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We investigate the ordering tendencies of the fcc Cu-¹iZn system using a recently developed
first-principles, density-functional-based theory of atomic short-range order (ASRO) in disordered
substitutional alloys of an arbitrary number of components. We 6nd for the binary alloys a vari-

ety of effects which should lead to competition in the ternaries: commensurate ordering (¹iZn),
long-period ordering (Cu-rich Cu-Zn), and clustering (Cu-Ni), in agreement with experiment. We
calculate the ASRO of various disordered ternary alloys (as described by the Warren-Cowley pair-
correlation function) and discuss its relationship to the electronic structure of the binary and ternary
disordered alloys. We find [100]-type ASRO over an extensive composition range for the ternary
alloys, even though all of the ordering tendencies for binaries and ternaries have a Fermi-surface—
driven component. We discuss how alloying and disorder broadening lead to these ASRO properties.
For Cu50Ni25Zn25, the agreement for our calculated ASRO and its indication of two ordered states
at low temperature are in good agreement with experiments.

I. INTRODUCTION

Atomic short-range order (ASRO) in the high-
temperature solid solution phase of metallic alloys re-
veals ordering tendencies that are often indicative of long-
range order found at lower temperatures. Such ASRO
is measurable by diffuse scattering experiments and de-
termines many material properties at high temperature,
where much materials processing takes place. Determin-
ing the underlying electronic origins of the ASRO is thus
a useful enterprise, both for interpreting experiments and
for predicting, understanding, and controlling the prop-
erties of alloys.

Recently, we showed that Fermi-surface nesting drives
much of the ordering tendencies of the fcc Cu-¹iZn
ternary system. The present work discusses some of
these results in greater detail, and also addresses the
question of whether insight gained from studying various
binary alloys can lead to an understanding of the ternar-
ies. In the present work, we show that Fermi-surface
nesting is, for a large portion of the ternary phase field,
a unifying theme for both the fcc binaries and ternar-
ies; however, a simple interpretation based solely on the
electron-per-atom ratio ( —') is not possible, because of the
added complexity of alloy broadening of the Fermi sur-
face, and because in a ternary alloy the composition and
—can be varied independently, unlike in binary systems.

Within the framework of linear-response theory, the
correlation functions that describe the ASRO are re-
lated to susceptibilities of the high-temperature disor-

dered state. Such is the inspiration of the first-principles
electronic theory of compositional fI.uctuations in a homo-
geneously disordered state due to Gyorffy and Stocks '

and Staunton, Johnson, and Pinksi for binary alloys,
and extended to multicomponent alloys in Refs. 1 and
5. This first-principles approach builds on the mean-field
theory of ordering (the method of concentration waves)
developed by Khatchaturyan. It is similar to the theory
of second-order transformations by Landau and Lifshitz
and possesses the same symmetry properties considered
by Lifshitz. In this paper, we apply this approach to
the fcc Cu-¹izn system. In particular, we investigate
the two order-disorder transitions (as a function of tem-
perature) for alloys in the vicinity of CusoNi2&Zn2s. In
addition, we show that the three constituent binary alloy
systems exhibit a rich variety of underlying electronic
mechanisms, which lead to different types of chemical
ordering tendencies in each and to the ordering in the
ternary alloys.

While binary alloys have been widely investigated by
experimental diffuse scattering techniques for years, only
recently have multicomponent alloys been addressed with
these approaches, and just a few alloys at that because
of the added level of complexity associated with perform-
ing the experiments and interpreting the results. Cur-
rently, only two techniques are used: isotope-doped sub-
stitution requiring measurements on multiple sets of sam-
ples (of limited application, due to lack of abundance of
isotopes); or anomalous x-ray scattering, which tunes
the x-ray energy for large contrast between constituent
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species. The latter technique has been used recently to
determine accurately the static displacements inherent
in a specific disordered alloy. ' Local atomic order in a
Cu50Ni25Zn25 alloy has been studied both via transmis-
sion electron microscopy by van der Wegen et al. and
the' anomalous x-ray scattering technique by Hashimoto
et a) ~~

The paper is organized as follows. Section II contains a
summary of the electronic theory of concentration fIuctu-
ations for an alloy of an arbitrary number of components
and a discussion of Fermi-surface driven ordering. Sec-
tion III contains a discussion of our results for the ASRO,
the indicated low-temperature structural transformation,
and their electronic origins for the fcc Cu-¹iZn system
and related binaries. Fermi surface mechanisms are dis-
cussed, which lead to both the incommensurate and com-
mensurate ordering tendencies found in the stable and
metastable phases. We conclude in Sec. IU.

XI. THEORY

A. Atomic short-range order in multicomponent
alloys

Our first-principles theory of ASRO in multicompo-
nent alloys has been detailed elsewhere and here we give
a brief summary. An arbitrary configuration of the alloy
is specified by a set of occupation variables ((~); (~ is
1(0), if there is (is not) a p-species atom at site i. The
disordered alloy is the configurational average over all
possible sets ((,. ). The thermodynamic average ((,. ) is
the site concentration (or site probability) c, , a number
between 0 and 1. The ((~) (and, therefore, the (c~))
satisfy a single-occupancy constraint on every site and so
not all species are independent. We implement the con-
straint by designating the Nth species as the "host, " and
treating ( as a dependent variable. There are, there-
fore, (K —1) degrees of freedom (with regard to species)
per lattice site in the N-component alloy.

A quantity that is accessible to experiment (at least
indirectly) is the pair-correlation function,

details are given in Refs. 4, 5, and 15. In this work, we
calculate S( ) and A~p for the ternary alloys within the
"band-energy-only" approximation, as in Refs. 1 and 5.
For the binary alloys, we quote results of both "band-
energy-only" calculations of S( ), and S( ) calculations
which include all terms in the local-density approxima-
tion (LDA) electronic grand potential, except displace-
ment efFects, as discussed in Refs. 4 and 15. Within this
formalism, q i(k) [Eq. (2)] is a nonsingular (K —1)-
dimensional matrix in the (independent) species indices;
the (discrete) translational invariance of the disordered
state allows the definition of the Fourier transform. In-
verting q (k) yields an (K —1)-dimensional portion of
the k-space correlation function; the remaining elements
are obtained from the single-occupancy constraint and
the definition of the pair-correlation function, Eq. (1).

Our equation for the inverse correlation function,
Eq. (2), has the Krivoglaz-Clapp-Moss form, i with
[S ~ l(q) —A] playing the role of the pairwise interac-
tion. It is important to realize that S( ) incorporates
on average all of the multisite, many-electron efr'ects in
the system. The "interactions" in this case, however, are
determined by first principles directly and are concen-
tration dependent, temperature dependent, and poten-
tially long ranged. It is noteworthy that the mean-field
theory of ordering becomes more exact, as the efIective
interactions become longer ranged. Such long-ranged
interactions are expected, for example, when the chem-
ical interactions are primarily due to Fermi surface or
strain efFects.

Scattering experiments measure the short-range-order
dift'use scattering intensity, which may be written as

IsRo(k) = — ) c~c~(fp —f~) nl ~(k),

where f„ is the (energy-dependent) scattering factor of
species p and n„(k) is the Warren-Cowley short-
range-order parameter. The Warren-Cowley short-range-
order parameter, or joint probability, is related to the
direct correlation function q„via

qpv(k)
P&( ) (4)

which is a matrix in the species and. site indices. Our
theory yields a nonsingular portion of the inverse of q",
in reciprocal space, for the disordered alloy,

cN
—P Sl„i(k) —A„„

where P is the inverse temperature, A is the Onsager cav-
ity field correction [as discussed in Refs. 4, 5, and 15], and
S~~ l(k) is an eff'ective chemical interaction determined
from the electronic structure of the system. S ( ) embod-
ies all electronic efFects on the pair-correlation function,
including electron-hole efrects, and is calculated within
the Korringa-Kohn-Rostoker coherent potential approx-
imation (KKR-CPA) electronic structure scheme. Full

Thus, in general, only sums of the various elements of
the correlation function matrix can be measured directly.
From a set of measurements at 2 energies (i.e. ,

N(N —1) 0

wavelengths), one can determine a chosen set of
elements of the correlation function matrix q~ . The
remaining elements may be determined from the single-
occupancy constraint and the definition, Eq. (1) if one
wishes.

At a particular wave vector ko and at the spinodal
temperature T,z, element(s) of the correlatior. . function
diverge. This indicates that the homogeneously disor-
dered state is unstable to the formation of a concentra-
tion wave of wave vector ko. This divergence occurs when
(at least) one of the eigenvalues of the S l l matrix is
maximal, and the corresponding eigenvalue of q van-
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ishes. Corresponding to the maximal eigenvalue of S~ ~

is an eigenvector of the correlation matrix q„ in "compo-
sition space, " and this describes the polarization of the
concentration wave. ' ' The presence of a nontrivial
polarization differs from the case of a binary alloy, where
the only possibility is species A ordering against species
B. In the case of a ternary alloy, it is possible to have a
partially ordered state of arbitrary polarization, for ex-
ample, having pure C ordering against half A and half B
(see the Appendix for more details).

