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Calculation of second-order optical response in semiconductors
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We present a first-principles calculation of two second-order optical response functions as well as the
dielectric function for GaAs and GaP. Specifically, we evaluate the dielectric funefioh and the second-
harmonic generation response coefficigh!(— 2w; w,») over a large frequency range. The electronic linear
electro-optic susceptibility®?(— w; w,0) is also evaluated below the band gap. These results are based on a
series of self-consistent LDA calculations using the full-potential linearized augmented plane wave method.
Self-energy corrections are included at the level of the “scissors” approximation, which corrects for the
underestimation of the local density approximation band gap and produces a change in the velocity matrix
elements. The analytic expressions for the second-order response functions are free of the unphysically diver-
gent terms at zero frequency that have previously plagued such calculations. Resyitd(few; w,0) are in
good agreement with experiment below the band gap and thosg®{r—2w;w,») are compared with
experimental data where available. We note that despite the equivalence of both of these second-order response
functions at zero frequency, there seems to be some discrepancy between the experimental results for these
functions in this regime.

I. INTRODUCTION tificial divergences. The recent work of Dal Corso and
Mauri,*® based on an elegant Wannier function approach, is
While there have been many empirical aad initio full also free of such divogences. But at finite frequency, in par-

band structure calculations of linear optical response irticular, for frequencies or frequency sums across the gap, we
semiconductors;® there have been very few calculations of feel that any approach easily amenable to numerical analysis
the nonlinear response. The understanding and calculation @fill likely involve a k-space focus such as that adopted ex-
the linear electro-opti¢LEO) susceptibility has lagged be- plicitly in this work, simply because the resonances at any
hind the experimental studies, with most theoretical calculagiven frequency occur in localized regionslofpace.

tions based on simple phenomenological mod&ls” Of the The full band structure calculation in this work utilizes
other second-order susceptibilities, most theoretical calculahe full-potential linearized augmented plane wave
tions have been concerned with second—harmqnic generatiqr APW) method*?within the local density approximation
(SHG),**™*and many of these have been restricted to a de| pA). This method has an advantage over that employed by
termination of the response function at zero frequeficy?  \oss and co-workef&27in that it is first principles rather

To our knowledge the only attempts at calculating nonlineag, - semiempirical in nature. We have adopted a “scissors”
response functions over a wide frequency range are the wor, proximation to correct for the band gap, but account for

H -22
gg_wiﬁsggzg_ag?is ?/\r/](lan%)iscusasn%elg\]/\?t bgtfh cl\)/ll‘otshses:n: _the change in the velocity matrix elements that appear in the
roaches have certain limitations : P response function expressions. Huang and Chifgneglect
P ' dhis modification in the matrix elements; based on previous

In this paper we present the results for the SHG and LE vidence® and the results of our own calculations. thi N
response functions, as well as the dielectric function foitVIdence, a € resulls ot our own calculations, this ca

GaAs and GaP over a wide frequency range. Since our inr_esult in a si_gnificant error in the determinatiqn of the re-
terest is in the electronic aspects of optical response, waPOnse functions. We have not included Iocgl field effects in
calculate the LEO response function in the “clamped lat-this wWork; as suggested by the work of Levine and Aﬂér_],
tice” approximation; our results are then suitable for com-We do not expect significant corrections for the materials
parison with experiments involving “dc-like” fields at low considered here at the level of second-order response. How-
enough frequencies that electronic dispersion associated wigver, the inclusion of local field effects can be done in a
the dc-like field can be neglected, but at high enough frestraightforward way within our formalism for the response
guencies that lattice motion can be considered frozen out. functions.

The analytic expressions for the nonlinear response func- The paper is organized in the following way. In Sec. Il we
tions are based on the formalism of Sipe and Ghahrafiani, present the analytic expressions for the linear and nonlinear
as extended and developed in the length gauge by Aversasponse functions, and discuss the scissors approximation
and Sipe?® the response calculation is at the level of theand its implementation. We outline the FLAPW method and
independent particle approximation. This approach has ththe calculational technique used in determining the nonlinear
advantage that the response coefficients are inherently free obefficients in Sec. Ill. The band structures for the materials
any unphysical divergences at zero frequency, a consequencensidered are also presented in this section. In Sec. IV we
of a careful treatment and separation of interband and intragive our results for linear response, the SHG coefficient, and
band motion. “Sum rules” are not required to eliminate ar-the LEO function. The comparison with experiment and
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other theoretical calculations is also investigated and dis- The dielectric functione®®(w)=1+4mx**(— w;w), and
cussed. A conclusion and summary of our results are preso the usual expression for the imaginary parte®f(o),

sented in Sec. V. €3°(w), follows from Eq.(4),
Il. ANALYTIC EXPRESSIONS FOR OPTICAL RESPONSE ab e’ v3n(K)v (k)
@)= 72 | dkfpn———r (0~ wm(k),
mn

A. Response functions

o . . (6)
We begin with results that follow directly from the inde- ) o
pendent particle approximation; in the following subsectionWhere we have converted to an integral over the Brillouin

we describe the modifications that must be made to impleZ©n€-
ment the “scissors” approximation. For the second-order response we generally follow the

To establish our convention for the optical susceptibili-SuSceptibility convention of Boy® Then a nonlinear polar-
ties, we define the electric field and the polarization in termdZation component is related to the electric field by

of their frequency components as
q y P Pa(wﬁ—i-wy):)(abc(—wB—wy;wB,wy)Eb(wB)Ec(wy),

E(t):; E(wye ', @) where x2°¢ indicates the second-order susceptibility. Carte-
sian components are again summed over if repeated, as are
, frequency component®; and w,, but only such that the
P(t)=2, P(wy)e” ', (2)  sum (wg+ w,) is held fixed; the susceptibilities are taken to
A satisfy intrinsic permutation symmetry(abc(—mﬁ— Wy,
where the summation extends over positive and negative frasz,®,) = x**(—wz— 0, ;w,,04). In the specific case of
quenciesw,, . We adopt the convention that a zero-frequencysecond-harmonic generation we have
component is to be included twice in the sums of Eds. a _abe _ b .
and (2); then 2E(0) is the actual value of the dc electric P (20)=x"1—20;0,0)E(0)EXw), ®
field. For completeness and clarity, we discuss matters ofyhile for the linear electro-optic susceptibility we have
convention and definition in more detail in Appendix A.
At the level of linear response the polarization is given in P3(w)=2x%"%— w;w,00E’(w)ES,, (9)

terms of the electric field by where Eg. is the actual dc electric field. In expressiof@

Pa(w):XIab(_w;w)Eb(w)’ 3) and (9), the only sum is of course over the Cartesian com-
ponents. We note that
where superscripts indicate Cartesian components and are to
be summed over if repeated:; the linear susceptibility is given |imOXab°(— 20;0,0)= |im0)(ab°( - 0,00, (10
by w— w—
) a orb (k a statement of the equivalence of the SHG and LEO suscep-
Y22~ @i w) = e_z Mm(K)Tmn(K) 4) tibilities at zero frequency. This result, which is physically
! ' Qi ™ oK)~ expected and follows from our expression for the suscepti-

bilities (see Appendix A will be relevant in the context of
Here and below n,m, etc., label energy bands; o giscussion of our results.

