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Alternative equations of motion for dynamical simulated annealing of the density functional

J. C. Greer
Department of Chemistry, Trinity College, Dublin 2, Ireland
(Received 15 November 1995

An alternative scheme fab initio molecular-dynamics simulations using the density-functional expression
for the total electronic energy is proposed. A constrained procedure emerges where only the total electronic
density need be dynamically propagated. When energy dissipation is removed from the minimization dynam-
ics, the method becomes equivalent to the microcanonical sampling of the functional integral representation of
interacting fermions and bosons.

I. INTRODUCTION mediatelly extendable to the density-functional expression
due to the choice of canonical variables within the scheme.
The Car-Parrinellab initio molecular-dynamicgaiMD)  The purpose of this paper is to identify a related scheme for
approach has provided an alternative means for solution dhe density-functional expression by choosing the total elec-
the electronic structure problem and simultaneously allowdronic density as a “position coordinate.” The result is a
for energy minimization with respect to the nuclear simple procedure requiring only the dynamical propagation
positions' The method relies on ideas based upon the conef a single degree of freedom: the total electronic density.
cept of simulated annealing developed for minimizationApplication of the method is demonstrated for atomic sys-
problems? however, the Monte Carlo generation of systemtems.
configurations is replaced by a dissipative dynamics scheme.
Hence theaiMD procedure is also referred to as dynamical
simulated annealing. Within the context of density-functional ||, MICROCANONICAL SIMULATIONS OF FERMIONS
theory, the Born-Oppenheimer energy for a system may be AND HARTREE-FOCK CALCULATIONS

represented as ) ] ) )
Consider the case of a quantum field theory with an action

f of the form

2
El 4 aR|]=2i f ’/’i*(r)[_ —Vz}l/ﬁ(r)dr

2mg

+U[p(r)!{Rl}]’ (1)

where they; are occupied single-particle orbitals,is the
total electron density, are electron positions, a{®,} is the

set of nuclear coordinates. The Car-Parrinello strategy is t%hereh[dﬂ describes the fermions plus interaction s
introduce a minimization dynamics fo_r the electromc ar‘dthe free bosonic action. It is desired to generate a large num-
nuplear degrees of freedo(for self-consistent _electromc SO~ per of fermion ¢ and boson¢ field configurations for the
lutions, the nuclear dynamics becomes classical dynamics o} . astic evaluation of the partition function. The microca-

':_he Born-IOppenheollmertSL;Lfa)cféI;Pe _electronlc vyavg func- nonical approach to the problénintroduces a dynamics
ions evolve according to the following expression: through the fictive Lagrangian

S=2 yh[$ly+Sel ¢], o

R (r,0)= = SE[y* 1Sy (r,)+ X ejuy(r,t), (2)
! L=3VM[q]V—’Q?*+ 3 uv?—U[q] 4
whereE is the total electronic energy of the system and the
€;; are Lagrangian multipliers introduced to enforce orthogo- . . :
nzjallity of the single-electron wave functions. Although CarW'th conjugate var!ables{M_V,Q} an_d {pv,0;. The La-
and Parrinello developed the method using the density fungdrangian Is asso_matgd V‘.”.th Fhe .f|eld theoretic problem
tional, it is clear from the above expression that any meangwrough the following identifications:
of describing the electronic energy may be used within their
approach.
In the following, an analogy betweeab initio molecular- Veu, aed,
dynamics simulations using Hartree-Fock théamd micro-
canonical simulations applied to interacting fermions and
bosoné_is reviewed. This analogy is achieved by defining an sM[ql—h[¢], U[q]leSg[4].
alternative fictive dynamics scheme whereby the potential
functions of the Hartree-Fock operator become the degrees
of freedom for the fictive dynamics. The method is not im- The Euler-Lagrange equations of motion are
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. o In this form, the Hartree-Fock equations resemble a field
¢:—5—¢(SB[¢]—¢/*h[¢]l/f), (5  theory of fermions interacting with a three-dimensional,
massless boson field. Through the identifications

d
&(h[(b]w):—wzlﬂ- Voo, qed¢, MIgl—hle],

For microcanonical simulations, it is desired to generate fiel@ontact is made with the microcanonical approach. The cor-
configurations via the fictive dynamics scheme. Instead ofésponding equations of motion are modified in two ways: a
the introduction of a dissipative term as in aiMD ap- harr_nonlc potential is not !ntroduce_d but orthogonality con-
proach, a harmonic potentiai?Q? is introduced for the fer- _stralnts for. the wave functions are m'groduceq. The La_grang-
mionic degrees of freedom to aid in the generation of field@" multipliers to enforce orthogonality are included in the
configurations. It can be shown that expectation values ofSual way leading to the modified equations of motion:
functionals of the boson fieldg are not changed by the 5
introduction of these additional terms. yu *
The steps leading to a Lagrangian function of the form of ¢ 5¢(SB[¢] v hlely),

