-Stokestransfer
~upper figure! and for Stokes transfer~lower fig-
ure! using a value of 5.5eÅ for the dipole mo-
ment. Lines represent the calculations and sym-
bols represent the experimental results. Parameter
b represents the distance between the center
planes of the two quantum wells and equals the
barrier thickness~d! plus one-half of the sum of
the well thicknesses. SampleA: b537.5 nm;
SampleB: b527.5 nm; and SampleC: b517.5
nm.
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right well. The transfer probabilitywf i will be calculated by
adapting the well-known Fo¨rster-Dexter formalism5,6 as fol-
lows:

wf i5K 2p

\ (
f
U^ f uVu i &U2r f

eff~Ef ,Ei !L
i

, ~5!

wherer f
eff(Ef ,Ei) is an effective density of final states. The

bracket̂ & i stands for a thermal average over initial states. In
the usual context of time-dependent perturbation theory, the
letters ‘‘i’’ and ‘‘ f’’ on the left refer to manifolds of similar
initial and final states between which the transition is occur-

ring. We will relate the effective density of states to spectral
overlapping using Fo¨rster’s method, which involves extract-
ing optical strengths from the transition matrix element and
combining them with a normalized donor-well emission
spectrum and a normalized acceptor-well absorption spec-
trum.

In our application of Eq.~5!, the average over initial states
is simplified by the circumstance that the matrix element, Eq.
~4!, depends only onK, the magnitude ofK . This is demon-
strated in Appendix A, where it is shown that the effective
value of u^ f uVu i &u2 is

u^ f uVu i &u25dK,K 82UFn~0!Fn8~0!(
R

eiK–RFm f•m i23~m f•R!~m i•R!

«R3 GU
5dK,K 82uFn~0!Fn8~0!u2S 2pnam fm i

«b D 2S 22Kb1
K2b2

4 Dexp~22Kb!

5dK,K 82S 16m fm i

aB
2«b D 2S 22Kb1

K2b2

4 Dexp~22Kb!, ~6!

wherena is the ~two-dimensional! density of acceptor sites,
m f andm i are transition dipole moments evaluating between
valence- and conduction-band Wannier states within the
same cell in the acceptor and donor wells, respectively,« is
the average optical dielectric constant of the medium be-
tween and within wells,b is the center-to-center distance
between the wells, andaB is the bulk exciton Bohr radius.
The principal assumptions made in obtaining~6! are that the
transition moments are in the plane of the wells, that there
are degenerate exciton states having these moments along
both thex andy directions, that the effect of well thickness
on thexymotion is negligible, and that the degeneracy of the
excitons is lifted entirely by the quantum effect in thez di-
rection.

Because the quantity that we wish to average is a function
only of the magnitude ofK , the average over initial states
may be performed without difficulty. The general form of
such an average is

^ f ~K !& i5
(K gmnn~K !exp@2Emnn~K !/kBT# f ~K !

(K gmnn~K !exp@2Emnn~K !/kBT#

5
*0

`kK dK exp@2E~K !/kBT# f ~K !

MkBT/\
2 , ~7!

in which we have used theK-independent density of states
for a particle of massM: gmnn(K )'MA/p\2, whereA is the
normalization area. In~7! the factorA/p cancels out be-
tween the numerator and denominator, whereas the factor
M/\2 does not, because the integral in the denominator has
been transformed into an integral over energy.

Before performing the thermal average, we must still con-
sider the density of final states and the sum over the final
states. Anticipating use of the Fo¨rster method, we approxi-
mate the final-state density by a Lorentzianreff(Ef ,Ei)
'D(Ef2Ei), the width of which will be discussed in Sec.
C 3. Since the Fo¨rster method relates the dipole-allowed
transitions in the transfer process to those of optical transi-
tions, the width of the Lorentzian will derive from the over-
lap integral between the donor emission and the acceptor
absorption states. As to the sum over the final states, the
momentum-conservationd function in the electronic interac-
tion dK,K 8 simplifies the calculation, because the Lorentzian
D(Ef2Ei)5D@E21(\2K82/2M )2E12(\2K2/2M )# may
be replaced byD(E22E1). It is noteworthy that a sum is not
made over the layers of the quantum well, as it would be in
the case of a molecular multilayer with tightly bound exci-
tons. The strong coupling within the well raises the degen-
eracy associated with thezmotion, reducing the well effec-
tively to a monolayer.