fan=fm—f,, with f; t_he Fermi occupation factor which, for The 2 in Eq. (7) can generally be written in the form
the clean, cold semiconductors we study here, is zero or

unity. The wave vector& range over the Brillouin zone, Xabc(_wﬁ_wy;wﬂ,wy):XﬁbC(_wﬁ_wy;wﬁ,wy)
spaced as required by the normalization volumeThe fac-

tor of two to account for spin degeneracy is not included in + ﬂﬂbc(—w/;— W,y 0g,0,)
Eq. (4) or any subsequent equation involving a summation

over k; spin degeneracy is accounted for in all expressions +

below where the summation ovkrhas been converted to an (wgto,)
integral. The frequency differenceswm (k)= wn,(k)
—wn(k),wherefiw,(k) is the energy of bandh at wave
vector k; frequenciesw such as that appearing in the de- The first term in Eq.(11) represents the purely interband
nominator of Eq(4) should be interpreted as+i0*, where  contribution that would result if one thought of the system as
0" is a small positive quantity that is allowed to vanish at theonly a set of “effective” atoms labeled by their crystal mo-
end of the calculation. Finally, the,, are the matrix ele- menta. The second term describes the contribution from the
ments of the position operator, excluding the diagonal partmodulation of the linear susceptibility by the intraband mo-

O_ﬂbc( o wﬁ

—0,,05,0,). (11

for w,m,#0 we have tion of the electrons. The third term represents that portion of
the susceptibility resulting from the modification of the in-

a va (k) traband motion by the polarization energy associated with

Fam(K)= : (5)  the interband motion. A more thorough analysis and inter-

[
@nm pretation of these terms has already been preséhtéte
wherev? (k)=m~1p2 (k), mis the free electron mass, and explicit definitions of the terms in Eql11) specific to the

Pnm is the indicated momentum matrix element. SHG and LEO susceptibilities are given in Appendix B.
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B. “Scissors” approximation and implementation The effect of the inclusion of the scissors operator within

While the Kohn-Sham equations form a fundamental®Ur formalism is to modify the expressions for the response

starting point for the determination of ground-state properfunctions in a straightforward way. As an illustration, we

ties, the unoccupied conduction bands that are calculategPnsider the linear response coefficient. Withas the gov-
have no direct physical significance. Indeed, if they are useMing Hamiltonian, Eq(4) becomes
naively as single-particle states in a calculation of optical ) s )
properties for typical semiconductors, the so-called “band-- B 4y )= e_z Fm(K)Tmn(K)
gap” problem results: the absorption starts at much too low!' ' O, "™ (k) + (A7) (e Spd)— 0’ (19
an energy. At a basic level, many-body effects must be in-
cluded in calculating not only the ground-state properties but
the response to an applied perturbafidf® to do this, the
GW approximation for the self-energy operator has been emwhere thec in the Kroneckers’s refers to a conduction state
ployed by a number of worker§-*! Instead of following and the tilde indicates that this coefficient is derived from
this route, we take the simpler approach of Levine and AllanH. The form of this function is essentially identical to the
and introduce a “scissors approximation” to account for theprevious expression without the scissors operator. The only
self-energy effects. Although this technique is at best semiehange has been the modification of the energy difference,
phenomenological, it rests on the fact that GW calculations
often indicate little change in the single-electron Green func- A
tion even with the inclusion of many-body effects; only the @mn— Omnt 7 (dme™ dne)- (16)
energy gap is significantly modifiéd.Further, it has been
suggested recently that the scissors approximation can finaln important point to note is that the matrix elements of the
justificatiorf in the necessity of using a polarization- position operator remain unchanged. This follows because
dependent energy functionf&l Whatever the final verdict on implicit in the approximation in Eq(13) is the assumption
that proposal, our view is that the approach constitutes ghat the effective wave functions do not change when many-
simple extension of a ground-state calculation that will allowbody effects are includet. This analysis has been carried
for relatively easy first investigations of linear and nonlinearout for second-order response with the same result: the new
optical properties; within this spirit it has been used in aexpressions are identical except for the change insthgas
number of calculation&!/~1°444%3lthough we are among described above.
the first to employ it in calculating the optical response over |n practice, one does not directly calculate the matrix el-
a wide energy range. ements of the position operatoy,,,, but rather the velocity

A point that requires some degree of care is the appeainatrix elements/,,,. Consequently, a necessary step in the
ance of the scissors shift in the expressions for the linear angbnversion of the response function expressions to numeri-
nonlinear response. Actually, in the length gauge calculatioRally amenable form is to make a correspondence between
we use here the result is straightforward; but for comparisofhese two different matrix elements. This correspondence is
with other work we br|Eﬂy outline here the inclusion of the affected by the inclusion of the scissors operator in our
scissors operator, and detail how from different perspectivegigmiltonian.
rather more complicated expressions can result, and have \we first consider linear response in the absence of the

appeared in the literatuf&°In the length gauge, before the scissors operator. The,, are then determined from
scissors operator is included, the Hamiltonian from which

the response functions are calculdfeid given by

1
02 v= E[V.H], (17
H=——+V(r)—er-E, (12 ) .
2m with the result of Eq.(5) for the elements of the position
operator withw,# 0. In terms of thev,(k), Eq.(4) can be

whereV(r) is a periodic potentialy the position operator, . .
(r) P P ' P P written in the form

and the electric field i€=—A/c. The simplest and most

obvious way to correct for the underestimation of the band o2 2 (K)oP (K)
gap is to include in this Hamiltonian kxindependent energy X~ w;0)= = fom——— . (18
shift “projected” onto the conduction stat8swithin this Ohimk ™ opd @ma(K) — ]

approximation the Hamiltonian takes the form ) . . , I
With the scissors operator included in the Hamiltonian, the

H=H+V,, (13  Velocity operator changes. The equation for the modified ve-

. locity becomes
with

_ 1 -1
Vs:AZk |ck)(ck|, (14) V= [nH]= oAl HI+H V] (19

where the sum invg is over allk and conduction bands from which we obtain the analog of E¢B):
c; A is the constant energy shift associated with the correc-
tion of the band gap; thiek) represent single-particle eigen- ro= - )
states of the unperturbed Hamiltonidthy=p?/2m+ V(r). " i[oamt (A7) (8nc— )]

Vnm

(20
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Since ther,,, do not change when the scissors operéidy

is included we can determine the relationship between the 10
velocity matrix elements with the scissors operator, and
those without. We find 5

+(A/R)(Spe— 6
vnm:Vnmwnm ( )(One mc). 1)

®nm

—10

AR
W

]
o
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Energy (eV)
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It is now possible to write the linear response coefficient
within the scissors approximation in terms of the velocity

matrix elements, as was done in Ef8). We use the corre- L r X UK r
spondence of Eq20) to write
10 N
}|ab( —w,w) 5
e T (K)o

- mr%k fnm[wmn(k) + (A1) (6= One) — 0]

]
o
e}

1

-10
" Fomnt (ATR) (Sma— Bv) T2 22

/N
Wi

/

Energy (eV)
[
I/I T lell T Sl /V ‘ T

=
law
>

UK

—

Yet, in order to actually calculate this coefficient we need to

have it expressed in terms of the unmodified velocity matrix FIG. 1. FLAPW electronic band structures for GaAs and GaP.
elements, the matrix elements we obtain from the LDA cal-The fundamental band gap has been adjusted within the scissors
culation. To do this we use E§R1) and write Eq.(22) as approximation.

