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Wurtzite has the space-group symmetryP63mc. The absence of inversion symmetry allows linear-k terms
in the electronic band structure when the spin-orbit interaction is included. Their existence has been confirmed
in a number of experiments, but no microscopic calculations have been published. In the present paper, we
discuss the origin of these linear-k terms using group theory andk•p arguments. The various contributions to
these terms are identified through band-structure models. We present anab initio calculation, performed with
the linear-muffin-tin-orbital method, of these spin splittings in CdS, CdSe, and ZnO. A renormalization of the
valence-band spin-splitting coefficients obtained in the linear-muffin-tin-orbital calculations was found neces-
sary to correct for errors in the relative energies of the uppermost valence bands as compared with the
experimental values. We point out that a similar procedure should be used when evaluating masses and other
band parameters from calculated local-density-approximation band structures.

I. INTRODUCTION

The band structures of zinc-blende and wurtzite-type
compound semiconductors are nondegenerate at a generalk
point of the Brillouin zone~BZ!.1,2 The corresponding split-
tings of spin-degenerate states arise from the lack of inver-
sion symmetry through the action of the spin-orbit coupling.
At theG point of the BZ these energy splittings vanish. They
can be expanded aroundG in linear, cubic, and other odd
terms ink. The corresponding coefficients can be determined
by means of a variety of mostly optical experiments. They
account for a number of sophisticated phenomena as diverse
as the width of spin-flip Brillouin lines,3 the spin-relaxation
in luminescence4 and photoemission excited with linearly
polarized light,5 and confinement effects in nano-
crystals imbedded in a matrix.6 Recent interest has concen-
trated in phenomena related to spin splittings in quantum
wells whose understanding is based on the corresponding
effects in bulk materials.7–9 Such understanding is available
for zinc-blende-type10 but not for wurtzite-type semiconduc-
tors. The materials with wurtzite structure, CdS, CdSe, and
ZnO, are the object of the present work.

Two types of linear-k terms are possible in the band struc-
ture near theG point. One results from the splitting of spin-
degenerate doublets, while the other is a linear splitting be-
tween states which remain spin-degenerate. We note that
both are allowed for a zinc-blende crystal~for example, at
the top of the valence band, along the^111& and ^100& di-
rections, respectively1!. The second possibility requires a
minimum fourfold degeneracy. While such degeneracy may
exist in zinc blende, it is reduced in wurtzite to twofold by
the hexagonal crystal field: The combination of crystal-field
and spin-orbit energies leads to a three-edge structure involv-
ing the top of the valence band known as theA, B, andC
edges in order of increasing energy. The corresponding ex-
citons are similarly labeled. Two of these three edges are of
G7 and one ofG9 symmetry, while the lowest conduction

state hasG7 symmetry. The valence states are, in order of
decreasing energy,G9 , G7 , andG7 for CdS and CdSe; we
call this the normal ordering.11,12 In ZnO the ordering is
G7-G9-G7 . This anomalousordering results from a negative
spin-orbit splitting.13

The existence and influence of the linear-k terms for
wurtzite has been vigorously investigated since the
1950s.2,11,12,14–24 Such a flurry of activity was initially
mainly due to the simpler exciton structure, compared to the
zinc-blende case, and the easy accessibility of the absorption
edge of CdS (; 2.5 eV! to spectroscopic sources. More
recent interest was sparked by the proposal of Brenig, Zey-
her, and Birman25 that resonant Brillouin scattering could be
used to decide among the various additional boundary con-
ditions ~the ABC problem26! for light propagation across the
interface of a crystal displaying spatial dispersion.27–30 The
linear-k terms in the excitonic dispersion lead to a multimode
polariton dispersion. A summary of the bulk zinc-blende
work up to 1988 is available in Ref. 31. Recent interest has
focused on linear spin splittings in zinc-blende materials in-
duced by quantum confinement.7,9,32,33

It is known that theG9 states of wurtzite are not linearly
spin split.16,21 Hopfield19 estimated the upper limits for the
linear splittings of the conduction (e) and B-valenceG7
states of CdS and CdSe to be34

e ~CdS! B ~CdS! e ~CdSe! B ~CdSe!

C ~meVÅ! 6 600 100 900

Subsequently, Mahan and Hopfield21 used the spatial-
dispersion of excitons in order to explain the presence of an
‘‘anomalous’’ structure in the reflection spectra near the
B-exciton resonance. They extracted a value of 50 meV Å
for the linear spin-splitting coefficient of theB exciton of
CdS. Hopfield and Thomas20 also showed that the exciton-
polariton dispersion relation is strongly modified by the pres-
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ence of the linear-k terms. This theory has been the basis for
the analysis of recent experiments, a number of which have
focused on the determination of the linear-splitting coeffi-
cients of theA andB excitons of both CdS and ZnO.22,27–30

The analysis, however, involves a number of additional pa-
rameters~e.g., exciton masses, exciton energies, damping
constants, etc.!. There appears to be only one direct determi-
nation of the linear spin-splitting coefficient of a band edge
~as opposed to that of an exciton!, namely the conduction-
band spin-flip Raman scattering work of Romestainet al.3

No determination of theCi ’s for CdSe has been carried out,
beyond the work of Hopfield mentioned above. Finally, no
data are available for theC valence state.

In this paper, we discuss the requirements for the presence
of such linear-k terms in wurtzite crystals and calculate their
magnitudes. We address the following questions: how do the
linear spin-splitting coefficients for wurtzite crystals com-
pare with those for zinc-blende crystals and can the atomic-
sphere-approximation linear-muffin-tin-orbital ~ASA-
LMTO! method, so successfully used to calculate the linear
and cubic spin-splitting coefficients of zinc-blende
crystals,10,31 predict the linear coefficients for wurtzite crys-
tals? We start with group-theory andk–p arguments~Sec. II!.
We then present in Sec. III results ofab initio calculations
for these terms based on the ASA-LMTO method. Uncor-
rected and band-gap-corrected local-density approximation
calculations allow us to confirm the qualitative correctness of
our k–p model. To our knowledge, noab initio calculated
values for any of theCi ’s are found in the literature. Our
calculations agree with experimental values. For complete-
ness, a comparison of the spin splittings in wurtzite and zinc-
blende CdSe is presented.

