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A recently introduced scheme forab initiomolecular-dynamics with an orbital-free density functional@Phys.
Rev. B 49, 5220 ~1994!# is extended so that the kinetic-energy functional guarantees correct results at third
order of perturbation theory. The new density functional gives improved accuracy, yielding good agreement
with well-converged Kohn-Sham results for many properties of metals such as aluminum. This molecular-
dynamics scheme retains many of the advantages of the old: it is very fast, exhibits close to linear scaling with
system size, and may be readily ‘‘conditioned’’ to maximize the molecular-dynamics time step.

I. INTRODUCTION

In recent work the possibility has been demonstrated1,2 of
basing an accurateab initio molecular-dynamics~MD!
method on an ‘‘orbital-free’’ formulation of density-
functional theory~DFT!. The obvious advantage of this for-
mulation over the normal Car-Parrinello method,3–5where a
Kohn-Sham~K-S!,6 orbital-based representation of DFT is
used, is that the electronic part of the calculation scales lin-
early with system size~i.e., it is an ‘‘orderN’’ method!.
Several other, less obvious advantages have also been
uncovered. The algorithm may be straightforwardly
‘‘conditioned’’1 so that the MD time step is optimized and
independent of system size. This means that the method is
orderN in practice as well as in principle. The method is
most advantageous for metals, where it has proven possible2

to construct an orbital-free representation with the accuracy
of Kohn-Sham theory. For metals the conditioned algorithm
gives adiabatic dynamics, unlike the Kohn-Sham–based
method.7,8 Furthermore, since wave functions are not used,
Brillouin-zone sampling is not required to calculate metallic
properties accurately. The power of the method has been
demonstrated in calculations on metallic liquids9 and on
point defect formation free-energies.10,11

The principle problem in finding an accurate orbital-free
density functional is to represent the kinetic-energy func-
tional of a noninteracting electron gas.12,13 It is worth noting
that crude approximations are useless: the virial theorem
shows that the kinetic energy of the electrons is comparable
to their total energy. The K-S representation is, in principle,
exact, but in the plane-wave-based methods of most interest
in simulation,5 it gives technical problems for the simplest
metals, where extensive Brillouin-zone sampling is required
to represent the Fermi sphere. For these systems it has been
shown that orbital-free functionals that incorporate several
exact limiting forms provide extreme accuracy. The uniform
gas limit is represented by the Thomas-Fermi~T-F! func-
tional,

T5TT-F5ckE drr5/3~r !, ~1.1!

~wherer is the electron density! while the strong potentials
limit ~strictly, the larges5u¹ru/r4/3 limit ! is given by the

von Weizsa¨cker ~vW! functional,14,13

TvW5
1

2E drr1/2¹2r1/25
1

8E dr u¹ru2/r. ~1.2!

These terms are modified to guarantee that they give the
correct response behavior for perturbations about the uni-
form gas limit, as suggested by Perrot15 and Wang and
Teter.16 The response functionals of the noninteracting elec-
tron system are known exactly17 and they may be embedded
into the kinetic-energy functional, as originally indicated by
Hohenberg and Kohn.18 A full discussion of the nature of
these functionals and the different ways in which the embed-
ding may be attempted is given in Ref. 2. Finally, we note
that Alavi and co-workers19 have proposed an orbital-free
functional on a quite different basis that is more general than
our approach but is less convenient computationally.

In the work done to date,1,2 the correctlinear response
was included. For sodium, with a local pseudopotential20

known from K-S calculations to give good agreement with
experiment, this linear response functional was shown to re-
produce accurately a wide variety of static and dynamic ex-
perimental data, including the vacancy formation energy of
the solid, inelastic neutron scattering data on the liquid, etc.
Results for aluminium were also discussed:2 this is known to
be a more difficult case, since effective pair potentials, based
on linear response theory, do not correctly reproduce experi-
mental properties such as the vacancy formation energy.21

For aluminium a comparison with fully converged K-S
calculations,22,23with a particular local pseudopotential,24 on
a variety of crystal structures and solid-state properties was
made and also with experiment.25,26 It was shown that the
orbital-free code gave accurately the energies of crystals with
high coordination numbers~fcc, bcc, etc.! and good results
for their phonon dispersion curves. However, for more open
structures~diamond, vacancy lattice, etc.! errors in the en-
ergy of order 0.2 eV per atom were found. An analysis of the
role of different orders of perturbation theory was under-
taken, following an idea of Gillan.23 It was shown that while
the beyond-linear response characteristics of the functional
agreed with those of K-S calculations when evaluated for the
high coordination structures, for the open structures errors at
the third order of perturbation theory became apparent~i.e.,
at the level of second-order response of the density!. It was
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concluded that an extended functional, into which the correct
second-orderresponse function was embedded, might make
an accurate represention of materials such as aluminum pos-
sible.