')'(',ab(—w'w) [ll. METHOD OF CALCULATION
A. FLAPW method
e s 02 (K)vl (k) _ _ o
T On& fnmwz [0mr(K) + (A7) (8o Orng) — @] In order to determine the optical response functions in a
mnl mn mc nc

full band structure approach, one requires the eigenvalues
(23 and velocity matrix elements at matkypoints in the Bril-

louin zone(BZ). The velocity matrix elements, in turn, re-
As can be seen from the above equation, the linear responsgliire a knowledge of the electronic wave functions. For this
function within the scissors approximation is no more com-purpose, we employ a first-principles approach in the form of
putationally difficult to calculate than that without the scis- the FLAPW method. As this method has been previously
sors approximatiofiEq. (18)]. Note that Eqs(15), (22), and  discussed>? we highlight only a few of its pertinent fea-
(23) are all equivalent, and that E¢23) follows directly  tures.
from Eq. (15 by the use of Eq(5). Furthermore, the ap- The spirit of the FLAPW approach is the partitioning of
proach taken in deriving Eq(23) is easily extended to real space within a crystal into two distinct regions: “muffin-
higher-order response functions; we find that, as for lineatin” spheres surrounding the atomic positions, and the re-
response, the extension of a response coefficient expressiamaining interstitial space. The electronic wave functions
to the scissors approximation consists of two steps: First ththen have a dual representation over all space, consisting of
function, written using the matrix elements of the positionan expansion of solutions of the ScHieger equation and its
operator, is modified as indicated by Ed6). Second, we energy derivative in the muffin-tin spheres, and plane waves
need only use E(5) to write the response function in terms in the interstitial region. We rely on the LDA for the one-
of v,m(k), producing the analog of E¢23), to make it suit- electron exchange-correlation potential. Prior to determining
able for numerical evaluation. the electronic structure and wave functionskapoints of

We note that the result in E@23) is essentially equiva- interest in the BZ, we converge the charge density in the

lent to that introduced by Del Sole and Girlarttand Levine  crystal in a series of self-consistent calculations. This con-
and Allan®'%44 However, Del Sole and Girlanda restrict vergence process involves all electrons, and so the valence
their discussion to linear response, where we have extendethd core electronic states are recalculated for each iteration.
this approach to any higher-order response function. Levine In the calculation of the electronic band structure of GaAs
and Allan do treat second-order susceptibilities within theand GaP we have used the Wigner interpolation method as a
scissors approximation but do so in a way specific to theimeans of determining the one-electron exchange-correlation
formalism for nonlinear response. Our approach for the scispotential. Spin-orbit and scalar relativistic effects are in-
sors operator, although equivalent, is a general extension a@fuded in both calculations. We present in Fig. 1 the band
this previous work applied to our formalism. structures for GaAs and GaP. In both band structures we
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have adjusted the band gap to agree with experiment usirgnd applying the operatoRg we find
the scissors approximation, as discussed in the previous sec-

on- > Pr(X92) = 4(XJ2+ X2+ K25+ §ZX+ 255+ 29%),
R
B. Response functions
The evaluation of each of the response functions is carried Afn ;
: . ) Pr(abc)=0, a,b,c not all different. 2
out in a slightly different way, but there are some general ; R(8bC) @7

considerations that need to be addressed in all cases. One

necessary step in evaluating optical response is the reductidhcan be seen from Ed27) that there is only one indepen-
of the analytic expressions for the susceptibilities to oneglent component for the SHG susceptibility that we take to be
suitable for computation. The details of this procedure forx™”* the same result follows for the LEO susceptibility.
each of the response functions are too |Ong to present here, In the evaluation of all the response functions, the essen-
but we will outline the general approach. tial task becomes the integration of a function over the IBZ.

The expressions for the susceptibilities are first written inThis we do in a “hybrid” random sampling-tetrahedron
terms of the velocity matrix elements rather than the matrixnethod. We partition the IBZ into many small tetrahedra, at
elements of the position operator and converted to an integrifhose vertices we evaluate the eigenvalues and velocity ma-
over the BZ rather than a sum over If the response func- trix elements based on results from the FLAPW calculations.
tion is sought above the band gap, the imaginary part i¥Ve then “linearize” the energy differences,,, as well as
extracted, for which there is & function present in the inte- the matrix element product in the integrand of the response
grand; in the case of cubic symmetry some further simplifi-function. Although it has been suggested that the matrix el-
cations can be made to the second-order susceptibilities. €Ments can be taken to be constant over a tetrahédie,

For linear response we evaluate the imaginary part of théeel that the validity of this approximation becomes increas-
dielectric function given in Eq(6), which is already in a ingly questionable in the complicated products of these ma-
form amenable to computation. We obtain the real part of théix e€lements found in the higher-order susceptibilities. Hav-
dielectric function by using the Kramers-Kronig relation. ing linearized these quantities over a tetrahedron, we then
The SHG response function, as given in Appendix B, re-sample a large number of randomly chosen points within a
quires some manipulation prior to being calculated. Againgiven tetrahedron and at each evaluate the integrand. This
since we seek the response above and below the band g@Pproach has the advantage of being much easier to imple-
we evaluate the imaginary part and obtain the real part fronfnent than the linear-analytic tetrahedron metffoshich
the Kramers-Kronig relation for this functiéfi. The LEO ~ becomes complicated for nonlinear response functféns.
susceptibility is evaluated below the band gap only, where it In the calculation of all the susceptibilities, we directly
is of primary interest, and so we calculate it directly in this€valuate the velocity matrix elements and eigenvalues from
energy regime. the FLAPW calculation at 136% points in the IBZ; this

We use the symmetry of the crystal to reduce the integracorresponds to the partitioning of this region into 5184 tet-
tion over the BZ to one over the irreducible segment of the@ahedra. We have further partitioned the region around the
BZ (IBZ). This is done by applying the operatdP of the ~ I' point into 3993 smaller tetrahedra, which requires the ma-
group element® of the symmetry grouf 4 (applicable for trix elements and eigenvalues at 100points. The reason
the semiconductors considered Her® the expansion dy- for this finer mesh of points near thiepoint is that we have

adics of the response tensor. For linear response, we consid@und that there is some sensitivity in the nonlinear response
the dielectric tensor functions to numerical approximations in this regid?