B. Fermi-surface —driven ordering

It is useful to interpret the S~ ~ and o. matrices in
terms of the underlying electronic structure of the high-
temperature, homogeneously disordered alloy. Whet;her
a system is likely to order, on the one hand, or phase seg-
regate, on the other, at low temperatures can be gauged
from the disordered alloy's compositionally averaged den-
sity of states. By measuring the extent of the occupation
of "bonding" and "antibonding" electronic states, it is
usually possible to estimate whether a system will lower
its energy by ordering or clustering its atoms. For ex-
ample, &om this basis the binary systems Cu-Zn, and
¹iZn, which we study later, are expected to order while
Cu-Ni phase segregates. Having learned by these means
that a given alloy is likely to have a tendency to order,
the particular type of order is determined by more subtle
attributes of the electronic structure.

Since (as we shall see) the specifics of the ordering
tendencies of the fcc Cu-Ni-Zn system are determined
by Fermi-surface properties, we now discuss the theo-
retical framework for Fermi-surface —driven ordering in
alloys. When important distinguishing contributions
to S~ ~ come from electronic structure near the Fermi
level, it is illuminating to note the relationship bet;ween
the q-dependent contribution to S~ l (i.e. , ignoring the
species and energy dependence of matrix elements) and
the quantities that describe the Fermi-surface properties
as follows:2

(5)

Here, A(k, e) is the Bloch spectral function (BSF),

A(k ) ) ik (R; —R~)

x d r Im G r"+ R,",r+ R~", e

Im~ k;~

where (G(r + R;; r + R~; e)) is the configurationally av-

eraged Green's function and w'(k;e) is the scattering
path operator, both calculated within the KKR-CPA.
The BSF A.(k, e) is the density of states at a particu-

lar k point; in a pure crystal or ordered alloy, A(k, e)
is a set of h-function peaks at the band energies e (k)
(with band index v). Therefore, for an ordered system,
S~ ~ looks similar to a generalized susceptibility. From
Eq. (5), it is clear that if the joint density of states,
A(k; e')A(k + q; e), has a large value near the Fermi en-

ergy, then so too will S ~ ~. The joint density of states can
become large through Fermi surface nesting and/or van
Hove —singularity-driven ordering. Both mechanisms are
intimately tied to the shape and dimensions of the Fermi
surface. Since the van Hove mechanism is only operative
in CusoZn5o and Cu25Ni25Zn5o, we postpone discussion
of it until the appropriate section and now discuss Fermi-
surface —nesting effects.

~(~)—f ~
As is evident from the presence of the factor

in the above equation, large contributions can typically
come Rom energies near the Fermi energy. (However
counterintuitive it may seem, this is not necessarily so,
as discussed by Pinski et al. ) In a random alloy, the
peaks in A(k, e) are shifted and broadened by disorder.
We can, however, still speak of a Fermi surface, the loci
of the peak positions in A(k, e = e~), the BSF at the
Fermi level, if the width of the peak in the spectral func-
tion is small compared to the dimensions of the Brillouin
zone. The widths are related to the electron scattering
length in the random alloy, which is responsible, for ex-
ample, for the increased resistivity found in such alloys.
Broadening of the Fermi surface can be important in en-
hancing the Fermi-surface —driven ordering, as we shall
see. It is worth noting that the contribution to S ~ ~ will
be especially large if parallel sheets exist, with large spec-
tral weight, that are connected by a single spanning (or
nesting) vector j„„q.In such a case, the energy denomi-
nator vanishes for all points on the flat, constant energy
sheets of electronic structure. This results in a large con-
tribution to S ~ ~ at q = q„„&, essentially proportional
to the volume of overlap along the flat sheet attained
for the particular q„,q. For a given energy, the func-
tion A(k, e)A(k + q„„&,e) for fixed q„esq) therefore, gives

an indication as to which portions of k-space electronic
structure give rise to ordering at a particular q„,q. Note
that since q„„q is determined by details of the electronic
structure, it need not have any relationship to the under-
lying real-space lattice. If q„,& is not a high-symmetry
point, then the observed ASRO will be incommensurate,
and the possibility of a long-p'eriod superstructure in the
ordered phase exists. Although this argument is perhaps
persuasive, a calculation of S ~ ~ and n» throughout the
Brillouin zone is necessary to determine the true ASRO.

To close this expose on the relationship between pos-
sible Fermi-surface (and near-Fermi-surface) properties
and features found in S ~ ~, we briefly remark on the usual
nomenclature of "2k~" ordering when nested sheets of
Fermi surface are responsible for the ordering tenden-
cies. The 2k~ refers to a caliper dimension of the Fermi
surface along a direction perpendicular to the parallel,
Bat sheets. For example, in Fig. 1(a) is the calculated
Fermi surface of disordered CuysZn2s in the (100) plane.
Notice that its Fermi surface is not perfectly flat, yet it
has fairly Bat features perpendicular to the I110] direc-
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tion, with caliper dimension, 2kiyo, of 1.612 in units of
—.In order to determine where the susceptibility should
peak from such nesting, the usual Kohn construction
of drawing a circle with radius 2kiio from all symme-
try related (000) points is employed. The circles which
emanate from all such Bragg points will then intersect
along high-symmetry lines, like X-8 -X lines for an fcc
phase. Given only this single energy and nesting vec-
tor, these intersecting points are ultimately where the
peaks in the difFuse intensity will occur. It is these
symmetry-related intersection points that are the q„„t
relevant to the above discussion, and ~q„„t~ = 2k'. This
has been used successfully, such as in CuPd, 2 CuAu, 2

and more recently Cu-Zn alloys, to explain the four-
fold symmetric splitting around the X points in these
systems. With this background, much of the explanation
involving such Fermi-surface —nesting considerations for
the binaries and ternaries and its connection to experi-
ment will be straightforward.

W

W

X W X W X X W X W X

FIG. 1. Alloy Fermi surfaces in the (100) plane of the
6rst Brillouin zone for several representatives of the homoge-
neously disordered Cu-¹iZn system, all calculated with the
lattice constant 6.80 a.u. : (a) CuqqZn2q, (b) CuqoZnso, ' (c)
CuqoNiqsZn2s, (d) Cu2qNiq5Znqo, (e) Ni75Zn2q, (f) NiqoZnqo.
Note that (a) and (d) [(c) and (f)] have the same elec-
tron-per-atom ratio, left to right is increasing Zn concentra-
tion and top to bottom is constant Zn concentration. The
contours are evenly spaced between the minimum and max-
imum values of the spectral function to indicate the relative
sharpness of the Fermi surface.

III. THE FCC Cu-Ni-Zn SYSTEM

Experimentally, the ternary fcc CusoNi2qZnqs has been
found to exhibit high-temperature short-range order and
two first-order phase transitions as the temperature is
decreased. Also, because both ordering and clustering
tendencies have been observed in the binary alloys, the
ternary may exhibit interesting competing efFects, as sup-
posed, for example, by Ceder et al. Because the ele-
ments are neighbors in the Periodic Table, these metallic
alloys should have little "charge transfer, " or electroneg-
ativity, effects and we, therefore, expect the band-energy-
only calculations to capture the correct ordering trends,
i.f not fairly accurate magnitudes of the transition tem-
peratures. For similar reasons, these alloys should have
small atomic-displacement eÃects. Our self-consistent
field (SCF-)KKR-CPA calculations confirm that the ef-
fective "charge transfer, " defined in terms of the non-
neutrality of atomic spheres, for the sake of discussion, is
small. DiA'use scattering experiments in Cu-rich, fcc Cu-
Zn alloys do, in fact, show some small displacement scat-
tering. However, according to Vrijen et al. ,

" the axial
ratio within the fully ordered fcc phase of Cu50Ni25Zn25 is
unity within experimental accuracy, confirming that lat-
tice distortions and displacements are indeed relatively
small.

At temperatures above 774 K, the CuqoNi25Zn25 al-
loy has a disordered A1 solid solution phase, which ex-
hibits (100)-type atomic short-range order. ~4 ~~ In fact,
the individual ¹iZn, Cu-Zn, and Cu-Ni disuse scatter-
ing intensities have been approximately determined from
anomalous x-ray scattering techniques and show that
these elements of o;„exhibit strongly ordering, weakly
ordering, and clustering tendencies, respectively. As the
temperature is lowered, two phase transitions occur. At
approximately 774 K, the alloy transforms to a partially
ordered structure interpreted as having L 12 symmetry in
which the Zn atoms occupy one sublattice, while the Cu
and Ni atoms are disordered over the remaining three
sublattices. Below 598 K, a fully ordered Llo structure
is stable, with the Zn atoms and Ni atoms occupying one
sublattice each, while the Cu atoms occupy the other
two. van der Wegen et a/. have determined these or-
dering occupancies for the two ordered phases through
interpretation of their transmission electron microscopy
results. The x-ray results of Hashimoto et al. on the
high-temperature disordered alloy cannot determine the
occupation of the partially ordered state without recourse
to some model.

