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Further orbital-free kinetic-energy functionals for ab initio molecular dynamics
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A recently introduced scheme fab initio molecular-dynamics with an orbital-free density functiofiztys.
Rev. B49, 5220(1994)] is extended so that the kinetic-energy functional guarantees correct results at third
order of perturbation theory. The new density functional gives improved accuracy, yielding good agreement
with well-converged Kohn-Sham results for many properties of metals such as aluminum. This molecular-
dynamics scheme retains many of the advantages of the old: it is very fast, exhibits close to linear scaling with
system size, and may be readily “conditioned” to maximize the molecular-dynamics time step.

I. INTRODUCTION von Weizsaker (vW) functional**3

In recent work the possibility has been demonstrated 1 o2 1. L )
basing an accuratab initio molecular-dynamics(MD) vazif drp'?v2p Igf dr[Vp|*p. (1.2)
method on an “orbital-free” formulation of density-
functional theory(DFT). The obvious advantage of this for- These terms are modified to guarantee that they give the
mulation over the normal Car-Parrinello methddwhere a  correct response behavior for perturbations about the uni-
Kohn-Sham(K-S),® orbital-based representation of DFT is form gas limit, as suggested by Pefroand Wang and
used, is that the electronic part of the calculation scales linTeter!® The response functionals of the noninteracting elec-
early with system sizdi.e., it is an “orderN” method).  tron system are known exactlyand they may be embedded
Several other, less obvious advantages have also begito the kinetic-energy functional, as originally indicated by
uncovered. The algorithm may be straightforwardly Hohenberg and Kohtf A full discussion of the nature of
“conditioned”* so that the MD time step is optimized and these functionals and the different ways in which the embed-
independent of system siZEhis means that the method is ding may be attempted is given in Ref. 2. Finally, we note
order N in practice as well as in principle. The method is that Alavi and co-worker€ have proposed an orbital-free
most advantageous for metals, where it has proven poSsibléunctional on a quite different basis that is more general than
to construct an orbital-free representation with the accuracyur approach but is less convenient computationally.
of Kohn-Sham theory. For metals the conditioned algorithm |n the work done to datt? the correctlinear response
gives adiabatic dynamics, unlike the Kohn-Sham-basedas included. For sodium, with a local pseudopotefftial
method.”® Furthermore, since wave functions are not usedknown from K-S calculations to give good agreement with
Brillouin-zone sampling is not required to calculate metallicexperiment, this linear response functional was shown to re-
properties accurately. The power of the method has beeproduce accurately a wide variety of static and dynamic ex-
demonstrated in calculations on metallic liqdidsnd on  perimental data, including the vacancy formation energy of
point defect formation free-energi€%:! the solid, inelastic neutron scattering data on the liquid, etc.
The principle problem in finding an accurate orbital-free Results for aluminium were also discusgetiis is known to
density functional is to represent the kinetic-energy funce a more difficult case, since effective pair potentials, based
tional of a noninteracting electron g&st® It is worth noting  on linear response theory, do not correctly reproduce experi-
that crude approximations are useless: the virial theorermental properties such as the vacancy formation erférgy.
shows that the kinetic energy of the electrons is comparablgor aluminium a comparison with fully converged K-S
to their total energy. The K-S representation is, in principle calculations>?with a particular local pseudopotentfdlon
exact, but in the plane-wave-based methods of most interest variety of crystal structures and solid-state properties was
in simulation® it gives technical problems for the simplest made and also with experimefit?® It was shown that the
metals, where extensive Brillouin-zone sampling is requirecbrbital-free code gave accurately the energies of crystals with
to represent the Fermi sphere. For these systems it has begigh coordination numberéfcc, bece, etd. and good results
shown that orbital-free functionals that incorporate severafor their phonon dispersion curves. However, for more open
exact limiting forms provide extreme accuracy. The uniformstructures(diamond, vacancy lattice, etcerrors in the en-
gas limit is represented by the Thomas-FelifiF) func-  ergy of order 0.2 eV per atom were found. An analysis of the
tional, role of different orders of perturbation theory was under-
taken, following an idea of GillaA® It was shown that while
B B 503 the beyond-linear response characteristics of the functional
T=Tre= Ckf drp>(r), (1.1 agreed with those of K-S calculations when evaluated for the
high coordination structures, for the open structures errors at
(wherep is the electron densitywhile the strong potentials the third order of perturbation theory became appateat,
limit (strictly, the larges=|Vp|/p*?® limit) is given by the at the level of second-order response of the dendityvas
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concluded that an extended functional, into which the correct To some extent, these objections may be met by different

second-orderesponse function was embedded, might makechoices ofa, as can be seen by looking at the reciprocal
an accurate represention of materials such as aluminum pospace expressions for the general functional:

sible.

