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We present a theory of Coulomb blockade oscillations in tunneling through a pair of quantum dots connected
by a tunable tunneling junction. The positions and amplitudes of peaks in the linear conductance are directly
related, respectively, to the ground-state energy and to the dynamics of charge fluctuations. We study analyti-
cally both strong and weak interdot tunneling. As the tunneling decreases, the period of the peaks doubles, as
observed experimentally. In the strong tunneling limit, we predict a striking power-law temperature depen-
dence of the peak amplitudes.

The charge of an isolated conductor is quantized in units
of the elementary chargee. Surprisingly, even if the conduc-
tor is connected to a particle reservoir by a tunnel junction,
its charge can still be almost quantized at low temperatures,
a phenomenon known as the Coulomb blockade.1,2 The sim-
plest system which shows a Coulomb blockade consists of a
small metallic grain separated from a bulk lead by a thin
dielectric layer. An electron tunneling through the layer in-
evitably charges the grain, thus increasing its energy by
EC5e2/2C, whereC is the capacitance of the grain. At tem-
peraturesT!EC a negligible fraction of the electrons in the
lead have an energy of orderEC , and one might expect that
no tunneling into the grain is possible. More careful consid-
eration shows, however, that even atT50 the electrons can
tunnel to the virtual states in the grain, thus lowering the
ground-state energy of the system.3 Due to this virtual tun-
neling, the average charge of the grain is no longer quantized
and acquires a correction proportional to the conductance of
the barrier. Charge quantization is completely destroyed
when the conductance of the barrier approachese2/h.4–6Un-
fortunately a direct measurement of the equilibrium proper-
ties, such as the average grain charge, comprises a challeng-
ing, though not impossible,7 experiment.

Several recent experiments8–12have probed some equilib-
rium properties of a Coulomb blockade system by measuring
the tunneling conductance through a pair of coupled quan-
tum dots. Focusing on the experiment of Waughet al.,8 we
develop in this paper a quantitative theory of the linear con-
ductance in such a system; in particular, we predict the gate
voltage and temperature dependence of the conductance.

We will study the properties of a two-dot system which is
schematically shown in Fig. 1. The electrostatic energy of
this system is a quadratic form of three variables: the charges
of each dot,eN1 andeN2 , and the gate voltageVg . In the
general case, this energy can be written as

U~N1 ,N2!5EC~N11N222X!2

1ẼC@N12N21l~N11N2!2aX#2. ~1!

HereX is a dimensionless parameter proportional toVg , and
the constantsEC , ẼC , l, anda are determined by the ge-
ometry of the system.13 In Eq. ~1! we expressed the energy in
terms of the total number of particles in the two dots
N11N2 and the relative numberN12N2 . These variables
are convenient because the former is constant in the absence
of tunneling into the leads, and the latter describes charge
fluctuations between the dots. In this paper we will concen-
trate on the case of symmetric geometry of the system, cor-
responding tol5a50, which is apparently the case in the
experiment.8

We first discuss the location of the peaks in the conduc-
tanceG of the double-dot system. In the limit of very small
interdot conductance,G0!e2/h, the peaks inG occur when

FIG. 1. Schematic view of the double quantum dot system. The
dots are formed by applying negative voltage to the gates~shaded!;
the solid line shows the boundary of the 2D electron gas~2DEG!.
Vl and Vr create tunnel barriers between the dots and the leads
while V0 controls the transmission coefficient through the constric-
tion connecting the dots.
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the electrostatic energy is degenerate; that is, when
U(n11,n) equals eitherU(n,n) or U(n11,n11), wheren
is an arbitrary integer. As a result we find peaks at the fol-
lowing sequence of gate voltages:

X*5n1
1

2
6
1

4 S 12
ẼC

EC
D . ~2!