II. LINEAR- k FORMALISM

The combination of spatial inversion asymmetry and the
spin-orbit term in the electronic Hamiltonian leads to spin-
split energy bands.1,2,35 The spin-orbit interaction removes
what would otherwise be a degeneracy of spin-up and spin-
down states. Similarly, under inversion asymmetry no addi-
tional degeneracy appears at a general point of the BZ other
than the Kramers degeneracy betweenc↑(k) and Tc↑(k)
@5c↓(2k)#, where T is the time-reversal operator: for
k50, one thus recovers a minimum double degeneracy. The
resulting spin splitting is odd ink.

For zinc-blende, the firsts-like conduction state displays
no linear splitting. On the other hand, the topmostp-like
valence states can display small linear splittings mainly due
to coupling tod-like core states. This is best shown through
a perturbative analysis of thek–p Hamiltonian:31,35

H~k!5H~0!1
\2k2

2m0
1

\

m0
k•p1H11H2 , ~1!

where

H15
\2

4m0
2c2

@¹V3k#•s, H25
\

4m0
2c2

@¹V3p#•s.

~2!

Cubic terms arise from fourth-order perturbation theory
~three timesk–p plus one timeH2), while linear-k terms

arise from either first-order (H1) or second-order (H2 andk
• p! perturbation theory. Hence, very nearG, a nonvanishing
linear splitting will generally dominate. We now discuss its
existence in the wurtzite structure.

A. Symmetry considerations

In real space, the primitive cell of the wurtzite crystal is a
hexagonal prism with four atoms~Fig. 1!. It is characterized
by three lattice parameters: the length of thec axis, thec/a
ratio, and the bond-length parameteru. The corresponding
BZ is also a hexagonal prism~Fig. 2!. The labeling of the
high-symmetry points and lines follows Refs. 2 and 36.

At the BZ center and along theG-A direction, the group
of k (G k) is C6v , and the irreducible representations com-
patible with spin are the doubly-degenerateG7 , G8 , and
G9 ~Table I!. There is, therefore, no spin splitting along the

FIG. 1. Wurtzite primitive cell. The coordinates of the four at-
oms are t15(0,0,0), t25(0,0,uc), t35(0,a/A3,c/2),
t45(0,a/A3,c/21uc).

FIG. 2. Brillouin zone of a wurtzite crystal. The coordinates of
some points are A52p(0,0,1/2c), L52p(0,1/A3a,1/2c),
M52p(0,1/A3a,0), H52p(21/3a,1/A3a,1/2c), K52p(21/
3a,1/A3a,0).
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hexagonal axis. The highest symmetry for an internal BZ
point ~i.e., excluding the origin and zone-edge! is Cs ~along,
for example, theT direction! and all the irreducible repre-
sentations compatible with spin are singly degenerate.
Hence, except for accidental or time-reversal degeneracy,
spin splittings must occur for all bands. It remains to deter-
mine whether the splitting is linear ink or of higher order.
The existence and general form of the linear~or, similarly,
higher-order! spin-splitting Hamiltonian can be deduced im-
mediately by noting that the effective spin Hamiltonian is an
invariant ~with respect toG k) linear in the components of
the wave vectork. With the help of Table I, one can then
write this invariant as

H}@sxky2sykx#, ~3!

since (kx ,ky) and (sx ,sy) both belong toG5 .
19

We discuss next the mixing of states with atomiclikes, p,
andd character atG in a wurtzite crystal. Without spin all
states transform according to one of the single-group repre-
sentations ofC6v , as given in Table I. In particular,

s,pz ,d3z22r2;G1 , ~px ,py!,~dzx ,dyz!;G5 ,

~dx22y2,dxy!;G6 . ~4!

Contrary to the cubic case, the threep-like functions no
longer belong to the same irreducible representation. Further-
mores, pz , andd3z22r2 mixing is now allowed. When spin
is introduced, one obtains the double-group representations:

G1→G7 , G5→G7% G9 , G6→G8% G9 . ~5!

The influence of the crystal field and spin-orbit interaction is
sketched in Fig. 3.

B. k–p theory

Equation~1! provides the basis for investigating the ex-
istence and origin of spin-splitting terms to various orders in
k through perturbation theory. Linear terms ink can arise
from two possible contributions: either throughH1 as a first-
order perturbation, or through a second-order perturbation
involving k–p andH2 , leading to the matrix

\

m0
(
L̄ ÞL

^LuH2uL̄ &^L̄ uk•puL&1^Luk•puL̄ &^L̄ uH2uL&

EL2EL̄

, ~6!

where L corresponds to the unperturbed degenerate set of
states.

1. G-point eigenstates

To calculate the spin splitting of thee, A, B, andC states
very near theG point, explicit wave functions at theG point
are required. The latter are more complicated than for the
zinc-blende case@see Eq.~4!#. Nevertheless, the following
qualitative picture applies:e is mostly s-like with somepz
character, while theA, B, andC states are predominantly
p-like with somed character and, in the case of theG7 states,
somes-character.

The relative separation of thee state from the valence
states (;3 eV compared to;0.1–0.5 eV for theA–C sepa-
ration! allows us to make a simplifying approximation. We
first mix the s and pz functions and then solve the valence
Hamiltonian separately. We will see later that thes-pz mix-
ing is indeed important in interpreting the linear spin-
splitting coefficients for both the conduction and valence
states. Hence, for thee state, we write

uS&5qsus&1qzuz&, {qs
21qz

251, ~7!

and, for theG1v state,

TABLE I. Character table for the double group ofk C6v (6mm) at the zone center (G point! of the BZ for the wurtzite crystal structure
and corresponding basis functions. Adapted from Kosteret al. ~Ref. 53!.

C6v E C2 2C3 2C6 3sv 3sd Basis

G1 1 1 1 1 1 1 s,z,3z22r 2

G2 1 1 1 1 21 21 Rz

G3 1 21 1 21 21 1 x323xy2

G4 1 21 1 21 1 21 y323yx2

G5 2 22 21 1 0 0 (Rx ,Ry),(x,y),(zx,yz)
G6 2 2 21 21 0 0 (x22y2,xy)

E Ē C2 ,C̄ 2 2C3 2C̄ 3 2C6 2C̄ 6 3sv ,3s̄ v 3sd ,3s̄ d

G7 2 22 0 1 21 A3 2A3 0 0

G8 2 22 0 1 21 2A3 A3 0 0

G9 2 22 0 22 2 0 0 0 0

FIG. 3. Band mixing under the action of crystal-field and spin-
orbit interactions in wurtzite crystals. To the left, splitting induced
only by the crystal field; to the right, splitting induced only by the
spin-orbit interaction. The combined case is given in the middle.
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uZ&5qz8uz&1qs8us&, qz85qs ,qs852qz . ~8!