The susceptibilities calculated from this numberkopoints
are only marginally different from a calculation involving

g _ an.ab
62(“’)_; abe;”, (29 only half this number. On this basis, it is clear that our cur-
_ . rent calculation should suffer only a limited numerical error
and after applying the operatoPs we obtain using this particular integration scheme.
; PR(>A<>A<)=§R: PR(W):ER: Pr(z2)=81, IV. RESULTS AND DISCUSSION

In Fig. 2 we present our results for the imaginary part of
the dielectric functione,(w), for GaAs and GaP. The ex-
perimental results of Philipp and Ehrenref®hand Aspnes
- and Studn# are included for comparison. The main features
where | is the identity tensor. Thus only the diagonal ele-of the linear response function can be attributed to the same
ment survives, as is well known. With the use of these symregions of the electronic band structure for both materials.
metry elements and the inversion symmetry of the BZ, theThese features are largely governed by the joint density of

; Pr(aD)=0, i#j, (25)

integration ovelk can be restricted to the IBZ only. states, whose structure is associated with those regions in the
For second-order optical response we proceed in the sangand structure for which pairs of bands are essentially paral-
way. We write the SHG susceptibility as lel. In particular, using the terminology specific to zinc-
blende semiconductord, we can identify the dual peak
(=20 0, 0)= abeyabe —2 ‘0, ), 26 structure at low energy with thé; andE;+ A, transitions.
X(—2wiw,w) %c X~ 20i0,0) (26) The main peak and the slight shoulder to the left of this peak
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FIG. 2. Results for the calculated imaginary part of the dielectric Energy [eV]
function, e»(w) (solid line), for GaAs and GaP. Energy bin size is
0.05 eV. Experimental result&lotted ling are from Philipp and FIG. 3. Plot of In{}*Y{—2w;w,w)} for GaAs and GaP. The
Ehrenreich(Ref. 50, and Aspnes and StudriRef. 5). energy bin size is 0.05 eV.

are due to theéE, and E; transitions, respectively. Finally,
the high-energy feature in the spectrum is attributed to th@re taken at room temperature; experimental work suggests
E; optical transition. that peak positions shift to higher energy at lower
It is evident from Fig. 2 that our calculation predicts the temperatures? A shift of approximately 0.1 eV could be
peak positions higher in energy than those in the experimergXpected for equivalent results at low temperature, which
tal results. Allab initio calculations share a difficulty in cor- Would be more appropriate for comparison with this zero-
rectly predicting both the band gap and the peak positions ifemperature theoretical work. Yet it is clear that the
the linear response spectrum. The original first-principlek-independent rigid shift in the conduction states with the
work of Wang and Kleih employed the LDA and achieved corresponding modification of the response function expres-
some agreement in peak positions, but underestimated ti§on achieves only reasonable accuracy in the dispersion of
fundamental band gap. A rigid adjustment of the electroni¢he dielectric function.
structure calculated by Wang and Klein, following the scis- We note that there has been some recent success at the
sors approximation adopted here, would result in a similatevel of linear response in work based on quasiparticle cal-
mispositioning of the location of the peaks in the linear re-culations that treat the self-energy corrections more
sponse function. The more recent work of Huang anccarefully” As our emphasis is on the nonlinear optical re-
Ching?*?° using the orthogonalized linear combination of sponse, we feel that the scissors approach is an appropriate
atomic orbitals method for the electronic structure calcula£ompromise between computationally amenable calculations
tion and a scissors correction, has obtained only limitecand accurate results.
agreement with experiment for the dispersion of the dielec- The results for the imaginary part of the SHG susceptibil-
tric function. Alouani, Brey, and Christenseave achieved ity, Im{x*¥{—2w;w,w)}, are plotted in Fig. 3. Although
some success lately in calculating linear response for GaA#his part of the response function cannot be directly com-
accurately predicting both the band gap and the dispersion igared with experiment, it can be more meaningfully related
e»(w). Their method involves adding in sharply peaked po-to the band structure than cgg™(—2w;w, )|, to which
tentials within their LDA framework in such a way that the €xperiments are more directly sensitive. The structure in
low band gap is suitably “compensated.” Although arguably IM{x**{ —2w;®,®)} can be attributed to the same general
no more phenomenological than the simple scissors approxiegions in the band structure for both GaAs and GaP. The
mation we employ here, its ultimate justification and exten-onset of the function occurs at thev2resonance with the
sion to a more fundamental level is perhaps less clear.  Eo optical transition. The first peak is associated with the
We make two further comments concerniagw): First, 2o resonance with th&,; and E;+ A, optical transitions.
the intensity of the peaks in the calculated function is over-The second structure in the function for the most part arises
estimated in part due to the exclusion of the effects of a finitdrom the 2w resonance wittE;. The complicated structure
relaxation time. Second, the experimental results in Fig. 2n the region between 3 and 4 eV is associated with an in-
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FIG. 4. Absolute value of the SHG susceptibility, ~FIG. 5. Absolute value of the SHG susceptibility,
|4~ 2w; 0, )| (solid line), for GaAs. Experimental results are |x{—2w;w,)| (solid line), for GaP.

as follows: Parsons and ChariRef. 62 (dotted ling; Bethune, . .
Schmidt, and ShefRef. 63 (dashed ling and Chang, Ducuing, €XPerimental data are in terms of the unclamped values and

and Bloemberge(Ref. 64 (crosses so must be modified to yield the corresponding clamped
LEO coefficient values. To do this we use the compilation of

terference between amresonance with thE, transition and ~ experimental coefficients presented by Adahishere esti-
a 2w resonance with th&, and E; transitions, while the mates of the clamped values are given for those experiments
structure between 5.0 and 5.5 eV is due mainly to éghe that determined only the unclamped values.
resonance with th&, optical peak. In Fig. 6 and Fig. 7 we plox™4 — »;w,0) for GaAs and

Our results for the imaginary part of the SHG susceptibil-GaP in pm/V, as this is the more commonly quoted unit in
ity show important differences from those of Huang andthe literature. We have also plotteg¥4 — 2w; », )| on the
Ching2®?! although there are some similarities in the shape$ame graph, for a purpose discussed below. The experimen-
of the calculated functions. It is important to note that theirtal data are presented for comparison. To generate the experi-
failure to adjust the velocity matrix elements after rigidly mentalx¥{— »;w,0) we have used EqC8) with the ex-
shifting the conduction states to higher energy can result iperimentally measured LEO coefficienf*q(w) and the
an appreciable error in their reported values. Levine has sughdex of refraction from Palik>>®
gested that their results could be underestimated by up to a The results of our calculation are in good agreement with
factor of two?® this has been corroborated by our own inves-experiment over a large range of frequencies. This agreement
tigations, comparing calculations with and without the ma-iS somewhat better for GaAs than for GaP, but given the
trix elements appropriately modified. The results of Ghahra-
mani et al?%%* are closer to ours, despite the differences in 300 . T T
approach to the calculation of the electronic band structure. r A
They employ a semiab initio minimal-basis linear combi-
nation of Gaussian orbitaldMLCGO) method.

The absolute value of the SHG susceptibility is plotted in

200

Fig. 4 for GaAs and Fig. 5 for GaP. Experimental data at E
energies above the gap are very scarce for the materials con- ¢
sidered here. The only data we are aware of are for GaAs, £
and these are plotted in Fig. 4. The experimental results seem &
largely contradictory and any serious comparison would re- =100

main inconclusive.