This paper describes further work to develop such a func-
tional for use inab initio MD and to evaluate the functional
both for its accuracy, in representing materials such as alu-
minium, and for its computational performance with respect
to other methods. A valuable background to this develop-
ment was provided by the paper of Wang and Teter,16 who
have already proposed a second-order response functional
and shown how it may be rendered into a computationally
tractable form. This functional was used only in the context
of energy calculations; forces were not discussed. We show
that the scheme results in an orderN MD method, which
may be conditioned in the same way as with the linear re-
sponse functional.

II. DEVELOPMENT OF THE FUNCTIONAL

In the work to date,1,2 correct linear response has been
embedded and the resulting functionals are of the form

Ta@r#5TT-F@r#1T vW@r#1E
V
drE dr 8Dr~a!

3~r !Ka~r2r 8!Dr~a!~r 8!, ~2.1!

whereDr (x)(r )5rx(r )2r0
x , with r0 the uniform density,

andV is the volume of the periodically repeated simulation
cell. The response kernelKa is most readily expressed in
reciprocal space,

Ka~g!52
1/x021/xvW21/xT-F

2a2Vr0
2~a21! . ~2.2!

x0 is the linear response function of the noninteracting ho-
mogeneous electron gas, i.e., the Lindhard function,27 and
xT-F53r0 /kF

2 (kF is the Fermi wave vector! and
xvW54r0 /g

2 are the response functions associated with the
Thomas-Fermi and von Weizsa¨cker kinetic-energy
functionals.28

The basic strategy, as clearly seen in thea51
functional,15 is to add a quadratic term in the density fluc-
tuations@which contains the linear response~Refs. 18 and
28!# to TT-F1TvW minus their quadratic parts. The limiting
behaviors are therefore built in. Away from these limits, the
functional can be criticized on two grounds. Firstly, the
beyond-linear response is not correct. This is particularly
true at lowg where it is known that the correct nonlinear
behavior is given by the gradient-corrected Thomas-Fermi
result TT-F@r0#11/9TvW .

12 On the other hand, at highg,
TT-F1TvW should give the nonlinear response quite well.13

Secondly, adding the different terms in this way means that
they continue to contribute in domains where they are inap-
plicable. For example,TvW gives theexactkinetic energy for
a one-electron ground state13 but, if Eq. ~2.1! is used for the
hydrogen atom, the other two terms will not disappear, and
they give spurious contributions to the kinetic energy. Ideally
the limiting forms would be combined in a more subtle way
so that this did not happen.

To some extent, these objections may be met by different
choices ofa, as can be seen by looking at the reciprocal
space expressions for the general functional:

Ta@r#5V(
g

H 3kF
2

10r0
2/3rg

~5/6!r2g
~5/6!1

1

2
rg

~1/2!g2r2g
~1/2!

2
1

2a2r0
2~a21! rg

~a!
1

x0~g!
r2g

~a!

2
kF
2

6a2r0
2a21 rg

~a!r2g
~a!

2
1

8a2r0
2a21 rg

~a!g2r2g
~a!J , ~2.3!

where, for instance,rg
(1/2) denotes thegth Fourier component

of r (1/2)(r ).
For the choice ofa55/6, due to Wang and Teter,16 the

first and fourth terms can be combined —TT-F could be
incorporated within the double integral. In this sense, the
linear response term grows naturally out of the Thomas-
Fermi functional. Perrot has pointed out15 a potentially im-
portant consequence of this choice for the way this func-
tional behaves in the limit of low density~i.e., the ‘‘atomic’’
limit where the degree of ionization of a collection of atoms
is low!. The double integral in Eq.~2.1! will diverge as
r0→0 if a.5/6, leading to an infinite atomic kinetic en-
ergy, and ifa,5/6 the double integral will disappear, so that
the linear response correction will be lost.

Similarly, T1/2 has a von Weisza¨cker-like double integral.
In this case the second and fifth terms exactly cancel, imply-
ing thatTvW is already contained within thex0

21 term. Fur-
thermore, for the g→0 components of the sum,
x0

21(g)→21/3r0(kF
21g2/12), canceling the fourth term

and leaving thegth Fourier component of 1/9TvW , that is,
the gradient correction toTT-F . Thus,T1/2 correctly yields
the gradient-corrected Thomas-Fermi result
TT-F@r0#11/9TvW in the low-g limit.

As indicated previously, the beyond-linear response char-
acteristics of these functionals are already important for alu-
minimum. Our strategy in this work is to generalize the func-
tionals to embedsecond-order response exactly and then we
hope that the beyond second-order behavior is sufficiently
well captured by some way of combining the limiting forms.

A. Introducing the correct quadratic response

To quadratic order in the Fourier components of the per-
turbing potentialV(g), the induced charge densityDrg in a
noninteracting electron gas is given by

Drg5x0~g!V~g!

1
1

p2kF
(
g1

(
g2

dg11g22gI ~g1 ,g2 ,g!V~g1!V~g2!,

~2.4!

wheredx is the Kronecker delta. A complete and accurate
derivation of I (g1 ,g2 ,g), appears in Refs. 29 and 30. If
g11g25g3 , thenI is given by
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I ~g1 ,g2 ,g3!52
p2kF

2

6g1g2g3
$g1x0~g1!1g2x0~g2!

