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We present a first-principles calculation of two second-order optical response functions as well as the
dielectric function for GaAs and GaP. Specifically, we evaluate the dielectric functione(v) and the second-
harmonic generation response coefficientx (2)(22v;v,v) over a large frequency range. The electronic linear
electro-optic susceptibilityx (2)(2v;v,0) is also evaluated below the band gap. These results are based on a
series of self-consistent LDA calculations using the full-potential linearized augmented plane wave method.
Self-energy corrections are included at the level of the ‘‘scissors’’ approximation, which corrects for the
underestimation of the local density approximation band gap and produces a change in the velocity matrix
elements. The analytic expressions for the second-order response functions are free of the unphysically diver-
gent terms at zero frequency that have previously plagued such calculations. Results forx (2)(2v;v,0) are in
good agreement with experiment below the band gap and those forx (2)(22v;v,v) are compared with
experimental data where available. We note that despite the equivalence of both of these second-order response
functions at zero frequency, there seems to be some discrepancy between the experimental results for these
functions in this regime.

I. INTRODUCTION

While there have been many empirical andab initio full
band structure calculations of linear optical response in
semiconductors,1–9 there have been very few calculations of
the nonlinear response. The understanding and calculation of
the linear electro-optic~LEO! susceptibility has lagged be-
hind the experimental studies, with most theoretical calcula-
tions based on simple phenomenological models.10–12Of the
other second-order susceptibilities, most theoretical calcula-
tions have been concerned with second-harmonic generation
~SHG!,13,14 and many of these have been restricted to a de-
termination of the response function at zero frequency.15–19

To our knowledge the only attempts at calculating nonlinear
response functions over a wide frequency range are the work
of Huang and Ching20–22 and that of Moss and
co-workers.23–27 As we discuss below, both of these ap-
proaches have certain limitations.

In this paper we present the results for the SHG and LEO
response functions, as well as the dielectric function for
GaAs and GaP over a wide frequency range. Since our in-
terest is in the electronic aspects of optical response, we
calculate the LEO response function in the ‘‘clamped lat-
tice’’ approximation; our results are then suitable for com-
parison with experiments involving ‘‘dc-like’’ fields at low
enough frequencies that electronic dispersion associated with
the dc-like field can be neglected, but at high enough fre-
quencies that lattice motion can be considered frozen out.

The analytic expressions for the nonlinear response func-
tions are based on the formalism of Sipe and Ghahramani,28

as extended and developed in the length gauge by Aversa
and Sipe;29 the response calculation is at the level of the
independent particle approximation. This approach has the
advantage that the response coefficients are inherently free of
any unphysical divergences at zero frequency, a consequence
of a careful treatment and separation of interband and intra-
band motion. ‘‘Sum rules’’ are not required to eliminate ar-

tificial divergences. The recent work of Dal Corso and
Mauri,30 based on an elegant Wannier function approach, is
also free of such divogences. But at finite frequency, in par-
ticular, for frequencies or frequency sums across the gap, we
feel that any approach easily amenable to numerical analysis
will likely involve a k-space focus such as that adopted ex-
plicitly in this work, simply because the resonances at any
given frequency occur in localized regions ofk space.

The full band structure calculation in this work utilizes
the full-potential linearized augmented plane wave
~FLAPW! method31,32within the local density approximation
~LDA !. This method has an advantage over that employed by
Moss and co-workers23–27 in that it is first principles rather
than semiempirical in nature. We have adopted a ‘‘scissors’’
approximation to correct for the band gap, but account for
the change in the velocity matrix elements that appear in the
response function expressions. Huang and Ching20–22neglect
this modification in the matrix elements; based on previous
evidence,18 and the results of our own calculations, this can
result in a significant error in the determination of the re-
sponse functions. We have not included local field effects in
this work; as suggested by the work of Levine and Allan,18

we do not expect significant corrections for the materials
considered here at the level of second-order response. How-
ever, the inclusion of local field effects can be done in a
straightforward way within our formalism for the response
functions.

The paper is organized in the following way. In Sec. II we
present the analytic expressions for the linear and nonlinear
response functions, and discuss the scissors approximation
and its implementation. We outline the FLAPW method and
the calculational technique used in determining the nonlinear
coefficients in Sec. III. The band structures for the materials
considered are also presented in this section. In Sec. IV we
give our results for linear response, the SHG coefficient, and
the LEO function. The comparison with experiment and
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other theoretical calculations is also investigated and dis-
cussed. A conclusion and summary of our results are pre-
sented in Sec. V.

II. ANALYTIC EXPRESSIONS FOR OPTICAL RESPONSE

A. Response functions

We begin with results that follow directly from the inde-
pendent particle approximation; in the following subsection
we describe the modifications that must be made to imple-
ment the ‘‘scissors’’ approximation.

To establish our convention for the optical susceptibili-
ties, we define the electric field and the polarization in terms
of their frequency components as

E~ t !5(
n

E~vn!e
2 ivnt, ~1!

P~ t !5(
n

P~vn!e
2 ivnt, ~2!

where the summation extends over positive and negative fre-
quenciesvn . We adopt the convention that a zero-frequency
component is to be included twice in the sums of Eqs.~1!
and ~2!; then 2E(0) is the actual value of the dc electric
field. For completeness and clarity, we discuss matters of
convention and definition in more detail in Appendix A.

At the level of linear response the polarization is given in
terms of the electric field by28

Pa~v!5x I
ab~2v;v!Eb~v!, ~3!

where superscripts indicate Cartesian components and are to
be summed over if repeated; the linear susceptibility is given
by

x I
ab~2v;v!5

e2

V\(
nmk

f nm
r nm
a ~k!rmn

b ~k!

vmn~k!2v
. ~4!

Here and below n,m, etc., label energy bands;
f mn[ f m2 f n , with f i the Fermi occupation factor which, for
the clean, cold semiconductors we study here, is zero or
unity. The wave vectorsk range over the Brillouin zone,
spaced as required by the normalization volumeV. The fac-
tor of two to account for spin degeneracy is not included in
Eq. ~4! or any subsequent equation involving a summation
over k; spin degeneracy is accounted for in all expressions
below where the summation overk has been converted to an
integral. The frequency differencesvmn(k)[vm(k)
2vn(k),where \vn(k) is the energy of bandn at wave
vector k; frequenciesv such as that appearing in the de-
nominator of Eq.~4! should be interpreted asv1 i01, where
01 is a small positive quantity that is allowed to vanish at the
end of the calculation. Finally, thermn are the matrix ele-
ments of the position operator, excluding the diagonal part;
for vnmÞ0 we have

r nm
a ~k![

vnm
a ~k!

ivnm
, ~5!

wherevnm
a (k)5m21pnm

a (k), m is the free electron mass, and
pnm is the indicated momentum matrix element.