Eq. (4) will now be shown as given for Hartree-FoakviD
in Ref. 3. The energy expectation value for the Hamiltonian E _ _

, : {(h[¢]—e)y}=0. (12
operator of the quantum Coulomb problem in a single Slater dt
determinant is rewritten as an energy density

The Euler-Lagrange equation fgris rewritten as

E=fdr‘é<r% (h[$]-€)=(e~h[$]) v (13
Using the first-order approximation to the time derivative,
AnN=2 [wnr)[mhl(mz; Fijmd)k.(r)}wj(r) the equation becomes
i

(Ah[p]—Ae)y=(e—h[S])Ay. (14

It is seen that the first-order approximation leads to the first-
order perturbative correction to the eigenvalues and wave
where h, is the kinetic energy and one-body potentials, functions. Within this approach, the potential functiofs
vij=6;j Is the one-particle density matrix,I'j  are propagated dynamically while the wave functions are
= U2 vij v~ vi vkl is the two-particle density matrix, and corrected by treating the change in the potentials as a pertur-
bation; further details can be found in Ref. 3.
() @

Ir—r'| Ill. AN ALTERNATIVE DYNAMICS SCHEME

are Coulomb and exchange potentials. The first term in Eq. FOR THE DENSITY FUNCTIONAL

(6) is the sum of the single-particle energies and the second For the Car-Parrinello scheme, a ficticious Lagrangian is
term corrects the overcounting of the two-body potentialsdefined as

The energy density is rewritten after two steps. Firstly, the
Hartree-Fock operator is written as

—; rumwr(rmk.(r)w,-(r)], (6)

¢ij(r)=J dr

1 . 1 .
L= gu linPars 53 MR-Ey R a5

hij[ 1= 7ijha(r)+22 Tij (). tS) _ . . :
ki with conjugate variables{p,q}={u¢,¥} and {P,Q}=

Secondly, the correction for the overcounting of the two-{MR.R} andu is a ficticious mass variable. The electronic
body terms is rewritten by using and nuclear equations of motion then follow:

U 0=V"2(0). © wih(r)=—SEI Syt (r,)+> ejuy(rt), (16
]

For the Coulomb potential, the inverse operator is simply

defined with ..
M|R|:_V|E, (17)

Q—lv(r,r "N=— iw;’: SB(r—r"). (100  Wwhere the Lagrangian multipliees; have been introduced to
4 r—r’| enforce the orthonormality of the single-particle wave func-
tions. The expression for the total density in terms of the

The energy density can now be expressed as ) . . .
single-particle wave functions is

1
A= g (D[ ¢]e(r) + EI% Tijia i (D) V2 ra(r). oce

ij (11) p(r)=2 [N, (18)
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allowing variations of the single-particle functions to be rep- E
resented as variations of the total density. The Euler- a) [9.P]
Lagrange equation of motion for the single-particle functions X