2g3x0~g3!%. ~2.5!

Otherwise it is given by

I ~g1 ,g2 ,g3!5U~g1 ,g2!1U~g1 ,g3!1U~g2 ,g3!, ~2.6!

andg11g21g350. If u is the angle betweeng1 andg2 and
qi5gi /kF , then forq3

224sin2u>0,

U~g1 ,g2!5
1

4q1q2sin
2u H ~q1cosu1q2!lnU21q1

22q1
U

1~q2cosu1q1!lnU21q2
22q2

U1Aq3224sin2u

3 lnU4cosu1q1q222Aq3224sin2u

4cosu1q1q212Aq3224sin2u
UJ , ~2.7!

and forq3
224sin2u<0,

U~g1 ,g2!5
1

4q1q2sin
2u H ~q1cosu1q2!lnU21q1

22q1
U

1~q2cosu1q1!lnU21q2
22q2

U
22A4sin2u2q3

2Fh~q1q214cosu!p

1tan21S 22A4sin2u2q3
2

q1q214cosu
D 2

p

3 G J , ~2.8!

where

h~x!5H 1 whenx>0

0 whenx,0.
~2.9!

@The expression differs from that given in Ref. 16 in the
appearance of factors ofp/3 in Eq.~2.8!. These arise from a
proper account of poles that occur in the derivation ofU.]

Wang and Teter16 assert that ‘‘although the formula falls
into two regions with different forms, there is no discontinu-
ity at the boundary. There is no physical significance for the
boundary of the two regions.’’ This perhaps needs closer
attention. As Lloyd and Sholl29 note, there is indeed amath-
ematicalsignificance to the boundary between the two func-
tional forms forU(g1 ,g2), with a discontinuity of the deriva-
tive occurring along here, as well as wheregi52kF . This is
reminiscent of the discontinuity that occurs inx0(g) at
2kF , although inU(g1 ,g2) the limiting slope differs from
each side of the discontinuity. This might be thought signifi-
cant since the analogous discontinuity inx0(g) is often re-
garded as the origin of Friedel oscillations,27 which certainly
have physically significant consequences for effective
potentials.31 However, it has been demonstrated32 that these
oscillations are reproduced with a fit tox0(g) that does not
contain the discontinuity, i.e., they are a consequence of the
function’s shape rather than of the discontinuity itself. For
our purposes~see below!, it is important that there is like-

wise no crucial physical role for the discontinuities in
U(g1 ,g2), because soon we will be obliged to adopt a sim-
plified representation of this function in which it is not pos-
sible to incorporate discontinuities depending on
q3
224sin2u50.
Following Wang and Teter,16 but with greater generality,

we construct a kinetic-energy functional of the form

Tab@r#5Ta@r#1E
V
E

V
E

V
Dr~b!~r1!Dr~b!~r2!Dr~b!

3~r3!Kab~ ur12r2u,ur12r3u!dr1dr2dr3 .

~2.10!

~Wang and Teter looked at the particular caseT5/6 5/9.)
Kab can be obtained by forming the Euler-Lagrange equa-
tion from Eq. ~2.10!,12 converting this to reciprocal space,
substituting in Eq.~2.4! and extracting the term that is qua-
dratic inV(g). The resulting expression is

Kab~g1 ,g2 ,g3!5
1

b3V2r0
3b21 H kF2181

kF
2

16
@g1

21g2
21g3

2#

2 1
3 a2~a21!Vr0

2a21

3@Ka~g1!1Ka~g2!1Ka~g3!#

1
kF
5

27p6

I ~g1 ,g2 ,g3!

x0~g1!x0~g2!x0~g3!
J .

~2.11!

The selection ofb remains to be made. It could be treated
as a fitting parameter, but the restriction to values that are in
some sense ‘‘natural’’ is preferred, as was done witha. The
simplest possibility isb51, which will not contribute to the
higher-than-quadratic response behavior of the electrons.
Then there is Wang and Teter’s choice of 5/9. In this case
the quadratic response term contains the density in the same
fashion as it appears in the Thomas-Fermi term, which is
rg1
(5/9)rg2

(5/9)rg3
(5/9)dg11g21g3

when cast within a triple

reciprocal-space sum. By the following argument~similar to
that for the linear response case!, it can be demonstrated that
functionals withb55/9 are superior in situations of low av-
erage density. Wang and Teter note that the von Weisza¨cker
functional accounts for the quadratic response behavior of
the electrons at short wavelengths, which gives further con-
firmation that the von Weisza¨cker functional is the correct
form in the limit of rapid spatial variations for perturbations
of any magnitude. This means that theg1

21g2
21g3

2 term in
Kab is canceled byx0

21(g1)x0
21(g2)x0

21(g3)I (g1 ,g2 ,g3) as
q1 ,q2 ,q3→`. We have already seen the behavior of
Ka(gi) in this limit. On its appearance withinKab it is
dressed in a coefficient that leaves it with ar0

24/3 dependence
irrespective ofa. The same is true of the other term remain-
ing in Kab , so that for low average densities the overall
behavior ofTab goes asr0

5/323b , which is eliminated by
takingb55/9.