The dielectric functioneab(v)[114px I
ab(2v;v), and

so the usual expression for the imaginary part ofeab(v),
e2
ab(v), follows from Eq.~4!,

e2
ab~v!5

e2

\p(
nm

E dk f nm
vnm
a ~k!vmn

b ~k!

vmn
2 d„v2vmn~k!…,

~6!

where we have converted to an integral over the Brillouin
zone.

For the second-order response we generally follow the
susceptibility convention of Boyd.33 Then a nonlinear polar-
ization component is related to the electric field by

Pa~vb1vg!5xabc~2vb2vg ;vb ,vg!Eb~vb!Ec~vg!,
~7!

wherexabc indicates the second-order susceptibility. Carte-
sian components are again summed over if repeated, as are
frequency componentsvb andvg , but only such that the
sum (vb1vg) is held fixed; the susceptibilities are taken to
satisfy intrinsic permutation symmetryxabc(2vb2vg ;
vb ,vg)5xacb(2vb2vg ;vg ,vb). In the specific case of
second-harmonic generation we have

Pa~2v!5xabc~22v;v,v!Eb~v!Ec~v!, ~8!

while for the linear electro-optic susceptibility we have

Pa~v!52xabc~2v;v,0!Eb~v!Edc
c , ~9!

whereEdc is the actual dc electric field. In expressions~8!
and ~9!, the only sum is of course over the Cartesian com-
ponents. We note that

lim
v→0

xabc~22v;v,v!5 lim
v→0

xabc~2v;v,0!, ~10!

a statement of the equivalence of the SHG and LEO suscep-
tibilities at zero frequency. This result, which is physically
expected and follows from our expression for the suscepti-
bilities ~see Appendix A!, will be relevant in the context of
the discussion of our results.

Thexabc in Eq. ~7! can generally be written in the form

xabc~2vb2vg ;vb ,vg!5x II
abc~2vb2vg ;vb ,vg!

1h II
abc~2vb2vg ;vb ,vg!

1
i

~vb1vg!
s II
abc~2vb

2vg ;vb ,vg!. ~11!

The first term in Eq.~11! represents the purely interband
contribution that would result if one thought of the system as
only a set of ‘‘effective’’ atoms labeled by their crystal mo-
menta. The second term describes the contribution from the
modulation of the linear susceptibility by the intraband mo-
tion of the electrons. The third term represents that portion of
the susceptibility resulting from the modification of the in-
traband motion by the polarization energy associated with
the interband motion. A more thorough analysis and inter-
pretation of these terms has already been presented.28 The
explicit definitions of the terms in Eq.~11! specific to the
SHG and LEO susceptibilities are given in Appendix B.

10 752 53JAMES L. P. HUGHES AND J. E. SIPE



B. ‘‘Scissors’’ approximation and implementation

While the Kohn-Sham equations form a fundamental
starting point for the determination of ground-state proper-
ties, the unoccupied conduction bands that are calculated
have no direct physical significance. Indeed, if they are used
naively as single-particle states in a calculation of optical
properties for typical semiconductors, the so-called ‘‘band-
gap’’ problem results: the absorption starts at much too low
an energy.2 At a basic level, many-body effects must be in-
cluded in calculating not only the ground-state properties but
the response to an applied perturbation;34,35 to do this, the
GW approximation for the self-energy operator has been em-
ployed by a number of workers.36–41 Instead of following
this route, we take the simpler approach of Levine and Allan6

and introduce a ‘‘scissors approximation’’ to account for the
self-energy effects. Although this technique is at best semi-
phenomenological, it rests on the fact that GW calculations
often indicate little change in the single-electron Green func-
tion even with the inclusion of many-body effects; only the
energy gap is significantly modified.37 Further, it has been
suggested recently that the scissors approximation can find
justification42 in the necessity of using a polarization-
dependent energy functional.43 Whatever the final verdict on
that proposal, our view is that the approach constitutes a
simple extension of a ground-state calculation that will allow
for relatively easy first investigations of linear and nonlinear
optical properties; within this spirit it has been used in a
number of calculations,6,17–19,44,45although we are among
the first to employ it in calculating the optical response over
a wide energy range.

A point that requires some degree of care is the appear-
ance of the scissors shift in the expressions for the linear and
nonlinear response. Actually, in the length gauge calculation
we use here the result is straightforward; but for comparison
with other work we briefly outline here the inclusion of the
scissors operator, and detail how from different perspectives
rather more complicated expressions can result, and have
appeared in the literature.18,45 In the length gauge, before the
scissors operator is included, the Hamiltonian from which
the response functions are calculated29 is given by

H5
p2

2m
1V~r !2er•E, ~12!

whereV(r ) is a periodic potential,r the position operator,

and the electric field isE52Ȧ/c. The simplest and most
obvious way to correct for the underestimation of the band
gap is to include in this Hamiltonian ak-independent energy
shift ‘‘projected’’ onto the conduction states.6 Within this
approximation the Hamiltonian takes the form

H̃5H1Vs , ~13!

with

Vs5D(
ck

uck&^cku, ~14!

where the sum inVs is over all k and conduction bands
c; D is the constant energy shift associated with the correc-
tion of the band gap; theuck& represent single-particle eigen-
states of the unperturbed Hamiltonian,H05p2/2m1V(r ).

The effect of the inclusion of the scissors operator within
our formalism is to modify the expressions for the response
functions in a straightforward way. As an illustration, we
consider the linear response coefficient. WithH̃ as the gov-
erning Hamiltonian, Eq.~4! becomes

x̃ I
ab~2v;v!5

e2

V\(nmk f nm
r nm
a ~k!rmn

b ~k!

vmn~k!1~D/\!~dmc2dnc!2v
, ~15!

where thec in the Kroneckerd ’s refers to a conduction state
and the tilde indicates that this coefficient is derived from
H̃. The form of this function is essentially identical to the
previous expression without the scissors operator. The only
change has been the modification of the energy difference,

vmn→vmn1
D

\
~dmc2dnc!. ~16!

