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Tunneling spectroscopy of quantum charge fluctuations in the Coulomb blockade
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We present a theory of Coulomb blockade oscillations in tunneling through a pair of quantum dots connected
by a tunable tunneling junction. The positions and amplitudes of peaks in the linear conductance are directly
related, respectively, to the ground-state energy and to the dynamics of charge fluctuations. We study analyti-
cally both strong and weak interdot tunneling. As the tunneling decreases, the period of the peaks doubles, as
observed experimentally. In the strong tunneling limit, we predict a striking power-law temperature depen-
dence of the peak amplitudes.

The charge of an isolated conductor is quantized in units U(N;,Ny)=Ec(N;+N,—2X)2

of the elementary charge Surprisingly, even if the conduc- -

tor is connected to a particle reservoir by a tunnel junction, +EC[N1 =N+ X(Ny+Np) —aX]? (1)

its charge can still be almost quantized at low temperatures, ) i ) i

a phenomenon known as the Coulomb blockk&Ehe sim- HereX is a dimensionless parameter propo_rtlonaﬂ/gq and

plest system which shows a Coulomb blockade consists of 1€ constant&c, Ec, A, anda are determined by the ge-

small metallic grain separated from a bulk lead by a thinPmetry Off ”;]e systelrfﬁln qu.(l)fvve ex.plressgd t?]e energ)ém

dielectric layer. An electron tunneling through the layer in-terms of the total number of particies in the two dots

evitably charges the grain, thus increasing its energy bQﬁNZ anq the relative numbdkll—_Nz. These_ variables

Ec=e2/2C, whereC is the capacitance of the grain. At tem- re convgme_nt because the former is constant |n.the absence
- . . of tunneling into the leads, and the latter describes charge

peraturesT <Ec a negligible fraction of the _electrons in the fluctuations between the dots. In this paper we will concen-

lead have an energy of ordeg, and one might expect that ya1e on the case of symmetric geometry of the system, cor-

no tunneling into the grain is possible. More careful Cons'd'responding to\= =0, which is apparently the case in the

eration shows, however, that evenTat O the electrons can experiment

tunnel to the virtual states in the grain, thus lowering the e first discuss the location of the peaks in the conduc-

ground-state energy of the systérbue to this virtual tun-  tanceG of the double-dot system. In the limit of very small

neling, the average charge of the grain is no longer quantizeghterdot conductances,<e?/h, the peaks irG occur when
and acquires a correction proportional to the conductance of

the barrier. Charge quantization is completely destroyed

when the conductance of the barrier approaeiés.*~° Un- g ; ;
fortunately a direct measurement of the equilibrium proper- Y w Vo W v
ties, such as the average grain charge, comprises a challeng-
ing, though not impossibléexperiment.

Several recent experimefitd? have probed some equilib-
rium properties of a Coulomb blockade system by measuring
the tunneling conductance through a pair of coupled quan-
tum dots. Focusing on the experiment of Waegtal.,® we Vi W V. m AL
develop in this paper a quantitative theory of the linear con-
ductance in such a system; in particular, we predict the gate
voltage and temperature dependence of the conductance. i, 1. schematic view of the double quantum dot system. The

We will study the properties of a two-dot system which is gots are formed by applying negative voltage to the géthadedt
schematically shown in Fig. 1. The electrostatic energy Ofne solid line shows the boundary of the 2D electron (REG).
this system is a quadratic form of three variables: the chargeg, and Vv, create tunnel barriers between the dots and the leads
of each doteN; andeN,, and the gate voltag€,. In the  while V, controls the transmission coefficient through the constric-
general case, this energy can be written as tion connecting the dots.