We have investigated an extended family of such func-
tionals:T11, T5/6 1, T5/6 5/9, andT1/2 5/9. The results will be
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discussed below. The functional that Wang and Teter16 tested
in detail was different again, comprisingT5/6 5/9 plus an ex-
pression which built in the second-order gradient expansion
term at lowg. T1/2 5/9 also has this property, up to second
order in the density. As the next term in the gradient expan-
sion is fourth order in the gradient of the density,12 it is
beyond the scope of these functionals, which only directly
include the third order in density. Wang and Teter state that
adding the gradient expansion brought some improvement
overT5/6 5/9 alone, but they did not specify the extent of this
improvement. Their work involved energy minimization cal-
culations; they did not perform molecular-dynamics with
their functional.

B. Recovering linear scaling

As it stands, the amount of computation required for
Tab@r# scales as the square of the system size; even after
taking advantage of the translational invariance of
Kab(r12r2 ,r12r3) there remains a double integral over the
spatial coordinate to be performed. A functional with linear
scaling may be salvaged from this by replacing
Kab(g1 ,g2 ,g3), by a separable function, that is, a sum of
terms having the formf a(g1) f b(g2) f c(g3), which give a
good fit toKab , and then exploiting the convolution theo-
rem. Wang and Teter16 devised a separable fit forK5/6 5/9,
and asKab(g1 ,g2 ,g3)2K5/6 5/9(g1 ,g2 ,g3) is already in
separable form, the generalization toKab is straightforward:

Kab
fit ~g1 ,g2 ,g3!5

2kF
2

b3V2r0
3b21 $G~q1 ,q2 ,q3! f 1~q1! f 1~q2! f 1~q3!1 f 2~q1! f 2~q2! f 2~q3!@ f 3~q1!1 f 3~q2!1 f 3~q3!#

1 f 4~q2! f 4~q3! f 5~q1!1 f 4~q3! f 4~q1! f 5~q2!1 f 4~q1! f 4~q2! f 5~q3!1 f 6~q1! f 7~q2! f 7~q3!

1 f 6~q2! f 7~q3! f 7~q1!1 f 6~q3! f 7~q1! f 7~q2!1DKa~g1!1DKa~g2!1DKa~g3!%, ~2.12!

where q5g/kF , DKa(g)5a2Vr0
2a21/18kF

2(6a25)Ka(g)
@based on the difference betweenKa(g) andK5/6(g)#, and
where Wang and Teter’s fitting functionsG and f 1→7 are
given in the Appendix.Tab@r# can then be expressed in
terms of Fourier transforms~denotedF , andF 21 for the
inverse transform! between real and reciprocal space:

Tab@r#5Ta@r#2
kF
2

b3r0
3b21E

V
$2 13

540F1~r !
32 1

40F2~r !F3~r !
2

1 1
20F4~r !F3~r !F1~r !13F5~r !F6~r !

2

13F7~r !F8~r !
213F9~r !F10~r !

2

13F11~r !$Dr~b!~r !%2%dr , ~2.13!

where, if rg
(b)5F @Dr (b)(r )#, then F1(r )

5F 21@rg
(b) f 1(g)#, and the remaining auxiliary functions

are given in the Appendix. With the aid of fast Fourier trans-

formation, this expression can be calculated in a time pro-
portional toV logV. The calculation of the energy func-
tional requires 12 Fourier transforms.

We have examined the agreement betweenKab and
Kab
fit by looking at each function using computer programs

for three-dimensional visualization. The results are excellent,
in view of the complexity of the function, with relative errors
of less than 1% almost everywhere. We have also compared
third order energies obtained from the fitted function for cer-
tain input densities with those obtained from the exact ex-
pression. Here, agreement was better than 0.5% even when
the input density was that for the ground state of a metallic
liquid. These comparisons are discussed in more detail
elsewhere.33 They give us confidence that the errors intro-
duced with the fitted kernel are insignificant.

To perform ab initio molecular dynamics and efficient
energy minimizations, we also required(Tab2Ta)/drg .
With the help of the chain rule, this can be expressed as
F $brb21(r )F 21@d(Tab2Ta)/drg

(b)#%. Functional differ-
entiation gives

d~Tab2Ta!

drg
~b! 5

2kF
2

b3r0
3b21 H f 1~q!

20 F2 13
9G1~g!2

1

q2
G2~g!2

q4

2
G3~g!1G4~g!2

1

q2
G5~g!1q2G6~g!G

13 f 2~q!@2G7~g!1 f 3~q!G8~g!#16 f 4~q!G9~g!13 f 5~q!G10~g!16 f 7~q!G11~g!