It is also worthwhile to connect the ternary order-
ing behaviors and the related binary systems Ni50Zngo,
Cu50Zn5o, and CusoNi50. In these alloys, the full gamut
of alloying behaviors has been observed. Ni50Zn5o goes
directly from the liquid to an ordered B2 (bcc) struc-
ture at approximately 1300 K. At approximately 1100
K, the H2 structure transforms into a L1o (fcc) struc-
ture, suggesting that the B'2 phase appears mainly due
to vibrational entropic e8'ects. Ni75Zn25 is an fcc solid
solution at high temperature; as the temperature is re-
duced, there is a two phase (fcc solid solution and ordered
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Llo) region very close to this composition, although the
exact concentration dependence is not well characterized
experimentally. Cu50 Z n50 is a disordered b cc solid so-
lution at high temperature, and transforms into an or-
dered B2 structure at approximately 770 K . Further-
more, Cu75 Zn25 is an fcc solid solution, and short-range
order of DO23-type has been observed experimentally
in the Cu-rich region. The ordering tendencies are, of
course, weak. In Ref. 25, the usual Fermi-surface nesting
(or 2k~ ordering) was suggested as being responsible for
the ASRO; this explanation was based on the good agree-
ment between the suggested peak in the diffuse intensity
resulting &om the 2k[ad] p] caliper dimension [from a calcu-
lated Cu-Zn (100) Fermi surface2s] and the actual loca-
tion of the diffuse scattering intensity. Cu50 Ni50 is an fcc
solid solution &om the liquidus down to approximately
575 K, where it phase separates. We, therefore, can char-
acterize the equiatomic composition binaries as strongly
ordering (NisoZnso), less strongly ordering (CusoZnso)
(although we shall see that the hypothetical fcc phase is
weakly ordering), and phase separating (CusoNiso).

For perspective, we review some previous theoretical
work. The Fermi-surface properties of Cu-rich Cu-Zn
alloys have been studied by Prasad et al. 2 and Stocks
et al. For the random alloys, the lattice constants and
formation energies versus composition, e.g. , have been
studied by Johnson et al. within both muKn-tin and
atomic sphere approximations to the potentials. Other
work has used an approximate, real-space method for
studying the thermodynamic stability of Cu50Zn50, the
generalized perturbation method (GPM), in conjunction
with the KKR-CPA theory. The KKR-CPA-GPM ex-
pands about the homogeneously disordered CPA state
and obtains effective cluster interactions (ECI's) in real
space that are concentration dependent. Therefore, long-
range interactions, such as those involving Fermi sur-
faces, are inherently dificult to describe. For example,
Sluiter et al. found for Cu-rich fcc Cu-Zn solid solu-
tions, using GPM-derived ECI's and the cluster varia-
tion method, that it was necessary to include interac-

tionss

beyond fourth-nearest-neighbor in order to obtain
the proper incommensurate order. On the other hand,
if the interactions are short ranged, then these ECI's can
be combined with some form of statistical mechanics to
produce phase diagrams. For example, a thermodynamic
study, using the KKR-CPA-GPM for the Cu-Zn binary
system, indicates for Cu50Zn5o a stable B2 phase with T,
of 740 K [experimentally it is 730 K (Ref. 28)] and the
presence of a met astable L10 phase with a T, of approx-
imately 288 K for Cu5o Zn50., whereas, for Cu75 Zn25, the
calculations found a stable 112 (not the experimentally
inferred DO2s-type) order at temperatures below about
300 K. Insight into the nature of the ASRO was not the
focus of this paper and was neglected, except that one
(band-energy only, muffin tin) S~ l calculation was given
for Cu80Zn20 which showed the proper incommensurate
ordering, but without examining the underlying origins.

The above experimental facts and theoretical results
then suggest five questions: First, can we determine the
individual diffuse intensities and their proper trends?
Next, can the electronic origin of the short-range or-

der in Cu50Ni25 Zn25 be ascertained? Third, is the high-
temperature ASRO a precursor of the low-temperature
behavior? Fourth, in the absence of an interloper phase
transition, what is the only possible ground-state phase
at that stoichiometry consistent with the observed (or
calculated) ordering wave vector ko (which is some-
thing that can be determined by symmetry considera-
tions alone)? Finally, what mechanisms are responsible
for the observed (or predicted) ordering behavior in the
related binaries and how are they related to that found
in the ternary alloys?

In what follows, we answer the above questions
through calculations of atomic correlation functions

(and hence the diffuse scattering) in disordered
Cu5oNi25Zn25 and five binaries: Cu50Ni5o, Cu75 Zn25,
Cu5o Zn5o, Ni5o Zn5o, and Ni75 Zn25 ~ For an under-
standing of trends, we also study four other ternar-
ies: Cu25Ni25Zn50, Cu25Ni5OZn25, Cu33 3Ni33 3Zn33 3,
and Cu37 5Ni37 5Zn25. We restrict ourselves to only the
fcc phases, even though Cu5O Zn50 only has a bcc high-
temperature phase with the fcc phase being metastable.
Though total energy calculations for each disordered al-
loy may be performed (see, e.g. , Johnson et at. ,

s~ s2) to
obtain the appropriate lattice constants, we have cho-
sen a lattice constant of 6.80 a.u. for the ternary (and
binaries) which is very close to the 6.868 a.u. found ex-
perixnent ally in nearby Cu47Ni29 Zn24 ~ This allows us
to compare directly various electronic features without
the added complexity of removing the volume effects or
considering two different crystal structures. Moreover,
since the volume changes &om the binaries to ternary
are small, this is not a severe approximation. All the
calculations are based on KKR-CPA potentials obtained
within the atomic sphere approximation, which avoids all
the problems associated with muon-tin potentials when
describing the electrostatics in the total energy, or grand
potential, and the associated problems with properly de-
scribing the relative energetics of various concentration
waves. The local-density approximation to the density-
functional theory is used as parametrized by Moruzzi,
Janak, and Williams. All details of performing the in-
tegrals involved in calculating S ~ ) have been discussed
by Staunton, Johnson, and Pinski.

It is perhaps tempting to think of the ordering ten-
dencies and their electronic origins in a ternary alloy in
terms of those in several "relevant" binary alloys. Such a
scheme implies a "rigid-band" picture of the ternary and
is not guaranteed to yield reliable insight. The atomic
interactions in the ternary are, in general, different from
those in the binaries; disorder effects, hybridization, and
band-filling effects, for example, can change as one moves
&om a binary alloy to a ternary. Nonetheless, it is rel-
evant to ask how the ordering tendencies of the ternary
are related to those of the binary alloys of the same sys-
tem. We now present a detailed study of some related
fcc binary alloys and return to the ternaries afterwards.

A. Some related binary syst ems
1. Cu-Zn

We begin with the stoichiometric alloys Cu75 Zn25 and
CusoZnso, because (within the fcc phase) they exhibit, re-
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as indicated by experiment. 5 We 6nd that at least 20
shells are required to reproduce our k-space calculation,
while experiment2 minimally requires 10 shells. (We
6t S ~ ~ to real-space coefficients to get a„„,because, un-
like n„, S ~2~ is only slightly temperature dependent and
not sharply peaked; note, however, small errors in. the 6t
of S~ ~ can easily lead to an error in the resulting 6t-
ted ASRO. ) Also, we have ignored any effect of displace-
ments, which even though small in this instance, will af-
fect o.„„,because the chemical contribution is also small.
Therefore, an inversion of our approximate calculation
for comparison to experimentally determined. real-space
interactions probably is not as &uitful as hoped in this
instance. The 6rst few calculated real-space neighbor in-
teractions at 475 K are 20.0, —1.7, —0.11, and —0.38
meV for Cu75Zn25', for Cu69Znsy they are 18.1, —7.4,
—1.4, and —0.3 meV, from an inversion of the experi-
mental data via the Clapp-Moss formula. Since there is
a 6% composition difFerence and S ~ l is composition de-
pendent, it is not clear whether the small di6'erences are
due to the composition difference or to inaccuracy from
the band-energy-only approximation and neglect of dis-
placements. Johnson et at. have noted that the second-
nearest-neighbor, real-space interaction should be most
aIII'ected by displacive eKects, since this is the soft direc-
ti.on in fcc.

As discussed very well by Reinhard et al. , the vector
[1, 4, 0] is indicative of DO2s order. Also, the streaking of
the calculated (and measured) intensity along the (100)
directions indicates that the real-space near-neighbor in-
teractions dominate. However, since the Fermi-surface
nesting gives relatively small difFerences among the [100],
[1, 4i, 0], and [1, 2, 0] vectors, all the ordered superstruc-
tures derived &om these ordering wave vectors should be
close in energy; for example, Llo arises from (100) con-
centration waves, DOz2 arises from (100) and. (1, 2, 0)
waves, and DO2s arises from (100) and (1, 4, 0) waves.
Therefore, we would "predict" a DO2s ground state, as
did Reinhard et al.25 using the experimentally derived. in-
teractions and Monte Carlo simulations. Associated with
the DO2s-type ASRO we find T,~ —220 K in the "band-
energy only" approximation, including Onsager correc-
tions (about 445 K without Onsager). This is in reason-
able agreement with the 330 K transition temperature
for Cu69Znsq found &om Monte Carlo simulations using
the interactions found by Reinhard et aL2s When charge-
response (i.e. , double-counting) efFects are included, T,~
drops to about 180 K, though the ASRO still peaks at
q = [1, 4, 0]. The Fermi-surface nesting mechanism is,
therefore, robust. While charge eKects tend to favor corn-
mensurate ordering and, in this case, depress the spinodal
temperature, we suggest that displacements in Cu75Zn25
are also Fermi-surface driven (there is evidence for this
experimentally, see Ref. 25) and may therefore push the
spinodal back up. Also, the ordering tendency does be-
come stronger with increasing Zn content (see below).

Recall that the KKR-CPA-GPM results of Turchi et
al. for Cu75Zn25 found a L lp stable ground state
(instead of the experimentally inferred2s DOqs ground
state), using real-space interactions out to only a few near

neighbors. This results, as we now see, &om the inter-
action being very long ranged, due to the Fermi-surface
nesting. In fact, Reinhard et at.~ found that at least ten
near-neighbor shells were required to stabilize DO~3 rela-
tive to the simpler structures. Thus, we see, by example,
the advantage of using the concentration-wave technique
for addressing the ordering tendencies in various systems:
it easily handles systems where the eQ'ective interactions
are short ranged (as in simple clustering systems, e.g.) or
long ranged (when Fermi-surface or displacement efFects
dominate). We do not find a q = (0, 0.9., 0.9) maximum
near the spinodal temperature as did Turchi et al. in
their muKn-tin S~ ~ calculation.