This paper describes further work to develop such a func- 3k§ se 56 . L 1o
tional for use inab initio MD and to evaluate the functional Ta[P]:QE 10—2/§Pg )P(—g)+ EP(g )QZP(—g)
both for its accuracy, in representing materials such as alu- g Po
minium, and for its computational performance with respect 1 1
to other methods. A valuable background to this develop- T o2, 2@ D P(ga) ( )p(_“g
ment was provided by the paper of Wang and T&tevho “Po Xold
have already proposed a second-order response functional k;Z:
and shown how it may be rendered into a computationally - Wp;%(_“g
tractable form. This functional was used only in the context @ Po
of energy calculations; forces were not discussed. We show 1
that the scheme results in an ordérMD method, which - Wpé“)gzp(_%], (2.3
may be conditioned in the same way as with the linear re- 8a’py
sponse functional. where, for instancepgl/z) denotes thgth Fourier component

of p2)(r).
Il. DEVELOPMENT OF THE FUNCTIONAL For the choice ofx=5/6, due to Wang and Tetét the

first and fourth terms can be combined ¥ could be
incorporated within the double integral. In this sense, the
linear response term grows naturally out of the Thomas-
Fermi functional. Perrot has pointed ua potentially im-
Ta[p]:TT_F[p]JrTVw[p]Jrf drf dr'Ap@ portant consequence of this choice for the way this func-
Q tional behaves in the limit of low density.e., the “atomic”
limit where the degree of ionization of a collection of atoms
is low). The double integral in Eq(2.1) will diverge as
po— 0 if @>5/6, leading to an infinite atomic kinetic en-
ergy, and ifa<<5/6 the double integral will disappear, so that
the linear response correction will be lost.
Similarly, T,/, has a von Weiszker-like double integral.
In this case the second and fifth terms exactly cancel, imply-
ing thatT,,y is already contained within thg, * term. Fur-
1/XO_ 1/XVW_ 1/XT-F h f h f th
- T (2.2  thermore, for the g—0 components of the sum,
2a°Qpg Xo 2(g)— — 1/3po(k2+g?/12), canceling the fourth term
: . . . . and leaving thegth Fourier component of 119y, that is,
Xo IS the linear response fL_Jnctlon of _the nomnte(r:z(afctlng ho-the gradient correction td .. Thus, Ty, correctly yields
mogeneouszelectron_ gas, i.e., the_ Lindhard functicand gradient-corrected Thomas-Eermi result
XT'F? Spolk5 (kg is the Fermi wave vgctmr aqd Trel pol+ L/9T,y in the lowg limit.
Xww=4po/g” are the response functions associated with the * Ag ingicated previously, the beyond-linear response char-
Thomas-Fegm| and von Weizsker kinetic-energy acteristics of these functionals are already important for alu-
functionals’ , , minimum. Our strategy in this work is to generalize the func-
The b1a53!c strategy, as clearly seen in the=1  ionais to embedecondorder response exactly and then we
functional; is to add a quadratic term in the density fluc- e that the beyond second-order behavior is sufficiently

tuations[which contains the linear responéRefs. 18 and \ye|| captured by some way of combining the limiting forms.
28)] to T1.+ T,w minustheir quadratic parts. The limiting

behaviors are therefore built in. Away from these limits, the
functional can be criticized on two grounds. Firstly, the
beyond-linear response is not correct. This is particularly To quadratic order in the Fourier components of the per-
true at lowg where it is known that the correct nonlinear turbing potentiaM(g), the induced charge densityp, in a
behavior is given by the gradient-corrected Thomas-Fermioninteracting electron gas is given by

result Tr.d po] + 1/9T,\ .12 On the other hand, at high,

In the work to daté;? correctlinear response has been
embedded and the resulting functionals are of the form

X (K (r=r")Ap'(r"), (2.1

where Ap®(r)=p*(r)—p§, with p, the uniform density,
and() is the volume of the periodically repeated simulation
cell. The response kernd, is most readily expressed in
reciprocal space,

Ka(9)=

A. Introducing the correct quadratic response

T1.e+ Tyw Should give the nonlinear response quite well.  Apg=xo(9)V(9)

Secondly, adding the different terms in this way means that 1

thgy continue to contrlbutg in domains V\(herg they are inap- + WZ > 8g,+g,-d (01,02, 9 V(G V(Qy),
plicable. For examplel,y gives theexactkinetic energy for Foa @&

a one-electron ground statebut, if Eq. (2.1) is used for the (2.4

hydrogen atom, the other two terms will not disappear, and

they give spurious contributions to the kinetic energy. Ideallywhere é, is the Kronecker delta. A complete and accurate
the limiting forms would be combined in a more subtle wayderivation of1(g;,9,,9), appears in Refs. 29 and 30. If
so that this did not happen. 01+0>,=0s, thenl is given by