Weak electrostatic coupling between the dots corresponds to
EC2ẼC!EC . In this case the two peaks with the samen in
sequence ~2! merge. This limit is observed in the
experiment.8

If all the junctions shown in Fig. 1 have small conduc-
tances, then the charges of both grains are well defined. In
order to study the effect of quantum fluctuations on the
ground-state energy of the system, it is enough to increase
only the interdot conductanceG0 , keeping all other conduc-
tances small. Under these conditions, the sumN [N11N2
is constant and can still be treated as ac number, but
N12N2 starts to fluctuate. These fluctuations change the
ground-state energy, denotedEN , from the electrostatic es-
timate. The peaks inG now occur at gate voltagesX, where
EN (X)5EN 11(X). In order to findEN , one should con-
sider the quantum mechanical problem with the Hamiltonian,

H5H01HT1EC~N 22X!214ẼCS N̂12
N

2 D 2. ~3!

Here the termsH0 andHT describe, respectively, free elec-
trons in the dots and tunneling between the dots; we have
replacedN2 byN 2N1 , andN1 should be treated as a quan-
tum operatorN̂1 . Typically the size of the dots exceeds the
effective Bohr radius (;100 Å for GaAs!, and therefore the
level spacing for electrons in the dots is much smaller than
the charging energy. We will neglect the level spacing and
assume acontinuousspectrum inH0 , in contrast to Refs. 14
and 15. In the continuous model, the noninteracting part of
the Hamiltonian,H01HT , does not depend on the total
number of particlesN .

In the Hamiltonian~3! the parameterN is an integer.
However, formally we can consider Eq.~3! at anyN , en-
abling us to relate the ground-state energyEN to the average
value N̄1(N ) of the first dot’s charge:

]EN
]N

52EC~N 22X!24ẼCF N̄1~N !2
N

2 G . ~4!

The condition for the peak position,EN 112EN 50, can
now be obtained by integration of Eq.~4!. The result is

X*5
N

2
1
1

4
2
ẼC

EC
E
N

N 11F N̄1~N 8!2
N 8

2 GdN 8, ~5!

where nowN is an integer again. In the limitG0→0, the
averageN̄1(N 8) is the integer closest toN 8/2, and taking
N 52n andN 52n11 in Eq. ~5! reproduces Eq.~2!. The
advantage of Eq.~5! is that it is valid at anyG0 . However, to
make use of it, one has to evaluateN̄1(N ) at anyN , which
is a challenging quantum mechanical problem because of the
Coulomb interaction in Eq.~3!. Fortunately, in the limit of a
continuous spectrum, the Hamiltonian~3! coincides with the
one for a single dot connected by a tunnel junction to a

massive lead. The latter problem has been extensively stud-
ied in the limits of weak and strong tunneling into the
dot.3–6,16

For weak tunneling,G0!e2/\, the deviation ofN̄1(N )
from an integer is small and can be found3 from second-
order perturbation theory inHT . For N in the interval
(2n21,2n11), we get

N̄1~N !5n1
\G0

2pe2
ln
N 22n11

2n112N
. ~6!

Substituting Eq.~6! into Eq. ~5! and using the periodicity of
N̄1(N ), we find peak positions shifted by tunneling:

X6* .n1
1

2
6
1

4 F12
ẼC

EC
S 12

4 ln2

p

\G0

e2 D G . ~7!

The splitting of the two peaks with the samen grows linearly
with G0 . The splitting here results from quantum charge
fluctuations between the dots, not changes in geometric ca-
pacitances.

Clearly, the charge fluctuations grow withG0 . In the limit
of strong tunneling the discreteness of chargeN1 is no longer
important,4–6 and N̄1(N )→ 1

2N @see Eq.~3!#. As a result
the peaks are equidistant,X*5(2N 11)/4, which is ex-
pected because in this limit the two dots form a single con-
ductor. The doubling of the period of the peaks from this
regime to that of Eq.~2! is one of the main observations of
the experiment of Waughet al.8

To find the peak positions as the system approaches the
strong-tunneling limit, one has to specify a model of the
junction between the dots. For electrostatically controlled
dots in semiconductor heterostructures, the junction is
known to be a microconstriction with smooth boundaries.17

The number of transverse modes in the constriction can be
readily controlled;17 when the constriction is nearly open,
transport proceeds by the single lowest transverse mode. The
ground-state energy near the strong-tunneling limit, when the
reflection coefficient for the single propagating mode is
smallR512p\G0 /e

2!1, was found in Ref. 5@Eq. ~48!#.
Using that result, we get

X*.
2N 11

4
1~21!N

4eC

p3

ẼC

EC
R ln

1

R
, ~8!

whereC'0.5772 is Euler’s constant.
Figure 2 compares our results~7! and ~8! to the observa-

tions of Waughet al.8 Because the different gates are not
independent, the relation between the gate voltageV0 at
which the interdot conductance is measured and theV0 at
which the splitting is measured is not known. We take this
relation to be a rigid shift8 and have used the data of Ref. 8
with a shift of20.005 V. The agreement between theory and
experiment is very good indeed.

