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An alternative scheme forab initiomolecular-dynamics simulations using the density-functional expression
for the total electronic energy is proposed. A constrained procedure emerges where only the total electronic
density need be dynamically propagated. When energy dissipation is removed from the minimization dynam-
ics, the method becomes equivalent to the microcanonical sampling of the functional integral representation of
interacting fermions and bosons.

I. INTRODUCTION

The Car-Parrinelloab initio molecular-dynamics~aiMD!
approach has provided an alternative means for solution of
the electronic structure problem and simultaneously allows
for energy minimization with respect to the nuclear
positions.1 The method relies on ideas based upon the con-
cept of simulated annealing developed for minimization
problems,2 however, the Monte Carlo generation of system
configurations is replaced by a dissipative dynamics scheme.
Hence theaiMD procedure is also referred to as dynamical
simulated annealing. Within the context of density-functional
theory, the Born-Oppenheimer energy for a system may be
represented as
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i
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2me
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where thec i are occupied single-particle orbitals,r is the
total electron density,r are electron positions, and$RI% is the
set of nuclear coordinates. The Car-Parrinello strategy is to
introduce a minimization dynamics for the electronic and
nuclear degrees of freedom~for self-consistent electronic so-
lutions, the nuclear dynamics becomes classical dynamics on
the Born-Oppenheimer surface!. The electronic wave func-
tions evolve according to the following expression:
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j
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whereE is the total electronic energy of the system and the
e i j are Lagrangian multipliers introduced to enforce orthogo-
nality of the single-electron wave functions. Although Car
and Parrinello developed the method using the density func-
tional, it is clear from the above expression that any means
of describing the electronic energy may be used within their
approach.

In the following, an analogy betweenab initiomolecular-
dynamics simulations using Hartree-Fock theory3 and micro-
canonical simulations applied to interacting fermions and
bosons4 is reviewed. This analogy is achieved by defining an
alternative fictive dynamics scheme whereby the potential
functions of the Hartree-Fock operator become the degrees
of freedom for the fictive dynamics. The method is not im-

mediatelly extendable to the density-functional expression
due to the choice of canonical variables within the scheme.
The purpose of this paper is to identify a related scheme for
the density-functional expression by choosing the total elec-
tronic density as a ‘‘position coordinate.’’ The result is a
simple procedure requiring only the dynamical propagation
of a single degree of freedom: the total electronic density.
Application of the method is demonstrated for atomic sys-
tems.

II. MICROCANONICAL SIMULATIONS OF FERMIONS
AND HARTREE-FOCK CALCULATIONS

Consider the case of a quantum field theory with an action
of the form

S5( c̄h@f#c1SB@f#, ~3!

whereh@f# describes the fermions plus interaction andSB is
the free bosonic action. It is desired to generate a large num-
ber of fermionc and bosonf field configurations for the
stochastic evaluation of the partition function. The microca-
nonical approach to the problem4 introduces a dynamics
through the fictive Lagrangian

L5 1
2VM@q#V2v2Q21 1

2mv22U@q# ~4!

with conjugate variables$MV,Q% and $mv,q%. The La-
grangian is associated with the field theoretic problem
through the following identifications:

V↔c, q↔f,

1
2 M @q#↔h@f#, U@q#↔SB@f#.

The Euler-Lagrange equations of motion are
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For microcanonical simulations, it is desired to generate field
configurations via the fictive dynamics scheme. Instead of
the introduction of a dissipative term as in anaiMD ap-
proach, a harmonic potentialv2Q2 is introduced for the fer-
mionic degrees of freedom to aid in the generation of field
configurations. It can be shown that expectation values of
functionals of the boson fieldsf are not changed by the
introduction of these additional terms.

The steps leading to a Lagrangian function of the form of
Eq. ~4! will now be shown as given for Hartree-FockaiMD
in Ref. 3. The energy expectation value for the Hamiltonian
operator of the quantum Coulomb problem in a single Slater
determinant is rewritten as an energy density

E5E drE~r !,
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where h1 is the kinetic energy and one-body potentials,
g i j5d i j is the one-particle density matrix,G i jkl
51/2@g i jgkl2g i lgk j# is the two-particle density matrix, and

f i j ~r !5E dr 8
c i* ~r 8!c j~r 8!

ur2r 8u
~7!

are Coulomb and exchange potentials. The first term in Eq.
~6! is the sum of the single-particle energies and the second
term corrects the overcounting of the two-body potentials.
The energy density is rewritten after two steps. Firstly, the
Hartree-Fock operator is written as

hi j @f#5g i j h1~r !12(
kl

G i jklfkl~r !. ~8!