It is now necessary to diagonalize the valence Hamil-
tonian exactly. A popular set of solutions is obtained by ap-
proximating the wurtzite crystal by a zinc-blende one
strained along the@111# direction ~the so-called quasicubic
model17!. We here use, instead, the more general valence-
band solutions of Gutsche and Jahne.37 They go beyond the
quasicubic model keeping the correct symmetry of the
wurtzite crystal with all its anisotropies, includingd-like
functions into theG9 states. Cellular functions transforming
according to theG1 , G3 , G5 , andG6 single-group represen-
tations were used as basis functions~see Table I!:

u15Z, u35x~x223y2!, u55~x1 iy !/A2,
and ~9!

u65~x1 iy !2/2.

We here reproduce, with slight modifications, theG7 and
G9 solutions of Ref. 37:

uG7↑&5A12q7
2uu5↓&2q7uu1↑&,

uG9↑&5A12q9
2uu5↑&1q9uu6↓&,

uG7↓&52A12q7
2uu5* ↑&2q7uu1↓&,

uG9↓&5A12q9
2uu5* ↓&2q9uu6* ↑&,

uG78↑&5q7uu5↓&1A12q7
2uu1↑&,

uG98↑&52q9uu5↑&1A12q9
2uu6↓&,

uG78↓&52q7uu5* ↑&1A12q7
2uu1↓&,

uG98↓&52q9uu5* ↓&2A12q9
2uu6* ↑&, ~10!

where theqi ’s are cellular-function-mixing constants.37 For
CdS theA state has predominantly (x,y) character with
somed state admixture. We chooseA to correspond toG9
(mj563/2), i.e., to the smallq9 limit. The G98 state has
then predominantd character and is therefore known from
experiments not to be one of theA, B, C states. TheB state
is mainly z-like with some (x,y) and s mixed in, and vice
versa for the C state. Following Ref. 38 we choose
q7
2.0.5; this implies thatB;G7 andC;G78 ~both having
mj561/2). The zinc-blende limit is obtained forq7

252/3.
We now combine each state of a given symmetry with its

Kramers degenerate partner~uniquely defined by
Tui↑5ui* ↓,Tui↓52ui* ↑) and generate a 232 spin matrix
with off-diagonal matrix elements linear ink. We obtain@see
Eq. ~3!#

Hm~k!5CmF 0 ik2

2 ik1 0 G , ~11!

wherek65kx6 iky , Cm is labeled with the band edgeGm ,
and the band-edge energies have been set to zero. The
linear-k splitting resulting from Eq.~11! is isotropic in the
plane perpendicular to the hexagonal axis:

Em~kx ,ky!56Cm~kx
21ky

2!1/2. ~12!

We assume that most of the contributions to the linear-k
splittings of thee, A, B, andC states can be accounted for
by intraband and interband interactions involving only these
bands ~hereafter referred to as theeABC model!. This
should be a good approximation since the other states are
indeed relatively far away in energy. The more general re-
sults, which include interactions among all theG7-like states,
are given in the Appendix.

2. H1 and H2 perturbations for the e state

TheH1 contribution would be

Ce,1}^Su¹zVuS&. ~13!

SinceuS& is a solution of the Hamiltonian without the spin-
orbit terms, one finds31

^Su¹zVuS&}^Su@H~0!,pz#uS&50. ~14!

Within theeABCmodel, one has

Ce5Ce,71Ce,78, ~15!

whereCe,7 (Ce,78) denotes the contribution of theG7 (G78)
state toCe , with

Ce,75
~12q7

2!

Ee2E7
qzqsDx,zPx,s ,

Ce,785
q7
2

Ee2E78
qzqsDx,zPx,s . ~16!

Equations~15! and ~16! are depicted schematically in Fig.
4~a!. Note thatCe,7 andCe,78 have the same sign andCe
would be zero if there were nos-pz mixing (qz50). Know-
ing q7 and the band-edge energies allows an explicit deter-
mination of the contribution of each of theB andC edges~in
the normal-ordering case! to Ce ; a simplified expression can

FIG. 4. Perturbation theory diagrams for the linear-k spin-
splitting coefficients~a! of the e state,~b! of the G7v . In ~a!, the
double-group diagrams~left! add up approximately to give the
single-group diagram~right!.
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be obtained if one approximates the two energy denomina-
tors by a single average-gap energyE5:

Ce'qzqs
Dx,z

Ee2E5
Px,s . ~17!

This result is independent ofq7 . Since thes-pz mixing fac-
tor qz is roughly inversely proportional to the energy gap,
one expects

Ce}
1

~Ee2E5!
2 . ~18!

The simple form of Eq.~17! allows one to infer the sign of
the spin-splitting coefficient for thee band and estimate its
magnitude. As in the case of zinc-blende
semiconductors,10,31,39 the sign is only meaningful if one
chooses a convention for the split-level ordering and a spe-
cific orientation of the bonds with respect to the crystal axes.
Since the sign of theCi ’s has not been discussed in the
literature~the experimental assignment being nontrivial!, we
conjecture the following. We make use of the fact that the
nearest-neighbor environments for zinc-blende and wurtzite
are similar. Paralleling the convention made in Refs. 10 and
39 for zinc-blende, we place the anions and cations as shown
in Fig. 1. This allows us to carry over to wurtzite the follow-
ing zinc-blende result:2 iDz,x.0, iPx,s.0. While this ap-
plies to CdS and CdSe, we expect the negative spin-orbit
energy of ZnO to lead to2 iDz,x,0. The signs ofqs and
qz in Eq. ~15! are trickier. The zinc-blende symmetry gives a
net cancellation ofs-pz mixing from the four nearest neigh-
bors atk50. Obviously, deviations from this ‘‘ideal’’ tetra-
hedral geometry will lead to a net mixing, but this effect is
expected to be small. The second-nearest-neighbor Cd-S in-
teractions are found to be more important. One can then
show that, irrespective of the phase chosen for thes orbital
on the anion at the origin,qsqz,0. Finally, because of the
assumption made above, of all theG5 states the main contri-
bution arises from the one nearest to thee state, i.e., the top
of the valence band in the absence of the spin-orbit interac-
tion; thus, Ee.E5 . This leads toCe.0 in Eq. ~11! for
wurtzite semiconductors with normal ordering. This implies,
using Eq.~11!, that along the1kx direction, the state with
up-spin has higher energy than the one with down-spin. An
assignment ofCe positive implies that, looking along the
1kz axis, the positive spin eigenstate appears to rotate clock-
wise. From Eq.~17!, one can also estimate the magnitude of
the linear spin-splitting coefficient of thee state. Using the
III-V zinc-blende value ofP;0.6 a.u., the sulfur spin-orbit
energy;0.1 eV, 2% pz wave-function mixing~obtained
from our LMTO calculations below!, and the band gap of
;2.5 eV, one obtainsCe;30 meV Å. A similar analysis in
Ref. 19 yieldedCe;6 meV Å.