may be explicitly written as N

i (r,t)=— 5E/5p(r,t)+; &w(r,), (19

Fon
e eV D+ 0 (1) °) Elq,p,Q.P]
=e&(Di(r,t), (20

with ¢y the Hartree potential including any external poten-
tials and ¢,. the exchange-correlation potential within the
local density approximation. Note that when
52
,U,Pl,//i(r,t)zo, (21)
. . FIG. 1. Schematic representations of phase spacealfanitio
the equations of motion reduce to the Kohn-Sham selfigjecular dynamics simulation&) Using the equation of motion
Consistent equations fOI’ the Sing|e-pal’tic|e wave funct?ons.given in Eq(s)’ the System propagates a|0ng a constant energy
Car and Parrinello use the Verlet algorithrior the time  surface. If the orthogonality restaints are lifted, the dynamics up-
integration and introduce the method of Ryckaert, Ciccottidates will leave the constrained energy surfate.For the pro-
and Berendsénto enforce the constrainfsln some imple-  posed method, the dynamics defines a fictive dynamics for the total
mentations of the algorithm, only a “partially constrained” electron density and the one-electron functions are perturbatively
dynamics is employed® allowing the single-particle func- corrected. The energy remains on the constrained energy surface to
tions to be propagated without the constraint of orthonormalwithin first order in the perturbation.
ity. After a single step of the time evolution, orthogonality is
restored explicitly by means such as the Gram-Schmidt prothe approach previously described for Hartree-Fock simula-
cedure. Alternative to the dynamics procedure for the elections. A single-particle Hamiltonian operator is defined as
tronic degrees of freedoms, a reformulation of the wave-
function optimization in terms of constrained minimization 2
procedures has been givérior situations where it is clear h[¢]=—
that there are not many local minima: for these cases, simu-
lated annealing strategies are not appropriate for optimiza-
tion of the single-particle wave functions. H(1)=dp(r)+ pyo(r).
It can be observed that in partially constrained schemes

the orthogonality constraints are not present during a dynamrhe density-functional energy for the system is written in

ics update. Consider the diagram in Fida)l which is in-  terms of the single-particle Hamiltonian operator as
tended as a schematic representation of phase space for a

2meV2+ (1), (22)

Car-Parrinello fictive dynamics scheme. The energy is a con- occ
stant of motion dependent on the “moment@= w¢ and E=D f dry*h[plw —U[p], (23)
“positions” g= . The closed path is intended to represent a i '

constant energy trajectory through phase space along which
the orthonormality constraint is respected. As the simulatiorwith
progresses, kinetic energy is removed from the system and,

based upon the ideas of simulated annealing, the final zero lf p(Np(r’)

temperature self-consistent equations will be a solution to theU[p]= = =g

2 dr dl"—f p(N{exdp]l—pxd pltdr

Kohn-Sham equations, the correct ground-state energy. Note, (24)

however, if the constraint of orthonormality is relaxed, the
dynamics updates are not restricted to the constrained ener
surface that is depicted in Fig(d). The nondynamical step . -
of orthogonalization returns to an energy surface in phasé'n'fort'.m. eltehctrﬁnhgaghanqhxc— 5t('p GXC[p])S{(S.p .thw?jen t_rt1e
space where the constraints are satisified, but for new valui%@ satisify the Kohn-Sham equations, Bg3) is the density-

of {g,p}. The nonconstrained dynamics update and the fol- .un.ctional energy within the local Qensity approximation. A
lowing nondynamical orthogonalization of the wave func- fictive Lagrangian for the electronic degrees of freedom can

tions can result in an erratic search of the functional space.nOW be written as

It will now be shown how a dynamical simulated anneal-
ing approach can be maintained for the electronic structure L=3VM[q]V+3uv®-U[q] (25
problem but where it is only necessary to dynamically propa-
gate one degree of freedom. This can be achieved followingvith the identifications

%¥1d € 1S the exchange-correlation energy per electron for a
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Ne(2p) Eigenvalue ( Rydberg)

[ o K W FIG. 2. Calculation of the Ne(®) eigenvalue.

V! The dynamics are performed with three values of
damping:(i) no damping,y=1, (ii) intermediate
damping,y=0.4, (iii) overdampedy=0.0.
.......... no damping

_— damping=0.4
.................... damping =0
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Ve,  qep, lowing the density to be propagated for a single time step.
The corresponding change in the density gives rise to a
vep,  EM[gleh[p]. change in the potential energy terms. The change in the po-

tential energy due to the fictive dynamics for the density is
The momenta and positiofg.v,q} are conjugate variables then used to determine a perturbative correction to the
whereas the momentsl[q]V are for free particles with a sjngle-particle functions and energies. In this respect, the
mass term dependent on the positiapsVariation of the  single-particle functions are “dragged along” by the density
action with introduction of the orthonormality constraints, dynamics. In this way, the trajectory is restricted to first or-

der to the constrained energy surface shown schematically in

oce 1 . Fig. 1(b).
5I=0H5f dt[z fdrl/f*(h[p]—e)t!/+§Mp2—U[p]]

=0, (26) IV. A NUMERICAL EXAMPLE

leads to the Euler-Lagrange equations of the same form as TO illustrate the method, a simple density-functional
Eq. (12): theory calculation for the neon atom was performed. The
exchange-correlation potential was chosen to be the corre-
S occ sponding exchange potential for a homogeneous electron gas
wp=— _[ Ulp]— 2 j dry* h[p]lﬂ] ' 27) (this does not change the form of the equations to be splved
op Spherical symmetry was assumed and the calculation was
S performed with numerical wave functions defined on a
(h[p]—e€)y=(e=h[p])#. (28)  pseudologarithmic grid. Dynamical simulated annealing was