We are now prepared to evaluate the transition probability
~5! by substituting the following expression into~7!:

f ~K !5
2p

\
z^ f uVu i & z2r f

eff~Ef ,Ei !

5
4p

\
z^ f uVu i & z2D~E22E1!

5
4p

\ S 16m fm i

aB
2«b D 2S 22Kb1

K2b2

4 Dexp~22Kb!

3D~E22E1!. ~8!

The thermal average affects only theK-dependent factors,
and it is convenient to introduce the dimensionless function,
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a~u!5 K S 22Kb1
K2b2

4 Dexp~22Kb!L
i

, ~9!

which is expressible in terms of the complementary error
function:

a~u!5 1
4 @u415u2182~2u4111u2120!

3~Ap/2!u exp~u2!erfc~u!#, ~10!

whereu5b/lT andlT5A\2/2MkBT is the thermal wave-
length. The functiona(u) has interesting limiting properties
and is discussed in Appendix B. For present purposes, it is
sufficient to know that it has an asymptotic form

a~u!5
11

16u2 S 12
15

11u2
1••• D , ~11!

which is reliable to within 1% foru.8 when only two terms
in the series are used. Over the useful intermediate range of
u54 through 14, its value is given to similar accuracy by the
interpolation formulaa(u)50.5887u21.937. Numerical meth-
ods are necessary for accurate evaluation whenu,4. To
emphasize the physical parameters on whicha(u) depends,
we will write a(b,T).

The transition probability now takes the form

wf i
anti-Stokes5

4p

\ S 16m fm i

aB
2«b D 2a~b,T!D~E22E1!. ~12!

The temperature dependence is contained in the last two fac-
tors. Sincea(b,T) is essentially proportional tob22, the
overall spacing dependence of the rate isb24, as expected in
the case of an inverse-sixth power summed over a sheet.

B. The Stokes case

Before numerical application, we modify the theory for
the Stokes case. The mechanism is the same, a dipole-dipole
resonance, so that most of the formalism carries over. The
principal change is that the final state is now the free-electron
pair state,

u f &5um8n8k8K 8&

5Cg1FN21(
R8

(
b8

ei ~K8–R82k8•b8!Cm8n8~R8,R81b8!G ,
~28!

replacing the final state in Eq.~2!. If we apply the previous
assumption that only theb5b850 terms contribute to the
transition moments, this yields the matrix element

^ f uVu i &5dK,K 8 (
R,R8
~x,y!

eiK–RFn~0!*

3^Cmn~0,0!C2guVuC1gCm8n8~0,0!&. ~38!

Thus, compared with the earlier calculation, one exciton en-
velope functionFn8(0) disappears. The function~8!, that is
to be thermally averaged becomes

f ~K !5
2p

\ (
k,8,K8

z^ f uVu i & z2r f
eff~Ef ,Ei !

5
2p

\

1

N (
k8K8

uFn~0!u2uDf i u2dK,K 8d~Ef2Ei !