21,2
7Kg

6919293

—03x0(93)}-
Otherwise it is given by

1(91,92,93)=— 191x0(91) +92x0(92)

(2.9

1(91,92,93) =U(0;,02) + U(d1,03) + U(,93), (2.6)

andg; +g,+0;=0. If ¢ is the angle betweeg, andg, and
gi=gi ke, then forq3— 4sirf¢=0,

1
U(Ql-gz)ZW—e

| 2+0;
(Asc00+ ) In 5=

+0;

2
+(g,cos9+qq)In 7=,

+ Vo= asi?o

4co+q10,— 2\/q5— 4sirfo
4o+ qy0,+ 202~ 4sirfo

and for g3 — 4sirf¢<0,

XIn

] , (2.7)

U B 1 | 2+0Q,
(01,92)= 4q,0,5%0 (q,c089+q)In 7—

| 2+Q,
+(q,cos9+q;)In 7=a,

—2\/4sirtg— q%{ h(q,0,+4co9) 7

. —2\/4sirF0—q§ T
+tan W —3[ (2.8
where
1 whenx=0
h(0 = 0 whenx<0. 2.9

[The expression differs from that given in Ref. 16 in the
appearance of factors af/3 in Eq.(2.8). These arise from a
proper account of poles that occur in the derivatiorJof
Wang and Tetéf assert that “although the formula falls
into two regions with different forms, there is no discontinu-

ity at the boundary. There is no physical significance for thef

boundary of the two regions.” This perhaps needs close
attention. As Lloyd and Shdfl note, there is indeed math-
ematicalsignificance to the boundary between the two func
tional forms forU(g, ,0,), with a discontinuity of the deriva-
tive occurring along here, as well as whexe=2kg . This is
reminiscent of the discontinuity that occurs jy(g) at
2kg, although inU(g;,9,) the limiting slope differs from
each side of the discontinuity. This might be thought signifi-
cant since the analogous discontinuitygp(g) is often re-
garded as the origin of Friedel oscillatioffsyhich certainly
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wise no crucial physical role for the discontinuities in
U(g;,9,), because soon we will be obliged to adopt a sim-
plified representation of this function in which it is not pos-
sible to incorporate discontinuities depending on
Q35— 4sirf6=0.

Following Wang and Tetel§ but with greater generality,
we construct a kinetic-energy functional of the form

Tolo1=Tol+ | [ | ap®rap®ieap”

X (ra)Kap(|ri—rol,[ry—rg)dr drodrs.
(2.10

(Wang and Teter looked at the particular cabggsq.)
K. can be obtained by forming the Euler-Lagrange equa-
tion from Eq.(2.10,'? converting this to reciprocal space,
substituting in Eq(2.4) and extracting the term that is qua-
dratic inV(g). The resulting expression is

|

—3a%(a=1)Qp

2

ke ke
+ Tgli+ 93+ 03]

18

1

Ka ; , = —3 .5 34-1
5(01,92,93) ,33921)(3)'8 T

2a—1
0

X[Ka(gl)+Ka(92)+ Ka(gS)]

k? 1(91,92,93) }
277° x0(91) x0(92) X0(93) |
(2.11

The selection of3 remains to be made. It could be treated
as a fitting parameter, but the restriction to values that are in
some sense “natural” is preferred, as was done withrhe
simplest possibility is8= 1, which will not contribute to the
higher-than-quadratic response behavior of the electrons.
Then there is Wang and Teter's choice of 5/9. In this case
the quadratic response term contains the density in the same
fashion as it appears in the Thomas-Fermi term, which is

(5/9) (5/9) (5/9) L .
o, Pg, Py, Og+g,+0 when cast within a triple

reciprocal-space sum. By the following argumésimilar to
that for the linear response casi can be demonstrated that
unctionals with3=5/9 are superior in situations of low av-
rage density. Wang and Teter note that the von Wekera
unctional accounts for the quadratic response behavior of
the electrons at short wavelengths, which gives further con-
firmation that the von Weisz&er functional is the correct
form in the limit of rapid spatial variations for perturbations
of any magnitude. This means that th&+ g5+ g3 term in

K.p is canceled by(al(gl)xal(gz)xél(gs)l(91,92,93) as
d1.92,93—>. We have already seen the behavior of
K(gj) in this limit. On its appearance withil g it is
dressed in a coefficient that leaves it Wittﬁ»g:\‘“3 dependence

have physically significant consequences for effectivdrrespective ofe. The same is true of the other term remain-

potentials®® However, it has been demonstratethat these
oscillations are reproduced with a fit jg(g) that does not

ing in K,g, so that for low average densities the overall

behavior of T, goes aspg® *#, which is eliminated by

contain the discontinuity, i.e., they are a consequence of thi&king 8="5/9.