Equation(27) allows the updating of the density based uponperformed with velocity scaling of the form

variations of the total constrained energy. For dynamical

simulated annealing strategy, the velocitigs will be _

guenched, allowing the system to come to rest in energy vy =r0(t) (30
minima. When a minimum is encountered, the accelerations

p become zero and the equation of motion becomes thggar every ten iterations withthe simulation time and a
ground state of the density-functional expression. However,,ameter chosen to control the rate of energy loss. The time
the perturbative update E@28) allows a new approach {0 gian \as taken to bét=0.05 in units where the fictitious

the wave function updates. The equation of motion is agaif, s, — 1. Initial conditions were chosen as follows: start-

rewritten to first order as ing wave functions and their corresponding eigenvalues for
_ _ _ the singly charged neon cation were taken as an initial guess
(hlp]=€)Ay=(Ae=Ahlp]). 29 and a zero initial velocity was assignedgoConvergence to
If Eg. (18) relating the density to the single-particle functions the correct single-particle eigenvalues to four significant fig-
is satisified as an initial condition, this property will be pre- ures was reached and the final integrated density was also
served within the accuracy of the perturbation correction tccorrect for the number of particles to better than four figures.
the wave functions throughout the time evolution of the sys{n Fig. 2, the 2 eigenvalue as a function of simulation time
tem. Corrections to this condition can be applied based upois shown for three different damping factors. To avoid accu-
usual considerations with respect to the errors introduced bsnulation of error due to the first-order perturbative updates,
a finite time step. Similar to the Hartree-Fock dynamics ap-corrected eigenfunctions and eigenvalues were generated by
proach described previously, the constrained dynamics masolving the Schrdinger equation with the current potential
be summarized as follows: E€R7) defines a dynamics al- arising from the current densityp after typically
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25-50 iterationgthe exact value dependent on simulationtistical mechanical arguments. Without dampipg 1.0, the

time t and the damping The resulting number of solutions simulation is seen to oscillate at all times without conver-

to the Schrdinger equation is comparable to that required ingence to the correct eigenvalue.

standard self-consistent field methods. However, the number

of times to correct the eigenfunctions and vectors can be

reduced by judicious choice of time step and initial condi- V. CONCLUSION

gﬂgsé cﬁlrfé!:ezﬁ'\é?Iﬁn?/g?uoegsonma;'zféogc?ﬂécg dwgvitfﬁgftrf:: Expressing the fictive dynamics for different appro_aches
9 X ay Y "B guantum many-body problemgnamely, density-

In any event, for the simulations presented here, the corre(f—

tion to the wave functions and eigenvalues due to the Smalu_nctlonal theory, the Hartree-Fock approximation, and the

chanaes in the density at longer times was nealiaible for th microcanonical representation of interacting fermions and
9 Sity 9 ; > Negiig %osons; in the above outlined way leads to a common frame-
cases where damping was presentaidD simulations, the

. i . work for the computation of the properties of quantum sys-
per.turbatlc.)n arising frpm the propagation of the nucle:_;lr CO%ems. The herein described method of imposing the orthogo-
ordinates is also anticipated to be small, hence corrections tr?alit); constraints on the single-particle wave functions
wave functions and elgenval_ues are not anticipated to be NeGjows for a dynamical simulated annealing scheme for the
essary except for long run times and then iny after a Ia_rg ensity functional expression for electronic energies while
r?“'.“bef of nu_clear coordinate updates. .In '.:'g' .2’ the desire ropagating only one degree of freedom: this allows one to
fictive dynamics for the electronic density is displayed. For :

overdampingy=0.0, the eigenvalue smoothly converges todirec:tly minimize the density functional with respect to den-
the correct value. If the damping is chosen toybe0.4. the sity as opposed to the Kohn-Sham orbitals. For the case of

microcanonical simulations, the method of constraining the

calculated eigenvalue is seen to oscillate about the corregt . updates leads to a straightforward means of sam-
value as the simulation progresses and converges to the C%I‘ing over orthogonal fermion states

rect solution as the “velocity” is damped. This is the behav-
ior necessary for dynamical simulated annealing. The pur-
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