5
2p

\
uFn~0!u2

md2

p\3 uDf i u2, ~88!

wherem is the reduced effective mass andDf i(K ) is the
dipole sum defined in Appendix A. We use thed function
d(Ef2Ei) instead of D(Ef2Ei), because the condi-
tion @(\2/2M )K821(\2/2m)k821E2#2@(\2/2M )K21E1#
50 can be satisfied. The summation overk8 yieldsmd2/p\2

through application of the relations

1

N (
k
→

L2

N E d2k5
mL2

Np\2E dEf

and N5(L/d)2. After this, the new quantity~88! is intro-
duced into the thermal average as before. The final result is
the same as that which would be obtained by simply replac-
ing uF(0)u2D(Ef2Ei)5(8d2/paB

2)D(E22E1) by md2/p\2

in Eq. ~12!:

wf i
Stokes5

128m~m fm i /«!2

aB
2\3b2

a~b,T!. ~13!

Again, the rate varies essentially asb24.

C. Numerical results

Aside from the major experimental variablesb and T,
there are three different types of quantities to consider when
applying~12! and~13! to the quantum well data discussed in
Sec. II. First and simplest are the fixed parameters
aB , «, m, and the two-dimensional nearest-neighbor dis-
tanced. Next, the transition dipole moments must be chosen,
and finally the overlap factorD(E22E1! that appears only in
the anti-Stokes rate.

1. Fixed parameters

The dielectric constant appropriate to 1s exciton binding
is the square of the refractive index,«5n2. In our case
n53.52,18 so«512.39. Combined with the reduced effective
mass ofm50.046me ~me5electron mass!, this produces a
bulk exciton Bohr radiusaB5«\2/me2514.26 nm. The
electron and hole masses involved are 0.067me and
0.146me , respectively.

19

For future reference, the parameteru in the functiona(u)
depends onM, the total~translational! mass of the exciton.
We haveu5bA2MkgT/\

2, and usingM50.213me ,
20 u

50.021 96b (nm)AT ~K!. The nearest-neighbor distance in
the square lattice representing one layer of GaAs isd
5a/A255.653/A254.00 Å ~Ref. 21, p. 848!. This produces

a two-dimensional envelope functionF(0)5A8d2/paB2
50.0448.
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2. Transition moments

The model we have adopted is based on donor-acceptor
energy transfer by electromagnetic interaction of transition
dipoles in the near zone. These transition dipole moments
play roles in the electronic structure and optical properties of
the semiconductors and are, therefore, obtainable experimen-
tally, in principle. One manifestation is the longitudinal-
transverse (L-T) splitting of the exciton.17,20 The transition
dipoles are also the same as those participating in ordinary
far zone optical transitions and can therefore be extracted,
also in principle, from the quantum well absorption and
emission spectra.

The L-T splitting is related to the transition dipole mo-
ment by20

DLT5
4puFbulk~0!u2umu2

«
, ~14!

where Fbulk(0)5A1/paB3 is the bulk 1s exciton envelope
function at the origin. EmployingDLT50.0860.02 meV
~Ref. 20! and the fixed parameters, we find

umu25
«DLTaB

3

4
57236180 meV nm35~7.060.9 e Å !2.

~15!

The dipole matrix element can be related to the absorption
coefficient of the individual wells as follows:17

uFn8~0!m f u25
n\c

4p2Ef
pg fsmax~Ef !. ~16!

The new symbols in this equation aren, the index of refrac-
tion, smax(Ef!, the absorption cross section of the acceptor at
the peak, andg f , the width @half width at half maximum
~HWHM!# of this absorption. The final three factors
pg fsmax(Ef) represent the energy-integrated absorption
cross section for a line of assumed Lorentzian shape.

Although in our simplified theory the two wells are ap-
proximated by two-dimensional~and therefore identical!
structures, the transition moments, as determined by experi-
ment, will generally be specific to the well width. The con-
nection between cross section and optical-absorption coeffi-
cienta(E) is normally given bys(E)5n0

21a(E), wheren0
is the number density of absorbers. In the case of the quan-
tum well, one must usen 0

215Lzd
2 for the reasons given in

connection with the final states in the transfer probability.
That is, the quantum well effect pushes all but one state out
of resonance with the absorbed photon. When this value of
n0 and the exciton envelope functionF(0)5A8d2/paB2 are
employed in~16!, we have

um f u25
LzaB

2l fn

64p2 E a~E!dE. ~17!