An important point to note is that the matrix elements of the
position operator remain unchanged. This follows because
implicit in the approximation in Eq.~13! is the assumption
that the effective wave functions do not change when many-
body effects are included.37 This analysis has been carried
out for second-order response with the same result: the new
expressions are identical except for the change in thevmn as
described above.

In practice, one does not directly calculate the matrix el-
ements of the position operatorrnm , but rather the velocity
matrix elementsvnm . Consequently, a necessary step in the
conversion of the response function expressions to numeri-
cally amenable form is to make a correspondence between
these two different matrix elements. This correspondence is
affected by the inclusion of the scissors operator in our
Hamiltonian.

We first consider linear response in the absence of the
scissors operator. Thevnm are then determined from

v5
1

i\
@r ,H#, ~17!

with the result of Eq.~5! for the elements of the position
operator withvnmÞ0. In terms of thevnm(k), Eq. ~4! can be
written in the form

x I
ab~2v;v!5

e2

V\(
nmk

f nm
vnm
a ~k!vmn

b ~k!

vmn
2 @vmn~k!2v#

. ~18!

With the scissors operator included in the Hamiltonian, the
velocity operator changes. The equation for the modified ve-
locity becomes

ṽ 5
1

i\
@r ,H̃#5

1

i\
$@r ,H#1@r ,Vs#%, ~19!

from which we obtain the analog of Eq.~5!:

rnm5
ṽ nm

i @vnm1~D/\!~dnc2dmc!#
. ~20!
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Since thernm do not change when the scissors operator~14!
is included we can determine the relationship between the
velocity matrix elements with the scissors operator, and
those without. We find

ṽ nm5vnm
vnm1~D/\!~dnc2dmc!

vnm
. ~21!

It is now possible to write the linear response coefficient
within the scissors approximation in terms of the velocity
matrix elements, as was done in Eq.~18!. We use the corre-
spondence of Eq.~20! to write

x̃ I
ab~2v;v!

5
e2

V\(
nmk

f nm
ṽ nm

a ~k! ṽmn
b~k!

@vmn~k!1~D/\!~dmc2dnc!2v#

3
1

@vmn1~D/\!~dmc2dnc!#
2 . ~22!

Yet, in order to actually calculate this coefficient we need to
have it expressed in terms of the unmodified velocity matrix
elements, the matrix elements we obtain from the LDA cal-
culation. To do this we use Eq.~21! and write Eq.~22! as

x̃ I
ab~2v;v!

5
e2

V\(
nmk

f nm
vnm
a ~k!vmn

b ~k!

vmn
2 @vmn~k!1~D/\!~dmc2dnc!2v#

.

~23!

As can be seen from the above equation, the linear response
function within the scissors approximation is no more com-
putationally difficult to calculate than that without the scis-
sors approximation@Eq. ~18!#. Note that Eqs.~15!, ~22!, and
~23! are all equivalent, and that Eq.~23! follows directly
from Eq. ~15! by the use of Eq.~5!. Furthermore, the ap-
proach taken in deriving Eq.~23! is easily extended to
higher-order response functions; we find that, as for linear
response, the extension of a response coefficient expression
to the scissors approximation consists of two steps: First the
function, written using the matrix elements of the position
operator, is modified as indicated by Eq.~16!. Second, we
need only use Eq.~5! to write the response function in terms
of vnm(k), producing the analog of Eq.~23!, to make it suit-
able for numerical evaluation.

We note that the result in Eq.~23! is essentially equiva-
lent to that introduced by Del Sole and Girlanda,9 and Levine
and Allan.6,18,44 However, Del Sole and Girlanda restrict
their discussion to linear response, where we have extended
this approach to any higher-order response function. Levine
and Allan do treat second-order susceptibilities within the
scissors approximation but do so in a way specific to their
formalism for nonlinear response. Our approach for the scis-
sors operator, although equivalent, is a general extension of
this previous work applied to our formalism.

III. METHOD OF CALCULATION

A. FLAPW method

In order to determine the optical response functions in a
full band structure approach, one requires the eigenvalues
and velocity matrix elements at manyk points in the Bril-
louin zone~BZ!. The velocity matrix elements, in turn, re-
quire a knowledge of the electronic wave functions. For this
purpose, we employ a first-principles approach in the form of
the FLAPW method. As this method has been previously
discussed,31,32 we highlight only a few of its pertinent fea-
tures.

The spirit of the FLAPW approach is the partitioning of
real space within a crystal into two distinct regions: ‘‘muffin-
tin’’ spheres surrounding the atomic positions, and the re-
maining interstitial space. The electronic wave functions
then have a dual representation over all space, consisting of
an expansion of solutions of the Schro¨dinger equation and its
energy derivative in the muffin-tin spheres, and plane waves
in the interstitial region. We rely on the LDA for the one-
electron exchange-correlation potential. Prior to determining
the electronic structure and wave functions atk points of
interest in the BZ, we converge the charge density in the
crystal in a series of self-consistent calculations. This con-
vergence process involves all electrons, and so the valence
and core electronic states are recalculated for each iteration.

In the calculation of the electronic band structure of GaAs
and GaP we have used the Wigner interpolation method as a
means of determining the one-electron exchange-correlation
potential. Spin-orbit and scalar relativistic effects are in-
cluded in both calculations. We present in Fig. 1 the band
structures for GaAs and GaP. In both band structures we

FIG. 1. FLAPW electronic band structures for GaAs and GaP.
The fundamental band gap has been adjusted within the scissors
approximation.
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have adjusted the band gap to agree with experiment using
the scissors approximation, as discussed in the previous sec-
tion.

B. Response functions

The evaluation of each of the response functions is carried
out in a slightly different way, but there are some general
considerations that need to be addressed in all cases. One
necessary step in evaluating optical response is the reduction
of the analytic expressions for the susceptibilities to ones
suitable for computation. The details of this procedure for
each of the response functions are too long to present here,
but we will outline the general approach.

The expressions for the susceptibilities are first written in
terms of the velocity matrix elements rather than the matrix
elements of the position operator and converted to an integral
over the BZ rather than a sum overk. If the response func-
tion is sought above the band gap, the imaginary part is
extracted, for which there is ad function present in the inte-
grand; in the case of cubic symmetry some further simplifi-
cations can be made to the second-order susceptibilities.

