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The Green’s-theorem integral equation formulation is employed to study numerically the coupling into
surface plasmon polaritons by illuminating a finite metal grating with a Gaussian beam from the vacuum
half-space above the metal surface. A flat surface impedance boundary condition is used to simplify the
scattering integral equations. The grating coupler period is chosen so that the first diffracted order excites a
surface plasmon polariton and the zeroth diffracted order is the only radiating order. In particular, the surface
magnetic field and the angular distribution of scattered intensity are calculated. These functions provide in turn
the total intensity of the radiation scattered into the vacuum and the total power flow carried by the surface
plasmon polariton, from which the energy balance is monitored. In this way, the zeroth order and coupling
efficiencies are studied as functions of the angle of incidély@nd the grating coupler height, with the aim
of analyzing the influence of the length of the illuminated coupler. Our results show that, when the illuminated
coupler length is decreased, the photon-surface plasmon polariton coupling resonance broadens as a function of
both 6, ands;, and that larger values &f, are required to optimize this coupling resonance. In addition, the
coupling geometry is exploited to obtain the reflection and transmission coefficients, and the intensity of the
scattered volume waves, of a surface plasmon polariton thus excited that impinges on another finite metal
grating, called a grating scatterer. Two frequencies of the incoming surface plasmon polariton are considered
that lie very close to the lower band edge of the gap in the surface plasmon polariton dispersion relation for the
infinite grating scatterer. If the frequency is in the band, a strongly oscillating, resonant behavior of the
transmission coefficient as a function of the grating length is obtained. For a frequency in the gap, transmission
is negligible unless the grating is short enough that the surface plasmon polariton can tunnel through it.

I. INTRODUCTION 7-12, with special emphasis on the occurrence of both total
absorption of light and large surface electromagnetic field
The subject of diffraction of electromagnetic waves byenhancements, and their implications in surface-enhanced
gratings is a classical one. The existence of anomalies in th8aman spectroscopy and other nonlinear phenorhghén
spectral and angular dependence of the various diffracteparticular, the integral equation methods have been proven to
orders has attracted a great deal of attention ever since tt@ more appropriate for analyzing gratings with continuous
observation by Woddin 1902 of such anomalies fqr po-  Profiles, and capable of giving very accurate numerical re-
larization (magnetic field vector parallel to the grooves, TM Sults even for deep and inhomogeneous gratfigs.Up to
in experiments on shallow metal gratings. Lord Rayl&igh the present, most of the existing theoretical formulatlon_s
presented in 1907 the first theoretical treatment of thesfave. exploited the p;eudopgrlodlc!ty.of the electromagnetic
anomalies, which prompted a number of subsequent studi §Id inherently ass_ouated vylth the infinite exten.t.of the grat-
in the following decades based on the so-called Rayleigr!]ng._Non'ethe',-less, in many instances, the conditions of grat-
method. Among them, the work by Faheepresented an ing illumination and geometry make it necessary to develop

: o . a diffraction theory that deals with finite gratingsf., for
important step forward, for it first indicated the existence Ofexample Ref. 18 and references thereim addition, the

two types of anomalies. But it was not until the work by o qqibility of combining different gratings of finite length
Hessel and Olinet,by means of an idealized surface reac-jnq 4 single device, which might be of great interest in many
tance model of a planar periodic structure, that the$gpe  practical applications in diffractive and integrated optics,
anomalies were correctly understood. They distinguishedgq suggests the need of such theories.
Rayleigh anomalie$,occurring when one of the diffracted For that purpose, we have applied in this paper the rigor-
orders emerges from the grating at a grazing angle, frongus Green’s-theorem integral equation formulation, used in
those resonance anomalies appearing when an evanescente scattering of electromagnetic waves from rough metal or
der excites a surface plasmon polarit@PP supported by dielectric surface$’?3to determine the field scattered by a
the corrugated metal interface. one-dimensional metal surface consisting of two sections of
In recent years, a great variety of rigorous vector theoriesinusoidal gratings with different periods separated by a pla-
of gratings have been developed for either perfectly conductar section(a similar configuration has been treated by
ing or finite conductivity materialé&cf. Refs. 5 and § which  Saillard?® but the emphasis there was put on the qualitative
can be grouped into differential and integral methods. Sevaspects of SPP localization in random média Gaussian
eral works have been devoted to the anomalies originating ibeam impinges on one of the gratingsee Fig. 1, whose
the grating-induced coupling of light into a SRRefs. period is such that a forward propagating SPP is excited
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ings (groove depth to period ratios lower than 0wBe are

.0 interested in. However, if deeper gratings were to be studied,

’ ; one could either use 10¢aI*° and nonlocal’ impedance

vACUM boundary conditions at a curved surface, which are not re-
stricted to smooth corrugations, or leave the rigorous scatter-

X3 =H(%) /\ A~ /\ /\ /\ /\ LY ing integral equations unaltergdo that the formulation is

A\ A W A W \ ’ intrinsically exact.
coupler V \/ \/ The paper is organized as follows. In Sec. I, the configu-

scatterer ration studied in this work is defined, and the integral equa-
METAL tion formulation is described. In Sec. lll, we present the nu-
merical results for the coupling of a Gaussian beam into SPP
through a finite metal grating. The calculations for the scat-
tering of a SPP by a finite section of a grating under condi-
n%i:ens close to Bragg reflection are shown in Sec. IV. Finally,

FIG. 1. lllustration of the scattering geometry.