function’s shape rather than of the discontinuity itself. For

our purposessee beloy, it is important that there is like-

We have investigated an extended family of such func-
tionals:Tq1, Tss 1, Ts/6 59, @aNdT 5 519. The results will be
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discussed below. The functional that Wang and Fétested B. Recovering linear scaling

in detail was different again, comprisinigs 5o plus an ex- As it stands, the amount of computation required for
pression which built in the second-order gradient expansion-aﬁ[p] scales as the square of the system size; even after
term at lowg. Ty, 59 @lso has this property, up to second taking advantage of the translational invariance of
order in the density. As the next term in the gradient eXpanK ,,(r,—r,,r;—rs) there remains a double integral over the
sion is fourth order in the gradient of the densiy,it is  spatial coordinate to be performed. A functional with linear
beyond the scope of these functionals, which only directlyscaling may be salvaged from this by replacing
include the third order in density. Wang and Teter state thakK ,4(g;,9,,93), by a separable function, that is, a sum of
adding the gradient expansion brought some improvementrms having the fornt,(g;)f,(9,)f.(93), which give a
over T s9alone, but they did not specify the extent of this good fit toK,z, and then exploiting the convolution theo-
improvement. Their work involved energy minimization cal- rem. Wang and Tet&} devised a separable fit fdfs 5o,
culations; they did not perform molecular-dynamics withand asK,z(91,92,93) —Ksss 5d91,92,93) is already in
their functional. separable form, the generalizationKq, is straightforward:

. —kE
Ki'fﬂ(gl,gz,gs)= Bsgz—pgﬁ—l{r((h:Q2:Q3)f1(Q1)f1(QZ)f1(Q3)+fz(Q1)f2(QZ)f2(%)“3(‘11)+ f3(d2) +f3(ds)]

+14(02)f4(03) F5(q1) + F4(a3) F4(d1) Fs(d2) + F4(a1) F4(d2) F5(a3) + Fe(dr) F7(a2) F7(a3)

+16(02)F7(a3) f7(a1) + Fe(ds) F7(01) F7(d2) + AK,(91) + AK 4 (92) + AK ,(93)}, (2.12

where q=g/kr, AK,(g)=a?Qp2* /182(6a—5)K,(g)  formation, this expression can be calculated in a time pro-
[based on the difference betwekn(g) andKsg(g)], and  portional to Q) log€). The calculation of the energy func-
where Wang and Teter’s fitting functiords and f,_,; are  tional requires 12 Fourier transforms.
given in the Appendix.T,g[p] can then be expressed in  We have examined the agreement betweer, and
terms of Fourier transformé&lenoted7, and.7 ! for the Kfciytﬁ by looking at each function using computer programs
inverse transformbetween real and reciprocal space: for three-dimensional visualization. The results are excellent,
in view of the complexity of the function, with relative errors
K2 of less than 1% almost everywhere. We have also compared
Taglp]=Talp]— 3+tHf {—ZF.(r)3— AF,(r)F4(r)2  third order energies obtained from the fitted function for cer-
Bpo Q tain input densities with those obtained from the exact ex-
pression. Here, agreement was better than 0.5% even when

+35F a(NF3()F1(r) +3F5(r)Fe(r)? the input density was that for the ground state of a metallic
liquid. These comparisons are discussed in more detail
+3F7(r)Fg(r)?+3Fq(r)Fo(r)? elsewheré® They give us confidence that the errors intro-
duced with the fitted kernel are insignificant.
+3F12(N{ApP(r)}2}dr, (2.13 To perform ab initio molecular dynamics and efficient
energy minimizations, we also requir&T,;—T,)/dpg.
where, if pgﬁ)z,ﬂAp(ﬁ)(r)], then F,(r)  With the help of the chain rule, this can be expressed as

=7 p{Pt1(g)], and the remaining auxiliary functions FABP X )T Y 8(T 05— To) 8pP1}. Functional differ-
are given in the Appendix. With the aid of fast Fourier trans-entiation gives

ATap=Ta) _ —kE |f1<q>{ s 1 q* 1
= — —¥G1(9)— —G2(9)— 5 G3(9) + G4(9) — —Gs5(9) +9°G
PR BT 20| ¢ 1(9)~ 26209~ 5 C3(9)+Cu(@) = 2Gs(9) +a°Ce(9)

+3f,(q)[2G7(9) + f3(0) Gg(9) ]+ 6 4(q)Go(9) +3f5(0) G1¢(9) +6f7(q)G11(9)

+3f6(0)G12(9) +6G15(9) + 34K ,(9)G14(9) (2.14
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where Gl(g)z,,f/f[Fl(r)Z], and the remaining functions TABLE |. The energies per atom, in electron volts, for various
G,_ 14 are specified in the Appendix. So, with an additional crystal structures calculated with differenf ; functionals are com-
16 Fourier transforms we acquire the electronic forces aared with the orbital-based results of Robertsoral. (Ref. 22,
well, and the calculation of these over aliscales almost denoted K-S.