Here,l f is the wavelength corresponding to the peak accep-
tor absorption andn is the index of refraction. This result
corresponds to that of Masumotoet al.15 @see their Eqs.~1!
and ~3!, in which Mcv refers to a momentum matrix ele-
ment#. Using~17!, Lz55 nm, and the NW integrated absorp-
tion coefficient 700 cm21 eV,15 we obtainum f u54.7 e Å; for
Lz510 nm, and the WW integrated absorption coefficient

200 cm21 eV, the result isum f u53.7 eÅ. While these transi-
tion moments derived from absorption do not quite fall
within the range of values predicted by theL-T splitting, Eq.
~15!, their values are entirely reasonable. We adopt the value
5.562 eÅ with confidence that our final calculation results
in the correct order of magnitude.

The analogy of our mechanism with the Fo¨rster mecha-
nism also suggests a determination of the transition moments
from the radiative emission ratewr ,donor:

wr ,donor5
4nEi

3

\4c3 F2p\2

d2M

r ~T!

D~T!G uFn~0!m i u2. ~18!

The factor in square brackets is a correction due to exciton
coherence22 and is unity for atomic and molecular transi-
tions. The ratior (T)/D(T) is the fraction of excitons lying
within the emission bandwidth when a Boltzmann distribu-
tion is established among the excitons, the emission prob-
ability of which has been enhanced by the factor 2p\2/d2M .
For the calculated radiative lifetime of 25 ps for a 100-Å
GaAs quantum well,23 we obtain a transition moment of 3
eÅ, corroborating our other estimates.

3. The emission-absorption overlap factor

The factorD(E22E1) in the anti-Stokes expression~12!
is, by definition, the overlap of two normalized bands cen-
tered atE1 with width g1 and atE2 with width g2 ~all
HWHM!. The excitons in our samples are inhomogeneously
broadened. In our calculations we have adopted a homoge-
neous line shape described by a Lorentzian for the donor and
an inhomogeneous line shape described by Gaussian for the
acceptor well, based on the argument that there is one initial
state, but a sum over final states. We take the donor band to
have the Lorentzian form

Ld~E!5
gd

p S 1

~E2Ed!
21gd

2D , ~19a!

and the acceptor band to have the Gaussian form

Ga~E!5
1

A2psa
expS 2

~E2Ea!
2

2sa
2 D , ~19b!

wheresa5ga /A2 ln2. With these forms, the overlap is

D~Ea2Ed ,T!5E Ld~E!Ga~E!dE

5
gd~T!

p@~Ea2Ea!
21gd~T!2# F11

ga~T!2

4 ln2

3
~Ea2Ed!

22gd~T!2

@~Ea2Ed!
21gd~T!2#2

1••• G . ~20!

This expression is valid when the bands are well separated
with respect to their widths. The first term in the square
bracket corresponds to replacing the Gaussian with ad func-
tion, and the second is a Taylor-series correction that is of
the order of 1026. The temperature dependence and its
source are emphasized here. The WW-NW peak energy dif-
ference is 60 meV~Fig. 1!. The half width of the emission
band~g1, for the donor well! is taken as 0.05510.00125T in

53 10 799EFFICIENT EXCITON ENERGY TRANSFER BETWEEN WIDELY . . .



meV, whereT is the temperature,24 and that of the absorption
band ~g2, for the acceptor well! is similarly
0.22510.0025T.25

The overlap factor is essentially a linear function of tem-
perature because of the dominance of the peak difference in
its denominator. Its value~at T54, 20, 40, 60, 80, 100 K! is
~0.531, 0.707, 0.928, 1.15, 1.37, 1.59!31025 ~meV21!.