13 f 6~q!G12~g!16G13~g!13DKa~g!G14~g!J , ~2.14!
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where G1(g)5F @F1(r )
2#, and the remaining functions

G2→14 are specified in the Appendix. So, with an additional
16 Fourier transforms we acquire the electronic forces as
well, and the calculation of these over allg scales almost
linearly.

III. TOTAL-ENERGY RESULTS ON ALUMINUM

Since aluminum exposed the limitations of the linear re-
sponse functionals,2 this was where we began our evaluation
of the new functionals. As with the earlier work, we have
used the local pseudopotential of Goodwinet al.,24 which
has been found23,24 to give a reasonable representation of
aluminum in Kohn-Sham calculations. Furthermore, Robert-
son et al.22 have produced a database of total energies for
different aluminum structures using the Goodwin potential,
so that this potential is an excellent test bed.

In our work, as in Ref. 2, an energy cutoff of around 380
eV in the plane-wave representation of the electrons was
required to yield convergence of the energies in the calcula-
tions. The high cutoff, relative to that which might be used in
a K-S calculation with the same pseudopotential, is because
this is the cutoff on thedensityexpansion~i.e., twice the
normal wave-function cutoff!. Also, working with a very-
well-converged density simplifies the evaluation of the gra-
dient of the density. One problem we found in dealing with
those terms in the forces~2.14! which involve the transforms
of products of real-space functions is the generation of spu-
rious forces due to ‘‘aliasing’’ of the Fourier transforms.34

This problem is eliminated by ‘‘padding’’ the transforms,
i.e., by extending the range of the functions to be trans-
formed from reciprocal to real space with zeroes to eliminate
spurious Fourier components.

A. Energies of various crystal structures

We performed energy minimization calculations using the
second-order response functionals, for five of the structures
studied by Robertsonet al.22—face-centered cubic~fcc!,
body-centered cubic~bcc!, simple cubic~sc!, a ‘‘vacancy
lattice’’ ~VL !, which is an fcc lattice with one atom in the
unit cube removed, and diamond~D!—with the nearest-
neighbor distance being 2.85 Å in each case. Convergence of
the steepest descent proved more difficult33 for some of the
crystal structures whena55/6 than for 1, and most difficult
for 1/2, but this was simply overcome by taking a smaller
steepest-descent step. It seems probable that this is associ-
ated with the symmetry of the effective response about the
uniform density limit.T11 is more symmetrical than the func-
tionals with fractional powers of the density fluctuations and
may behave better under the conditioning. Table I shows the
resulting energies per atom~in eV!, as well as those of Ref.
22. Figure 1 collectsTa

2 andTab results fora51, 5
6, and

1
2, respectively, each in comparison with the orbital-based
calculations.

It can be seen that, in most cases, adding the quadratic
response term substantially improves agreement with the
orbital-based calculations.~In the few instances where this is
not so, for instance the simple cubic energy whena55/6,
the worsening is only slight.! For the orbital-based calcula-
tions,EVL,Esc. UsingT1 andT5/6 the ordering is switched,

but the introduction of the quadratic response term corrects
this. Also in the orbital-based calculations,EVL is closer to
Ebcc than to Esc. Having b51 fails to achieve this, but
b55/9 is successful. A good treatment of the vacancy lattice
energy is of particular interest because it is related to the
calculation of the experimentally observable vacancy forma-
tion energy, an issue we will address below. The best be-
haved of the quadratic response functionals appears from
these calculations to beT5/6 5/9.

B. Properties of the fcc crystal

For the equilibrium crystal structure, which is the fcc lat-
tice, we performed energy minimization calculations for a
range of slightly different densities and fit a parabola to the
resultingE(V). From this we could ascertain the equilib-
rium unit-cell length alat and the bulk modulus
B5V(d2E/dV2)uV5a

lat
3 . This was done forT11, T5/6 1, and

T5/6 5/9, and the results are shown in Table II, together with
values from experiment,25,26 from theTa calculations,2 and
from K-S calculations of Gillan.23 The values foralat were in
excellent agreement with the Kohn-Sham and experimental
results, and were an improvement over those from the linear
response functionals. The bulk modulus was unchanged for
a51, but deteriorated slightly on addition of quadratic re-
sponse whena55/6.

TABLE I. The energies per atom, in electron volts, for various
crystal structures calculated with differentTab functionals are com-
pared with the orbital-based results of Robertsonet al. ~Ref. 22!,
denoted K-S.

T11 T5/6 1 T5/6 5/9 T1/2 5/9 K-S

fcc -58.32 -58.33 -58.34 -58.34 -58.31
bcc -58.25 -58.26 -58.25 -58.26 -58.24
VL -58.01 -58.05 -58.16 -58.19 -58.10
sc -57.98 -58.01 -58.04 -58.06 -57.91
D -57.10 -57.27 -57.40 -57.47 -57.42

FIG. 1. Energies of various aluminum crystal structures, for
Ta ~dotted lines!, Tab ~dashed lines!, and orbital-based~thick lines!
functionals.
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Gillan23 suggested a useful way of exploring the contri-
butions of different orders of response theory to the total
energy. The ionic pseudopotentialV(g) is scaled by a con-
stant C for all g, and calculations of the total energy,
E(C), are made for various choices ofC between 0 and 1. It
is then possible to look at the perturbation behavior of the
valence electron cloud for various orders ofV. We can write

E~C!5E~0!1CE~1!1C2E~2!1C3E~3!1•••. ~3.1!