For linear response we evaluate the imaginary part of the
dielectric function given in Eq.~6!, which is already in a
form amenable to computation. We obtain the real part of the
dielectric function by using the Kramers-Kronig relation.
The SHG response function, as given in Appendix B, re-
quires some manipulation prior to being calculated. Again,
since we seek the response above and below the band gap,
we evaluate the imaginary part and obtain the real part from
the Kramers-Kronig relation for this function.46 The LEO
susceptibility is evaluated below the band gap only, where it
is of primary interest, and so we calculate it directly in this
energy regime.

We use the symmetry of the crystal to reduce the integra-
tion over the BZ to one over the irreducible segment of the
BZ ~IBZ!. This is done by applying the operatorsPR of the
group elementsR of the symmetry groupTd ~applicable for
the semiconductors considered here!, to the expansion dy-
adics of the response tensor. For linear response, we consider
the dielectric tensor

eJ2~v!5(
ab

âb̂e2
ab, ~24!

and after applying the operatorsPR we obtain

(
R

PR~ x̂x̂!5(
R

PR~ ŷŷ!5(
R

PR~ ẑẑ!581I,

(
R

PR~ âb̂!50, iÞ j , ~25!

where 1I is the identity tensor. Thus only the diagonal ele-
ment survives, as is well known. With the use of these sym-
metry elements and the inversion symmetry of the BZ, the
integration overk can be restricted to the IBZ only.

For second-order optical response we proceed in the same
way. We write the SHG susceptibility as

xJ~22v;v,v!5(
abc

âb̂ĉxabc~22v;v,v!, ~26!

and applying the operatorsPR we find

(
R

PR~ x̂ŷẑ!54~ x̂ŷẑ1 ŷx̂ẑ1 x̂ẑŷ1 ŷẑx̂1 ẑx̂ŷ1 ẑŷx̂!,

(
R

PR~ âb̂ĉ!50, a,b,c not all different. ~27!

It can be seen from Eq.~27! that there is only one indepen-
dent component for the SHG susceptibility that we take to be
xxyz; the same result follows for the LEO susceptibility.

In the evaluation of all the response functions, the essen-
tial task becomes the integration of a function over the IBZ.
This we do in a ‘‘hybrid’’ random sampling-tetrahedron
method. We partition the IBZ into many small tetrahedra, at
whose vertices we evaluate the eigenvalues and velocity ma-
trix elements based on results from the FLAPW calculations.
We then ‘‘linearize’’ the energy differencesvnm as well as
the matrix element product in the integrand of the response
function. Although it has been suggested that the matrix el-
ements can be taken to be constant over a tetrahedron,47 we
feel that the validity of this approximation becomes increas-
ingly questionable in the complicated products of these ma-
trix elements found in the higher-order susceptibilities. Hav-
ing linearized these quantities over a tetrahedron, we then
sample a large number of randomly chosen points within a
given tetrahedron and at each evaluate the integrand. This
approach has the advantage of being much easier to imple-
ment than the linear-analytic tetrahedron method,48 which
becomes complicated for nonlinear response functions.49

In the calculation of all the susceptibilities, we directly
evaluate the velocity matrix elements and eigenvalues from
the FLAPW calculation at 1365k points in the IBZ; this
corresponds to the partitioning of this region into 5184 tet-
rahedra. We have further partitioned the region around the
G point into 3993 smaller tetrahedra, which requires the ma-
trix elements and eigenvalues at 1092k points. The reason
for this finer mesh of points near theG point is that we have
found that there is some sensitivity in the nonlinear response
functions to numerical approximations in this region.19,24

The susceptibilities calculated from this number ofk points
are only marginally different from a calculation involving
only half this number. On this basis, it is clear that our cur-
rent calculation should suffer only a limited numerical error
using this particular integration scheme.

IV. RESULTS AND DISCUSSION

In Fig. 2 we present our results for the imaginary part of
the dielectric function,e2(v), for GaAs and GaP. The ex-
perimental results of Philipp and Ehrenreich,50 and Aspnes
and Studna51 are included for comparison. The main features
of the linear response function can be attributed to the same
regions of the electronic band structure for both materials.
These features are largely governed by the joint density of
states, whose structure is associated with those regions in the
band structure for which pairs of bands are essentially paral-
lel. In particular, using the terminology specific to zinc-
blende semiconductors,52 we can identify the dual peak
structure at low energy with theE1 andE11D1 transitions.
The main peak and the slight shoulder to the left of this peak
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are due to theE2 andE08 transitions, respectively. Finally,
the high-energy feature in the spectrum is attributed to the
E18 optical transition.

It is evident from Fig. 2 that our calculation predicts the
peak positions higher in energy than those in the experimen-
tal results. Allab initio calculations share a difficulty in cor-
rectly predicting both the band gap and the peak positions in
the linear response spectrum. The original first-principles
work of Wang and Klein2 employed the LDA and achieved
some agreement in peak positions, but underestimated the
fundamental band gap. A rigid adjustment of the electronic
structure calculated by Wang and Klein, following the scis-
sors approximation adopted here, would result in a similar
mispositioning of the location of the peaks in the linear re-
sponse function. The more recent work of Huang and
Ching21,20 using the orthogonalized linear combination of
atomic orbitals method for the electronic structure calcula-
tion and a scissors correction, has obtained only limited
agreement with experiment for the dispersion of the dielec-
tric function. Alouani, Brey, and Christensen5 have achieved
some success lately in calculating linear response for GaAs,
accurately predicting both the band gap and the dispersion in
e2(v). Their method involves adding in sharply peaked po-
tentials within their LDA framework in such a way that the
low band gap is suitably ‘‘compensated.’’ Although arguably
no more phenomenological than the simple scissors approxi-
mation we employ here, its ultimate justification and exten-
sion to a more fundamental level is perhaps less clear.

We make two further comments concerninge2(v): First,
the intensity of the peaks in the calculated function is over-
estimated in part due to the exclusion of the effects of a finite
relaxation time. Second, the experimental results in Fig. 2

are taken at room temperature; experimental work suggests
that peak positions shift to higher energy at lower
temperatures.53 A shift of approximately 0.1 eV could be
expected for equivalent results at low temperature, which
would be more appropriate for comparison with this zero-
temperature theoretical work. Yet it is clear that the
k-independent rigid shift in the conduction states with the
corresponding modification of the response function expres-
sion achieves only reasonable accuracy in the dispersion of
the dielectric function.

We note that there has been some recent success at the
level of linear response in work based on quasiparticle cal-
culations that treat the self-energy corrections more
carefully.7 As our emphasis is on the nonlinear optical re-
sponse, we feel that the scissors approach is an appropriate
compromise between computationally amenable calculations
and accurate results.