We now investigate the metastable phase of fcc stoi-
chiometric CuspZnsp. While fcc Cu5QZn5p is not stable
[Cu-Zn alloys transform to bcc at about 38% Zn (Ref'.
28)], the ordering tendency and its origin are intriguing
and of relevance to the ternary system. The Cu5QZn5Q
Fermi surface touches the Brillouin zone boundary at the
X' points, as shown in Fig. 1(b). Due to symmetry con-
siderations, the BSF must always approach the Brillouin
zone edge at right angles along high-symmetry lines. This
is the origin of so-called van Hove singularities in the
density of states, for example. As a result of the average
number of electrons and the disorder broadening in this
system, this leads to a buildup of spectral weight around
the X points; in the present case, the BSF straddles the
X point. The joint density of states A(k, e)A(k+ q, e) for
q = (0, 0, 1) then has very large peaks at the X' points,
leading to (100)-type short-range order. Competing with
the van Hove —driven commensurate ordering is an incom-
mensurate, Ferini-surface —driven ordering tendency (as
found in Cu7sZn2s), but in this case with wave vector
q = [0, 0.15, 1]. This is the reason why in the "band-
energy-only" approximation S2(q) has similar magnitude
at both q = [1,0, 0] and [0, 0.15, 1]. Which is the greater
varies with temperature. When Onsager corrections are
included, we find a spinodal at 230 K with (100) order;
if Onsager corrections are omitted, the spinodal is at 424
K with incommensurate [0, 0.15, 1] ordering. Including
charge response leads to a T,~ of 270 K, also with in-
commensurate order, but at q = [0, 0.4, 1]. Since the or-
dered B2 phase occurs (experimentally) at 775 K,2s the
van Hove —driven ordering is not strong enough to over-
come the established phase, especially with the larger
entropy due to lattice vibration in the bcc phase. This
ordering mechanism is reminiscent of the so-called van
Hove singularity-driven ordering identi6ed in stoichio-
metric CuPt, which is observed experimentally, and dis-
cussed in depth by Clark et al. ~ A similar van Hove
mechanism has been cited by Staunton, Johnson, and
Pinski4 in giving rise to a predicted small secondary dif-
fuse peak in NiPt.

S. ¹i-Sn

As can be seen from Fig. 1(e), Ni75Zn2s has a very box-
like Fermi surface in the (100) plane, with a nesting vec-
tor whose magnitude is less than v 2 (which would lead to



53 ELECTRONIC ORIGINS OF ORDERING IN MULTICOMPONENT. . . 10 617

(100) commensurate ASRO). There are also fiat portions
of Fermi surface in the (110) plane, and these portions
likewise contribute to S ~ ~. The short-range order is thus
incommensurate, resulting from a relatively sharp Fermi
surface, with a T,~ of approximately 310 K from "band-
energy-only" calculations with Onsager corrections (879
K without Onsager). The peak in the correlation func-
tion is broad, due to the shape of the Fermi surface —the
flat pieces of Fermi surface with different nesting vec-
tors give contributions to S~ ~ at difFerent wave vectors.
We find that the peak in the ASRO at temperatures
greater than 600 K is at wave vector kp = [0, 0.19, 1].
However, at these temperatures, the values of S ~ ~ at all
points around (110) are extremely close in energy to the
value of S~ ~ at A:p. Below 600 K the maximum in the
ASRO shifts back and forth between two wave vectors,
[0, 0.19, 1] and [0.1, 0.1, 1.0]. When the charge response
is included, the peak in the ASRO is at q = [0, 0.05, 1.0],
with T,~ = 600 K, but the peak in the ASRO is still
broad. Once again, the Fermi-surface mechanism is ro-
bust. The broadness of the peak in the ASRO may ex-
plain the experimental diKculty in actually determining
the phase boundary of the two-phase region (consisting
of a random solid solution plus ordered Ll p Ni5pZn5p), as
a function of Zn composition. It would be interesting
to measure the disuse intensity at this stoichiometry as
a function of temperature to determine the exact nature
of the ASRO.

Ni5pZn5p is the strongest ordering of the binary sys-
tems that we considered: we find (100) ordering with a
calculated T,p 1430 K Rom "band-energy-only" cal-
culations with Onsager corrections (1925 K without On-
sager). Including charge-response efFects lowers the spin-
odal to 1260 K, still at (100). Figure 1(f) shows a con-
tour plot of the BSF for Ni5QZn5p in the (100) plane. The
spectral function shows a relatively wider peak than that
of Niy5Zn25, indicating a more disorder-broadened Fermi
surface (the scattering properties of Ni and Zn are more
difFerent than those of Cu and Zn). The Fermi surface
has very fiat portions both in the (001) plane and the
(110) plane, as in the Cu-Zn system. These flat portions
are connected by an almost perfect 2k~ of ~2 along the
(1,1, 0) direction, or a nearly perfect q„„i ——[110], giv-
ing rise to a large value of the susceptibility at [100] and
[110]. As suggested earlier, the broadness of the peak in

A(k, e) makes for a larger overlap between A(k, e) and
A(k + q, e) for q = q„„t ——[1,1, 0], and hence actually
serves to strengthen the ordering, thereby increasing T,z.
Thus, nesting and the broadening due to disorder are re-
sponsible for the L lp ordering found in Ni5pZn5p.
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tering alloys, thereby decreasing T,~ further. Indeed, the
double-counting corrections lead to a T,~ of about 125 K
lower for the binary Cu5pNi5p, in better agreement with
the thermodynamic model estimates of 475 K found in
the assessed phase diagram. To more accurately deter-
mine this number, however, would also require the in-
clusion of magnetic fluctuations (see below), which we
have ignored. This clustering behavior can be under-
stood &om a simple band-Glling argument.

As indicated by the density of states in the disordered
alloy, Fig. 4(a), the Fermi energy lies in the upper d-
band edge of Ni and in a common 8-p band. The den-
sity of states at the Fermi level is then largely of Ni d-
electron character and Ni/Cu s-p character, which will
be reflected in the character of the Fermi surface. Also,
the centroids of the Cu and Ni d bands are relatively
well separated, indicating, in tight-binding terminology,
a fair amount of "diagonal" disorder; that is, Cu5pNi5p
is a split-band alloy. Because of this split-band behavior
in nonmagnetic Cu5pNi5p, and the lack of hybridization
&om alloying, the 6lling of electronic states requires that
the Fermi level lie in the antibonding Ni d states, as es-
sentially found for nonmagnetic elemental Ni. These
states are primarily responsible for the ordering trend,
and, therefore, no chemical ordering wave can lower the
system's energy. (This is true if only band filling is
driving the chemical ordering tendencies; however, in al-
loys with large split bands that do order, as in Ni75V25,
Pd75V2$ and Co&s Ti25, electrostatics play an important
role. is) This clustering behavior must then track the Ni
portion of the DOS, as can be clearly seen in Fig. 4(b),

8. Cu-Ni

For CuspNiqp, we find a q = (000) instability, i.e., clus-
tering, with a calculated T,~ = 564 K, with (680 K with-
out) Onsager corrections. The experimental miscibility
gap for Cu5pNisp is approximately 575 K. As discussed
in Refs. 4 and 5, including electrostatic terms in our cal-
culation will force charge neutrality in the case of clus-

E (Ry)

FIG. 4. (a) Electronic density of states (states/atom Ry)
for disordered Cusp Nizp. (b) 9 l [q = (000)] (Ry) for
CusoNi50 as a function of energy. The vertical line is the
Fermi energy.
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which shows S& &(q = 0) for CusoNise as a function of
(e —e~), i.e. , changing the electron-per-atom ratio of the
alloy within a rigid-band fashion. While the alloy can
lower its energy by phase separating, nonmagnetic ele-
mental Ni cannot and should seek (for the same reason-
ing) a way to lower its energy through its only means:
magnetic ordering, as is found in elemental Ni and ¹i
rich ferromagnetic, CuspNi5p alloys. Hence, magnetic
fluctuations should also be considered for a complete de-
scription, as clustering in Cu5pNi5p can lead to small, but
important, enhancements of the magnetic effects, such as
superparamagnetism.

Figure 5 shows a contour plot of the BSF at the Fermi
energy for Cu5pNi5p in the A:, = 0 plane within the re-
peated zone scheme. The alloy Fermi surface has two
distinct portions: the boxlike portion surrounding the I'
point is similar to that seen in (hypothetically nonmag-
netic) "pure Ni, "s and is caused by a common s-p band
of both Cu and Ni character; the broad portions following
the zone edges are also reminiscent of the d-band contri-
bution to the Fermi surface in "pure Ni, " but they are
pushed further out toward the zone edge and severely dis-
order broadened. (It is the band filling arising &om the
ternary addition of Zn that fills the remaining d bands,
removing them Rom the Fermi surface, that will make the
common 8-p band play the dominant role in the ternary
Cu-¹Zn alloys. ) Because there are two disjoint por-
tions of the BSF at this energy, the only way to achieve
a sizable overlap between A(k, e) and A(k + q, e) is from
q = [000]. This is one way to view the standard tight-
binding argument that half-filled d bands favor ordering,
while almost filled (empty) d bands favor clustering. 4 '

The situation is similar to that seen in PdRh, ' also a
clustering system, and explained by Gyorffy et al. in
terms of the properties of the spectral function. Note,
however, that it is not just the properties of the spec-
tral function in the vicinity of the Fermi level that play
the dominant role here; as evident from Fig. 4(b), it is
the nature of the electronic structure over a wide energy
range.