As we have seen, thepositionsof peaks in the linear
conductance carry information only about the ground-state
energy of the two-dot system. To study the excitations, one
can analyze theheights and shapesof the peaks. If the inter-
dot tunneling is weak,G0!e2/\, the excitation spectrum
consists of two independent quasiparticle spectra of the two
dots. This enables us to apply the standard master-equation
technique1 and find
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G5
GlGr

Gl1Gr

6b~X6* 2X!

e6b~X6
* 2X!21

1

e7b~X6
* 2X!12

, ~9!

whereb54EC /T andX6* is a value in the sequence~7!. In
deriving Eq.~9! we assumed that the tunneling into the leads
is much weaker than between the dots,Gl;Gr!G0 , and
that the temperature is sufficiently low for the width of a
peak (;T/EC) to be much smaller than the spacing between
the peaks. For small interdot capacitance (EC'ẼC), the lat-
ter constraint impliesT!(\G0 /e

2)EC . Equation ~9! is
slightly different from the single-dot result18 in which the 2
in the last factor is a 1. This difference results from the
degeneracy of the states with a charge on the left or right dot
in the symmetric double-dot case, and causes the split peaks
to be skewed towards each other.

In contrast to weak tunneling, atG0;e2/\ the excitation
spectra of the two dots are not independent. In this regime an
electron tunneling into the left dot shakes up the quantum
state of the whole two-dot system, leading to a suppression
of the conductance at low temperature. To illustrate this phe-
nomenon, we calculate the temperature dependence of the
peak heights in the case of perfect interdot transmission,
G05e2/p\.

As we have seen, the conductance peaks in the strong-
tunneling limit are equally spaced, as if the double-dot sys-
tem were a single dot. In fact, this remains true even for
asymmetric double dots@l,aÞ0 in Eq. ~1!#, because when
R→0 the energy is simply given by the first term in Eq.~1!.
However, the specific geometry of the system— whether it is
one or two dots, and the degree of asymmetry—will show up
in the peak heights. Unlike in a single dot, the single-mode
constriction impedes charge propagation between the two
dots, thus producing effects similar to those for a single junc-
tion coupled to an environment.1 When an electron tunnels
from the left lead into the left dot, a new value of the uni-
form potential within the dot is established almost instanta-
neously. However, in order to minimize the electrostatic en-
ergy after this shakeup, the other electrons in both dots must
redistribute: a charge of (11l)/2 electrons must pass

through the constriction. As a result, the overlap of the two
ground states, before and after the tunneling, vanishes, as in
Anderson’s orthogonality catastrophe.

At nonzero temperature, the tunneling density of states is
suppressed asTg, where the exponent is related19 to the scat-
tering phase shiftsdm in each one-dimensional channelm by
g5(m(dm /p)

2. According to the Friedel sum rule,dm /p is
the average charge transferred into each channel. A single-
mode constriction provides two channels for each dot~two
spins!, yielding four channels in total. In our case,
dm /p56(11l)/4, where the plus~minus! sign is for the
channels in the right~left! dot. Thus, the rate of tunneling
into the left dot is suppressed by the factorT(11l)2/4. For the
rate between the right dot and lead, one should replacel by
2l. Because the junctions are connected in series, the
smaller of the two rates determines the conductance,

G5GbS T

ẼC
D g

FgS 4EC~X2X* !

T D , g5
~11ulu!2

4
.

~10!