The results for the imaginary part of the SHG susceptibil-
ity, Im$xxyz(22v;v,v)%, are plotted in Fig. 3. Although
this part of the response function cannot be directly com-
pared with experiment, it can be more meaningfully related
to the band structure than canuxxyz(22v;v,v)u, to which
experiments are more directly sensitive. The structure in
Im$xxyz(22v;v,v)% can be attributed to the same general
regions in the band structure for both GaAs and GaP. The
onset of the function occurs at the 2v resonance with the
E0 optical transition. The first peak is associated with the
2v resonance with theE1 and E11D1 optical transitions.
The second structure in the function for the most part arises
from the 2v resonance withE08 . The complicated structure
in the region between 3 and 4 eV is associated with an in-

FIG. 2. Results for the calculated imaginary part of the dielectric
function, e2(v) ~solid line!, for GaAs and GaP. Energy bin size is
0.05 eV. Experimental results~dotted line! are from Philipp and
Ehrenreich~Ref. 50!, and Aspnes and Studna~Ref. 51!.

FIG. 3. Plot of Im$xxyz(22v;v,v)% for GaAs and GaP. The
energy bin size is 0.05 eV.
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terference between anv resonance with theE1 transition and
a 2v resonance with theE2 and E18 transitions, while the
structure between 5.0 and 5.5 eV is due mainly to thev
resonance with theE2 optical peak.

Our results for the imaginary part of the SHG susceptibil-
ity show important differences from those of Huang and
Ching,20,21although there are some similarities in the shapes
of the calculated functions. It is important to note that their
failure to adjust the velocity matrix elements after rigidly
shifting the conduction states to higher energy can result in
an appreciable error in their reported values. Levine has sug-
gested that their results could be underestimated by up to a
factor of two;18 this has been corroborated by our own inves-
tigations, comparing calculations with and without the ma-
trix elements appropriately modified. The results of Ghahra-
mani et al.26,54 are closer to ours, despite the differences in
approach to the calculation of the electronic band structure.
They employ a semi–ab initio minimal-basis linear combi-
nation of Gaussian orbitals~MLCGO! method.

The absolute value of the SHG susceptibility is plotted in
Fig. 4 for GaAs and Fig. 5 for GaP. Experimental data at
energies above the gap are very scarce for the materials con-
sidered here. The only data we are aware of are for GaAs,
and these are plotted in Fig. 4. The experimental results seem
largely contradictory and any serious comparison would re-
main inconclusive.

There is a considerable amount of data available for the
LEO susceptibility and, as the chief interest is in the region
below the band gap, we have concentrated our investigation
to this regime. Two main issues must be addressed, however,
in order to make a suitable comparison of our results to the
experimental data. The first is that we require an expression
that relates the experimentally measured LEO coefficient
r xyz(v) to our calculated LEO susceptibility
xxyz(2v;v,0); although straightforward, to avoid confusion
this is presented in Appendix C. A second issue in the com-
parison to experiment is that our calculated quantity is in fact
the electronic or ‘‘clamped’’ LEO susceptibility. Some of the

experimental data are in terms of the unclamped values and
so must be modified to yield the corresponding clamped
LEO coefficient values. To do this we use the compilation of
experimental coefficients presented by Adachi,52 where esti-
mates of the clamped values are given for those experiments
that determined only the unclamped values.

In Fig. 6 and Fig. 7 we plotxxyz(2v;v,0) for GaAs and
GaP in pm/V, as this is the more commonly quoted unit in
the literature. We have also plotteduxxyz(22v;v,v)u on the
same graph, for a purpose discussed below. The experimen-
tal data are presented for comparison. To generate the experi-
mentalxxyz(2v;v,0) we have used Eq.~C8! with the ex-
perimentally measured LEO coefficientr abc(v) and the
index of refraction from Palik.55,56

The results of our calculation are in good agreement with
experiment over a large range of frequencies. This agreement
is somewhat better for GaAs than for GaP, but given the

FIG. 4. Absolute value of the SHG susceptibility,
uxxyz(22v;v,v)u ~solid line!, for GaAs. Experimental results are
as follows: Parsons and Chang~Ref. 62! ~dotted line!; Bethune,
Schmidt, and Shen~Ref. 63! ~dashed line!, and Chang, Ducuing,
and Bloembergen~Ref. 64! ~crosses!.

FIG. 5. Absolute value of the SHG susceptibility,
uxxyz(22v;v,v)u ~solid line!, for GaP.

FIG. 6. Plot of second-order optical response in GaAs below the
fundamental band gap: LEO susceptibilityxxyz(2v;v,0) ~solid
line! and the absolute value of the SHG susceptibility
uxxyz(22v;v,v)u ~dotted line!. Experimental results for the
LEO effect ~solid circles! are from 65–75 as compiled by Adachi
~Ref. 52!.

53 10 757CALCULATION OF SECOND-ORDER OPTICAL RESPONSE IN . . .



complexity of this calculation we feel it is nonetheless quite
satisfactory. As we have previously discussed, our calcula-
tion is based on a formalism that is well behaved at low
frequencies, so the results are believable in the energy re-
gime presented in Figs. 6 and 7. To our knowledge this is the
first ab initio calculation of the LEO susceptibility for GaAs
and GaP. Ghahramani and Sipe have presented the LEO sus-
ceptibility for GaAs based on a semiempirical MLCGO
calculation,57 employing the same nonlinear response for-
malism given here. Our results are close to this previous
work, although we obtain better general agreement with the
experimental data for all energies. Various other theoretical
calculations of the LEO coefficient have been presented, but
these are phenomenological in nature and will not be dis-
cussed here.10–12

As there is considerable interest in the optical response at
low frequencies, we have presented in Table I our results for
the dielectric constant, the SHG susceptibility, and the LEO
~clamped lattice! susceptibility for GaAs and GaP at zero-
frequency. We have included for comparison other theoreti-
cal calculations, and experimental results. For linear re-
sponse our agreement with experiment is excellent for both
materials. We recognize that this may be somewhat fortu-
itous, given the comparison of our results with experiment
over a broad frequency range. A shift of our calculated peaks
in e2(v) to lower energies, towards the experimental peaks,
would result in a higher calculatede(0); this would be partly
offset by the inclusion of local field effects, which have been
shown to reduce the zero-frequency result for the materials
considered here.18

The results forxxyz(0) require more discussion, in light
of the wide range of values that appears. We first recall, as
noted in Sec. II@see Eq.~10!# that the SHG and LEO
~clamped lattice! susceptibilities are equal at zero frequency.
This is not only a numerical result of the present calculation:
We have shown this analytically within our formalism, and
in any case it would be expected on physical grounds. Yet

there is significant disagreement between the experimental
results for the zero-frequency SHG and LEO susceptibilities.
This disagreement does not seem to have been fully appre-
ciated.