There is a considerable amount of data available for the i ]
LEO susceptibility and, as the chief interest is in the region
below the band gap, we have concentrated our investigation
to this regime. Two main issues must be addressed, however, 0 05
in order to make a suitable comparison of our results to the
experimental data. The first is that we require an expression
that relates the experimentally measured LEO coefficient g 6. plot of second-order optical response in GaAs below the
rrAw) to our calculated LEO  susceptibility fundamental band gap: LEO susceptibiligf?% — w;w,0) (solid
x4 — w;w,0); although straightforward, to avoid confusion jine) and the absolute value of the SHG susceptibility
this is presented in Appendix C. A second issue in the comp*Y{(—2w;w,w)| (dotted ling. Experimental results for the
parison to experiment is that our calculated quantity is in facLEO effect (solid circles are from 65—75 as compiled by Adachi
the electronic or “clamped” LEO susceptibility. Some of the (Ref. 52.

—_
—
o))

Energy [eV]
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300 . . R R TABLE I. The linear and second order optical response in GaAs
L ‘ i Y and GaP at zero frequency. The results of the present calculation
(FLAPW) are compared with other theoretical calculations and ex-
perimental data.
—~ 200 xY40) (pm/V)
E Material Method €(0) SHG LEO
£ GaAs FLAPW 10.9 96.5 96.5
5 Pseudopotential 11.0 172
= 100 OLCAQ® 11.21 251.3
MLCGO 1043 104.3
Experiment 109 162+ 10 99.¢
0 L. N GaP FLAPW 9.0 50.3 50.3
0 1 2 Pseudopotential 8.8 75
Energy [eV] OLCAQ® 9.29 134.9
MLCGO 43.6
FIG. 7. Plot of second-order optical response in GaP below the Experiment 9.0 74+ 4 44.3

fundamental band gap: LEO susceptibiligy¥ — w; w,0) (solid

line) and the absolute value of the SHG susceptibility ®Levine and Allan(Ref. 19.

|xY4—2w;w, )| (dotted ling. Experimental results for the LEO PHuang and ChingRef. 23.

effect are from Nelson and TurnéRef. 76§ (open circley and ‘Ghahramanet al. (Refs. 26 and 54

Berozashviliet al. (Ref. 77 (solid circles. dGhahramani and Sip&Ref. 57).
®Reference 55.

complexity of this calculation we feel it is nonetheless quitef_evine and BethedRef. 59 value at 0.117 eV, as revised by
satisfactory. As we have previously discussed, our calculaRoberts(Ref. 59.

tion is based on a formalism that is well behaved at lowSaverage of experimental values at 0.117 eV, from Adag@Ref.
frequencies, so the results are believable in the energy resp).
gime presented in Figs. 6 and 7. To our knowledge this is théreference 56.
first ab initio calculation of the LEO susceptibility for GaAs 'average of experimental values at 1.08 eV, from Adatef. 52.
and GaP. Ghahramani and Sipe have presented the LEO sus-
ceptibility for GaAs based on a semiempirical MLCGO there is significant disagreement between the experimental
calculation?” employing the same nonlinear response for-results for the zero-frequency SHG and LEO susceptibilities.
malism given here. Our results are close to this previoudhis disagreement does not seem to have been fully appre-
work, although we obtain better general agreement with theiated.
experimental data for all energies. Various other theoretical Our calculated results are in closest agreement with the
calculations of the LEO coefficient have been presented, biMILCGO calculation of Ghahramarit al?®%* We note that
these are phenomenological in nature and will not be distheir calculation and ours are completely independent and
cussed her&® 12 are based on markedly different approaches to the determi-
As there is considerable interest in the optical response atation of the electronic structure and the velocity matrix el-
low frequencies, we have presented in Table | our results foements. The orthogonalized LCAO calculation of Huang and
the dielectric constant, the SHG susceptibility, and the LECChing! leads to a much higher result farY{0) than the
(clamped lattice susceptibility for GaAs and GaP at zero- present work. And, as we have previously discussed, we be-
frequency. We have included for comparison other theoretilieve that they require an adjustment of their velocity matrix
cal calculations, and experimental results. For linear reelements in accordance with their scissors shift. With such an
sponse our agreement with experiment is excellent for botldjustment their value fog*¥40) would be raised even
materials. We recognize that this may be somewhat fortuhigher, exceedingly high in comparison with other theoreti-
itous, given the comparison of our results with experimentcal calculations and with experimental values. Levine has
over a broad frequency range. A shift of our calculated peakgresented the most comprehensive work below band-gap en-
in €,(w) to lower energies, towards the experimental peaksergies of which we are awafé.But his formulation of the
would result in a higher calculateq0); this would be partly SHG susceptibility is drastically different from that used
offset by the inclusion of local field effects, which have beenhere, and thus it is unfortunately difficult to identify the rea-
shown to reduce the zero-frequency result for the materialsons for the disparity between the results.
considered her® Yet we note that our calculated results are in extremely
The results fory*Y%(0) require more discussion, in light good agreement with the LEO experimental results. Given
of the wide range of values that appears. We first recall, athat various LEO experiments done recently seem to cor-
noted in Sec. ll[see Eq.(10)] that the SHG and LEO roborate each other, we would suggest that this gives strong
(clamped lattice susceptibilities are equal at zero frequency.support to the value of*Y40) we have calculated here. As
This is not only a numerical result of the present calculationto its disagreement with the SHG experimental results, we
We have shown this analytically within our formalism, and note that the values given in Table | are from Rob&tisho
in any case it would be expected on physical grounds. Yetevised the original values of Levine and Betf&alheir
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280 [ well. As can be seen in Fig. 8 there is a definite variation in

- ] frequency for botm\ 31*® and A§F°. Both functions show an
- <60 - GaAs B increase with increasing frequency, althom&;}lfo rises less
T R0 f 3 rapidly thanA/'®. The zero-frequency value df,, for both
E oo b E materials is remarkably similar; this corroborates Miller's
& - ] original conjecture, but it is clear that an analysis of a wider

<00 - 7 range of materials would be necessary to test this further.
180 Bl il 1] We note that our theoretical results far ' are very
0 02 04 06 similar to that of Levind?® The magnitudes are somewhat
Energy [eV] different, due to the differences in o4 — 2w; w,w) re-
280 1+ e sults compared with theirs, but the trendAg*® is the same.

u = Huang and Ching® results for Ay seems somewhat
= =60 = Gap E anomalous; they predictyi©to be a flat or slightly decreas-
E 240 - ing function over the energy range plotted in Fig. 8.

2 o200l 1
4 n ]
200 = ] V. CONCLUSIONS
1800‘ = '0‘5' = l 0 We have presented results for linear and second-order op-

tical response in GaAs and GaP based on a first-principles
FLAPW electronic structure calculation. We have employed

FIG. 8. Plot of Miller's Ay below half the band gap for GaAs @ response formalism that is free of any unphysical diver-
and GaPA S (dotted ling and ALEC (solid line). gences at zero frequency, providing believable results across

the entire energy spectrum for any response function. Within

experiments were conducted more than two decades ago, attds formalism we have implemented the scissors approxima-
it is not clear these data should be given as much weight agon, and have fully accounted for the modification of the
the much more recent and consistent work on the LEO susyelocity matrix elements that appear more explicitly in other
ceptibilities in attempting to establish an experimentally de-calculation schemes. The response function expressions
termined value ofy*¥%0). Certainly the discrepancy be- within the scissors approximation are straightforward to ob-
tween the experimental results for the two equivalentain, and are no less amenable to computation than without
susceptibilities indicates that more recent experimental studhe scissors correction.
ies would be helpful in resolving this issue. Our results for the imaginary part of the dielectric func-

It is interesting in the context of the current calculation totion e,(w) show only reasonable agreement with experiment
assess the validity of “Miller’'s rule” based on our theoreti- across a broad energy range, although we obtain excellent

Energy [eV]

cal results. Miller proposed that the quantity agreement with experiment fef0). This illustrates the pos-
@) ) sible limitations of the scissors approximation and indicates
X (701~ wy,0,,0; that good zero-frequency results do not necessarily imply a
Ap(wr+wy)= (29 9 a y y iImply

X1+ 0) xP(w1) x P (wy) good prediction of the dispersion of the dielectric function.