3. H1 and H2 perturbations forG7 valence states

Consider first theH1 perturbation@Fig. 4~b!, left#. In this
case, using Eq.~10!,

C7,152C78,15
A2\2

4m0
2c2

q7~12q7
2!1/2K xU]V]xUZL . ~19!

For theH1 contribution, one would then expect equal and
opposite spin splitting for theB andC states of either CdS or
CdSe, and for theA and C states of ZnO. In addition, it
should not depend strongly on the band gap. Gutsche and
Jahne37 have estimatedq7

2;0.43,0.6, and 0.01 for CdS,
CdSe, and ZnO, respectively.

We next turn to theH2 contribution to the linear spin
splitting. In fact, this contribution has been found, for the
zinc-blende semiconductors, to be more important than that
of H1 .

31 General expressions are given by Eqs.~A6! and
~A7!. They also simplify considerably if one restricts oneself
to theeABCmodel. In this case,G7v (G7v8) couples directly
with e andG7v8 (G7v). Thus, in Eq.~A6! @Eq. ~A7!#, the first
~second! term on the right-hand side should be removed. The
explicit results forG7v are

C7v5C7,e1C7,78, ~20!

with

C7,e52Ce,7 ,

C7,785
1

A2
qs8

~122q7
2!

~E72E78!
Px,s@2q7~12q7

2!1/2Dx,y

1A2qz8~122q7
2!Dx,z#. ~21!

For G78v , we obtain an overall sign change; i.e.,

C78v5C78,e1C78,752C7,2,{C78,e52C7,e

and ~22!

C78,752C7,78.

In words, theG72G78 interaction@Fig. 4~b!, middle# is
equal and opposite for theG7 andG78 statesandarises due to
the mixing of s-like states into theG7 state andG78 states
(qs8). The magnitude ofC7,78 can also be seen from Eqs.~21!
and ~16! to satisfy

uC7,78u5uC78,7u}
1

~E72E78!~Ee2E5!
;U ~Ee2E5!

~E72E78!
CeU.

~23!

The G72Ge interaction@Fig. 4~b!, right# is the same as in
Ce except for the opposite sign.

The various contributions to the spin-splitting coefficients
can thus be written as

TABLE II. Adjusting-potential@V0 , Eq. ~25!# and atomic-sphere
parameters for the ASA-LMTO calculations for CdS.E1 andE2
are the two types of empty spheres. Energies are given in hartree
~27.2 eV! and distances in bohr.

Cd S E1 E2

V0 ~hartree! 750.0 50.0 7.5 7.5
R0 ~a.u.! 0.015 0.015 0.55 0.55
atomic radius~a.u.! 2.72 2.72 2.176 3.105

53 10 707TERMS LINEAR IN k IN THE BAND STRUCTURE OF . . .



Ce;F ~12q7
2!

Ee2E7
1

q7
2

Ee2E78
G A

~Ee2E5!
,

C7;2
~12q7

2!

~Ee2E7!

A

~Ee2E5!
1

B

~E72E78!~Ee2E5!
1C ,

~24!

C78;2
q7
2

~Ee2E7!

A

~Ee2E5!
2

B

~E72E78!~Ee2E5!
2C ,

whereA, B, andC stand for coefficients which should be
approximately independent of the band-edge energies. The
sign ofA for semiconductors with normal ordering of the
valence states has been assigned above (.0); the term con-
tainingB ~in C7 andC78) is expected to be the largest one
and that containingC the smallest in magnitude. TheG9v
state does not appear in Eq.~24!. These equations will be
used in interpreting the LMTO results.

III. LMTO CALCULATIONS

A. Procedure

The electronic band structures are calculated within the
framework of density-functional theory using the local-
density approximation~LDA ! within the atomic-sphere ap-
proximation ~ASA!, including the so-called ‘‘combined-
correction term.’’40 The spin-orbit interaction is treated as a
perturbation.41 Each unit cell consists of eight ‘‘atoms,’’ in-
cluding four ‘‘empty spheres’’ with no net nuclear charge,
positioned in the empty tetrahedral sites in order to obtain a
close-packed structure.42 Wave functions in all eight spheres
~atomic and empty! are expressed in terms ofs, p, andd
partial waves resulting in a Hamiltonian matrix of dimension
144 ~8 atoms3 9 partial waves3 2 spin states!.

Adjusting potentials can be located at the atomic and
empty spheres in order to correct for the so-called ‘‘gap
problem’’ inherent in the LDA formalism.43 In this way, the
band gaps can be brought into agreement with experimental
results. The resulting effective masses are expected to be
correct, since wave functions are not strongly affected by the
adjusting potentials, thus simulating the effect of quasiparti-
cle corrections in theGW approximation.44,45 We use
d-function-like adjusting potentials of the form

V~r !5V0

R0

r
expF2

r 2

R0
2G . ~25!

TABLE III. Lattice parameters used in the ASA-LMTO calcula-
tions for wurtzite CdS, CdSe, and ZnO. We used experimental val-
ues ofa andc, and the ideal value of the~internal! lattice parameter
u. We have also tabulated reported experimental and calculated
values foru ~last two rows, respectively!.

CdS CdSe ZnO

a 4.14092a 4.300b 3.24982c

c 6.7198a 7.011b 5.20661c

c/a 1.6228 1.630 1.6021
u 0.3766d 0.3754d 0.3799d

0.3773e 0.3767e 0.3820e

0.3728f 0.3700f 0.3793f

aN. Razik, J. Mater. Sci. Lett.6, 1443~1987!
bNat. Bur. Stand. Circ. 5397, 12~1957!.
cNat. Bur. Stand.~US! Monograph22 ~1985!.
d‘‘Ideal’’ values @Eq. ~26!# using the experimentalc/a values.
eH. Schulz and K. H. Thiemann, Solid State Commun.32, 783
~1979!.
fTheory ~present work!: total-energy minimization using the full-
potential LMTO method.