4. Summary

The numerical values of the anti-Stokes and Stokes trans-
fer rates evaluated atb517.5 nm andT54 K are

wf i
anti-Stokes5

4p

\ S 16m fm i

aB
2« D 2 1b2a~b,T!D~Ef2Ei ,T!

5~1.4631014 meV nm2 s21!
1

~17.5 nm!2

3a~17.5 nm, 4 K!D~60 meV, 4 K!

51.203106 s21,

wf i
Stokes5

128m

\3 S m fm i

aB« D 2 1

b2
a~b,T!

5~7.1531011 nm2 s21!
1

~17.5 nm!2

3a~17.5 nm, 4 K!

51.103109 s21.

The full dependence on well spacing and temperature, deriv-
ing from b22,a(b,T), and the overlap factor, are shown in
Figs. 5~a!,5~b!.

IV. DISCUSSION

A. Comparison with experiments

Several comments can be made on comparison between
the experimental results and the numerical calculations based
on the Fo¨rster-Dexter theory of energy transfer applied to
quantum wells. First, the calculation reproduces the order-of-
magnitude of the transfer rate. The calculation also repro-
duces the weak temperature dependence of the experiments,
although it appears that the experiment and the theory show
opposite trends. The most glaring discrepancy is that the ex-
periments, rather surprisingly, show a reduced transfer rate
for thinner barriers, whereas the theory predicts increased
transfer rates for thinner barriers, as one might expect from
intuitive arguments. Although finite well thickness and line
shapes may affect the theoretical results, it is more likely that
variation of the linewidths of different samples is the primary
cause of this discrepancy. We examine some of the approxi-
mations in the theory in B, and some alternate models in C.

B. Approximations

The application of resonance transfer theory to the quan-
tum well problem carriers with it many approximations,
some of which are not easily controlled. We summarize the

important ones here without detailed assessment, which
would require a view based on a more comprehensive theory
that does not presently exist.

(i) First-order time-dependent perturbation theory is ap-
plied, using a multipole expansion that is cut off at the
dipole-dipole term.In the case of intermolecular transfer, this
approximation breaks down when the molecular size is com-
parable with the intermolecular distance. A satisfactory
theory is available through the ‘‘monopole approxima-
tion.’’ 26 The validity of our cutoff is reasonable despite the
large dimensions of the donor and acceptor because, by us-
ing Wannier excitons, the monopole approximation is essen-
tially being used.

(ii) The transition dipole moments used are indirectly
evaluated, taken from experiments on optical properties of
related materials.This is discussed in Sec. II B, where a
probable error of640% was estimated.

(iii) The Förster method is used to estimate the density of
final states for anti-Stokes transfer.This approximation is
consistent with the use throughout of optical properties for
the indirect evaluation of parameters, and corresponds physi-
cally to assuming a multiphonon transfer mechanism. Note
also that in the spirit of the Fo¨rster method, we have assumed
a metastable thermal equilibrium distribution of the initial
states before transfer. We have not considered the question
of how such a distribution is achieved following excitation
by a cw laser.

(iv) The widths of the quantum wells are assumed negli-
gible, i.e., a two-dimensional model of the exciton is
adopted, and the separation parameter is taken as the well-
center–to–well-center distance.The excitons involved are
associated with the lowest quantum well states and, there-
fore, have their largestz-direction amplitude at the center of
the wells. The effect of the reduction of the oscillator
strength, due to the quantum well effect, is discussed in Sec.
III A. We have estimated the effect of thez dependence of
the wave function on the transfer rate, and find that a pos-
sible factor of 916 is omitted by neglecting it. However, any
inhomogeneities in the wells will tend to reduce the quantum
effect on the density of states, which makes an unknown
correction in the opposite direction. This correction could be
of the same order of magnitude, so we can assign a probable
error of650% to these sources.