linearly.
L Tsis 1 Tsiesie Tiz s K-S
IIll. TOTAL-ENERGY RESULTS ON ALUMINUM fee -58.32 5833 -5834  -5834  -58.31
bcc -58.25 -58.26 -58.25 -58.26 -58.24
Since aluminum exposed the limitations of the linear re-vL -58.01 -58.05 -58.16 -58.19 -58.10
sponse functionalsthis was where we began our evaluation s¢ -57.98 -58.01 -58.04 -58.06 -57.91
of the new functionals. As with the earlier work, we have p -57.10 -57.27 -57.40 -57.47 -57.42

used the local pseudopotential of Goodvehal,?* which

has been fourfd?* to give a reasonable representation of

aluminum in Kohn-Sham calculations. Furthermore, Roberty, ;t the introduction of the quadratic response term corrects
sonet al™ have produced a database of total energies fOf,is Also in the orbital-based calculatioris,, is closer to
different aluminum structures using the Goodwin potentlal,Eb than to E... Having 8=1 fails to achieve this, but

CcC sc* 1

S0 lthat this pl?tenti_al S‘ ?nzexcellent test beg. ¢ 4380 B=5/9 is successful. A good treatment of the vacancy lattice
Vr'] our: WO: » as In Rel. 2, an energy C?toh 0 Iaroun energy is of particular interest because it is related to the
ev in the plane-wave representation o t. € eectrons WaRalculation of the experimentally observable vacancy forma-
required to yield convergence of the energies in the calculaﬁon energy, an issue we will address below. The best be-

tions. The high_ cutoff, relative to that which mig_ht b_e used inhaved of the quadratic response functionals appears from
a K-S calculation with the same pseudopotential, is becaus.[eﬁese calculations to BBgg 5o

this is the cutoff on theadensity expansion(i.e., twice the
normal wave-function cutoff Also, working with a very-
well-converged density simplifies the evaluation of the gra- B. Properties of the fcc crystal

dient of the density. One problem we found in dealing with R S
. L For the equilibrium crystal structure, which is the fcc lat-
those terms in the forcé8.14) which involve the transforms .. A :
tice, we performed energy minimization calculations for a

O.f products of real-sga(;e _funstlons is the generation of Spur'ange of slightly different densities and fit a parabola to the
rious forces due to “aliasing” of the Fourier transforrifs.

This problem is eliminated by “padding” the transforms, resulting E(Q2). From this we could ascertain the equilib-

. ) . rium unit-cell length aj, and the bulk modulus
i.e., by extending the range of the functions to be trans =Q(d2E/dQZ)|Q:aﬁﬂ. This was done folfy;, Tes 1, and

formed from reciprocal to real space with zeroes to eliminat _ _
spurious Fourier components. Ts6 50, @nd the results are shown in Table 11, together with

values from experimerif;? from the T, calculations’ and
_ _ from K-S calculations of Gilla® The values for, were in
A. Energies of various crystal structures excellent agreement with the Kohn-Sham and experimental
We performed energy minimization calculations using theresults, and were an improvement over those from the linear
second-order response functionals, for five of the structurekgsponse functionals. The bulk modulus was unchanged for
studied by Robertsoret al?>—face-centered cubidfcc), a=1, but deteriorated slightly on addition of quadratic re-
body-centered cubi¢bcc), simple cubic(sc), a “vacancy  sponse whemx=5/6.
lattice” (VL), which is an fcc lattice with one atom in the
unit cube removed, and diamond)—with the nearest-
neighbor distance being 2.85 A in each case. Convergence of
the steepest descent proved more difffuior some of the
crystal structures whea=5/6 than for 1, and most difficult
for 1/2, but this was simply overcome by taking a smaller
steepest-descent step. It seems probable that this is associ-
ated with the symmetry of the effective response about the
uniform density limit.T,, is more symmetrical than the func-

X (=516

& o~ -8 0=5/6, B=1
tionals with fractional powers of the density fluctuations and T | O O0=S6B=SH
may behave better under the conditioning. Table | shows the ) B
resulting energies per atofin eV), as well as those of Ref. -585 ‘

22. Figure 1 collects 2 and T,p results fora=1, 2, and sl Fresl

1, respectively, each in comparison with the orbital-based
calculations.

It can be seen that, in most cases, adding the quadratic
response term substantially improves agreement with the
orbital-based calculationéin the few instances where this is
not so, for instance the simple cubic energy whken 5/6, FIG. 1. Energies of various aluminum crystal structures, for
the worsening is only slight.For the orbital-based calcula- T, (dotted line$, T, (dashed lings and orbital-basethick lines
tions, Ey <Eg.. UsingT,; andTs, the ordering is switched, functionals.
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TABLE Il. Calculated physical properties of Al compared with experimental resailfs. lattice param-
eter(A). B: bulk modulus(Mbar). E{ : formation energy of the ideal vacan¢gV). E{ : formation energy of
the relaxed vacancfeV). K-S and experimental data from Refs. 23—26. Fgg 5 results are available on
32- and 108<{lower) atom cells.