Finally, because the overlap (which determined the
convolution) is not a consequence of nested, fiat sheets

X W X
FIG. 5. Alloy Fermi surface in the first Brillouin zone for

CuqoNiqo in the (100) plane.

of Fermi surface, the real-space dependence of the in-
teractions will be relatively short ranged. We find that
the results for the correlation function can be fitted
very well with only five nearest neighbors, as opposed
to tens of near-neighbor shells for Fermi-surface-driven
cases. In the band-energy-only approximation, for the
first five neighbor shells our efFective interactions at
T = 1294 K are 1.65, —0.63, 0.13,0.12, —0.01 mRy, re-
spectively, compared to 2.18, —1.26, —0.18, —0.10, —0.01
mRy determined &om experiment. If the double-
counting terms are included, the calculated effec-
tive interactions for the first five neighbor shells are
1.98, —1.02, 0.40, —0.68, —0.04 mRy at T = 1294 K. We
note that the interactions determined &om theory are
rather temperature dependent, making a detailed com-
parison with experiment dificult.

B. Summary of binary results

We have shown for the four binaries that Fermi-
surface properties are responsible for determining a num-
ber of interesting commensurate and incommensurate
ordering behaviors. The incommensurate ordering and
its origins discussed for Cu75Znq5 have been observed
experimentally and our results agree well with that
measurement and its interpretation. In Cu5pZn5p, we
find competition between Fermi-surface —driven, incom-
mensurate ASRO and a van Hove singularity-driven com-
mensurate ordering mechanism. These fluctuations lead
to a metastable fcc phase, because they are relatively
weak. The transition temperatures for Cu5pZn5p and
Cu75Zn25 are comparable, because the nesting and van
Hove mechanism are similar in magnitude in this system.
The Fermi-surface nesting in stoichiometric Ni5p Zn5p
leads to an ordered commensurate phase (aided in part
by the disorder broadening). For NiqsZn2s, the different

ratio and resulting Fermi-surface dimensions lead to
an incommensurate ordering peak. However, because of
the shape of the Fermi surface, the fluctuations resulting
from other nearby wave vectors are very close in energy,
so there is not a clearcut winner and electrostatic and dis-
placement effects may be important. The sharper Fermi
surface leads to less nesting and, therefore, a lower tran-
sition temperature for Ni75Zn25 compared to Ni5pZn5p.
Finally, the clustering in Cu5pNi5p comes from simple
band-filling requirements in a split-band alloy and the
inability for that system to develop an energetically fa-
vorable ordering wave by rearranging electronic states at
and around the Fermi level.

We may classify these three fcc systems, ¹iZn, Cu-Zn,
and Cu-Ni, as fairly strongly ordering, weakly ordering,
and weakly clustering, respectively. The alloying effects
when combining Ni, Cu, and Zn into a ternary compound
will play a decisive role in determining the effective in-
teractions arising from the electronic structure, and ulti-
mately the ordering trends. For example (with reference
to Fig. 5), ternary additions to CusoNiso, which increase
the number of electrons in the 8-p bands, will tend to en-
large the boxlike portion of the Fermi surface around the
I' point, while forcing the d-band portion along the zone
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edge out of the zone. The result will be a nested Fermi
surface, which should lead to an ordering tendency. We
now investigate the ordering tendency and its origin in
ternary fcc Cu-Ni-Zn.

C. Ordering in Cu6, 0Niq~Znqs

For the fcc ternary Cu5pNi~5Zn25, we find an instability
to [100] ordering with a spinodal temperature of 1243 K
without Onsager corrections. Onsager corrections, which
require intensity sum rules to be obeyed, reduce T,p to
985 K. Such corrections do not alter the origin of the
transformation (yet to be discussed), but do renormalize
the overall effective interactions, S„—A„„,and thereby
effect T,~. The experimentally observed structural tran-
sition is a [100] type, with a T, of 774 K. As shown
in Refs. 4 and 15, and in the sections on binary alloys,
inclusion of the electrostatic terms can bring the temper-
ature scale into better agreement with experiment.

Again, we may determine unambiguously the elec-
tronic origin of the ternary ordering instability. In Fig.
6(a), we show the electronic density of states for disor-
dered CusoNizsZn2s and in Fig. 6(b) the eigenvalues of
S(2) (q = (100)). Clearly, the maximal eigenvalue arising
&om a q = (100) wave peaks at the Fermi energy. From
our experience with the binary alloys, this is indicative of
some sort of Fermi-surface —nesting mechanism playing a
role in determining the ordering tendency. In Fig. 1(c),
we show a contour plot of A(k, e~) for CusoNi2sZn2s in
the ffrst Brillouin zone in the (100) plane. The Fermi
surface is somewhat broad and boxlike, exhibiting the
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FIG. 6. (a) Electronic density of states (states/atom Ry)
for disordered CusoNiqqZnqq. (b) Eigenvalues of S (q
= (100)) (Ry) for CuzoNi25Zn2& as a function of energy. The
vertical line is the Fermi energy.

now familiar nesting feature. Again, however, because
the Fermi surface is not perfectly ffat along the (110)
direction (i.e., it is not a perfect square), there are sev-
eral wave vectors close to q„„t (and energies around e~),
which also contribute to the overlap A(k, e)A(k + q, e).
This distribution of "nesting vectors" and of energies, as
well as the disorder broadening, due to the differences
in electronic scattering properties between Ni, Cu, and
Zn, is responsible for "locking" in the perfect (100)-type
ordering, similar to what was found for Ni5p Zn5p. Of
course, the convolution, Eq. (5), does not tell the whole
story, because it is species independent. It is the species
dependence, obviously, that determines the ordering ten-
dencies and the wave polarization, and these are given
by the correlation functions themselves.

Normally, one expects that Fermi-surface nesting leads
to a fourfold symmetric pattern near the A points [i.e.,

(100) and (110)] in the diff'use scattering. In fact,
Hashimoto et al. noted that the diffuse intensity forms
a single peak without any trace of fourfold splitting, indi-
cating the nonexistence of the so called -Fermi surface-ef
feet often observed for the noble-metal-based short ranged-
ordered alloys. " %e have shown that indeed there is
commensurate ASRO (i.e. , no splitting of peaks) even
though the specifics of the ordering are Fermi-surface
driven. While obviously very unusual, it is not impossi-
ble, and it arises in this case because of nesting and dis-
order broadening, which increases the overlap and locks
in ko ——(100). It is not found, for example, due to the
van Hove mechanism found in Cu5pZn5p, nor due to hy-
bridization of d states [as found in NiPt (Ref. 20)], be-
cause such states are too separated in energy to hybridize.

Does commensurate order occur for only one compo-
sition? No. In a ternary alloy it is possible to vary the
composition while keeping —fixed, in contrast to the case
of binary alloys. Because the NispZn5p alloying features
are dominant, there should be a wide range of composi-
tion, centered around the isoelectronic line that connects
Ni5pZn5p and Cu5pNi25Zn25, which will also exhibit this
ordering behavior. Recall, the Ni5pZnsp features will be
dominant, because of the associated larger disorder from
alloying and the fairly robust common 8-p Fermi sur-
face that results. Indeed, the accessed ternary diagram
shows just this behavior. (Although the ordering be-
havior must be more extensive than given in Ref. 43,
because the binary Ni5pZn5p is strongly I lp and the as-
sessed ternary phase diagram does not extend the ordered
phase over that far. Reference 43 considered only the
highest temperature phase, which is bcc because of en-
tropy effects in NisoZnso. ) In the next section, we detail
some results for other ternaries.

Short-range order

We have directly compared the off-diagonal elements
of the Warren-Cowley short-range-order parameter ma-
trix in a recent letter. In typical 2k~ ordering, we ex-
pect the nesting behavior of the Fermi surface to lead to
peaks along the symmetry line X-R'-X in the Brillouin
zone —we, therefore, presented a~„along that line. Also,
Hashimoto et al. have explicitly plotted their measured



n p along the same line. As noted, the peak is at (100),
indicating commensurate ASRO. The ¹iZn correlations
(and hence the interactions) are the strongest and favor
(100) ordering, the Cu-Zn correlation less strong, but
still favors (100), and the Cu-Ni correlation of opposite
(negative) sign at (100),~ as observed. ~~

Quantitative comparisons between our calculated o.~
and the experimentally determined ones cannot be made
for two reasons. First, the sum rules for n~„(B = 0) are
badly violated in the experiment, which strongly affects
the numerical values of n~„(q). [Hashimoto et at. ob-
tain 0.8, 0.6, and 0.3 for the ¹iZn, Cu-Zn, and Cu-Ni
n~ (R = 0), respectively. ] Within our calculation, we
have examined the effect of forcing the sum rules to be
so violated, and find that the overall ratios of the peak
heights approach the values of Hashimoto et al. Sec-
ond, the large experimental values of o.„(q = [110]) im-
ply that the quench from 100 K above T was not rapid
enough to &eeze in the short-range ordered state at that
temperature. For example, the value of 300 Laue units
for the ¹iZn SRO parameter is well above that typi-
cally found at such a value of T . Of course, if in our

C

calculation we lower the temperature close to the spin-
odal, we also obtain large values of the Warren-Cowley
parameters at [110]. Also, the sharpness of the experi-
mental diffuse scattering peaks suggests that the system
is extremely ordered, with the ASRO extending approx-
imately 13 unit cells (estimated &om the full width at
half maximum of the experimental peaks). If correct,
this further suggests that the internal temperature de-
termined from the quenching process was nearer to that
of the critical temperature, as indicated by our theoreti-
cal analysis.