(v) The absorption and emission bands are approximated
by Lorentzian or Gaussian line shapes.The use of a homo-
geneously broadened~Lorentzian! line shape for the exciton
in the donor well is very reasonable and should introduce
errors much smaller than those mentioned above. The use of
Gaussian line shape for the exciton in the acceptor well, and
the role of Urbach tail in determining the line shape need
further investigation, and the present calculation using
Gaussian acceptor line shape should be considered as a lower
limit. In summary, the quantifiable sources of error produce
an uncertainty of about a factor of two in the predicted re-
sults.

C. Alternative models

We examine here other possible models to explain the
experimental results. The model should provide WW exciton
luminescence by NW excitation andvice versa, and it should
also explain the lack of dependence on temperature and bar-

10 800 53A. TOMITA, J. SHAH, AND R. S. KNOX



rier thickness. The models to be considered are as follows:
thermal activation, tunneling, defect-related direct transition,
two-photon absorption~TPA! in the NW, and dipole-dipole
transfer.

In the thermal activation model, carriers escape from a
well and diffuse to the other well with a diffusion constant
D. Therefore, this model will yield a linear dependence of
energy transfer rate on barrier thickness,t15bD21/2. This
dependence may not contradict the experiment, if we assume
a sample-dependent nonradiative lifetime. The temperature
dependence, however, disagrees with the experiment. Ther-
mal activation should provide a strong dependence like
exp[2(EB2Ei)/kT], whereEB is the barrier height andEi

is a quantum level. Moreover, this energy transfer is ineffec-
tive at low temperatures; the thermal activation probability is
531027, even at 80 K forEB2Ei5100 meV.

Probability of tunneling of carriers will show a weak tem-
perature dependence. However, it will be an exponential
function of barrier thickness. Thick barriers yield tunneling
times which are too long~;300 ns for a 30-nm-thick barrier,
even if the electron sublevel in the NW is resonant to the
second electron sublevel in the WW! to explain the experi-
ment. A model of a leaky barrier resulting from the alloy
nature of the barrier was recently presented by Kimet al.27

The basic idea is that the random nature of the alloy contrib-
utes to high transfer efficiency in samples with
Al xGa12xAs barriers with smallx. This appears to be a
promising alternative model that needs to be further consid-
ered. Note, however, that this model predicts no transfer for
binary barriers. Transfer between InxGa12xAs quantum wells
separated by binary InP barriers has been reported previously
by Sauer, Harris, and Tsang.28We have applied our theory to
the results of Sauer, Harris, and Tsang and although the
peaks are not resolved, an order of magnitude agreement is
found between our theory and the experiments.

If the NW contains a defect level that coincides with the
exciton level in the WW, one may observe a NW exciton
luminescence enhancement by a two-step excitation involv-
ing the defect level when the excitation is at the WW exciton
energy. However, low absorption at defects makes this un-
likely. Also, it is unlikely that all three different samples
~sampleA was grown at a different time and by a different
growth chamber than the one that was used for samplesB
andC! happen to have a defect level at the exciton level of
the wide well.

The NW exciton can be excited by a lower-energy photon
by two-photon absorption, which may be resonantly en-
hanced by the WW exciton. This process should be exam-
ined quantitatively, and is open for further study. However,
we observe that the transfer efficiency is independent of the
excitation intensity over the range of about a factor of 10
investigated in our experiments. Recently, Hellmanet al.29

have reported anti-Stokes energy transfers to barriers inII -
VI quantum wells of CdxMn12xTe with relatively large total
barrier thickness~of the order of 1mm!. These authors find
that reabsorption of photons emitted by the quantum wells by
two-step absorption involving defect states in the barrier is
responsible for anti-Stokes luminescence of the barrier ob-
served in their case. The measured intensity dependence, the
resonant nature of our anti-Stokes transfer and relatively thin

barriers makes two-photon absorption involving defect states
an unlikely explanation in our case.