Tl T5/6 T1/2 Tll T5/6 1 T5/6 5/9 Tl/Z 5/9 K-S EXpt
At 4059 4038 3964 4038  4.033 4.027 4.023 4.022  4.043
B 0.70 0.72 0.69 0.70 0.69 0.67 0.66 0.79 0.74
EY 1.63 1.38 0.21 1.14 1.02 (040  0.26 0.64
[0.37
E! 0.94 0.83  (0.31 0.56 0.66
[0.29

Gillan?® suggested a useful way of exploring the contri-all the components of the energies were being calculated to
butions of different orders of response theory to the totabkufficient accuracy, as for smal the differences being
energy. The ionic pseudopotentM(g) is scaled by a con- taken were of large, very similar numbers. Whereas of the
stant C for all g, and calculations of the total energy, linear response functionals, onllg lies along the Kohn-
E(C), are made for various choices Gfbetween 0 and 1. It Sham curve, indicating that for this system it has captured
is then possible to look at the perturbation behavior of thehe correct higher-order behavior as well as the built-in linear
valence electron cloud for various orders\of We can write  response behavior, the others start with the cor@etO

intercept (as they should, by constructiptut then move
E(C)=E@+CEW+C?E@P+C3E®+.... (3.1  away with the wrong slope. The quadratic response function-
als all lie along the Kohn-Sham results; they have both linear
and quadratic response behavior correctly built in, and they
also seem to be describing the higher orders well in this case.

The energy of the same ionic arrangement but with a uni
form electron cloudg, (C)=E®+CE®, so thatII(C)
=[E(C)—E,,(C)/NC*]=E®+CE®+.. ., and a plot of
IT(C) versusC will give a curve whoseC =0 intercept will C. Vacancy
be determined by the linear response of the electrons to the
applied potential, while the slope in the lim@t—0 will be
determined by the quadratic response, and so on.
Such an analysis has already been done by Gilesith

A vacancy in an infinite fcc lattice can be approximated
by a periodically replicated fcc lattice with one atom re-
moved, provided that the simulation cell is large enough to
the Kohn-Sham functional and Smargiassi and Madda make vacancy-vacancy interactions negligible. We calculate

ing T, and a graph with their results together with those forEvac the energy of a cell haylng one less atom with the cell
the T, functionals is presented in Fig. 2. The calculationsV°|ume reduced so as to maintain constant ionic density. The

were performed at the experimental lattice param@fable  (Unrelaxed vacancy formation energy is then

II). It was found that great care was necessary to ensure that N—1
E{=Eyac— ——E, (3.2
1.9 T T % N
2.0 e =] P i ) .
21 p—-po=l, p=l P ] whereE is the energy of the perfect crystal cell withions.

As shown in Table Il, for eaclw, the unrelaxed vacancy
formation energy for a 32-atom fcc cell has improved on
addition of the quadratic response correction, and moved to-
wards the Kohn-Sham values, which are for a 27-atom fcc
cell. For T559 We achieve almost respectable agreement.

20 XX =516

o 2lr B --oo=5/6,p=1 A )

% 22) @_@Zﬂ,@ g=5/9 E{ for the same functional applied to a 108-atom fcc cell

g oot . only changes by 0.03 eV, showing that our results are not
2 much affected by the presence of periodic images of the
27 ‘ vacancy.
DE rrresn —1 We can repeat the perturbation analysis, this time for the
R e ] vacancy formation. Takindg(C) as defined in Sec. Il B,
= e ] andE,,{C) to be the corresponding energy for the vacancy
a5t system having one less atom with the cell volume reduced so
2 , , , ‘ as to maintain constant ionic density, we can calculate
o0 02 04 06 08 10

N—1
EY(C)=Eyad )~ —E(C). (33
FIG. 2. Electronic energy per atom for the Al crystal vs scaling
parametelC. K-S results are for a 27-atom cglfter Gillan(Ref.  In Fig. 3, we plotIl{=E{(C)—E{(po,C)/C? againstC.
23)]. This elucidates the benefits of the quadratic response term.
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_ ) FIG. 4. The ionic relaxation away from the vacancy site versus
FIG. 3. Formation energy of the Al vacancy as a function of thejnjtial distance from the site. The current resuiémen circley are
pseudopotential scaling parame®@r A 32-atom cell was used, compared with those from several orbital-based calculations: open

exlclept for the K-S result§, which were obtained using a 27-atom triangles, Ref. 21: filled triangles, Ref. 36; filled diamonds, Ref. 37.
cell.