Secondly, the correction for the overcounting of the two-
body terms is rewritten by using

c i* ~r !c j~r !5V̂21f i j ~r !. ~9!

For the Coulomb potential, the inverse operator is simply
defined with
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The energy density can now be expressed as
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In this form, the Hartree-Fock equations resemble a field
theory of fermions interacting with a three-dimensional,
massless boson field. Through the identifications

V↔c, q↔f, 1
2M @q#↔h@f#,

contact is made with the microcanonical approach. The cor-
responding equations of motion are modified in two ways: a
harmonic potential is not introduced but orthogonality con-
straints for the wave functions are introduced. The Lagrang-
ian multipliers to enforce orthogonality are included in the
usual way leading to the modified equations of motion:
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d
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The Euler-Lagrange equation forc is rewritten as

~ ḣ@f#2 ė !c5~e2h@f#!ċ. ~13!

Using the first-order approximation to the time derivative,
the equation becomes

~Dh@f#2De!c5~e2h@f#!Dc. ~14!

It is seen that the first-order approximation leads to the first-
order perturbative correction to the eigenvalues and wave
functions. Within this approach, the potential functionsf i j
are propagated dynamically while the wave functions are
corrected by treating the change in the potentials as a pertur-
bation; further details can be found in Ref. 3.

III. AN ALTERNATIVE DYNAMICS SCHEME
FOR THE DENSITY FUNCTIONAL

For the Car-Parrinello scheme, a ficticious Lagrangian is
defined as

L5(
i

1

2
mE uċ i u2dr1

1

2(I M IṘI
22E@c i ,RI #, ~15!

with conjugate variables$p,q%5$mċ,c% and $P,Q%5

$MṘ,R% andm is a ficticious mass variable. The electronic
and nuclear equations of motion then follow:

mc̈ i~r ,t !52dE/dc i* ~r ,t !1(
j

e i jc j~r ,t !, ~16!

MIR̈I52¹ IE, ~17!

where the Lagrangian multiplierse i j have been introduced to
enforce the orthonormality of the single-particle wave func-
tions. The expression for the total density in terms of the
single-particle wave functions is

r~r !5(
i

occ

uc i~r !u2, ~18!
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allowing variations of the single-particle functions to be rep-
resented as variations of the total density. The Euler-
Lagrange equation of motion for the single-particle functions
may be explicitly written as

mc̈ i~r ,t !52dE/dr~r ,t !1(
j

e i jc j~r ,t !, ~19!
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with fH the Hartree potential including any external poten-
tials andfxc the exchange-correlation potential within the
local density approximation. Note that when

m
]2

]t2
c i~r ,t !50, ~21!

the equations of motion reduce to the Kohn-Sham self-
consistent equations for the single-particle wave functions.5

Car and Parrinello use the Verlet algorithm6 for the time
integration and introduce the method of Ryckaert, Ciccotti,
and Berendsen7 to enforce the constraints.8 In some imple-
mentations of the algorithm, only a ‘‘partially constrained’’
dynamics is employed,9,10 allowing the single-particle func-
tions to be propagated without the constraint of orthonormal-
ity. After a single step of the time evolution, orthogonality is
restored explicitly by means such as the Gram-Schmidt pro-
cedure. Alternative to the dynamics procedure for the elec-
tronic degrees of freedoms, a reformulation of the wave-
function optimization in terms of constrained minimization
procedures has been given11 for situations where it is clear
that there are not many local minima: for these cases, simu-
lated annealing strategies are not appropriate for optimiza-
tion of the single-particle wave functions.