Our calculated results are in closest agreement with the
MLCGO calculation of Ghahramaniet al.26,54We note that
their calculation and ours are completely independent and
are based on markedly different approaches to the determi-
nation of the electronic structure and the velocity matrix el-
ements. The orthogonalized LCAO calculation of Huang and
Ching21 leads to a much higher result forxxyz(0) than the
present work. And, as we have previously discussed, we be-
lieve that they require an adjustment of their velocity matrix
elements in accordance with their scissors shift. With such an
adjustment their value forxxyz(0) would be raised even
higher, exceedingly high in comparison with other theoreti-
cal calculations and with experimental values. Levine has
presented the most comprehensive work below band-gap en-
ergies of which we are aware.19 But his formulation of the
SHG susceptibility is drastically different from that used
here, and thus it is unfortunately difficult to identify the rea-
sons for the disparity between the results.

Yet we note that our calculated results are in extremely
good agreement with the LEO experimental results. Given
that various LEO experiments done recently seem to cor-
roborate each other, we would suggest that this gives strong
support to the value ofxxyz(0) we have calculated here. As
to its disagreement with the SHG experimental results, we
note that the values given in Table I are from Roberts,58 who
revised the original values of Levine and Bethea.59 Their

FIG. 7. Plot of second-order optical response in GaP below the
fundamental band gap: LEO susceptibilityxxyz(2v;v,0) ~solid
line! and the absolute value of the SHG susceptibility
uxxyz(22v;v,v)u ~dotted line!. Experimental results for the LEO
effect are from Nelson and Turner~Ref. 76! ~open circles! and
Berozashviliet al. ~Ref. 77! ~solid circles!.

TABLE I. The linear and second order optical response in GaAs
and GaP at zero frequency. The results of the present calculation
~FLAPW! are compared with other theoretical calculations and ex-
perimental data.

xxyz(0) ~pm/V!

Material Method e(0) SHG LEO

GaAs FLAPW 10.9 96.5 96.5
Pseudopotentiala 11.0 172

OLCAOb 11.21 251.3
MLCGO 104.3c 104.3d

Experiment 10.9e 162610f 99.8g

GaP FLAPW 9.0 50.3 50.3
Pseudopotentiala 8.8 75

OLCAOb 9.29 134.9
MLCGO 43.6c

Experiment 9.1h 7464f 44.3i

aLevine and Allan~Ref. 19!.
bHuang and Ching~Ref. 21!.
cGhahramaniet al. ~Refs. 26 and 54!.
dGhahramani and Sipe~Ref. 57!.
eReference 55.
fLevine and Bethea~Ref. 59! value at 0.117 eV, as revised by
Roberts~Ref. 58!.
gAverage of experimental values at 0.117 eV, from Adachi~Ref.
52!.
hReference 56.
iAverage of experimental values at 1.08 eV, from Adachi~Ref. 52!.
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experiments were conducted more than two decades ago, and
it is not clear these data should be given as much weight as
the much more recent and consistent work on the LEO sus-
ceptibilities in attempting to establish an experimentally de-
termined value ofxxyz(0). Certainly the discrepancy be-
tween the experimental results for the two equivalent
susceptibilities indicates that more recent experimental stud-
ies would be helpful in resolving this issue.

It is interesting in the context of the current calculation to
assess the validity of ‘‘Miller’s rule’’ based on our theoreti-
cal results. Miller proposed that the quantity

DM~v11v2!5
x~2!~2v12v2 ;v1 ,v2!

x~1!~v11v2!x
~1!~v1!x

~1!~v2!
~28!

is approximately constant for a wide range of noncentrosym-
metric materials, with little variation in frequency.60 As we
have calculated two second-order susceptibilities we can in-
vestigate Miller’sDM in both cases. We have for SHG,

DM
SHG~2v!5

xxyz~22v;v,v!

x~1!~2v!@x~1!~v!#2
, ~29!

a form specific to the zinc-blende materials considered here,
given that there is only one independent component for the
SHG susceptibility and equal diagonal components for
x (1). For the LEO effect, the corresponding quantity is

DM
LEO~v!5

xxyz~2v;v,0!

@x~1!~v!#2x~1!~0!
. ~30!

We plot in Fig. 8 both of these functions for GaAs and
GaP. Several comments can be made about our results for
Miller’s DM . First we note thatDM

SHG is equal toDM
LEO at

zero frequency. We would expect this result given the
equivalence of Eqs.~29! and ~30! at zero frequency if the
second-order susceptibilities are equivalent in this limit as

well. As can be seen in Fig. 8 there is a definite variation in
frequency for bothDM

SHG andDM
LEO. Both functions show an

increase with increasing frequency, althoughDM
LEO rises less

rapidly thanDM
SHG. The zero-frequency value ofDM for both

materials is remarkably similar; this corroborates Miller’s
original conjecture, but it is clear that an analysis of a wider
range of materials would be necessary to test this further.

We note that our theoretical results forDM
SHG are very

similar to that of Levine.19 The magnitudes are somewhat
different, due to the differences in ourxxyz(22v;v,v) re-
sults compared with theirs, but the trend inDM

SHG is the same.
Huang and Ching’s21 results for DM

SHG seems somewhat
anomalous; they predictDM

SHG to be a flat or slightly decreas-
ing function over the energy range plotted in Fig. 8.

V. CONCLUSIONS

We have presented results for linear and second-order op-
tical response in GaAs and GaP based on a first-principles
FLAPW electronic structure calculation. We have employed
a response formalism that is free of any unphysical diver-
gences at zero frequency, providing believable results across
the entire energy spectrum for any response function. Within
this formalism we have implemented the scissors approxima-
tion, and have fully accounted for the modification of the
velocity matrix elements that appear more explicitly in other
calculation schemes. The response function expressions
within the scissors approximation are straightforward to ob-
tain, and are no less amenable to computation than without
the scissors correction.

Our results for the imaginary part of the dielectric func-
tion e2(v) show only reasonable agreement with experiment
across a broad energy range, although we obtain excellent
agreement with experiment fore(0). This illustrates the pos-
sible limitations of the scissors approximation and indicates
that good zero-frequency results do not necessarily imply a
good prediction of the dispersion of the dielectric function.