Again, all the functionals exhibit the corre€t—0 limit, but the behavior of the present calculation is compared to some
for this system the limiting slope a8—0 is incorrect for other ab initio results. Full Kohn-Sham calculations have

each of the linear respongg, functionals. This is clearly been performed by Benedek al* (for a 32-atom systein
improved in all theT , ; functionals. and Mehl and Klei® (for 27), using different nonlocal

It is interesting to consider the influence of the quadraticPseudopotentials. These results agree well with ours for the
response kernel at yet higher orders, by looking at the curhear-neighbor displacements. The calculation of Garal **
vature moving away fron€C=0. For 8=1 there should be is the only other calculation to use 108 sites. It employs an
no higher-order contributions from this term, and indeed theapproximate Kohn-Sham-based schéfhtite valence elec-
curves forT, and T,; move in parallel once beyond the trons are treated as being tightly bound to the ions, with the
initial change in slope. WittB=5/9 higher-order contribu- Orbitals centered on the ions and restricted in extent, and the
tions are expected, aribls/ 5o does curve differently from assumption is made that the electron density only deviates
Tss6. In this case, the contributions appear to be such as ledinearly from the superposition of the atomic electron densi-
to an improvement in the vacancy formation energy. As seefies. Although they, too, see oscillations, the positioning and
in Sec. Il B, there does seem to be a trend in that the funcextent of these are rather different from ours.
tional forms that smoothly combine the linear/quadratic re-
sponse with the Thomas-Fermi limiting form do best in ap-
proximating higher orders of response behavior. IV. MOLECULAR DYNAMICS—CALCULATION OF

For three of our functionals we found the vacancy relax- PHONON FREQUENCIES
ation energyE,—the energy released when the ions are al- . . . .
lowed to relax to their equilibrium positions using a steepest- Car-Parrinello molecular-dynamics simulations were per-

descent algorithm. The relaxed vacancy formation energy iéorm(_ad on a 32-atom periodic fcc lattice, at the expe_rlme_ntal
then ensity and a temperature of 75 K. The computation time

required per step was 6.7 s on a Silicon Graphics Irfdigo
El=EV-E,. (3.4) (R800() workstation. ForT,;, a 108-atom lattice was also
simulated. Each step took 23.3 s and so we have achieved
The results are displayed in Table II. The lowering in energynearly linear scaling of computational effort with system
in each case is comparable to that witnessed in the Kohrsize.(This is spoiled only by the evaluation of the electron-
Sham calculations. Although the inclusion of the secondion interactions and the collection of the correlation func-
order response terms has greatly improved the predicted véions, operations that scale 82.) A time step of 0.3 fs was
cancy properties, none of the functionals quite achieves thased in both calculations—considerably larger than that nor-
level of agreement with experiment found in the Kohn-Shammally used in K-S Car-Parrinello molecular dynamics. This
calculations’® is due to the “conditioning” of the algorithm that was ap-
Figure 4 shows the change in the distance of the ions fronplied exactly as described elsewhéreven though a differ-
the vacancy after relaxation from their perfect lattice sitesent density-functional is in use. The electronic degrees of
This is for the 108-1 atom system with tiig 5i9functional.  freedom were conditioned to oscillate in the vicinity of
As the distances of the lattice sites from the vacancy ap2600 ps'.! Unlike normal K-Sab initio MD simulations of
proach half the cell length, the amount of relaxation goes tanetals, no recourse to thermostatting was requiréd.
zero, due to the balancing influence of periodic images of the Phonon frequencies were obtained from the spectra of the
vacancy. The oscillations in the relaxation are due to Friedetorrelation functions of the longitudinal and transverse ion
oscillations in the screened ion-ion potential. On the figurecurrents
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N
> ik-v'(t)eik‘rl(t)) > (4.2