It can be observed that in partially constrained schemes
the orthogonality constraints are not present during a dynam-
ics update. Consider the diagram in Fig. 1~a!, which is in-
tended as a schematic representation of phase space for a
Car-Parrinello fictive dynamics scheme. The energy is a con-
stant of motion dependent on the ‘‘momenta’’p5mċ and
‘‘positions’’ q5c. The closed path is intended to represent a
constant energy trajectory through phase space along which
the orthonormality constraint is respected. As the simulation
progresses, kinetic energy is removed from the system and,
based upon the ideas of simulated annealing, the final zero
temperature self-consistent equations will be a solution to the
Kohn-Sham equations, the correct ground-state energy. Note,
however, if the constraint of orthonormality is relaxed, the
dynamics updates are not restricted to the constrained energy
surface that is depicted in Fig. 1~a!. The nondynamical step
of orthogonalization returns to an energy surface in phase
space where the constraints are satisified, but for new values
of { q,p}. The nonconstrained dynamics update and the fol-
lowing nondynamical orthogonalization of the wave func-
tions can result in an erratic search of the functional space.

It will now be shown how a dynamical simulated anneal-
ing approach can be maintained for the electronic structure
problem but where it is only necessary to dynamically propa-
gate one degree of freedom. This can be achieved following

the approach previously described for Hartree-Fock simula-
tions. A single-particle Hamiltonian operator is defined as

h@f#52
\2

2me
¹21f~r !, ~22!

f~r ![fH~r !1fxc~r !.

The density-functional energy for the system is written in
terms of the single-particle Hamiltonian operator as

E5(
i

occ E drc i* h@r#c i2U@r#, ~23!

with

U@r#5
1

2E r~r !r~r 8!

ur2r 8u
dr dr 82E r~r !$exc@r#2mxc@r#%dr

~24!

andexc is the exchange-correlation energy per electron for a
uniform electron gas andmxc5d(re xc@r#)/dr. When the
c i satisify the Kohn-Sham equations, Eq.~23! is the density-
functional energy within the local density approximation. A
fictive Lagrangian for the electronic degrees of freedom can
now be written as

L5 1
2VM@q#V1 1

2mv22U@q# ~25!

with the identifications

FIG. 1. Schematic representations of phase space forab initio
molecular dynamics simulations.~a! Using the equation of motion
given in Eq. ~3!, the system propagates along a constant energy
surface. If the orthogonality restaints are lifted, the dynamics up-
dates will leave the constrained energy surface.~b! For the pro-
posed method, the dynamics defines a fictive dynamics for the total
electron density and the one-electron functions are perturbatively
corrected. The energy remains on the constrained energy surface to
within first order in the perturbation.
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V↔c, q↔r,

v↔ ṙ, 1
2M @q#↔h@r#.

The momenta and positions$mv,q% are conjugate variables
whereas the momentaM @q#V are for free particles with a
mass term dependent on the positionsq. Variation of the
action with introduction of the orthonormality constraints,

dI50→dE dtH (occ E drc* ~h@r#2e!c1
1

2
mṙ22U@r#J

50, ~26!

leads to the Euler-Lagrange equations of the same form as
Eq. ~12!:

mr̈52
d

dr
HU@r#2(

occ E drc* h@r#cJ , ~27!

~h@r#2e!ċ5~ ė2ḣ@r#!c. ~28!

Equation~27! allows the updating of the density based upon
variations of the total constrained energy. For dynamical
simulated annealing strategy, the velocitiesṙ will be
quenched, allowing the system to come to rest in energy
minima. When a minimum is encountered, the accelerations
r̈ become zero and the equation of motion becomes the
ground state of the density-functional expression. However,
the perturbative update Eq.~28! allows a new approach to
the wave function updates. The equation of motion is again
rewritten to first order as

~h@r#2e!Dc5~De2Dh@r#!c. ~29!

If Eq. ~18! relating the density to the single-particle functions
is satisified as an initial condition, this property will be pre-
served within the accuracy of the perturbation correction to
the wave functions throughout the time evolution of the sys-
tem. Corrections to this condition can be applied based upon
usual considerations with respect to the errors introduced by
a finite time step. Similar to the Hartree-Fock dynamics ap-
proach described previously, the constrained dynamics may
be summarized as follows: Eq.~27! defines a dynamics al-

lowing the density to be propagated for a single time step.
The corresponding change in the density gives rise to a
change in the potential energy terms. The change in the po-
tential energy due to the fictive dynamics for the density is
then used to determine a perturbative correction to the
single-particle functions and energies. In this respect, the
single-particle functions are ‘‘dragged along’’ by the density
dynamics. In this way, the trajectory is restricted to first or-
der to the constrained energy surface shown schematically in
Fig. 1~b!.