TABLE IV. CalculatedG-point energies (Eu andEa , in eV! and
linear spin-splitting coefficients (Cu andCa , in meV Å,magnitude
only; for the signs, see text! for thee, G9v , G7v , andG78v edges of
wurtzite CdS, CdSe, and ZnO obtained from band-gap unadjusted
(u) and adjusted (a) ASA-LMTO calculations. The lattice param-
eters used are from Table III, except for the unadjusted ZnO data for
which idealc/a andu values were used. Also tabulated are ratios of
unadjusted and adjusted gaps:g5E72E78, G5Ee2E5 , where
E55(E71E78)/2.

Cu Eu Ea Ca Cu /Ca gu /ga Gu /Ga

CdS:
36.8 1.12 e 2.43 11.7 3.1

1/2.1
182 0 7 0 82 2.2
— 0.076 9 0.153 — 1/1.6
100 0.118 78 0.194 26.5 3.8
CdSe:
675 0.38 e 1.83 59.5 11.3

1/3.5
1100 0 7 0 192 5.7
— 0.050 9 0.120 — 1/1.14
450 0.427 78 0.480 95 4.7
ZnO:
9.0 1.08 e 3.36 1.1 8.2

1/3.2
120 0 7 0 6.3 19
175 0.038 78 0.200 58 3 1/5.1
— 0.043 9 0.220 —

FIG. 5. Band structure calculated for wurtzite CdS using the
LMTO ~band-gap adjusted LDA version!. The valence-band maxi-
mum has been placed at the zero of the energy scale.

10 708 53LEW YAN VOON, WILLATZEN, CARDONA, AND CHRISTENSEN



Table II gives the potential parameters used for CdS. The
atomic-sphere radius is set equal for cations and anions for
simplicity.

Beside the atomic-sphere radii, related to the primitive-
cell volume, additional variables are present in our calcula-
tions: thec/a ratio and the bond-length parameteru of a
wurtzite crystal. A hard-sphere model of hexagonal closed-
packed and touching atoms gives an idealc/a ratio of
A8/351.633. In addition, the assumption of equal nearest-
neighbor bond lengths for the wurtzite crystal leads to the
‘‘ideal value’’

u5
1

3 S acD
2

1
1

4
. ~26!

The band edges are found to be somewhat dependent upon
thec/a ratio but less so uponu, since the crystal-field inter-
action is more strongly dependent on thec/a ratio andu is
only related to the nearest-neighbor environment. We have
used experimental values of the lattice parametersa and c
given in Table III. The calculations were performed using
ideal u values; the latter agree well with available experi-
mental data~Table III!. In fact, the idealu’s are closer to the
experimental values than those obtained using the total-
energy full-potential LMTO method and the experimental
equilibrium volume~Table III!. We will also present some
results obtained using the idealc/a ratio for ZnO.

B. Band structure

In Fig. 5 we show the band structure of CdS obtained by
the LMTO method. The lowest gap of CdS is direct and is
found experimentally to be 2.58 eV at low temperature. We
have carried out potential adjusted and unadjusted calcula-
tions. Previous empirical evaluations of the band structure,
including tight-binding46 and pseudopotential calculations,47

do not include spin-orbit interaction. Furthermore, the tight-
binding calculations do not included states. There are some
recentab initio calculations, again without spin-orbit inter-
action but withd orbitals, based upon Gaussian orbitals.48,49

Our LMTO calculations were performed using the
atomic-sphere approximation. One estimates the resulting ac-
curacy of the band energies to be around 100 meV. This
does, in fact, lead to a minor complication with regard to the
relative position of theA, B, andC holes. For instance, for
CdS, the experimentalEA2EB separation is 16 meV.50 As
such, our calculations within the ASA lead to an incorrect
G7 , G9 , andG78 ordering for theA, B, andC states, respec-
tively, for CdS and CdSe. For ZnO, we obtain the~also in-
correct! G7 , G78, andG9 ordering. In Table IV, we present
the calculated band-edge energies with (Ea) and without
(Eu) band-gap adjustment. Even in the adjusted case, the
valence-band energies are poorly reproduced~compare with
the experimental values in Table V!. The ordering problem
can only be corrected by making use of the much more com-
plicated full-potential LMTO method.51 Indeed, we have
compared a band-structure calculation for CdS with experi-
mental values ofa and c using the ASA and scalar-
relativistic full-potential LMTO ~our full-potential program
does not include spin-orbit splittings!. We obtained
E(G1).E(G5) in the ASA case,E(G5).E(G1) in the full-
potential case.

The calculations allow one to extract the contribution of
the various angular-momentum components to the eigen-
states. These are given in Table VI for CdS and ZnO~the
data for CdSe are very similar to those for CdS!. This knowl-
edge has been used in differentiating among theG9 , G7 , and
G78 states: TheG7 states should contain largers-like compo-

TABLE V. ExperimentalG-point energies for thee, A, B, andC
edges of wurtzite CdS, CdSe, and ZnO. Only the magnitude of the
energy separation from theA energy is given.

CdS CdSe ZnO

Ee 2.583a 1.829b 3.44 c

EA 0 0 0
EB 0.016a 0.026b 0.0024c

EC 0.078a 0.429b 0.0404c

aT51.6–4.2 K, Ref. 50.
bT580 K, exciton reflectance, V. V. Sobolev, V. I. Donetskikh, and
E. F. Zagaıˇnov, Sov. Phys. Semicond.12, 646 ~1978!.
cT56 K, two-photon spectroscopy, A. Mang, K. Reimann, and S.
Rübenacke, Solid State Commun.94, 251 ~1995!.

TABLE VI. Angular-momentum (l ) decomposition ofC8, B8,
A8, ande states for each type of atom as calculated with the ASA-
LMTO method. The primes are to remind one that the relative or-
dering of the states is different from the experimental one. The data
for CdSe are very similar to those for CdS and hence are not dis-
played. The tabulated numbers are the magnitude squared of the
wave functions.E1 andE2 denote empty spheres.