We can thus see that due to alloying, the spinodal
temperature for Cu5pNi25Zn25 is lower than that of the
binary Ni5p Zn5p. The clustering interactions within
Cu5pNisp should rapidly be dominanted by the Ni5pZnzp
interactions, so that clustering should only be found in
the Zn-poor ternary, as is indeed the case. Further-
more, the strength of the ¹iZn interactions would tend
to force the Zn and Ni atoms to different sublattices, the
Cu-Zn interactions would more weakly want Cu off the
Zn sublattice, and the weakness of the Cu-Ni interactions
should lead to Cu and Ni potentially occupying the same
sublat tice (s) .

is a set of measure zero in the actual solution space of
I 10-type structures (see the Appendix), indicating that
this symmetry is a very special case. Also, we find purely
from symmetry arguments that for any I 12-type solution
that the maximum value of the long-range-order param-
eter is significantly less than one.

Nonetheless, van der Wegen et al. interpreted their
TEM results as indicating that the partially ordered state
of Cu5pNi25Zn25 is a modiFied I12-type structure, in
which Zn exclusively occupies one sublattice and Cu and
Ni are disordered on the other three sublattices. For the
occupation probability of Zn to be very close to one on
one sublattice necessitates that gz is almost 1.0 just be-
low the erst transition, as indeed van der Wegen et al.
interpret from the TEM measurements. Clearly then
these experimental results are mutually exclusive: either
the system is ordered in a Ll~-type structure and g~ is
not near 1.0, or q~ = 1.0 and the structure is Llp type.
Furthermore, subsequent thermodynamic modeling, '

using the cluster variation method, considered only an
L12-like state at high temperatures, not a general I lp-
like state. We now discuss our results and a possible
resolution of this conundrum.

As shown in the Appendix, and discussed in detail
in Ref. 5, the eigenvector of q„corresponding to the
maximal eigenvalue (which causes the divergence of the
correlation function) determines the occupation proba-
bility of the partially ordered state, or, in particular,
the polarization of the concentration wave. The partially
ordered state found from this eigenvector is a modified
Llp-type structure, where on one of the four simple cu-
bic sublattices the probability for Bnding a Zn atom is
strongly enhanced, and on the other three sublattices
it is reduced. In fact, our mean-Beld estimate for the
Zn-enhanced sublattice is cz„——0.25 + (0.57)q, and the
other single-particle distributions are described fully in
Table I. Of course, it follows that on the Zn-enhanced
sublattice, the probability for Bnding a Cu atom or a
Ni atom is reduced; whereas, on the Zn-depleted sub-
lattices, the probability for finding a Cu or Ni atom is
enhanced. Symmetry alone dictates that two of the sub-
lattices are identical. The structure is, therefore, layered;
the two identical sublattices constitute a single layer, and
the other layer comprises two different sublattices. The
structure is, therefore, tetragonal the layer stacking de-

2. Long-v ange ov der

In the Appendix, we show that there are two long-
range-order parameters (qq 2), and, therefore, two phase
transitions possible as a function of temperature for the
CuspNi25Zn25 alloy. Furthermore, it is shown that the
most general symmetry in this [100]-type ordering sys-
tem for a high-temperature, partially ordered state is a
modiBed I lp-type structure, composed of four interpene-
trating simple-cubic lattices, with two sublattices always
degenerate in occupancy. The exact structure is given
by the polarization of the concentration wave, which in
turn is determined by the system-dependent; physics. For
a ternary alloy, note that a modified I 12-type structure

Component
ZI1

Z Il

zn

Ni

Ni

Ni

cu
Cu

cu

Sublat tice
1
2

3,4
1
2

3,4
1
2

3,4

Probability
0.25 + 0.57@
0.25 —0.489
0.25 —0.045'
0.25 —0.51'
0.25 + 0.43'
0.25 + 0.04'
0.5 —0.06g
0.5 + 0.05'
0.5 + 0.005'

TABLE I. Atomic distribution function in real space of
the state to which the high-temperature homogeneously dis-
ordered state is unstable at T, . g is the long-range-order
parameter.
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fines a preferred direction. Of course, this is not quite the
L12-type occupation interpreted experimentally. How-
ever, if small domains of Lla-type, ordered unit cells exist
and are averaged over the three possible tetragonal ori-
entations, then we see that this would appear to TEM
measurements exactly as L12-type occupation, as van der
Wegen et al. claim. As a result, it is possible that
the TEM results are showing an average over domains of
an L10-type state with different tetragonal orientations
and, therefore, implying an L12-like state. Of course,
high-resolution TEM experiments would be able to de-
cide between these two possibilities by focusing on single
domains. It is worth commenting that the I10-like par-
tially ordered state that we find is "nearby" in solution
space to the single point where the L12-like state occurs,
in the sense that the two identical sublattices of the L10-
like structure are almost completely random (see Table
I). It is this property that leads to a conclusion similar to
that of van der Wegen et al. , if one considers averaging
over the tetragonal orientations.

As noted above, in an fcc ternary alloy, the
concentration-wave approach for q = [100] only allows
for a fully ordered L10 structure at T = 0. Since the
above noted partially ordered L10 structure has different
occupation probabilities than those of the ground-state
L10 structure, a second phase transition at lower tem-
perature to a fully ordered I 10 structure can take place.
Provided an instability to some other part;ially ordered
structure (not the [100] type as found above) does not
preempt this transition, it will occur. Given that the
ternary Ni50Zn50 interactions are relatively strong and
originate from a Fermi-surface mechanism, there should
be no such int;erloper phases and the L10 structural phase
transition must occur.

Since our discussion is based on the stability of the
high-temperature disordered state, we are not able to
predict (based on the eigenvector, etc. , already calcu-
lated) the teinperature for this second transition. How-
ever, one simple estimate can be Inade. From the oc-
cupation probability distribution (see the Appendix), we
know that the transition must occur before any probabil-
ity becomes less than zero on any one of the sublattices.
Because the transition temperature is roughly propor-
tional to AE,s„,or g2, then T, I is (1—rI2)TI, since the
coeKcients in the Landau expansion are the same. An
q = 0.49 is found to make one of the Cu/Ni sublattices
have a negative occupancy; therefore, the long-ranged-
ordered state with L10 symmetry must occur at about
Tsp 0 76Tsp From the experimental temperatures of
774 K and 623 K for the transitions I and II,2 TII/TI
is 0.80, close to the estimate of 0.76.

D. Other ternary alloys

We have seen that Fermi-surface nesting drives much of
the ordering tendencies for Cu50Ni25Znq5 and several bi-
naries of the Cu-Ni-Zn system. Since the Fermi-surface
dimeiisions depend on the electron-per-atom ratio (—'),
we expect (to a first approximation) the ordering wave
vector to depend likewise on —.The position of the peak

in the short-range-order parameter can further be modi-
fied somewhat by the changing degree of disorder broad-
ening. The changes in shape of the Fermi surface as-
is changed will affect both the strength of the ordering
(as reflected in T,z) and, potentially, the ordering wave
vector. For each alloy, we calculate the Warren-Cowley
short-range-order parameter n„„and the Bloch spectral
function A(k, e). Comments concerning the ASRO are
based on the calculations of n; comments concerning the
Fermi surfaces are based on the calculations of A(k, e).
All calculations have been performed at the same lattice
constant used for Cu50Ni25Zn25.

The results which follow were summarized as a Gibbs
triangle of the Cu-¹iZn system in Ref. 1. The line join-
ing pure Cu with binary Ni50Zn50 is the Cu-isoelectronic
line; along this line all alloys are isoelectronic with pure
Cu. Cu50Ni25Zn25 lies on this line, as does Ni50Zn50
and the ternary Cu33 3Ni33 3Zn33 3 All along this line
we find (100) ASRO. Since —' is constant, we expect
the magnitude of the nesting vector to remain approx-
imately constant, and this is why the ordering wave vec-
tor does not change. The curvature of the Fermi sur-
face changes as does the disorder broadening, chang-
ing the size of the nested portions and effecting T,p.
On the Cu-isoelectronic line, we find (100) ASRO for
Cu33 3Ni33 3Zn33 3, with a spinodal temperature of 1160
K (1500 K without Onsager corrections), slightly higher
than that for Cu50Ni25Zn25.

As we change —,the nesting vector changes. For ex-
ample, for Cu~5Zn25, the nesting mechanism leads to in-
commensurate order (on an fcc lattice) with q = (1, 4, 0).
The ternary alloy Cu25Ni25Zn50 is isoelectronic with
Cu75 Zn25, and the Fermi surface dimensions lead to a
similar nesting vector. However, the disorder broadening
of the Fermi surface actually leads to a larger value for
the joint density of states at q = (100), as a result of van
Hove singularities [see Fig. 1(d)]. Therefore, because of
disorder broadening, which pushes the spectral weight to
high-symmetry points, the ASRO for Cu25Ni25Zn50 ac-
tually turns out to be commensurate. The peak in the
ASRO is broad, as might be expected in such a case. The
spinodal temperature is 950 K (1575 K without Onsager
corrections). It should be pointed out that the Zn-rich
end of the phase diagram is experimentally bcc, and stud-
ies of the fcc-bcc transition are a subject of ongoing work.