2DEG dot dot 2DEG
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the electrostatic energy is degenerate; that is, whemassive lead. The latter problem has been extensively stud-
U(n+1,n) equals eithetd(n,n) orU(n+1,n+1), wheren ied in the limits of weak and strong tunneling into the
is an arbitrary integer. As a result we find peaks at the fol-dot3-516 B
lowing sequence of gate voltages: For weak tunnelingGo,<e?/#, the deviation ofN;(./")
~ from an integer is small and can be fodndom second-
*=n+%i%(1—?). (2  Order perturbation theory ifiiy. For./"in the interval
C

(2n—1,2n+1), we get
Weak electrostatic coupling between the dots corresponds to
Ec—Ec<Ec. In this case the two peaks with the samin
sequence (2) merge. This limit is observed in the
experiment Substituting Eq(6) into Eq.(5) and using the periodicity of

If all the junctions shown in Fig. 1 have small conduc- N;(./"), we find peak positions shifted by tunneling:

tances, then the charges of both grains are well defined. In
order to study the effect of quantum fluctuations on the
ground-state energy of the system, it is enough to increase

only the interdot conductand®,, keeping all other conduc- . ) _
tances small. Under these conditions, the suff=N;+ N, The splitting of the two peaks with the samerows linearly

is constant and can still be treated ascanumber, but With Go. The splitting here results from quantum charge
N,—N, starts to fluctuate. These fluctuations change thdluctuations between the dots, not changes in geometric ca-
ground-state energy, denot&d, -, from the electrostatic es- Pacitances. . . -
timate. The peaks ifs now occur at gate voltageé, where Clearly, the c'harge ﬂu'ctua'uons grow wn}b.'ln the limit

E ,(X)=E_,-4(X). In order to findE ,, one should con- pf strong tunneling the dlscrete_ness of chaxgds no longer
sider the quantum mechanical problem with the Hamiltonianimportant}™® and N(./ ) — 3/~ [see Eq.(3)]. As a result

the peaks are equidistanX* =(2./+1)/4, which is ex-
pected because in this limit the two dots form a single con-
ductor. The doubling of the period of the peaks from this

. ) regime to that of Eq(2) is one of the main observations of
Here the termdd, andH describe, respectively, free elec- the experiment of Waught al®

trons in the dots and tunneling between the dots; we have Tq find the peak positions as the system approaches the
replacedN by./"—N;, andN; should be treated as a quan- strong-tunneling limit, one has to specify a model of the
tum operatomN,; . Typically the size of the dots exceeds the junction between the dots. For electrostatically controlled
effective Bohr radius {100 A for GaA$, and therefore the dots in semiconductor heterostructures, the junction is
level spacing for electrons in the dots is much smaller tharknown to be a microconstriction with smooth boundafies.
the charging energy. We will neglect the level spacing andrhe number of transverse modes in the constriction can be
assume @ontinuousspectrum irH,, in contrast to Refs. 14  readily controlledt’ when the constriction is nearly open,
and 15. In the continuous model, the noninteracting part ofransport proceeds by the single lowest transverse mode. The
the Hamiltonian,Ho+H+, does not depend on the total ground-state energy near the strong-tunneling limit, when the

ﬁ GQ l/] — 2n+1

Ni(/)=n+ 5ol In2th 1—7

6

N
i=ntrg

1__ 1 2

= @

Ec[ 424G,
m e

~ ~ /[/ 2
H=Ho+Hr+Ec() — 2X)2+4Ec( Ny — 7) )

number of particles/".

In the Hamiltonian(3) the parameter/” is an integer.
However, formally we can consider E(B) at any./", en-
abling us to relate the ground-state enelgy- to the average
valueN,(./") of the first dot’s charge:

JE ;-
oN”

. [- VG
= 2E( S —2X)— 4B Ny (1) — 7} L@

The condition for the peak positiork ,.;—E ,=0, can
now be obtained by integration of E@G}). The result is

X* ="t Ny( ") =

A1 Iécf,/#l 4 c
2 4 Ec 70

A

where now./"is an integer again. In the limiG,—0, the
averageN; (/") is the integer closest to/"/2, and taking
'=2n and./"=2n+1 in Eq. (5) reproduces Eq2). The
advantage of Eq5) is that it is valid at anyG,. However, to
make use of it, one has to evaludtg(./) at any./", which

reflection coefficient for the single propagating mode is
small.2=1— w1 Gy/e?*<1, was found in Ref. $Eq. (48)].
Using that result, we get

,4e“Ec 1

2.17+1 2 g

2 (-1 = Ec

whereC~0.5772 is Euler’s constant.