C8 B8 A8 e

CdS:
Cd l50 0.0000 0.0000 0.0001 0.2993

l51 0.0348 0.0311 0.0363 0.0000
l52 0.1182 0.1104 0.1107 0.0007

S l50 0.0000 0.0000 0.0000 0.2282
l51 0.8053 0.8150 0.7717 0.0010
l52 0.0001 0.0001 0.0003 0.0005

E1 l50 0.0004 0.0000 0.0142 0.0809
l51 0.0003 0.0000 0.0166 0.0081
l52 0.0083 0.0080 0.0227 0.0018

E2 l50 0.0002 0.0000 0.0059 0.3657
l51 0.0174 0.0204 0.0082 0.0096
l52 0.0150 0.0149 0.0132 0.0043

ZnO:
Zn l50 0.0000 0.0000 0.0007 0.2533

l51 0.0129 0.0133 0.0172 0.0002
l52 0.2601 0.2684 0.2480 0.0045

O l50 0.0000 0.0000 0.0005 0.1904
l51 0.7083 0.7001 0.6881 0.0004
l52 0.0003 0.0003 0.0002 0.0002

E1 l50 0.0000 0.0000 0.0087 0.0993
l51 0.0000 0.0001 0.0060 0.0044
l52 0.0028 0.0028 0.0160 0.0014

E2 l50 0.0000 0.0000 0.0090 0.4357
l51 0.0062 0.0054 0.0022 0.0054
l52 0.0093 0.0095 0.0033 0.0050
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nents. One interesting result is that all of theA8, B8, and
C8 states~where the primes denote the LMTO ordering!
have around 11% Cdd composition for CdS and CdSe, and
around 26% Znd for ZnO. The increase for ZnO compared
to the Cd compounds is due to the Znd state being closer to
the valence-band top (;4 eV! than the Cdd state (;8 eV!.
This is in agreement with the nonrelativisticab initio calcu-
lations of Schro¨er et al.48,49

C. Spin splittings

The question of whether one can extract reliable spin
splittings from the band-structure calculations performed
within LDA and ASA cannot be answered alone from our
LMTO results. However, we will show that the calculation
can be rescued from deficiencies related to the errors in the
valence-band energies by using the understanding of how the
Ci ’s depend on the band energies determined with ourk–p
analysis.

We have, therefore, computed the linear spin-splitting co-
efficients using both band-gap adjusted and unadjusted band
structures. The spin-splitting energies~magnitude only! cal-
culated alongG-K for CdS and ZnO are plotted in Fig. 6.
The calculated points start at a nonzero value of the wave

vector due to numerical problems of the LDA code for
k→0. By fitting the separation of the split-band energies
with

uDEi~k!u52Cik1g ik
3, ~27!

we obtain the spin-splitting coefficientsCi andg i and their
relative sign. We have included both the linear and cubic
terms in Eq.~27!: The correspondingCi ’s are given in Table
IV. It is clear that they depend on the band gap.

We now analyze the calculatedCi ’s with the help of Eq.
~24!. As a preliminary step, we have calculated the spin-orbit
(Dso) and crystal-field (Dcf) energies using the quasicubic
expressions:

Dcf

Dso
J 5

1

2
@DCB2DBA6A2DCA

2 2DBA
2 2DCB

2 #, ~28!

with DCB5EC2EB , etc. Good agreement of theDso ob-
tained from both adjustedand unadjusted LMTO calcula-
tions, and also experimentally, is found for CdS and CdSe
~Table VII!. As for ZnO, a relatively goodDso is obtained
with no adjusting potentials and ideal lattice parameters.
However, such agreement is not found when using adjusting
potentials; the data displayed in Table VII for the adjusted
case were obtained using experimental lattice parameters. In
the case of ZnO,Dso is very sensitive to the potential and
lattice parameters because of the opposite sign of the atomic
spin-orbit energies of Zn and O, which partly compensate
each other and lead to the negative value ofDso ~the Zn 3d
splitting dominates!. The disagreement between theory and
experiment forDcf in all materials again reflects the short-
coming of the ASA and also the errors of'0.1 eV expected
for any state-of-the-art band-structure calculations. An im-
portant result is that, in employing Eq.~24!, the spin-orbit
matrix elements can be assumed to be energy independent
~for CdS and CdSe!. The interband momentum matrix ele-
ments are also known to be unaffected by the band-gap
problem.44,45 Hence, we analyze theCi ’s in terms of the
corresponding energy denominators.

In Table IV we have included the ratio of unadjusted and
adjusted energies for two gaps:E72E78 and Ee2E5 @E5
being an average valence energy, here chosen as
(E71E78)/2#. It can be inferred that, for all three materials,
Ce follows the inverse-square-of-the-average-gap relation.
Similarly, C78 of CdS, andC7 andC78 of CdSe display the
energy dependence of theB term of Eq. ~24!. Hence, the
B-dependent contribution is dominant.C7 of CdS, however,
scales better with just theEe2E5 gap. SinceDso has
changed drastically for ZnO, no such deductions can be ar-
rived at. Given the above scaling rules~which we will also

TABLE VII. Crystal-field (Dcf) and spin-orbit (Dso) energies~in
meV! for CdS, CdSe, and ZnO as evaluated from the data in Table
IV by using Eq.~28!. The first number for each quantity is the one
obtained without adjusting potentials, the second one with adjusting
potentials. In brackets are the experimental values~Ref. 50!.

CdS CdSe ZnO

Dcf 288, 2168 ~30! 289, 2161 ~39! 240, 2208 ~188!
Dso 54, 56~65! 396, 401~416! 27, 232 (23.5!

FIG. 6. Spin splitting~magnitude only! of the first conduction
statee, and the top three valence statesA8, B8, andC8 away from
the G point along theG2K direction. ~a! For CdS.~b! For ZnO
~hereA8 is not included since it is offscale!. These results were
obtained from unadjustedab initio ASA-LMTO calculations.
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assume valid for ZnO!, we renormalize the directly com-
putedCi ’s to reflect the correct energy gaps. Since our ad-
justed calculations reproduce reasonably well the experimen-
talE0 gaps, we have only renormalized the valenceCi ’s. The
renormalizedCi ’s are displayed in Table VIII together with
experimental values. ForC7 of CdS, we have renormalized it
with respect to theEe2E5 gap~giving CB582 meV Å! and
to the (Ee2E5) and (E72E78) gaps ~giving CB5246
meV Å!. The renormalization with respect to only the
Ee2E5 gap gives a much better agreement with the experi-
mental result. Hopfield19 had also given upper bounds for
Ce of CdS and CdSe~10 and 20 meV Å, respectively! from
an analysis of Zeeman-splitting experiments. While this
compares reasonably well with other results for CdS~Table
VIII !, it is much smaller than our calculated value in the case
of CdSe.