Similarly, although Cu3p 5Ni375Zn25 has a value of —'
which is different from that of pure Cu, it too shows (100)
ASRO with a T,~ of 875 K (1180 K without Onsager cor-
rections), also due to alloying effects on the Fermi surface
properties. Ultimately, as —' continues to change, and
likewise the Fermi surface dimensions, disorder broaden-
ing can no longer lock in the commensurate ASRO and
the ordering tendencies become incommensurate. Thus,
as discussed above for the binary alloy Niy5Zn25 and,
as discussed in Ref. 1, we find incommensurate ASRO
for Cu25Ni50Zn25. For this ternary, several wa~re vec-
tors compete as the temperature is lowered. Including
Onsager corrections, we find a spinodal at 485 K with
ordering wave vector (0, 0.1, 1.0). If Onsager corrections
are omitted, the spinodal is at 1005 K, with ordering
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wave vector (0, 0.05, 1.0). The rough boundary between.
commensurate and incommensurate order that we find
is in very good agreement with the compiled data of
Thomas. 43

IV. SUMMARY AND CONCLUSION

We have applied the first-principles theory of ASRO
in multicomponent alloys to the ternary Cu-Ni-Zn sys-
tem. For Cu5oNi25Zn25, the Warren-Cowley parameter
and the partially ordered state at high temperatures and
the ultimate ground-state configuration were found. Or-
dering transitions and their relative trends were also re-
produced. The electronic origin of this ordering behavior
was found to be arising in part from a (at and near)
Fermi-surface mechanism even though commensurate or-
dering (i.e., no fourfold splitting) was found. Indeed, this
one single, electronic mechanism is responsible for select-
ing the type of ordering behavior in the entire fcc por-
tion of the Cu-Ni-Zn ternary, a rather remarkable feature.
Only in the very Zn-poor region of the ternary phase di-
agram can the interactions be short ranged, in contrast
to the short-ranged interactions supposed by Ceder et
al. in their ground-state search for Cu50Ni25Zn25 and
other similar competing-type systems. In general, the
results of this mean-field theoretical approach are very
impressive for a Gorsky-Bragg-Williams-like model, be-
cause of the more sophisticated and robust Hamiltonian
and the physics contained therein. The power of this
first-principles method of determining ASRO is not only
to help interpret experimental diffuse scattering in mul-
ticomponent alloys, but also reveal the electronic mech-
anisms that are playing a role in the ordering tendencies
found in the high-temperature states. This latter infor-
mation is difFicult to obtain from total energy calculations
in combination with statistical mechanics methods, for
example, and, as such, it would. be highly advantageous
to use both of these complementary approaches.
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APPENDIX:
CONCENTRATION WAVES IN Cu~¹iZn

We discussed the concentration-wave formalism for a
ternary alloy in detail in Ref. 5 and here we focus on
the results for (100) ordering of a ternary alloy on an fcc
lattice. The atomic distribution function is an (N —1)-
dimensional vector in the species indices (i.e. , in "concen-

tration space"), each component n~(r;) representing the
probability for finding an atom of species p at location
r";. In what follows, we take the independent species to
be species A and B, with species C the "host." At each
site i, the components of the distribution function sum
to one, reHecting the single occupancy constraint.

As discussed in Ref. 5, our theory of ASRO in disor-
dered alloys can be interpreted in terms of a generalized
Gorsky-Bragg-Williams (GBW) model. A stability anal-
ysis of the related GBW model leads to the same spin-
odal temperature implied by the divergence of the pair
correlation function and further leads to a concentration-
wave interpretation of the SRO and LRO. Such a stabil-
ity analysis requires the examination of the free energy
in the quadratic approximation,

(A1)

where Fo is the &ee energy of the reference state of inter-
est (in our case, the random alloy) and X is the so-called
free-energy quadric, which is related to the inverse of the
pair-correlation function. As discussed in Ref. 5, we can
write the atomic distribution function as an expansion
in the principal directions in concentration space of the
&ee-energy quadric T. ' These principal directions play
the role of "normal concentration modes:" the instabil-
ity of the homogeneously disordered state arises &om a
vanishing of the restoring force against creating a con-
centration wave corresponding to a "soft mode. " At the
spinodal, the &ee-energy cost to create a concentration
modulation whose polarization in concentration space is
described by the "soft mode" is zero.

As discussed by de Fontaine, the original concentra-
tion space of a ternary alloy, which he calls the "Gibbs
composition space, " is an equilateral triangle and hence
an oblique space: axes chosen along the directions of in-
creasing atomic concentration are not mutually perpen-
dicular. To obtain the principal directions of the &ee-
energy quadric, it is necessary to transform &om the
Gibbs space to Cartesian coordinates. Such a trans-
formation preserves the value of the quadratic form in
Eq. (Al) and is not orthogonal, reflecting the oblique
nature of the Gibbs space. The principal directions x
of the &ee-energy quadric are then the eigenvectors of
the matrix T~ = 0 TO, the &ee-energy quadric trans-
formed into Cartesian coordinates (the superscript T de-
notes matrix transpose). These principal directions are
independent of the choice of host species. These eigen-
vectors are transformed back into the Gibbs composi-
tion space according to c = g 0 x, for use in the
concentration-wave formalism, as described below. It is
thus the oblique transform 0 that carries the information
of which atomic species are chosen to be the independent
variables. Note that the eigenvectors in the (oblique)
Gibbs composition space are, in general, not orthogo-
nal. The final description of the concentration wave is of
course independent of the choice of host.

The free-energy quadric in Cartesian space (X ) is a
symmetric matrix and has orthogonal eigenvectors. For
a ternary alloy, the matrices are of dimension 2. If we
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choose the eigenvectors to be normalized there is thus,
for the case of a ternary alloy, only one parameter that
describes the eigenvectors of T . We can, therefore, write
the eigenvectors for either matrix as

sin 0-
k—cos 0-

k

cos Ok

sin 6k

(A2)

Si'

x ) p (k, .) exp(~ k, rj, '

where v+'+(k~) are the A, B components of the normal
concentration modes for the 0 th branch, as described
above, and g' is the order parameter for the oth branch
and sth star. The first sum is over branches o and stars
8; the second over j„the vectors making up the 8th star.
The p (kz. ) are coefficients determined by symmetry; we
use the convention that for all q, = 1, Eq. (A3) describes
a perfectly ordered state. For the case of interest here,
there is one relevant star, the (100) star, comprised of the
vectors [100],[010],and [001]. Since there is one star and
W is a 2 x 2 matrix, there are two order parameters in the
expansion (A3), and hence two order-disorder transfor-
mations are possible as the temperature is lowered f'rom
the homogeneously disordered state.

As discussed in the text, the correlation function
q„„(k,T) for the homogeneously disordered state diverges
for some wave vector kq at the spinodal temperature T,~.

where A, B are Cartesian axis labels. The parameter 0
is determined by the interactions and plays the role of a
"polarization angle" for the concentration wave of wave
vector k. The polarization angle determines the occupa-
tions of the sites that are (potentially) made inequivalent
by the concentration wave, and is itself determined by the
interactions. For a ternary alloy, in contrast to the case of
a binary, the interactions determine not only the ordering
wave vector and spinodal temperature, but the polariza-
tion angle as well. We shall take Ok to be the parameter
which describes the eigenvectors of T in all that follows.
As stated above, it is necessary to find the eigenvectors of

(in the Cartesian space) and transform them back to
the Gibbs space to obtain a set of "normal concentration
modes" in which to write the concentration waves. The
normal concentration modes are not necessarily orthog-
onal (because the transformation 0 is oblique), but they
can of course still be described by the single parameter
0—the components are linear combinations of sin0 and
cos 0 with coefFicients that are matrix elements of O.

We write the atomic distribution function as an expan-
sion in the normal concentration modes as follows:

In the context of concentration waves, this means that
at least one of the order parameters in Eq. (A3) be-
comes nonzero —the homogeneously disordered state is
absolutely unstable against the formation of a concentra-
tion wave of wave vector ko. Also, the instability temper-
ature, i.e., the spinodal, is often very close to the actual
transition temperature if the transition is first order.

A (100) ordering wave on an fcc lattice divides the
structure into four interpenetrating simple-cubic sublat-
tices. At T = 0, the structure must be fully ordered —all
of the n (rg must be either zero or one. For any temper-
ature, the system of Eq. (A3) may be inverted to give the
fc }and the (p (k,.)}in terms of the (n (rQ}. By ex-
amining this solution of (A3) (in particular for the (c })
one finds that the only stoichiometry that can sustain a
ternary ordered phase at T = 0 is ABC2. The structure
has a modified L 10 symmetry with species A predom-
inantly occupying the corners of the fcc cube, species
B predominantly occupying opposite face centers of the
fcc cube, and species C predominantly occupying the re-
maining face centers, the central plane of the fcc cube.
The C species occupies two of the four interpenetrating
simple cubic sublattices —those two sublattice occupa-
tions are equivalent and must remain so as the temper-
ature is raised. From the inversion of (A3) at T = 0,
one also obtains the temperature-independent parame-
ters (p (k~ )}in terms of the eigenvector components.