So far, we see that only dipole-dipole energy transfer re-
produces the experimental results on the magnitude and tem-
perature dependence of the transfer efficiency. Dipole-dipole
interaction must therefore be considered as a likely mecha-
nism for the efficient transfer observed between widely sepa-
rated quantum wells at low temperatures. It is interesting to
note that our theory may also be applicable to a different
system. Recently, Lawrenceet al.30 have observed ‘‘exciton
tunneling’’ between CdTe/CdxMn12xTe and CdTe/
CdxZn12xTe quantum wells, using geometries similar to
ours. Their observed transfer rates~3.331010 s21 and
3.63109 s21 in two different CdTe/CdxMn12xTe samples,
and about 531010 s21 for the CdTe/CdxZn12xTe sample! are
of the same order of magnitude as those we have found, but
the high rates were apparently possible only under resonant
conditions, or explicit involvement of LO phonons. Thus, the
intrinsic electronic matrix elements may have been much
smaller than ours, indicating a process of the Dexter ex-
change type.6 There the Forster dipole-dipole matrix ele-
ments are essentially replaced by products of electron-
electron and hole-hole overlaps between the wells. Such an
interpretation, based on our formalism, provides a micro-
scopic interpretation of the term ‘‘exciton tunneling,’’ or cor-
related electron-hole tunneling. Its rate should exhibit a rapid
drop upon increase in barrier thickness, just as in the case of
ordinary carrier tunneling.

V. CONCLUSIONS

We have observed efficient energy transfer at low tem-
peratures between excitons in two unequal quantum wells
separated by wide and high barriers. We have also observed
a weak anti-Stokes energy transfer from the wide-well exci-
ton to the narrow well exciton under similar experimental
conditions. The transfer efficiency is almost independent of
temperature and barrier thickness, which cannot be explained
by tunneling and thermal activation over the barriers. We
have investigated dipole-dipole interaction as a transfer
mechanism, which has not been previously considered for
energy transfer between quantum wells. The dipole-dipole
energy-transfer model provides the correct temperature de-
pendence and magnitude for the transfer efficiency, but does
not explain the independence on barrier thickness. Further
experimental and theoretical studies should be valuable in
understanding these interesting observations.
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APPENDIX A: CALCULATION OF THE SQUARE OF THE
INTERACTION MATRIX ELEMENT

The derivation of text Eq.~6! will be sketched here. We
first consider the lattice sum. The vectorR is the position of
the transferred Wannier exciton in the acceptor well relative
to its original position at the origin of the donor well. There-
fore,R5Rxx̂1Ryŷ1bẑ whereb is the well separation. The
wells are assumed two dimensional in thexy plane, parallel
to one another. The transition momentmi is taken to be
m i x̂ and that of the final state ismf5m f(cosf0x̂1sinf0ŷ). In
both cases, the moment is that of a transition between Wan-
nier functions located on the same cell, because the envelope
function has already been factored out@Eqs. ~4!, ~6!#. We
thus obtain

Df i~K !5(
R

eiK–R
m fm i

«R5 @~R223Rx
2!cosf023RxRysinf0#,

~A1!

with R5(Rx
21Ry

21b2)1/25(r 21b2)1/2, where r5(Rx
2

1Ry
2)1/2. We now transform to polar coordinates inK andR,

such thatKx5K cosfK , Ky5K sinfK , Rx5r cosf, andRy
5r sinf. The lattice sum is converted to an integral by the
approximation

(
R
→ lim

N,R→`

N

pR̄2 E
0

R̄
r dr E

0

2p

df

→na E
0

`

r dr E
0

2p

df,

in which a large circular finite lattice ofN points with na
lattice points per unit area is effectively made into a con-
tinuum. With the further definitiona5f2fK , the lattice
sum becomes

Df i~K !5naE
0

`

r dr E
0

2p

da eiKr cosa
m fm i

«~r 21b2!3/2
@cosf0

23S r 2

r 21b2Dg~fK ,f0 ,a!],

where

g~fK ,f0 ,a![~cos2fKcos
2a1sin2fKsin

2a!cosf0

1cosfKsinfKcos2a sinf0 .