We have also made an attempt to compute the individual
contributions~magnitude and sign! to theCi ’s by combining
the unadjusted and adjusted LMTO results with thek•p
analysis in the cases of CdS and CdSe. Using values forq7
from the literature38 (q7

250.31 for CdS andq7
250.6 for

CdSe!, we computedA using the expression forCe in Eq.
~24!. C7,e and C78,e are subsequently determined. The re-
maining contribution toC7 can then be found from the total
C7 obtained in the LMTO calculation. Since the remaining
contribution toC78 is just the opposite in sign, this can be
used to calculateC78. A comparison of the latter with the
LMTO-calculated value provides a clue as to the overall cor-
rectness of the procedure and Eq.~24!. This was done for the
unadjusted (u) and adjusted (a) data from LMTO, and the
results~best fit, see below! are as follows:

CdS (u) CdS (a) CdSe (u) CdSe (a)

C78 ~k–p
1LMTO!

1145 170 1425 1133

C78 ~LMTO! 100 27 450 95
C7,78 /C7,e

~approx.!
15 19 12 16

While the agreement between the first two rows of the above
table is not perfect, it is reasonable in view of the semiquan-
titative aspect of this analysis. Note that the best agreement
was obtained for

C7,0, C78.0. ~29!

It is gratifying to find uC7,78u.uC7,eu, as expected@see Eq.
~23!#.

In order to compare with the zinc-blende-type semicon-
ductors, we have also calculated the spin splitting for cubic
CdSe. For example,CB5230 meV Å found for wurtzite
CdSe must be compared withuCku546 meV Å for zinc-
blende CdSe~found using band-gap adjusted ASA-LMTO!.
A good estimate of the zinc-blende coefficient is given by
the following expression:10

Ck52A
Dd,c

E~G8!2Ed,c
1B

Dd,a

E~G8!2Ed,a
, ~30!

whereDd,c (Dd,a) is the spin-orbit splitting of the cored
levels of the cation~anion!, Ed,c (Ed,a) their energy, and
A5350 meV Å andB590 meV Å for II-VI compounds.
Using the data provided in Table I of Ref. 10 and
E(G8)2Ed,c'8 eV ~from our present LMTO calculation!,
we obtainCk5233 meV Å, in reasonable agreement with
the LMTO result. We also predict that cubic CdS would have
aCk very close to that of CdSe while theCi ’s differ signifi-
cantly in the wurtzite structure~Table VIII!. In general, one
expects larger linear spin splittings for wurtzite semiconduc-
tors because they are mainly determined by theG7c2G7v
andG7v2G78v gaps instead of the gap to thed electrons for
zinc-blende. Cancellation effects among the three terms in
C7 can reduce them below the corresponding zinc-blende
coefficient. Nevertheless, this does not occur for CdSe due to
the dominance of theB term in Eq. ~24!. The hexagonal
crystal field thus has a major role in enhancing theCi ’s.

In exciton reflectivity and resonant Brillouin scattering
experiments, one actually measures directly the linear-in-k
splitting of theexcitondispersion~coefficientf i , with i rep-
resenting the valence state!. In terms of an electron (e) and a
hole (h) state,fh is related to theCi ’s of the electron and
holedispersions through thepositiveband-edge masses:

fh5
Chmh

'1Ceme
'

mh
'1me

' . ~31!

Only the perpendicular effective masses appear sincek'c.
However, the LMTO andk• p calculations result in the lin-
ear spin-splitting coefficient of the valence electronCv ~with
v57 or78), so thatCh52Cv . Hence, we can rewrite Eq.
~31! as

TABLE VIII. Linear-spin-splitting coefficientCi ~in meV Å! of
the band edge of wurtzite CdS, CdSe, and ZnO. The ‘‘theory’’
values were obtained usingab initio ASA-LMTO. Note that the
valenceCi have been renormalized to correct for ‘‘gap problems’’
~compare Table IV!. In all cases, absolute values of the splittings
are listed~see text for information on the signs!. The data in italics
have been derived from the experimental excitonic coefficients
given in Table X and the effective masses from Table IX.

CdS CdSe ZnO

Ce theory 12 60 1.1
expt. 16a, 8b, 11c ,100g —

CA theory 0 0 35
expt. 0 0 20h

CB theory 82d, 246e 230 0
expt. 67f ,900g 0

CC theory 70 114 51

aSpin-flip Raman scattering, Ref. 3.
bCalculated fromfA of Ref. 28~see Table X!.
cCalculated fromfA of Ref. 30~see Table X!.
dAssumingCB}(Ee2E5)

21.
eAssumingCB}(Ee2E5)(E72E78)

21.
fCalculated by Koteles and Winterling~Ref. 24! from theirfB ~see
Table X!.
gEstimates from Ref. 19.
hAssumingCe50. Magnetoluminescence, Ref. 22; reflection, trans-
mission, and two-photon Raman scattering, Ref. 27.
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fh5
2Cvmh

'1Ceme
'

mh
'1me

' . ~32!

There is a sign difference between Eq.~32! above and Eq.
~1! of Ref. 24 where, however, the authors were not con-
cerned with the sign off i . Here, we have for CdS,
Ce.0, CB,0. Thef i ’s obtained from the calculatedCi ’s
and the effective masses given in Table IX are tabulated in
Table X.

For completeness, it is interesting to note that an infinite
number of invariants can be constructed by simply taking
higher powers of the linear-k invariant @Eq. ~3!#:

@kxsy2kysx#
2n115kuu

2n@kxsy2kysx#, ~33!

wherekuu is the magnitude of the in-plane wave vector andn
is a positive integer. If these were the only invariants, then
the in-plane spin splittings would be isotropic. We find this to
be well-obeyed for smallkuu , but to break down for larger
kuu ~typically .0.2 Å21).

IV. CONCLUSION

We have presented a microscopic calculation of the linear
spin-splitting coefficients for thee, A, B, andC states of
CdS, CdSe, and ZnO with the wurtzite structure. Their ori-
gins have been analyzed using thek–p model and are shown
to be quite different from the zinc-blende case. Our work
reveals the limitation of state-of-the-art band-structure calcu-
lations in reproducing the correct hexagonal crystal-field en-
ergies. Therefore, a renormalization of the valenceCi ’s was
found necessary. We warn that band parameter calculations
which do not correct for errors in the calculated band ener-
gies, in particular those reported in Ref. 52 for the valence
bands of wurtzitelike AlN and GaN, should be treated with
caution.