The SHG susceptibility has been presented and it shows
important differences from other theoretical calculations.
The lack of experimental data, as well as its contradictory
nature, prevents any conclusive comparison with experiment
over a large energy range. A comparison of zero-frequency
results for the SHG susceptibility shows that our calculation
is closest to Ghahramaniet al.,26,54 but there is large dispar-
ity between existing theoretical calculations and experimen-
tal data.

We have also calculated the LEO susceptibility below the
band gap, and here our results are in excellent agreement
with experiment throughout the experimentally studied en-
ergy regime. Since the SHG and LEO~clamped lattice! sus-
ceptibilities are equal at zero frequency, the more recent
work on the LEO susceptibility~with which our calculations
are in excellent agreement! is thus in contradiction with the
much older work on the SHG susceptibility~with which our
calculations are in disagreement!. This both gives us confi-
dence in our calculated results, and—whatever the status of
our calculation—-encourages us to urge our experimental
colleagues to reinvestigate the SHG susceptibility both at
low frequency and over a wide frequency range.

FIG. 8. Plot of Miller’sDM below half the band gap for GaAs
and GaP:DM

SHG ~dotted line! andDM
LEO ~solid line!.
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APPENDIX A: SUSCEPTIBILITY CONVENTIONS

In this appendix we establish our convention for the opti-
cal susceptibilities and the definition of frequency compo-
nents, and for clarity mention other conventions in common
use and how the resulting expressions differ from ours. In
Appendix C we detail the connection between
xabc(2v;v,0) and the usual electro-optic coefficient
r abc(v). On these matters various usages exist in the litera-
ture, often never explicitly defined. We endeavor here to
make our usage, and the way we interpret the quoted experi-
mental results, as clear as possible.

It is useful to identify three conventions that can be used
to introduce the frequency components of the fields. In the
first,

E~ t !5 (
v i>0

Re@E~v i !e
2 iv i t#5

1

2 (
v iÞ0

E~v i !e
2 iv i t1E~0!,

~A1!

where in the second expression generallyE(2v i)
[E* (v i), and thusE(0) is taken to be real. Clearly in this
first convention the actual dc field,Edc, is justEdc5E(0).
The second convention corresponds to introducingE(v i),
which are half those appearing in the first convention; here
the same electric fieldE(t) is written as

E~ t !52 (
v i>0

Re@E~v i !e
2 iv i t#5 (

v iÞ0
E~v i !e

2 iv i t12E~0!.

~A2!

In this convention the actual dc field is given by
Edc52E(0). Finally, one can adopt a third convention that
differs from the second only by the treatment of the field
component at zero frequency:

E~ t !5 (
v iÞ0

E~v i !e
2 iv i t1E~0!5(

v i

E~v i !e
2 iv i t.

~A3!

HereEdc5E(0). We refer to the conventions identified by
Eqs. ~A1!2~A3!, and the corresponding expressions for
P(t), as conventions~1!–~3!, respectively.

In all conventions the linear response is specified by

Pa~v!5x I
ab~2v;v!Eb~v!, ~A4!

where superscripts indicate Cartesian components and are to
be summed over if repeated. For nonlinear response we re-
strict ourselves for the moment to convention~2!; we gener-
ally follow the susceptibility notation of Boyd,33 adopting,

however, a more common manner of indicating the fre-
quency sum. That is, a nonlinear polarization component is
related to the electric field by

Pa~vb1vg!5xabc~2vb2vg ;vb ,vg!Eb~vb!Ec~vg!,
~A5!

wherexabc indicates the second-order susceptibility. Carte-
sian components are again summed over if repeated, as are
frequency componentsvb andvg , but only such that the
sum (vb1vg) is held fixed; the susceptibilities are taken to
satisfy intrinsic permutation symmetry, xabc(2vb
2vg ;vb ,vg)5xacb(2vb2vg ;vg ,vb). We derive our
perturbation expressions forxabc(2vb2vg ;vg ,vb) within
convention~2!, but with all frequency components assumed
nonzero; in this case conventions~2! and~3! are identical. A
susceptibility involving a zero-frequency component, such as
xabc(2v;v,0), is then obtained from, for example,

xabc~2v;v,0![ lim
v0→0

xabc~2v2v0 ;v,v0!. ~A6!

Because of the way the frequency components enter the ex-
pression~A2! for E(t) in convention~2!, we would physi-
cally expect, for example, that

lim
v→0

xabc~22v;v,v!5 lim
v→0

xabc~2v;v,0!, ~A7!

and this is indeed found.
Turning now to expressions for the polarization in differ-

ent nonlinear processes, in convention~2! we have, from Eq.
~A5!,

Pa~2v!5xabc~22v;v,v!Eb~v!Ec~v!,

Pa~v1v0!52xabc~2v2v0 ;v,v0!E
b~v!Ec~v0!,

Pa~v!54xabc~2v;v,0!Eb~v!Ec~0!, ~A8!

for second-harmonic generation, frequency mixing (v with
v0), and the linear electro-optic effect, respectively. Here,
and in such expressions below, only the Cartesian compo-
nents are summed over if repeated. Note that the expressions
we derive forxabc can be used within convention~1! by
simply replacing in Eq.~A8! E(v i) by E(v i)/2, andP(v i)
by P(v i)/2. The effect is for the prefactors~1,2,4! appearing
respectively in Eq.~A8! to go over to (12,1,2!, the usual pre-
factors introduced in convention~1!. Within convention~3!
we have, instead of Eq.~A8!,

Pa~2v!5xabc~22v;v,v!Eb~v!Ec~v!,

Pa~v1v0!52xabc~2v2v0 ;v,v0!E
b~v!Ec~v0!,

Pa~v!52xabc~2v;v,0!Eb~v!Ec~0!. ~A9!