The energy of the same ionic arrangement but with a uni-
form electron cloudEr0

(C)5E(0)1CE(1), so thatP(C)

5@E(C)2Er0
(C)/NC2#5E(2)1CE(3)1•••, and a plot of

P(C) versusC will give a curve whoseC50 intercept will
be determined by the linear response of the electrons to the
applied potential, while the slope in the limitC→0 will be
determined by the quadratic response, and so on.

Such an analysis has already been done by Gillan23 with
the Kohn-Sham functional and Smargiassi and Madden2 us-
ing Ta , and a graph with their results together with those for
the Tab functionals is presented in Fig. 2. The calculations
were performed at the experimental lattice parameter~Table
II !. It was found that great care was necessary to ensure that

all the components of the energies were being calculated to
sufficient accuracy, as for smallC the differences being
taken were of large, very similar numbers. Whereas of the
linear response functionals, onlyT5/6 lies along the Kohn-
Sham curve, indicating that for this system it has captured
the correct higher-order behavior as well as the built-in linear
response behavior, the others start with the correctC50
intercept ~as they should, by construction! but then move
away with the wrong slope. The quadratic response function-
als all lie along the Kohn-Sham results; they have both linear
and quadratic response behavior correctly built in, and they
also seem to be describing the higher orders well in this case.

C. Vacancy

A vacancy in an infinite fcc lattice can be approximated
by a periodically replicated fcc lattice with one atom re-
moved, provided that the simulation cell is large enough to
make vacancy-vacancy interactions negligible. We calculate
Evac, the energy of a cell having one less atom with the cell
volume reduced so as to maintain constant ionic density. The
~unrelaxed! vacancy formation energy is then

Ef
u5Evac2

N21

N
E, ~3.2!

whereE is the energy of the perfect crystal cell withN ions.
As shown in Table II, for eacha, the unrelaxed vacancy
formation energy for a 32-atom fcc cell has improved on
addition of the quadratic response correction, and moved to-
wards the Kohn-Sham values, which are for a 27-atom fcc
cell. For T5/6 5/9 we achieve almost respectable agreement.
Ef
u for the same functional applied to a 108-atom fcc cell

only changes by 0.03 eV, showing that our results are not
much affected by the presence of periodic images of the
vacancy.

We can repeat the perturbation analysis, this time for the
vacancy formation. TakingE(C) as defined in Sec. III B,
andEvac(C) to be the corresponding energy for the vacancy
system having one less atom with the cell volume reduced so
as to maintain constant ionic density, we can calculate

Ef
u~C!5Evac~C!2

N21

N
E~C!. ~3.3!

In Fig. 3, we plotP f
u5Ef

u(C)2Ef
u(r0 ,C)/C

2 againstC.
This elucidates the benefits of the quadratic response term.

TABLE II. Calculated physical properties of Al compared with experimental results.alat : lattice param-
eter~Å!. B: bulk modulus~Mbar!. Ef

u : formation energy of the ideal vacancy~eV!. Ef
r : formation energy of

the relaxed vacancy~eV!. K-S and experimental data from Refs. 23–26. ForT5/6 5/9 results are available on
32- and 108-~lower! atom cells.

T1 T5/6 T1/2 T11 T5/6 1 T5/6 5/9 T1/2 5/9 K-S Expt.

alat 4.059 4.038 3.964 4.038 4.033 4.027 4.023 4.022 4.043
B 0.70 0.72 0.69 0.70 0.69 0.67 0.66 0.79 0.74
Ef
u 1.63 1.38 0.21 1.14 1.02 H0.400.37

0.26 0.64

Ef
r 0.94 0.83 H0.310.29

0.56 0.66

FIG. 2. Electronic energy per atom for the Al crystal vs scaling
parameterC. K-S results are for a 27-atom cell@after Gillan ~Ref.
23!#.
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Again, all the functionals exhibit the correctC→0 limit, but
for this system the limiting slope asC→0 is incorrect for
each of the linear responseTa functionals. This is clearly
improved in all theTab functionals.

It is interesting to consider the influence of the quadratic
response kernel at yet higher orders, by looking at the cur-
vature moving away fromC50. Forb51 there should be
no higher-order contributions from this term, and indeed the
curves forTa and Ta1 move in parallel once beyond the
initial change in slope. Withb55/9 higher-order contribu-
tions are expected, andT5/6 5/9 does curve differently from
T5/6. In this case, the contributions appear to be such as lead
to an improvement in the vacancy formation energy. As seen
in Sec. III B, there does seem to be a trend in that the func-
tional forms that smoothly combine the linear/quadratic re-
sponse with the Thomas-Fermi limiting form do best in ap-
proximating higher orders of response behavior.