Figure 2 compares our resultd) and(8) to the observa-
tions of Waughet al® Because the different gates are not
independent, the relation between the gate voltsgeat
which the interdot conductance is measured and\tpet
which the splitting is measured is not known. We take this
relation to be a rigid shiftand have used the data of Ref. 8
with a shift of —0.005 V. The agreement between theory and
experiment is very good indeed.

As we have seen, thpositionsof peaks in the linear
conductance carry information only about the ground-state
energy of the two-dot system. To study the excitations, one
can analyze thbeights and shapes the peaks. If the inter-

is a challenging quantum mechanical problem because of thdot tunneling is weakGy<e?/#, the excitation spectrum

Coulomb interaction in Eq.3). Fortunately, in the limit of a
continuous spectrum, the Hamiltonié8) coincides with the

consists of two independent quasiparticle spectra of the two
dots. This enables us to apply the standard master-equation

one for a single dot connected by a tunnel junction to aechniqué and find
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ground states, before and after the tunneling, vanishes, as in
Anderson’s orthogonality catastrophe.

At nonzero temperature, the tunneling density of states is
suppressed dB”, where the exponent is relatédo the scat-
tering phase shift$,, in each one-dimensional chanmelby
y=3m(8m/m)?. According to the Friedel sum rulé,,/ is
+ x the average charge transferred into each channel. A single-
mode constriction provides two channels for each (@eb
,,,,,,, sping, vyielding four channels in total. In our case,

L Ol == (1+\)/4, where the plugminug sign is for the
0.0 0.2 0.4 0.6 0.8 1.0 channels in the rightleft) dot. Thus, the rate of tunneling
Go/(2e?/h) into the left dot is suppressed by the factét™4. For the

rate between the right dot and lead, one should replabg
FIG. 2. The normalized splitting of the Coulomb blockade peaks_ )  Because the junctions are connected in series, the

as a function of the interdot conductance. Our theoretical res”“%maller of the two rates determines the conductance
(dashed linesare in good agreement with the experiment of Ref. 8 '
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[X, + for data of their Figs. @ amd 3b), respectively. The T\ AE(X—X*) (1+|7\|)2
splitting is normalized by the period of the peaks in the strong-  G=G, ~_) E s 2 . y=—
tunneling limit. A small asymmetryq=0.05, has been included Ec 7 T 4

based on the experimental parameters. (10

N Here the coefficienGy is of orderG,~G,, and the peaks
G GG, *B(XL—X) 1 9 & centered aX* =(2./ '+ 1)/4. For a symmetric system,
G+ G, @B -X)_1 @7 BXE-X) 4 o’ A =0, the peak conductance obegs: T** The temperature
dependence in Eq10) can be obtained analyticaffjin the
where3=4E./T andX* is a value in the sequenc®@). In  spirit of the bosonization approach? this technique also
deriving Eq.(9) we assumed that the tunneling into the leadsyields for the peak shapes
is much weaker than between the dd&~G,<G,, and
that the temperature is sufficiently low for the width of a
peak (~T/E¢) to be much smaller than the spacing between
the peaks. For small interdot capacitanEg £ E_), the lat-
ter constraint impliesT<(AG,/e?)Ec. Equation (9) is ) o ]
slightly different from the single-dot restfitin which the 2 At ¥=0 the shape given by E@1) is identical to that for
in the last factor is a 1. This difference results from theWeak tunneling Eq(9): in both cases there is no charge
degeneracy of the states with a charge on the left or right ddfansfer between the dots during the act of tunneling, and the
in the symmetric double-dot case, and causes the split peaRectra of the two dots are decoupled. _
to be skewed towards each other. Comparing our results in the weak- and strong-tunneling