However, note that within either convention~2! or ~3! we
may write

Pa~2v!5xabc~22v;v,v!Eb~v!Ec~v!,

Pa~v1v0!52xabc~2v2v0 ;v,v0!E
b~v!Ec~v0!,

Pa~v!52xabc~2v;v,0!Eb~v!E dc
c . ~A10!
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That is, when the polarization is written in terms of the ac-
tual dc fieldEdc the prefactor for the electro-optic effect is
the same as the prefactor for frequency mixing. While it is
oftenxabc(2v2v0 ;v,v0) that is essentially measured, it is
thev0→0 limit of this expression,xabc(2v;v,0), that we
calculate, with lattice coordinates fixed. For\v0 much less
than the electronic energy scales but much larger than pho-
non energies, these quantities can be expected to be essen-
tially identical. Most often quoted is an experimental result
for the electro-optic coefficientr abc(v); in Appendix C we
relatexabc(2v;v,0) to r abc(v). Although we assume there
a dc fieldEdc rather than a mixing fieldE(v0), the fact that
the prefactors in the last two of Eqs.~A10! are identical

means that, again for\v0 much less than electronic energy
scales but much larger than photon energies,Edc can be sim-
ply replaced by the mixing amplitudeE(v0) in the expres-
sions we derive.

APPENDIX B: SECOND-ORDER OPTICAL RESPONSE

In this appendix we define the constituent terms given in
Eq. ~11! for both the SHG and LEO response functions. We
note that all expressions explicitly satisfy intrinsic permuta-
tion symmetry.

For the SHG susceptibility the terms are

x II
abc~22v;v,v!5

e3

\2(
nml

E dk

4p3

r nm
a $rml

b r ln
c %

~v ln2vml!
H 2 f nm

~vmn22v!
1

f ml

~vml2v!
1

f ln
~v ln2v! J , ~B1!

h II
abc~22v;v,v!5

e3

\2E dk

4p3 H(
nml

vmnr nm
a $rml

b r ln
c %H f nl

v ln
2 ~v ln2v!

2
f lm

vml
2 ~vml2v! J 28i(

nm

f nmr nm
a

vmn
2 ~vmn22v!

$Dmn
b rmn

c %

12(
nml

f nmr nm
a $rml

b r ln
c %~vml2v ln!

vmn
2 ~vmn22v! J , ~B2!

i

2v
s II
abc~22v;v,v!5

ie3

2\2E dk

4p3 H(
nml

f nm
vmn
2 ~vmn2v!

@vnlr lm
a $rmn

b r nl
c %2v lmr nl

a $r lm
b rmn

c %#1(
nm

f nmDnm
a $rmn

b r nm
c %

vmn
2 ~vmn2v! J ,

~B3!

with all symbol definitions and conventions as detailed in Sec. II, and where

Dnm
a ~k![vnn

a ~k!2vmm
a ~k!. ~B4!

For brevity, in the expression forxabc(22v;v,v) we have written thernm , Dnm , andvnm without the explicitk depen-
dence. The use of the curly brackets with the matrix elements implies a symmetrization with respect to the Cartesian
components,$rml

b r ln
c %[ 1

2(rml
b r ln

c 1rml
c r ln

b ).
For the LEO susceptibility, the constituent expressions are

x II
abc~2v;v,0!5

e3

2\2(
nml

E dk

4p3 H f nm
~vmn2v!

F r nma rml
c r ln

b

v lm
1
r nm
a rml

b r ln
c

v ln
G1F f nlr nma rml

c r ln
b

~v ln2v!vml
1

f mlr nm
a rml

b r ln
c

~vml2v!v ln
G J , ~B5!

h II
abc~2v;v,0!5

ie3

2\2(
nm

E dk

4p3 H f nmr nm
a

~vmn2v! F rmn
c

vmn
G
;c

1
]

]v S f nm
2~vmn2v!

~r nm
a r nm;b

b 2r nm;b
a rmn

b !D J , ~B6!

i

v
s II
abc~2v;v,0!5

ie3

2\2 E dk

4p3 H 12 (
nm

f nmDnm
a

vmn
2 ~vmn2v!

~r nm
b rmn

c 2r nm
c rmn

b !2(
nm

f nm
vmn~vmn2v!

r nm;a
c rmn

b J , ~B7!

with the definitions

rmn;c
b ~k![

2@rmn
b ~k!Dmn

c ~k!1rmn
c ~k!Dmn

b ~k!

vmn~k!
2 i(

p

vmp~k!rmp
b ~k!r pn

c ~k!2vpn~k!rmp
c ~k!r pn

b ~k!

vmn~k!
, ~B8!

F rmn
b ~k!

vmn~k!
G
;c

[
rmn;c
b ~k!

vmn~k!
1rmn

b ]

]kc F 1

vmn~k!
G . ~B9!
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Once again, we have not included the explicitk dependence
of the rnm , Dnm , and vnm in the expressions for
xabc(2v;v,0). All symbol definitions are identical to those
used in the linear and SHG response functions.

APPENDIX C: LEO SUSCEPTIBILITY

In this appendix we detail the connection between
xabc(2v;v,0) and the usual electro-optic coefficient
r abc(v). Proceeding with the nonlinear polarization leads,
with linear response, to a total displacement vector

Da~v!5(
b

eab~v!Eb~v!14pPNL
a ~v!

5(
b

ēab~v!Eb~v!, ~C1!

wherePNL(v) is given by the last of Eqs.~A10!, and the
effective dielectric function

e āb~v!5eab~v!18p(
c

xabc~2v;v,0!Edc
c . ~C2!

Defining the impermeability tensorhab(v) as the inverse of
eab(v),

(
b

hab~v!ebc~v!5dac, ~C3!

and likewise forh̄ab(v) and ēab(v), the electro-optic coef-
ficient relates the change inhab to the dc field,

h̄ab~v!5hab~v!1(
c
r abc~v!Edc

c , ~C4!

to first order. For crystal structures whereeab is diagonal,
eab(v)5dabe(v), Eqs.~C2! and ~C4! yield

ē ab~v!5dabe~v!18p(
c

xabc~2v;v,0!Edc
c ,

h̄ ab~v!5dab
1

e~v!
1(

c
r abc~v!Edc

c . ~C5!

The second of Eqs.~C5! seems to be the universally accepted
definition of r abc(v) in the cgs units we are using at the
moment. Sinceh̄ab(v) is the inverse ofēab(v) and these
equations only hold to lowest order inEdc, we recover

xabc~2v;v,0!52
e2~v!r abc~v!

8p
, ~C6!

the desired relation. We note that the above expression is in
cgs units. The equivalent expression in SI units is

xabc~2v;v,0!52
e r
2~v!r abc~v!

2
, ~C7!

the previously quoted result;61 e r(v) is the relative dielectric
constant. If we make the approximatione r(v)5n2(v), then
Eq. ~C7! becomes

xabc~2v;v,0!52
n4~v!r abc~v!

2
, ~C8!

wheren(v) is the index of refraction.
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