The calculated and renormalizedCe andCB for CdS and
CA for ZnO are in good agreement with the corresponding

experimental values. The small calculatedCe for ZnO justi-
fies the approximationCe'0 used in experimentalA-exciton
work. The calculatedCe andCB for CdSe are consistent with
theoretical upper-bound values obtained previously.19

For CdS and CdSe, withCe.0, we predict
CB,0, CC.0; in addition, uCBu.uCCu. An important ex-
periment would be to confirm thatCe for CdSe is much
larger than the upper-bound value of 20 meV Å deduced
from Zeeman-splitting experiments.19,34For ZnO, we predict
uCCu.uCAu. It would be interesting to determine experimen-
tally the sign ofCe for ZnO and the Cd compounds. Due to
the comparable magnitude of the linear spin splitting of the
excitons for CdS and CdSe to those of the copper halides~for
whichCk;60 meV Å!,6,31we expect the linear spin-splitting
terms to be directly observable in luminescence experiments
on CdS and CdSe microcrystallites or quantum dots, as was
reported for copper halide microcrystallites.6
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APPENDIX

Here we summarize general formulas for the contribution
to the linear spin-splitting coefficients which arise in second-
order perturbation theory. The amount of work is reduced
considerably by recognizing that

^ jmuH2u jm8&5dmm8.

The second-order contribution for thee state interacting with
Ḡ7 and Ḡ78 states is

TABLE IX. Band-edge effective masses for wurtzite CdS, CdSe,
and ZnO.

CdS CdSe ZnO

m'(e) 0.21a 0.13c 0.275d

m'(A) 0.68a 0.45c 0.59e

muu(A) .1c 0.59e

m'(B) 0.64b 0.9c 0.59e

muu(B) 0.59e

m'(C) .1f .1f 0.31e

muu(C) .1f .1f 0.55e

aResonant Brillouin scattering, Ref. 30.
bTwo-photon spectroscopy, D. G. Seiler, D. Heiman, and B. S.
Wherrett, Phys. Rev. B27, 2355~1983!.
cZeeman splitting of excitons, R. G. Wheeler and J. O. Dimmock,
Phys. Rev.125, 1805~1962!.
dCyclotron resonance, K. J. Button, D. R. Cohn, M. von Ortenbert,
B. Lax, E. Mollwo, and R. Helbig, Phys. Rev. Lett.28, 1637
~1972!.
eReference 50.
fPresent work. Estimates based onk–p analysis and LMTO band
structures.

TABLE X. Exciton linear-spin-splitting coefficient~in meV Å!
for wurtzite CdS, CdSe, and ZnO. In all cases, absolute values of
the splittings are given~see text for information on the signs!. The
data in italics have been derived from the experimental band coef-
ficientsCi given in Table VIII and the effective masses from Table
IX.

CdS CdSe ZnO

fA theory 2.7 13 24
expt. 1.9a, 2.7b, 3.8c — 14g

fB theory 65, 188 209 0
expt. 40d, 5664e, 60f — —

fC theory 70h 114h 28

aResonant Brillouin scattering, Ref. 28.
bResonant Brillouin scattering, Ref. 30.
cCalculated in Ref. 28 from data of Ref. 3~see Table VIII!.
dReflection, transmission, and two-photon Raman scattering, Ref.
27.
eResonant Brillouin scattering, Ref. 24.
fReflectivity, Ref. 23.
gMagnetoluminescence, Ref. 22; reflection, transmission, and two-
photon Raman scattering, Ref. 27.
hAssumingufCu'uCCu.
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Ce,2[(
7̄

Ce, 7̄1(
7̄8

Ce, 7̄8, ~A1!

with

Ce, 7̄5~12q̄7
2!

D x̄ ,z

Ee2Ē7
Px̄ ,S , ~A2!

Ce, 7̄85q̄7
2 D x̄ ,z

Ee2Ē78
Px̄ ,S , ~A3!

and

D x̄ ,z5
\2

2m0
3c2

^x̄u¹zVpx2¹xVpzuz&, ~A4!

Px̄ ,S52 i\^x̄u
]

]x
uS&. ~A5!

We now consider the valence states. If we include all
possibleḠ7 andḠ78 states of the types from Eq.~10!, and the
s-like G7 states, then

C7,2[C7,e1(
7̄

C7,7̄1(
7̄8

C7,7̄8, ~A6!

C78,2[C78,e1(
7̄

C78,7̄1(
7̄8

C78,7̄8, ~A7!

with

C7,e5~12q7
2!
qzDx,z

E72Ee
Px,S ,

C7,7̄5
D1 1̄
7

A2~E72Ē7!
@ q̄7~12q7

2!1/2Px, Z̄1q7~12q̄7
2!1/2PZ, x̄ #,

C7,7̄85
D1 1̄8
7

A2~E72Ē78!
@1~12q7

2!1/2~12q̄7
2!1/2Px, Z̄

2q7q̄7PZ, x̄ #,

C78,e5q7
2 qzDx,z

E782Ee
Px,S , ~A8!

C78,7̄5
D18 1̄
7

A2~E782Ē7!
@2q7q̄7Px, Z̄1~12q7

2!1/2

3~12q̄7
2!1/2PZ, x̄ #,

C78,7̄85
D18 1̄8
7

A2~E782Ē78!
@2q7~12q̄7

2!1/2Px, Z̄

2q̄7~12q7
2!1/2PZ, x̄ #,

where

D1 1̄
7

[^G7↑uH2uḠ7↑&52~12q7
2!1/2~12q̄7

2!1/2D5

1q̄7~12q7
2!1/2D511q7~12q̄7

2!1/2D15,

D1 1̄8
7

[^G7↑uH2uḠ78↑&5q̄7~12q7
2!1/2D51~12q7

2!1/2

3~12q̄7
2!1/2D512q7q̄7D15,

D18 1̄
7

[^G78↑uH2uḠ7↑&5q7~12q̄7
2!1/2D52q7q̄7D51

1~12q7
2!1/2~12q̄7

2!1/2D15, ~A9!

D18 1̄8
7

[^G78↑uH2uḠ78↑&52q7q̄7D52q7~12q̄7
2!1/2D51

2q̄7~12q7
2!1/2D15,

and

D5[^u5↑uH2uū5↑&5
2\2

2m0
3c2 K xU]V]x py2 ]V

]y
pxU ȳL ,

D51[^u5* ↑uH2uū1↓&5
\2

A2m0
3c2

K xU]V]z px2 ]V

]x
pzUZ̄L ,

~A10!

D15[^u1↓uH2uū5* ↑&52
\2

A2m0
3c2

K ZU]V]z px2 ]V

]x
pzUx̄L ,

are spin-orbit matrix elements.Px, Z̄52 i\^xu]/]xuZ̄& ~and
similarly for the other momentum matrix elements!.
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