: . : The SHG susceptibility has been presented and it shows
is approximately constant for a wide range of noncentrosym: . . .

. . o L important differences from other theoretical calculations.
metric materials, with little variation in frequency.As we

. . The lack of experimental data, as well as its contradictory
have calculated two second-order susceptibilities we can N ture. prevents anv conclusive comparison with experiment
vestigate Miller'sAy, in both cases. We have for SHG, P y P P

over a large energy range. A comparison of zero-frequency

YV - 20;0,0) results for the SHG susceptibility shows that our calculation
AN 2w) = -3 P D )72 (29) s closest to Ghahramast al.?®**but there is large dispar-
X (2o)lx ()] ity between existing theoretical calculations and experimen-

a form specific to the zinc-blende materials considered herdal data.
given that there is only one independent component for the We have also calculated the LEO susceptibility below the
SHG susceptibility and equal diagonal components foand gap, and here our results are in excellent agreement
xY. For the LEO effect, the corresponding quantity is with experiment throughout the experimentally studied en-
ergy regime. Since the SHG and LE€@amped latticg sus-
XY~ w;0,0) ceptibilities are equal at zero frequency, the more recent
[xP(w) 2P (0)” (30 work on the LEO susceptibilitywith which our calculations
are in excellent agreemens thus in contradiction with the
We plot in Fig. 8 both of these functions for GaAs and much older work on the SHG susceptibilityith which our
GaP. Several comments can be made about our results fealculations are in disagreemgnthis both gives us confi-
Miller's A,,. First we note that\ji'® is equal toAf™® at  dence in our calculated results, and—whatever the status of
zero frequency. We would expect this result given theour calculation—-encourages us to urge our experimental
equivalence of Eqs(29) and (30) at zero frequency if the colleagues to reinvestigate the SHG susceptibility both at
second-order susceptibilities are equivalent in this limit adow frequency and over a wide frequency range.

Ay(0)=
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FLAPW program, as well as for helpful discussions on mak- PA(wg+ wy):XabC(_ ws— 0,0 ,wy)Eb(wB)EC(wy),

ing LDA calculations. We also acknowledge useful discus- (A5)

sions with Dr. Clardio Aversa of the University of California abe - -

at Santa Barbara. This work was supported by the Naturéqu{herex indicates the s_econd—order susqeptlblllty. Carte-
Sciences and Engineering Research Council of Canada af#8n components are again summed over if repeated, as are

the Ontario Laser and Lightwave Research Centre. frequency components; and w,, but only such that the
sum (wg+ ,) is held fixed; the susceptibilities are taken to

satisfy intrinsic  permutation symmetry, Xabc(—wﬁ
—w, 05,0, =XaCb(.— wp—w,;w,,w0p). We derive our

In this appendix we establish our convention for the opti-perturbation expressions fef*(— ws— w.; ., ) within
cal susceptibilities and the definition of frequency compo-convention(2), but with all frequency components assumed
nents, and for clarity mention other conventions in commomonzero; in this case conventiof® and(3) are identical. A
use and how the resulting expressions differ from ours. Irsusceptibility involving a zero-frequency component, such as
Appendix C we detail the connection between x**(—w;w,0), is then obtained from, for example,
Y*Y(—w;w,0) and the usual electro-optic coefficient abc - abe
rab% ). On these matters various usages exist in the litera- XP—00,0= lim Y™~ w—wg;0,w0y).  (A6)

.. . wg—0

ture, often never explicitly defined. We endeavor here to
make our usage, and the way we interpret the quoted experBecause of the way the frequency components enter the ex-
mental results, as clear as possible. pression(A2) for E(t) in convention(2), we would physi-

It is useful to identify three conventions that can be usectally expect, for example, that

to introduce the frequency components of the fields. In the
first, lim x*°%(—2w; 0, @)= lim y**( - w;0,0), (A7)

w—0 w—0

APPENDIX A: SUSCEPTIBILITY CONVENTIONS

_ 1 . isis i
_ Na—iot]_ = Na-iwt and this is indeed found.
Bt wéo ReE(wi)e ] 2w§o SCO +EO), Turning now to expressions for the polarization in differ-
(A1) entnonlinear processes, in conventi@hwe have, from Eq.

where in the second expression generaly(— w;) (AS).

=E*(w;), and thusE(0) is taken to be real. Clearly in this P3(2w)=x?"Y —2w; w,w)EP(w)E%(w),

first convention the actual dc fiel&g., is just E4.=E(0).

The second convention corresponds to introdudifa;), P3(w+ wg) =2x3"(— w— wq; w,w) E’(0)ES(wy),
which are half those appearing in the first convention; here

the same electric fiel&(t) is written as P (@) =4x*" - 0;»,00E’(0)E%(0), (A8)

for second-harmonic generation, frequency mixing With
E(t)=2 >, R4E(w)e = >, E(wj)e ''+2E(0). wg), and the linear electro-optic effect, respectively. Here,
©;j=0 w;#0 and in such expressions below, only the Cartesian compo-
(A2) nents are summed over if repeated. Note that the expressions
we derive for y2°¢ can be used within conventiofi) by
simply replacing in Eq(A8) E(w;) by E(w;)/2, andP(w;)
by P(w;)/2. The effect is for the prefactof4,2,4 appearing
respectively in Eq(A8) to go over to §,1,2), the usual pre-
factors introduced in conventiofl). Within convention(3)
we have, instead of EGA8),

In this convention the actual dc field is given by
Eq4.=2E(0). Finally, one can adopt a third convention that
differs from the second only by the treatment of the field
component at zero frequency:

E)= 3 E(wpe " +E0)=3 Ewe .
| | (A3)

P(20w) = x?*Y —2w; w,w)E’(w)E%(w),

P w+wg)=2x*P"(—w—w ‘W, W E°(w)E%(w ,
Here E4.=E(0). We refer to the conventions identified by ( o) =2x"X 0 o) EX(@)Ex(wo)

Egs. (Al)—(A3),_ and the correspgnding expressions for P3(w)=2x2"%(— w; »,0)EP(w)ES(0). (A9)
P(t), as convention§l)—(3), respectively. o _