The a integrals can be expressed as Bessel functions,
J0(Kr ) andJ1(Kr ), after which the radial integrals may be
evaluated as elementary functions. The result is

Df i~K !5
2pnam fm i

«b
cosf0@11cos2fK1~Kb23!sin2fK

1sinf0~42Kb!cosfKsinfK].

We now sum the square of the matrix element over rings of
constant energy by averaging overfK with the result

uDf i~K !u25
4p2na

2m f
2m i

2

«2b2
@22Kb1K2b2~ 3

8 cos
2f0

1 1
8 sin

2f0!#. ~A2!

We reserve the bracket notation^ & for the thermal average
~Appendix B!.

The anglef0 has been arbitrary up to this point. It repre-
sents the direction of the transition moment in the acceptor
well, with respect to that of the moment of the initial state in
the donor well. Because the acceptor well has two orthogo-
nal degenerate states that can participate in the transfer, we
sum ~A2! over two terms, one with an arbitrary value off0
and the other with the valuef01p/2. The result is indepen-
dent off0 and produces the terms that result in the second
line of Eq. ~6! of the text.

The exciton envelope functions are those of the lowest
‘‘1 s’’ states31 and are taken to be the same for each well in
the two-dimensional approximation. Thus, in each case
F(0)5A8d2/paB2, whered is the nearest-neighbor distance
and aB is the Bohr radius of the bulk exciton,aB
5«\2/me2. Taking na5d22, which accounts for the fact
that only one two-dimensional exciton is in resonance be-
cause of the z-direction quantum effect, we obtain
uF(0)u4(4p2na

2)5(16/aB
2)2 and hence the third line of Eq.

~6!.

APPENDIX B: NOTES ON THE FUNCTION a„u…

The conversion of the thermal average, Eq.~9!, into the
functiona(u), Eq. ~10!, is a straightforward but tedious pro-
cess. However, finding the dependence ofa(u) on u in prac-
tical terms is not at all straightforward. The values ofu re-
quired are neither very small nor very large, ranging from
0.768 at 17.5 nm and 4 K to 8.23 at 37.5 nm and 100 K.

The asymptotic expansion ofApu exp(u2)erfc(u) is a
power series inu22 @see, e.g., Abramowitz and Stegun~Ref.
32, p. 298!#. When this expansion is substituted in~10!, the
apparent character of the function changes entirely, to the
form ~11!, because of the complete cancellation of the terms
u4, 5u2, and 8. The remaining terms do not converge rapidly
over much of the required range and extremely high accu-
racy is required in the function exp(u2)erfc~u!.

Table I shows the results of a combination of methods for

TABLE I. The functiona(u) at various values ofT ~K! andb
~nm!. See text, Eqs.~9! and ~10!.

T ~K! b517.5 nm b527.5 nm b537.5 nm

4 0.472 42 0.295 86 0.186 89
10 0.293 51 0.144 86 0.084 89
20 0.173 98 0.080 19 0.048 90
30 0.121 87 0.059 15 0.031 83
40 0.094 98 0.045 24 0.024 09
50 0.079 43 0.035 39 0.019 40
60 0.069 31 0.029 66 0.016 26
70 0.061 80 0.025 54 0.014 01
80 0.055 55 0.022 45 0.012 31
90 0.049 89 0.020 03 0.010 98
100 0.044 61 0.018 08 0.009 92
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determininga(u). Generally, the best method was the use of
interpolations of the erfc(u) values for largeu, found in Ref.
32, p. 316. This was least useful foru,3.75, which is the
case for all theT54 K values and the 10- and 20-K values

for b517.5 nm. Here, a numerical method from MATLAB®

was employed for erfc~u!. The fitted expression shown in the
text is based on the form ln@a(u)#520.529 75
21.9371@ ln(u)#, with R251.000 over the rangeu53.75–14.
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