In contrast to weak tunneling, &~ e%/% the excitation  limits [Egs. (9) and (10)], we see that whei®, grows the
spectra of the two dots are not independent. In this regime afonductance of the systedecreaseslue to the orthogonality
electron tunneling into the left dot shakes up the quamum:atastrophe. For intermediate interdot conductances, the sys-
state of the whole two-dot system, leading to a suppressioffM must cross over from temperature independent peak
of the conductance at low temperature. To illustrate this phebeights for weak tunneling to the power-law suppression for
nomenon, we calculate the temperature dependence of ti§&ong tunneling. The theory of this crossover will be re-
peak heights in the case of perfect interdot transmissiorPorted elsewher .
Go=¢€? nth. We have seen that &,=e?/ 74 an asymmetry of capaci-

As we have seen, the conductance peaks in the strong@ncesi # 0, affects only the temperature dependence of the
tunneling limit are equally spaced, as if the double-dot sysPeak height$10). In this limit, the peaks are equidistant and
tem were a single dot. In fact, this remains true even fohave the same height. We will now show that for weak tun-
asymmetric double dof&\,a+0 in Eq.(1)], because when neling even a small asymmetry dramatically affects the
7—0 the energy is simply given by the first term in ). whole pattern of peaks. _Below we study _the asymmetry re-
However, the specific geometry of the system— whether it idated to a small nonzera in the electrostatic energit); the
one or two dots, and the degree of asymmetry—uwill show ugesults are easily generalized to include a smaly replac-
in the peak heights. Unlike in a single dot, the single-moddnd @— a+2\. Motivated by experimerftwe will assume
constriction impedes charge propagation between the twbc=Ec.
dots, thus producing effects similar to those for a single junc- First, let us determine the positions of the peaks in con-
tion coupled to an environmehiwWhen an electron tunnels ductance. The condition for a peak is the degeneracy of the
from the left lead into the left dot, a new value of the uni- energy(1) with respect to adding an electron to either of the
form potential within the dot is established almost instanta-dots; this yields the two sequences of peaks,
neously. However, in order to minimize the electrostatic en-
ergy after this shakeup, the other electrons in both dots must X* = n+1/2 X* = n+1/2
redistribute: a charge of (&\)/2 electrons must pass 1 1—al2 2 1+al2

: 2
y X

_J’__
Hota,

coshx/2) I'2+v)

r

F(x)= (11)

(12
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Sincea<1, the two periods are very close, and one observesscillations of the energy gap(X) modulate the peak
beats with an approximate superperiodaof?. heights with the periodr! in gate voltageX.

The asymmetry lifts the degeneracy of the two states In conclusion, the fluctuation of electron charge between
with an extra electron on either the left or right dot. two quantum dots strongly affects tunneling through such a
The energy gap between these two states Ai6X) structure. First, the conductance peaks are split because of
—4E|aX—(N;—Ny)| with N; and N, for the lowest en- the lowering of theground-state energpy charge fluctua-
ergy configuration aX. If the temperature is much lower tions. This splitting, and eventual halving of the period of the
thanA, tunneling between two real states is suppressed. Irconductance peaks as the interdot conductance grows, is a
stead, an extra electron in the left dot can escape into th ramatic feature of the experimental dathich is fully con-

right lead through a virtual state in the right dot. Because we rmed in our theory. Second, the temperature dependence of

Do he peak height and shape is directly related todyx@amics
assume that the level spacing is small compared {0 tempergs e quantum charge fluctuations. For a double dot con-
ture, the dominant escape mechanism iselastic

o1 o . hected by a reflectionless constriction, this produces a strik-
cotur_mehngz, i.e., an extra electron-hole pair is .created iNing fractional power-law temperature dependence. Our
the right dot. The total rafé of such processes is propor- theory is valid for a wide range of temperatures, limited only
tional to (T/A)“ and limits the _Conductance_ at sufficiently py the charging energy from above, and by the discrete en-
low temperatures. The calculation of peaks in conductnce ergy level spacing from below.

leads to Note added in proofAfter submission of this paper, we
received a manuscript from J. M. Golden and B. F. Halperin
which treats the splitting of the conductance peaks in a simi-

Gor lar way.

A(X) T (13

T r (4EC(X—X*))
2 .
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