In all conventions the linear response is specified by ~ However, note that within either conventidg) or (3) we

may write
a _ .ab, . b
P (w)_XI ( C!),C!))E (C!)), (A4) Pa(2w)=)(abc(—2w;w,w)Eb(w)Ec(w),

where superscripts indicate Cartesian components and are to abe _ b .
be summed over if repeated. For nonlinear response we re- P (0+ @) =2x(— 0~ wo; 0,w0) E*(w)E*(wo),
strict ourselves for the moment to conventi@; we gener- a abe b .
ally follow the susceptibility notation of Boy#f adopting, PH@)=2x"(~ ;0,0 E(0)EY. (A10)
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That is, when the polarization is written in terms of the ac-means that, again fdtw, much less than electronic energy
tual dc fieldEg4, the prefactor for the electro-optic effect is scales but much larger than photon enerdiggscan be sim-
the same as the prefactor for frequency mixing. While it isply replaced by the mixing amplitudg(w,) in the expres-
often x2°Y(— w— wq; w,w,) that is essentially measured, it is sions we derive.

the wy—0 limit of this expressiony®°%(— w;®,0), that we

calculate, with lattice coordinates fixed. Howg much less

than the electronic energy scales but much larger than pho- AppENDIX B: SECOND-ORDER OPTICAL RESPONSE

non energies, these quantities can be expected to be essen-

tially identical. Most often quoted is an experimental result In this appendix we define the constituent terms given in
for the electro-optic coefficient®*“(w); in Appendix C we  Eq. (11) for both the SHG and LEO response functions. We
relatex®°%(— w; w,0) tor3®(w). Although we assume there note that all expressions explicitly satisfy intrinsic permuta-
a dc fieldEy. rather than a mixing fielE(wy), the fact that tion symmetry.

the prefactors in the last two of Eq§A10) are identical For the SHG susceptibility the terms are

ed dk rd froréy 2f f f
abc nmU ml' In nm ml In
—20;0,0)= 75 — + : B1
Xl ( 0iw,0) ﬁz%l f4773 (wln_wml) ( (wmn_zw) (wml_w) (wln_w)] ®D
e® [ dk f f foml 2
abc a b ¢ nl Im . nm' nm b .c
—2w;w, =—f— r Il - —8i ————{A [
i ( w,w (1)) ﬁZ 4773‘%' ®mn nm{ ml In}{ w|2n(w|n_w) wﬁql(wml_w)] % wrznn(wmn_zw){ mn mn}
foml 242 1S N wm— o
+22 nm nmi ml In}( ml In) , (BZ)
ami O @mn—2w)
ia3 a b .c
__abc/_ . — e dk fnm a b ,cy_ ar.b .c fr1mAnm{rmnrnm}
2w ay ( Zw'w'w) 2h7 471.? %I wm? n(wmn_ w) [wnlrlm{rmnrnl} wlmrnl{rlmrmn}]+% wm? n(wmn_ a)) '
(B3)
with all symbol definitions and conventions as detailed in Sec. Il, and where
ARm(K)=vRn(K) = v in(K). (B4)

For brevity, in the expression fof?°%(— 2w;w,») we have written the,, A,m. andw,, without the explicitk depen-
dence. The use of the curly brackets with the matrix elements implies a symmetrization with respect to the Cartesian
components{r o iy} = 3(r mir i+ i i)

For the LEO susceptibility, the constituent expressions are

3 a ,.c .b a .b .c a ,.c .b a ,.b .c
e dk f roml mif romf mif fair ol il L g el ¢
abc i nm nm' ml* In nm' ml' In nl" nm' mi' In ml' nm' ml' In
—0,0,00=553 — + , B5
X ) 2h %| 4w {(wmn_w) O)m o } (0= @)ooy, (‘Uml_w)wln] (BS)
- .3 a c
ie dk faml r J f
abc, . _ nm' nm mn nm a .b _,a b
i (- w00 28 T 4 [(‘Umn_w) wmn} +ﬁw<2(wmn_w)(rnmrnm;b an;brmn))]’ (59
iC

i ied [ dk [1 fomA2 f
ZO’ﬁbc(—w;w,O)Z f {EE &(rgmr?nn_rﬁmrfnn)_E - _)rﬁm;argm}a (B7)

2 3 2
2h 4 M Omn(®Omp— ) nm Omn(@mp— @

with the definitions

— [ (K)AS(K) + 15 (K)AD (K Omp(K)T (k)T 5(K) — @pn(K)T (KT pa(k)

)
o N
mc()= oK) P oK) ' (B8
(K] k) a1
wmn(k)};c= wmn(k) rmnm ‘Umn(k)} (Bg)
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Once again, we have not included the expliciiependence to first order. For crystal structures whet&® is diagonal,
of the rpm, Aym, and o, in the expressions for €2°(w)=6%e(w), Egs.(C2) and(C4) yield
x2°%(— w;w,0). All symbol definitions are identical to those
used in the linear and SHG response functions.
€ ()= 6*e(w) + 8772 XY — w;0,0)ES,,
APPENDIX C: LEO SUSCEPTIBILITY ¢

In this appendix we detail the connection between X , 1 abe .
x?°Y— w;0,0) and the usual electro-optic coefficient 7(w)= 8" ——+ 2 r¥%(w)ES.. (CH
abc, . . . . . 6((0) (o
r#*Yw). Proceeding with the nonlinear polarization leads,

with linear response, to a total displacement vector The second of Eq$C5) seems to be the universally accepted

definition of raﬁw) in the cgs units we are using at the
D¥w)= >, €®(w)E’(w)+47P3 () moment. Sincen?®(w) is the inverse ofe®®(w) and these
b equations only hold to lowest order Hy., we recover

= % ?b(a))Eb(a)), (Cy b . 62(w)rabC(w)
X (_“”“”O):_—sw , (C6)
where Py, (w) is given by the last of EqSA10), and the

effective dielectric function the desired relation. We note that the above expression is in

cgs units. The equivalent expression in Sl units is
€ ®(w)=eP(w)+87Y, XY~ w,w,0ES. (C2
c abe . ~ Ef(w)rab(:(w)
Defining the impermeability tensoj®®(w) as the inverse of XA~ w00=- D (€7
Gab((u),
the previously quoted resifit;e, (w) is the relative dielectric
> 72 w)eP(w)= 8%, (c3)  constant. If we make the approximatief(w) =n?(w), then
b Eqg. (C7) becomes

and likewise fory?®(w) ande®(w), the electro-optic coef- 4 abe
ficient relates the change in?® to the dc field, N*(w)r**Yw)

X~ 0;0,0)=- >

(C8)

73 w) = 72%(w) + abe(y)ES C4
7@ =7 @) zc: o) B e €4 wheren(w) is the index of refraction.

1J. R. Chelikowsky and M. L. Cohen, Phys. Rev. 1B, 556  8Z. H. Levine and D. C. Allan, Phys. Rev. 84, 12 781(1991).