In a partially ordered state, i.e., one described by Eq.
(A3) with only one of the two long-range-order param-
eters nonzero and the other zero, the symmetry of the
superstructure described by k = (100) is determined by
the corresponding eigenvector. When only one order
parameter is nonzero, the structure is still, in general,
Llo-like; however, for one 8pecific value of the eigenvec-
tor components, three sublattices are equivalent and the
structure has I 12 symmetry. This is obviously a rather
special situation. Furthermore, the probability distribu-
tion that results for only one long-range-order parameter
nonzero places stringent limits on the maximum value
that that order parameter may take. This maximum
value of the order parameter in an fcc k = (100) par-
tially ordered state is plotted in Fig. 7 as a function of
the polarization angle in the Cartesian space. We em-
phasize that this result is based on symmetry alone, and
not on any of our approximate electronic structure re-
sults. The experimentally inferred L12 phase occurs at
0 = 2, our theoretical value is 0 = 0.36m. The situation
is similar to Khachaturyan s discussion of nonstoichio-
metric phases in binaries —the probability distribution
for certain values of the eigenvector components takes on
negative values for values of the order parameter greater
than some maximum value, which is generally less than
one. These are then phases that are not stoichiometric
for the ternary. In particular, for the partially ordered
phase of I 12 symmetry the maximum value of the order
parameter is g ' = &, leading to a maximum value for
n~" = 4. Last, we note that any phase with one of the
long-range-order parameters equal to zero cannot exist at
T = 0 by Nernst's theorem, and there must be a second
phase transition to a state, which does satisfy Nernst's



10 624 ALTHOFF, JOHNSON, PINSKI, AND STAUNTON 53

TABLE II. Normal concentration modes in Gibbs space
near the spinodal temperature. The independent species here
are zinc (A) and nickel (B).

~ 9 Component

eg

Eigenvector 1
0.476 75
0.672 41

Eigenvector 2

1.051 68
-0.938 72

.8

~ 7

4
0

8 (radians)
FIG. 7. The maximum possible value of the order param-

eter in the partially ordered state as a function of the po-
larization angle in the Cartesian space. The experimentally
inferred L1~ state occurs at 8 = ~; our theoretically deter-
mined state occurs at 8 = 0.36vr, indicated by the dashed line
and arrow.

theorem.
The normal concentration modes near the (100) order-

ing instability at T = 1000 K are shown in Table II (the
instability occurs at T,~ = 985 K). The mode for which
the free-energy cost is lowest and which causes the diver-
gence in q„ is that corresponding to mode 2. Upon sub-

stitution into Eq. (A3), taking into account the solution
for the parameters p (ks ) in terms of the eigenvectors
of T, and setting the long-range-order parameter gq

——0,
one obtains the atomic distribution function n(r) shown
in Table I. The distribution function describes a three
sublattice superstructure, as discussed previously.

A few comments are in order. First, although it may
appear as if some of the probabilities go negative, this
is not the case. This distribution function is only valid
for small values of the long-range-order parameter q2, g2
is temperature dependent and is only equal to one at
T = 0. Because the symmetry of the partially ordered
phase is not that of the fully ordered phase (rh ——rl2 ——1),
there must be a second phase transition at some nonzero
temperature. The second phase transition must occur
before any of the components of n(r) become negative.
Further, the eigenvectors of S ~ ~ are computed for the
homogeneously disordered state, and, therefore, are ap-
proximate; hence, n(r) is only indicative of the nature of
the long-range order present at temperatures just below
the phase transition, but it is not a completely quantita-
tive description. Finally, our eigenvectors correspond to a
distribution function that describes a state in which the
probability for finding zinc on one sublattice is greatly
enhanced; on that same sublattice, the probability for
finding copper or nickel is decreased. On the other two
sublattices, the probability for finding zinc is decreased,
and the probability for finding copper and nickel is en-
hanced. This distribution function describes a partially
ordered, tetragonal, Llo-like structure, that, in partic-
ular, has two sublattices within a plane almost random
Cu and Ni (see text for discussion and comparison to
experiment).

J.D. Althoff, D.D. Johnson, and F.J. Pinski, Phys. Rev.
Lett. 74, 138 (1995).
B.L. GyorfFy and G.M. Stocks, Phys. Rev. Lett. 50, 374
(1983).
B.L. Gyorffy et al. , in Alloy Phase Stability, edited by G.M.
Stocks and A. Gonis (Kluwer, Dordrecht, 1989), p. 421.
J.B. Staunton, D.D. Johnson, and F.J. Pinski, Phys. Rev.
B 50, 1450 (1994).
J.D. AlthoK and D.D. Johnson (unpublished).
A. Khachaturyan, Theory of Structural Transformations in
Solids (Wiley, New York, 1983).
L.D. Landau and E.M. Lifshitz, Statistical Physics, Part 2,
3rd ed. (Pergamon Press, New York, 1980).
E. M. Lifshitz, Fiz. Zh. 7, 251 (1942).
A. De Rooy, G.J.L. van der Wegen, P.M. Bronsveld, and
J.Th. M. De Hosson, Scr. Metall. 15, 1362 (1981).
P. Cenedese, F. Bley, and S. LeFabvre, Acta Crystallogr.

Sec. A 40, 228 (1984).
S. Hashimoto et aL, J. Phys. Soc. Jpn. 54, 3796 (1985).
G. Ice et al. , Phys. Rev. Lett. 68, 863 (1992).
C.J. Sparks, G. Ice, L. ShafI'er, and J. Robertson, in Metal-
lic Alloys: Experimental and Theoretical Properties, edited
by R. Jordon and J. Faulkner (Kluwer, Boston, 1994), p.
73.
G.J.L. van der Wegen, A. De Rooy, P.M. Bronsveld, and
J.Th.M. De Hosson, Scr. Met. 15, 1359 (1981).
D.D. Johnson, J.B. Staunton, and F.J. Pinski, Phys. Rev.
B 50, 1473 (1994).
M. Krivoglaz, Theory of X Ray and Thermal Ne-utron Scat-
tering by Real Crystals (Plenum Press, New York, 1969).
V.G. Vaks, A.I. Larkin, and S.A. Pikin, Zh. Eksp. Teor.
Fiz. 51, 361 (1966) [Sov. Phys. JETP 24, 240 (1967)].
D. de Fontaine, Solid State Physics: Advances in Research
and Applications, edited by D. Turnbull, F. Seitz, and H.



53 ELECTRONIC ORIGINS OF ORDERING IN MULTICOMPONENT. . . 10 625

Ehrenreich (Academic, New York, 1979), Vol. 34, p. 73.
D. Badalyan, A. Khachaturyan, and A. Kitaigorodskii,
Kristallografiya 14, 404 (1969) [Sov. Phys. Crystallogr. 14,
333 (1969)j.
F.J. Pinski et al. , Phys. Rev. Lett. 66, 766 (1991).
G.M. Stocks and W.H. Butler, Phys. Rev. Lett. 48, 55
(1982).
W. Kohn, Phys. Rev. Lett. 2, 393 (1959).
H. Sato and R.S. Toth, Phys. Rev. 127, 469 (1962).
S.C. Moss, Phys. Rev. Lett. 22, 1108 (1969).
L. Reinhard, B. Schonfeld, G. Kostorz, and W. Buhrer,
Phys. Rev. B 41, 1727 (1990).
G. Ceder et al. , Phys. Rev. B 49, 1 (1994).
J. Vrijen, P.M. Bronsveld, J. van der Veen, and S. Radelaar,
Z. Metallk. B7, 473 (1976).
Binary Alloy Phase Diagrams) 2nd ed. , edited by B. Mas-
salski, H. Okamoto, P.R. Subramanian, and L. Kacprzak
(ASM International, New York, 1990).
R. Prasad, S. Papadopoulos, and A. Bansil, Phys. Rev. B
23, 2607 (1981).
G.M. Stocks et al. , in Noble Metal Alloys: Phase Diagrams,
Alloy Phase Stability, Thermodynamic Aspects, and Special
Features, edited by T. B. Massalski et al. (American Insti-

tute of Mechanical Engineers, New York, 1985).
D.D. Johnson et al. , Phys. Rev. B 41, 9701 (1990).
D.D. Johnson and F.J. Pinski, Phys. Rev. B 48, 11553
(1993).
M. Sluiter et al. , in 1Veutron Scattering for Materials Sci
ence, edited by S. Shapiro, S. Moss, and J. Jorgensen (Ma-
terials Research Society, The Netherlands, 1990), Vol. 166.
P.E.A. Turchi et al. , Phys. Rev. Lett. 67, 1779 (1991).
V.L. Moruzzi, J.F. Janak, and A.R. Williams, Calcu-
lated Electronic Properties of Metals (Pergamon Press, New
York, 1978).
Neil W. Ashcroft and N. David Mermin, Solid State Physics
(Saunders College, Philadelphia, 1976).
J. Clark et al. , Phys. Rev. Lett. 74, 3225 (1995).
J.B. Cohen, J. Mater. Sci. 4, 1012 (1969).
D.D. Johnson (unpublished).
F. Ducastelle and F. Gautier, J. Phys. F 6, 2039 (1976).
F. Gautier, F. Ducastelle, and J. Giner, Philos. Mag. 31,
1373 (1975).
S.C. Moss (unpublished).
H. Thomas, Z. Metallk. B3, 106 (1977).
D. de Fontaine, J. Phys. Chem. Solids 34, 1285 (1973).