IV. A NUMERICAL EXAMPLE

To illustrate the method, a simple density-functional
theory calculation for the neon atom was performed. The
exchange-correlation potential was chosen to be the corre-
sponding exchange potential for a homogeneous electron gas
~this does not change the form of the equations to be solved!.
Spherical symmetry was assumed and the calculation was
performed with numerical wave functions defined on a
pseudologarithmic grid. Dynamical simulated annealing was
performed with velocity scaling of the form

vg~ t !5gv~ t ! ~30!

after every ten iterations witht the simulation time andg a
parameter chosen to control the rate of energy loss. The time
step was taken to bedt50.05 in units where the fictitious
massm51. Initial conditions were chosen as follows: start-
ing wave functions and their corresponding eigenvalues for
the singly charged neon cation were taken as an initial guess
and a zero initial velocity was assigned toṙ. Convergence to
the correct single-particle eigenvalues to four significant fig-
ures was reached and the final integrated density was also
correct for the number of particles to better than four figures.
In Fig. 2, the 2p eigenvalue as a function of simulation time
is shown for three different damping factors. To avoid accu-
mulation of error due to the first-order perturbative updates,
corrected eigenfunctions and eigenvalues were generated by
solving the Schro¨dinger equation with the current potential
arising from the current densityr after typically

FIG. 2. Calculation of the Ne(2p) eigenvalue.
The dynamics are performed with three values of
damping:~i! no damping,g51, ~ii ! intermediate
damping,g50.4, ~iii ! overdamped,g50.0.
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25–50 iterations~the exact value dependent on simulation
time t and the damping!. The resulting number of solutions
to the Schro¨dinger equation is comparable to that required in
standard self-consistent field methods. However, the number
of times to correct the eigenfunctions and vectors can be
reduced by judicious choice of time step and initial condi-
tions. Alternatively, orthogonalization of the wave functions
and corrected eigenvalues may be achieved by other means.
In any event, for the simulations presented here, the correc-
tion to the wave functions and eigenvalues due to the small
changes in the density at longer times was negligible for the
cases where damping was present. InaiMD simulations, the
perturbation arising from the propagation of the nuclear co-
ordinates is also anticipated to be small, hence corrections to
wave functions and eigenvalues are not anticipated to be nec-
essary except for long run times and then only after a large
number of nuclear coordinate updates. In Fig. 2, the desired
fictive dynamics for the electronic density is displayed. For
overdampingg50.0, the eigenvalue smoothly converges to
the correct value. If the damping is chosen to beg50.4, the
calculated eigenvalue is seen to oscillate about the correct
value as the simulation progresses and converges to the cor-
rect solution as the ‘‘velocity’’ is damped. This is the behav-
ior necessary for dynamical simulated annealing. The pur-
pose of the fictive dynamics is to search the functional space
to locate the true global minimum; the fictive dynamics al-
lows the simulation to escape local minima and eventually to
become trapped in the correct ground state based upon sta-

tistical mechanical arguments. Without dampingg51.0, the
simulation is seen to oscillate at all times without conver-
gence to the correct eigenvalue.

V. CONCLUSION

Expressing the fictive dynamics for different approaches
to quantum many-body problems~namely, density-
functional theory, the Hartree-Fock approximation, and the
microcanonical representation of interacting fermions and
bosons! in the above outlined way leads to a common frame-
work for the computation of the properties of quantum sys-
tems. The herein described method of imposing the orthogo-
nality constraints on the single-particle wave functions
allows for a dynamical simulated annealing scheme for the
density functional expression for electronic energies while
propagating only one degree of freedom: this allows one to
directly minimize the density functional with respect to den-
sity as opposed to the Kohn-Sham orbitals. For the case of
microcanonical simulations, the method of constraining the
fermion updates leads to a straightforward means of sam-
pling over orthogonal fermion states.
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