For three of our functionals we found the vacancy relax-
ation energyEr—the energy released when the ions are al-
lowed to relax to their equilibrium positions using a steepest-
descent algorithm. The relaxed vacancy formation energy is
then

Ef
r5Ef

u2Er . ~3.4!

The results are displayed in Table II. The lowering in energy
in each case is comparable to that witnessed in the Kohn-
Sham calculations. Although the inclusion of the second-
order response terms has greatly improved the predicted va-
cancy properties, none of the functionals quite achieves the
level of agreement with experiment found in the Kohn-Sham
calculations.23

Figure 4 shows the change in the distance of the ions from
the vacancy after relaxation from their perfect lattice sites.
This is for the 108-1 atom system with theT5/6 5/9 functional.
As the distances of the lattice sites from the vacancy ap-
proach half the cell length, the amount of relaxation goes to
zero, due to the balancing influence of periodic images of the
vacancy. The oscillations in the relaxation are due to Friedel
oscillations in the screened ion-ion potential. On the figure,

the behavior of the present calculation is compared to some
other ab initio results. Full Kohn-Sham calculations have
been performed by Benedeket al.36 ~for a 32-atom system!
and Mehl and Klein37 ~for 27!, using different nonlocal
pseudopotentials. These results agree well with ours for the
near-neighbor displacements. The calculation of Caroet al.21

is the only other calculation to use 108 sites. It employs an
approximate Kohn-Sham–based scheme:35 the valence elec-
trons are treated as being tightly bound to the ions, with the
orbitals centered on the ions and restricted in extent, and the
assumption is made that the electron density only deviates
linearly from the superposition of the atomic electron densi-
ties. Although they, too, see oscillations, the positioning and
extent of these are rather different from ours.

IV. MOLECULAR DYNAMICS—CALCULATION OF
PHONON FREQUENCIES

Car-Parrinello molecular-dynamics simulations were per-
formed on a 32-atom periodic fcc lattice, at the experimental
density and a temperature of 75 K. The computation time
required per step was 6.7 s on a Silicon Graphics Indigo2

~R8000! workstation. ForT11, a 108-atom lattice was also
simulated. Each step took 23.3 s and so we have achieved
nearly linear scaling of computational effort with system
size.~This is spoiled only by the evaluation of the electron-
ion interactions and the collection of the correlation func-
tions, operations that scale asV2.) A time step of 0.3 fs was
used in both calculations—considerably larger than that nor-
mally used in K-S Car-Parrinello molecular dynamics. This
is due to the ‘‘conditioning’’ of the algorithm that was ap-
plied exactly as described elsewhere,1 even though a differ-
ent density-functional is in use. The electronic degrees of
freedom were conditioned to oscillate in the vicinity of
2600 ps21.1 Unlike normal K-Sab initioMD simulations of
metals, no recourse to thermostatting was required.8,38

Phonon frequencies were obtained from the spectra of the
correlation functions of the longitudinal and transverse ion
currents

FIG. 3. Formation energy of the Al vacancy as a function of the
pseudopotential scaling parameterC. A 32-atom cell was used,
except for the K-S results,23 which were obtained using a 27-atom
cell.

FIG. 4. The ionic relaxation away from the vacancy site versus
initial distance from the site. The current results~open circles! are
compared with those from several orbital-based calculations: open
triangles, Ref. 21; filled triangles, Ref. 36; filled diamonds, Ref. 37.
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CL~k,t !5K S (
j51

N

2 ik•vj~ t !e2 ik•r j ~ t !D S (
l51

N

ik•vl~ t !eik•r
l ~ t !D L , ~4.1!

CT~k,t !5K S (
j51

N

2 ik3vj~ t !e2 ik•r j ~ t !D S (
l51

N

ik3vl~ t !eik•r
l ~ t !D L , ~4.2!

wherer j andvj are the position and velocity of ionj . The
phonon dispersion curves are shown in Fig. 5. Kohn-Sham
results are available for the zone center and boundary23 for
the same pseudopotential, and agreement with these is excel-
lent for all of the quadratic response functionals. The results
are substantially better than those for the linear response
functionals, which were all too low by about the same
amount, as represented on the figure by theT1 curves. All of
the simulation results fall below the experimental curves;39

this failing can be attributed to inadequacies in the Goodwin
pseudopotential, which they all use. TheT11 simulation on
the 108-atom lattice allowed some of the intervening points
on its dispersion curve to be filled in.

V. DISCUSSION

The orbital-free functionals incorporating the correct lin-
ear response that have hitherto been used forab initio mo-
lecular dynamics have permitted an electronic calculation
that scales withV, but have not achieved the accuracy of the
more usual Kohn-Sham methods. Following the work of
Wang and Teter, we have developed a family of functionals
that include the correct quadratic response, and have demon-
strated in the case of aluminium that, while retaining the
desired scaling characteristics, they give results much closer
to, and in some instances matching, those from Kohn-Sham
calculations. We have also shown that these functionals can
be used successfully for molecular dynamics.