Here the coefficientGb is of orderGl;Gr , and the peaks
are centered atX*5(2N 11)/4. For a symmetric system,
l50, the peak conductance obeysG}T1/4. The temperature
dependence in Eq.~10! can be obtained analytically20 in the
spirit of the bosonization approach;5,19 this technique also
yields for the peak shapes

Fg~x!5
1

cosh~x/2!

UGS 11
g

2
1

ix

2p D U2
G~21g!

. ~11!

At g50 the shape given by Eq.~11! is identical to that for
weak tunneling Eq.~9!: in both cases there is no charge
transfer between the dots during the act of tunneling, and the
spectra of the two dots are decoupled.

Comparing our results in the weak- and strong-tunneling
limits @Eqs. ~9! and ~10!#, we see that whenG0 grows the
conductance of the systemdecreasesdue to the orthogonality
catastrophe. For intermediate interdot conductances, the sys-
tem must cross over from temperature independent peak
heights for weak tunneling to the power-law suppression for
strong tunneling. The theory of this crossover will be re-
ported elsewhere.20

We have seen that atG05e2/p\ an asymmetry of capaci-
tances,lÞ0, affects only the temperature dependence of the
peak heights~10!. In this limit, the peaks are equidistant and
have the same height. We will now show that for weak tun-
neling even a small asymmetry dramatically affects the
whole pattern of peaks. Below we study the asymmetry re-
lated to a small nonzeroa in the electrostatic energy~1!; the
results are easily generalized to include a smalll by replac-
ing a→a12l. Motivated by experiment,8 we will assume
EC5ẼC .

First, let us determine the positions of the peaks in con-
ductance. The condition for a peak is the degeneracy of the
energy~1! with respect to adding an electron to either of the
dots; this yields the two sequences of peaks,

X1*5
n11/2

12a/2
, X2*5

n11/2

11a/2
. ~12!

FIG. 2. The normalized splitting of the Coulomb blockade peaks
as a function of the interdot conductance. Our theoretical results
~dashed lines! are in good agreement with the experiment of Ref. 8
@3, 1 for data of their Figs. 3~a! amd 3~b!, respectively#. The
splitting is normalized by the period of the peaks in the strong-
tunneling limit. A small asymmetry,a50.05, has been included
based on the experimental parameters.
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Sincea!1, the two periods are very close, and one observes
beats with an approximate superperiod ofa21.

The asymmetry lifts the degeneracy of the two states
with an extra electron on either the left or right dot.
The energy gap between these two states isD(X)
54ẼCuaX2(N12N2)u with N1 andN2 for the lowest en-
ergy configuration atX. If the temperature is much lower
thanD, tunneling between two real states is suppressed. In-
stead, an extra electron in the left dot can escape into the
right lead through a virtual state in the right dot. Because we
assume that the level spacing is small compared to tempera-
ture, the dominant escape mechanism isinelastic
cotunneling,21 i.e., an extra electron-hole pair is created in
the right dot. The total rate21 of such processes is propor-
tional to (T/D)2 and limits the conductance at sufficiently
low temperatures. The calculation of peaks in conductance20

leads to

G}F T

D~X!G
2

F2S 4EC~X2X* !

T D . ~13!

Here the peak positionsX* are defined by Eq.~12!. The

oscillations of the energy gapD(X) modulate the peak
heights with the perioda21 in gate voltageX.

In conclusion, the fluctuation of electron charge between
two quantum dots strongly affects tunneling through such a
structure. First, the conductance peaks are split because of
the lowering of theground-state energyby charge fluctua-
tions. This splitting, and eventual halving of the period of the
conductance peaks as the interdot conductance grows, is a
dramatic feature of the experimental data8 which is fully con-
firmed in our theory. Second, the temperature dependence of
the peak height and shape is directly related to thedynamics
of the quantum charge fluctuations. For a double dot con-
nected by a reflectionless constriction, this produces a strik-
ing fractional power-law temperature dependence. Our
theory is valid for a wide range of temperatures, limited only
by the charging energy from above, and by the discrete en-
ergy level spacing from below.

Note added in proof. After submission of this paper, we
received a manuscript from J. M. Golden and B. F. Halperin
which treats the splitting of the conductance peaks in a simi-
lar way.
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