=1

N
> —ik-vj(t)e‘ik"jm)
1

CL(k,t)=<

N N
CT(k,t)=< ( 21 —i|<><vj(t)ei“”“)(;l ikxv'(t)e”"r'“)> > (4.2

i=

wherer! andv! are the position and velocity of ion The  fundamental reason for the superiority of the Thomas-
phonon dispersion curves are shown in Fig. 5. Kohn-Shanfrermi-like expressions obtained with=5/6 and 8=5/9?
results are available for the zone center and boufddoy  Are there ways of including the second-order gradient expan-
the same pseudopotential, and agreement with these is excslon other than choosing=1/2, which gives poorer results
lent for all of the quadratic response functionals. The resultshan 5/6, or using Wang's and Teter's unsatisfyingtl/hoc
are substantially better than those for the linear responsmethod, which they claim leads to improved results?
functionals, which were all too low by about the same The present usefulness of the orbital-free functionals is
amount, as represented on the figure byTtheurves. All of  restricted by the lack of good local pseudopotentials to rep-
the simulation results fall below the experimental curtes; resent the ions. Much of the effort in developing pseudopo-
this failing can be attributed to inadequacies in the Goodwirtentials has gone into nonlocal pseudopotentials that depend
pseudopotential, which they all use. Tihig; simulation on  on orbital angular momentum, for which we have no repre-
the 108-atom lattice allowed some of the intervening pointsentation in the present orbital-free technique. In the short
on its dispersion curve to be filled in. term, progress can be made by investigating new local
pseudopotentials, but the long-term usefulness of what is
otherwise a very promising approach can only be assured by
V. DISCUSSION finding ways to include aspects of nonlocality into the
The orbital-free functionals incorporating the correct lin- Oroital-free formalism. Attempts to do this are being made,
ear response that have hitherto been usedafomitio mo-  foF instance by Wart) and Kanhere and co-workefs.
lecular dynamics have permitted an electronic calculation FOr those atoméNa, Al, Ge, . . .) forwhich reasonable
that scales witl2, but have not achieved the accuracy of thelocal pseudopotentials are avallable3 we are now in a position
more usual Kohn-Sham methods. Following the work ofto be able to perform large-scale S|mulat|on_s o_f systems of
Wang and Teter, we have developed a family of functionald!undreds and evetwith the help of parallelizationthou-

that include the correct quadratic response, and have demofi@nds of atoms over periods of many tens of picoseconds, to

strated in the case of aluminium that, while retaining the@" &ccuracy approaching that of standatinitio simula-
jons. Various applications are underway.

desired scaling characteristics, they give results much closd
to, and in some instances matching, those from Kohn-Sham
calculations. We have also shown that these functionals can
be used successfully for molecular dynamics.
Theoretical questions remain. How best to sekecand

B, and hence the specific functional form, has not been re- michael Foley is grateful to the Association of Common-
solved. It seems thafsss, the choice Wang and Teter ealth Universities for their financial assistance. This work
made in the first place, tends to give better results. Is there @gas sponsored by EPSR@K) through Grant No. GR/
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APPENDIX A
w00 | In this appendix we collect a number of the functions used
5 in the separable representation of the second-order integral
g kernel. A Fourier transform from real to reciprocal space is
denoted”7 and its inverseZ ! andgq=g/kg .
200 r ot % The following functions were introduced by Wang and
Teter in their separable representatj@y. (2.12)]:
_. :(x-:eriment
00 05 o 03 00 05 I(01.0p.0s) = 13 1 [ qi i qg " qg qg
PRSI 540 120 9305 g0 9igr o

using orbital-freeab initio molecular dynamicgcrosses Experi- 00— S-S S S =

mental datdlines) from Ref. 39; K-S valueg¢squaresfrom Ref. 24. d2 493 Q9> Q3 Qy

FIG. 5. Phonon dispersion curves for Al at 75 K, as calculated 2 2 2 2 2]
: (A1)
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f1(q) The following definitions are exploited in E¢2.13):
0.497 Fin =7 pf'f(@)], Fan)=7 [pd'f1(a)q’],
_ m) Fa(n=7"4pPf1(a)q?], Far)=7 {pPf1(a)q?],

0.06 7 —
G TaagoTt 0.08k-18e 244 B4l =195, Fs(n=7"p fa(@)fs(a)],  Fe(r)=7[pf2(a)],

(A2) Fo(n=7""pfts(@], Fa(=7 "[pffa(@)],
1 g°-4 |2—q
(@)=5+ g5 N5y (A3)  Fo(=7UpPte(@)], Fidr)=7 Lo fr(a)],
1 and
— 2=0%—0.0021*
81" f . q=184 Fuu(n=7""1pK5(9)].
fa(q)= 1+ %55) (A4) The following definitions are exploited in EQ.14):
—0.05% 424-184 =184, Gi(9)=7TF1(r)?], Ga(g)=FTFa(r)Fs(r)],
1 g=2 G3(Q)=7TFa(N?],  Ga(@)=7TFa(N)Fs(r)],
f4(q)=[e_3(q_2), =2, (A5) 3 3 4 4(r)k3
, Gs(9)=7TF4(r)F1(r)], Ge(g9)=7TFa(r)Fy(r)],
0.0 304-219°" <215
f5(q :I0.0k_l'&q_z'laz, q=2.15, (AG) G/(9)=7Fs(NFe(r)], Gg(g)=7TF¢(r)?],
fo(q)=—0.01% (@37 (A7) Go(9)=7F7(r)Fg(r)], Gio(@)=7IFs(r)?],
and Gu(9)=F[Fo(NF1o(r)], GiA@=TTF10(r)?],
0, g<0.7 Gia(9)=FTF11(r)ApP(r)],
—-1.95
fo(q)= q125 +1, 0.7<q=<1.95 (A8) and
e 24719 g=1.95. G14(9)=7T{ApP(N)}?].
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