Theoretical questions remain. How best to selecta and
b, and hence the specific functional form, has not been re-
solved. It seems thatT5/6 5/9, the choice Wang and Teter
made in the first place, tends to give better results. Is there a

fundamental reason for the superiority of the Thomas-
Fermi–like expressions obtained witha55/6 andb55/9?
Are there ways of including the second-order gradient expan-
sion other than choosinga51/2, which gives poorer results
than 5/6, or using Wang’s and Teter’s unsatisfyinglyad hoc
method, which they claim leads to improved results?

The present usefulness of the orbital-free functionals is
restricted by the lack of good local pseudopotentials to rep-
resent the ions. Much of the effort in developing pseudopo-
tentials has gone into nonlocal pseudopotentials that depend
on orbital angular momentum, for which we have no repre-
sentation in the present orbital-free technique. In the short
term, progress can be made by investigating new local
pseudopotentials, but the long-term usefulness of what is
otherwise a very promising approach can only be assured by
finding ways to include aspects of nonlocality into the
orbital-free formalism. Attempts to do this are being made,
for instance by Wang40 and Kanhere and co-workers.41

For those atoms~Na, Al, Ge, . . . ) forwhich reasonable
local pseudopotentials are available, we are now in a position
to be able to perform large-scale simulations of systems of
hundreds and even~with the help of parallelization! thou-
sands of atoms over periods of many tens of picoseconds, to
an accuracy approaching that of standardab initio simula-
tions. Various applications are underway.
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APPENDIX A

In this appendix we collect a number of the functions used
in the separable representation of the second-order integral
kernel. A Fourier transform from real to reciprocal space is
denotedF and its inverseF 21 andq5g/kF .

The following functions were introduced by Wang and
Teter in their separable representation@Eq. ~2.12!#:

G~q1 ,q2 ,q3!52
13

540
2

1

120H q1
4

q2
2q3

2 1
q2
4

q3
2q1

2 1
q3
4

q1
2q2

22
q2
2

q1
2

2
q1
2

q2
2 2

q2
2

q3
2 2

q3
2

q2
2 2

q1
2

q3
2 2

q3
2

q1
2 J , ~A1!

FIG. 5. Phonon dispersion curves for Al at 75 K, as calculated
using orbital-freeab initio molecular dynamics~crosses!. Experi-
mental data~lines! from Ref. 39; K-S values~squares! from Ref. 24.
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f 1~q!

55
0.4q2

11S q

2.33D
10, q<1.95

0.06

~q21.835!0.75
10.05~k21.8!e22.5~q22!11, q>1.95,

~A2!

f 2~q!5
1

2
1
q224

8q
lnU22q

21qU, ~A3!

f 3~q!55
2

1

81
q220.002q4

11S q

1.955D
28 , q<1.84

20.055e24.2~q21.84!, q>1.84,

~A4!

f 4~q!5H 1, q<2

e23~q22!, q>2,
~A5!

f 5~q!5H 0.02e230~q22.15!2, q<2.15

0.02e21.8~q22.15!2, q>2.15,
~A6!

f 6~q!520.017e2~q23!2, ~A7!

and

f 7~q!55
0, q<0.7

q21.95

1.25
11, 0.7<q<1.95

e22~q21.95!, q>1.95.

~A8!

The following definitions are exploited in Eq.~2.13!:

F1~r !5F 21@rg
~b! f 1~q!#, F2~r !5F 21@rg

~b! f 1~q!q4#,

F3~r !5F 21@rg
~b! f 1~q!/q2#, F4~r !5F 21@rg

~b! f 1~q!q2#,

F5~r !5F 21@rg
~b! f 2~q! f 3~q!#, F6~r !5F 21@rg

~b! f 2~q!#,

F7~r !5F 21@rg
~b! f 5~q!#, F8~r !5F 21@rg

~b! f 4~q!#,

F9~r !5F 21@rg
~b! f 6~q!#, F10~r !5F 21@rg

~b! f 7~q!#,

and

F11~r !5F 21@rg
~b!Ka

D~g!#.

The following definitions are exploited in Eq.~2.14!:

G1~g!5F @F1~r !
2#, G2~g!5F @F2~r !F3~r !#,

G3~g!5F @F3~r !
2#, G4~g!5F @F4~r !F3~r !#,

G5~g!5F @F4~r !F1~r !#, G6~g!5F @F3~r !F1~r !#,

G7~g!5F @F5~r !F6~r !#, G8~g!5F @F6~r !
2#,

G9~g!5F @F7~r !F8~r !#, G10~g!5F @F8~r !
2#,

G11~g!5F @F9~r !F10~r !#, G12~g!5F @F10~r !
2#,

G13~g!5F @F11~r !Drb~r !#,

and

G14~g!5F @$Drb~r !%2#.
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