(1976. 197 H. Levine, Phys. Rev. B9, 4532(1994.
2C. S. Wang and B. M. Klein, Phys. Rev. B, 3417(1981). 20\ .-Z. Huang and W. Y. Ching, Phys. Rev. 45, 8738(1992.
3D. J. Moss, E. Ghahramani, J. E. Sipe, and H. M. van Driel, Phys.21M.-Z. Huang and W. Y. Ching, Phys. Rev. &, 9464(1993.
Rev. B34, 8758(1986. 22\W. Y. Ching and M.-Z. Huang, Phys. Rev. &, 9479(1993.
4S. Adachi, Phys. Rev. B5, 7454(1987. 23D, J. Moss, J. E. Sipe, and H. M. van Driel, Phys. Rev3®
5M. Alouani, L. Brey, and N. E. Christensen, Phys. Rev3RB 9708(1987).
1167(1988. 24D, J. Moss, E. Ghahramani, J. E. Sipe, and H. M. van Driel, Phys.
67. H. Levine and D. C. Allan, Phys. Rev. Le@3, 1719(1989. Rev. B41, 1542(1990.
"G. E. Engel and B. Farid, Phys. Rev.48, 15 812(1992. 25E. Ghahramani, D. J. Moss, and J. E. Sipe, Phys. ReA8 B990
8M.-Z. Huang and W. Y. Ching, Phys. Rev. &, 9449(1993. (1991).
R. Del Sole and R. Girlanda, Phys. Rev4B, 11 789(1993. 26 Ghahramani, D. J. Moss, and J. E. Sipe, Phys. Rei8,B700
10¢C -C. Shih and A. Yariv, Phys. Rev. Lett4, 281(1980. (1991).
A, Hernandez-Cabrera, C. Tejedor, and F. Meseguer, J. AppE’D. J. Moss, E. Ghahramani, and J. E. Sipe, Phys. Status Solidi B
Phys.58, 4666(1985. 164, 587 (199)).
125, Adachi, J. Appl. Phys72, 3702(1992. 28], E. Sipe and E. Ghahramani, Phys. Rev@11 705(1993.
13C. Y. Fong and Y. R. Shen, Phys. Rev.1B, 2325(1975. 29C. Aversa and J. E. Sipe, Phys. Rev5B 14 636(1995.
1“4 -R. Ma, S. T. Chui, R. V. Kasowski, and W. Y. Hsu, Opt. 30A. Dal Corso and F. Mauri, Phys. Rev. 8, 5756 (1994).
Commun.85, 437 (1991). 31H. Krakauer, M. Posternak, and A. J. Freeman, Phys. Rel9,B
5B, F. Levine, Phys. Rev. B, 2600(1973. 1706(1979.
18M. M. Choy, S. Ciraci, and R. L. Byer, |IEEE J. Quantum Elec- 32E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys.
tron. 11, 40 (1975. Rev. B24, 864 (198)).

177 H. Levine and D. C. Allan, Phys. Rev. Le@6, 41 (199)). B8R, W. Boyd, Nonlinear Optics(Academic, San Diego, 1992



53 CALCULATION OF SECOND-ORDER OPTICAL RESPONSHIL. . . 10763

343, P. Perdew and M. Levy, Phys. Rev. L&, 1884(1983. S6A. Borghesi and G. Guizzetti, irlandbook of Optical Constants
35, J. Sham and M. Schiuter, Phys. Rev. L&t, 1888(1983. of Solids edited by E. D. PaliKAcademic, New York, 1985 p.
%M. S. Hybertsen and S. G. Louie, Phys. Rev. L&®, 1418 445,
(1985. 57E. Ghahramani and J. E. Sipe, Appl. Phys. L&#.2421(1994.
37M. S. Hybertsen and S. G. Louie, Phys. Rev3® 5390(1986. ng. A Roperts, IEEE J. Quantum Electrd2B, 2057(1992.
33, B. Zhanget al, Phys. Rev. B40, 3162(1989. 60B. F. Levine and C. G. Bethea, Appl. Phys. L&, 272(1972.
5. J. Jenkins, G. P. Srivastava, and J. C. Inkson, Phys. Reg, B R- C. Miller, Appl. Phys. Lett5, 17 (1964 _
4388(1993. I. P. Kaminow and E. H. Turnetlandbook of Laser§Chemical

“°G. E. Engel, B. Farid, C. M. M. Nex, and N. H. March, Phys. , Rubber, Cleveland, OH, 197 1p. 447.
Rev. B44, 13 356(1991). F. G. Parsons and R. K. Chang, Opt. Comm®n173(1971).

63 ;

41R . Del Sole, L. Reining, and R. W. Godby, Phys. Rei®8024 Dés'z?t(k‘llg”% A. J. Schmidt, and Y. R. Shen, Phys. Revl1B
(1994. 64 ' -

42y, G. Aulbur, L. Jonsson, and J. W. Wilkianpublishest R. K. Chang, J. Ducuing, and N. Bloembergen, Phys. Rev. Lett.

15, 415(1965.
43
X. Gonze, P. Ghosez, and R. W. Godby, Phys. Rev. [&lf. 65 p Berseth, C. Wuethrich, and F. K. Reinhart, J. Appl. Phys.

4424?435619'95' d D. C. Allan, Phys. R 4187(1 7, 2821199,
45 - Levine an - C. Allan, Phys. Rev. &3, 4187(1991). 86y, V. Shaldin and D. A. Belogurov, Kvant. ElektrofMoscow
J. Chen, Z. H. Levine, and J. W. Wilkins, Phys. Rev.5B, 3, 1660(1976 [Sov. J. Quantum Electro, 897 (1976)].
11 514(1994. 57T, E. Walsh, RCA Rev27, 323(1966.
46, Flytzanis, inQuantum Electronicsedited by H. Rabin and C. 88N syzuki and K. Tada, Jpn. J. Appl. Phy8 291 (1984.
L. Tang (Academic, New York, 1976 Vol. IA, p. 9. ®9N. Suzuki and K. Tada, Jpn. J. Appl. Phy8, 1011(1984.
47J. Rath and A. J. Freeman, Phys. Rev1B 2109(1975. 703, Faist and F. K. Reinhart, J. Appl. Phg, 7006 (1990.

48G. Lehmann and M. Taut, Phys. Status Solid6& 469(1972.  "*M. Sugie and K. Tada, Jpn. J. Appl. Phys, 421 (1976.
49D, J. Moss, J. E. Sipe, and H. M. van Driel, Phys. Rev3® 2p. Yariv, C. A. Mead, and J. V. Parker, IEEE J. Quantum Elec-

1153(1987). tron. 2, 243 (1966.
50H. R. Philipp and H. Ehrenreich, Phys Rex29, 1550(1963. W. D. Johnston, Jr. and I. P. Kaminow, Phys. R&88 1209
51D, E. Aspnes and A. A. Studna, Phys. Rev2R 985 (1983. (1969.

5235, Adachi,GaAs and Related Materials: Bulk Semiconducting “I. P. Kaminow, IEEE J. Quantum Electrof,. 23 (1968.
and Superlattice Propertie$World Scientific, Teaneck, NJ, "°G. L. Herrit and H. E. Reedy, iDptical Materials: Processing

1994. and Scienceedited by D. B. Poker and C. Ortiz, MRS Symposia
53p. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Proceedings No. 15PMaterials Research Society, Pittsburgh,
Phys. Rev. B35, 9174(1987. 1989, p. 169.
S4E. Ghahramani, Ph.D. thesis, University of Toronto, 1990. 78D, F. Nelson and E. H. Turner, J. Appl. Phy8, 3337(1968.

SSE. D. Palik, inHandbook of Optical Constants of Soljdsdited  ’’Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A.
by E. D. Palik(Academic, New York, 1985 p. 429. Chirakadze, J. Phys. D2, 682(1989.