whereas only the zeroth order is diffracted into the vacuu v tains th lusi q f th its ob
above the metal surface. The SPP thus excited then imping aw?éd contains the conclusions drawn from the resuits ob-

on a second grating; as a result, it is partially reflected, par-
tially transmitted, and partially converted into volume waves

in the vacuum region. The period of the second grating is Il. FORMULATION OF THE PROBLEM
chosen so that the frequency of the incoming SPP lies in the
vicinity of the lower band edge of the gap in the SPP disper-
sion relation. In what follows, we will refer to the two grat-  Let us consider a one-dimensional rough interface
ings as coupler and scatterer, respectively. The numericalz={(X;) separating vacuunixz>{(x;)] from a metal
treatment of the formulation allows us to obtain the scatteredxz<{(x;)] characterized by an isotropic, frequency-
electromagnetic field throughout the entire space. In particudependent dielectric functiore(w). A monochromatic,
lar, we focus on the far-field radiated intensity and the surp-polarized electromagneti&EM) wave whose plane of inci-
face field. In addition, the energy carried by the SPP is als@ence is the;x; plane impinges on the surface. Under these
calculated, so that the energy balance is accurately deteconditions, the problem is fully described by means of the
mined. In this manner, we study the finite-scale effects in théransverse component of the magnetic fieli;(x;,X3),
coupling and scattering of SPP. First, as regards photon-SR#hose amplitude obeys the two-dimensional Helmholtz
coupling, the dependence of the diffracted and coupling efequation:

ficiencies on the angle of incidence and grating depth is ana-

lyzed for both an ideal lossless metal and for silver. Second, P ® w?
we are concerned with the behavior of the SPP reflection and (W T2
transmission coefficients, properly normalized for a lossless ! 3
metal, as a function of the number of grating scatterer peri-

A. Scattering equations

)H2>(X1,X3)=O, X3>{(Xy) (18

2 2 2
ods for frequencies both in the band and in the gap of the ‘9_+ ’9_+ w- H= -0 <
SPP band structure of the infinite grating. ox5  Ox5 8(0) 7z |H2 (X1.X35) =0, Xs={(x0).

It should be remarked that the motivation for this work, in (1b)
addition to its above-mentioned relevance in the diffractive ) o o
optics of metallic gratings, stems from the interest in thelhe superscripts- and< indicate inside vacuum and metal,
propagation properties of SBF? especially with regard to respectively. It has.been shown in Refs. 19—22 that this prob—
their scattering and localization on corrugated metal interlem can be cast into the form of four integral equations
faces(cf. Refs. 23 and 26—28Furthermore, much effort has through the use of Green'’s theorem. These integral equations
been concentrated on the experimental and theoretical invetelateHy (x1,x3) andH3 (x1,X;) to the magnetic field and
tigation of these problems in connection with the recent deits normal derivative evaluated at the interface, which in turn
velopment of near-field optical microscop¥.>30On the other ~ play the role of source functions. With the aid of the conti-
hand, the configurations studied here could be extended tauity conditions across the interface, and on using the inte-
address equivalent configurations for guided-wave polaritongral equations as extended boundary conditions, these source
in dielectric gratings, which are of significant importance infunctions can be obtained by numerically solving a set of
related applications such as couplers, filters, and distributedwo coupled integral equatiorisee Refs. 19 and 21How-
feedback lasers. ever, instead of proceeding in that manner, we further sim-
Finally, we would like to point out that a local impedance Plify the formulation by mapping the continuity conditions at
boundary condition on a planar surface has been used f§ie corrugated surfacg;={(x,) onto a local impedance
simplify the set of integral equations upon which the formu-boundary condition on the planar surfacg=0 as follows:
lation is based. In this manner, the electromagnetic field in-
side the metal is eliminated from the calculation, thus lead-J = _
ing to a considerable reduction of computation time in thea_x3H2 (X1,X3)
numerical simulations. Recently, Maraduifihas shown the
connection of such a surface impedance with the real surface
corrugation as an expansion in powers of the surface profile =-— E[—s(w)]‘1’2[1+s(xl)]H2>(x1,x3) ., (2
function, which is valid for the frequencies and shallow grat- x3=0

X3=0
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where s(x;) is the surface impedance. It has been demon- - = dq . _
strated by Maradudiff that the right-hand side of Eq2) HZ (X1,X3)= fﬁ 5 Ro(d @)exrdigx, +iag(q,w)xs],

corresponds to the zeroth- and first-order terms of an expan-
sion in powers of the surface profile functigfix,), so that

where
1- 1
S(X1)=—ﬂ—[1—d2(w)D2]1’2§(X1)+O(ZZ), 2 1/2
o) dle) e (72
3 c? ' c
whereD=d/dx;, andd(w)=c[—¢&(w)] YYw is the skin (G @)=1 , w?|1? w
depth. We will not discuss here the constraints on this con- na-— oz |Q|>E’ (7b)

nection between the real corrugatig(ix;) and the surface
impedances(x,) (cf. Ref. 39; for our purpose, it suffices to 54 the scattering amplitude is given in termsHgf,) by
know that boundary conditiorf2) describes the metallic
character of the interface for moderate corrugations and a
wide range of frequencies for which the optical skin depth 1 % ,
d(w) is small compared to the wavelength. We will refer Rp(q,0) = mJ dx;e '
hereafter to the surface impedance rather than to the surface otd. o
profile function. ®

With the help of Eq.(2) we restrict the analysis to the +i E[—S(w)]71’2[1+s(xl)]
magnetic field in the vacuum half-space, which can be
shown to satisfy the following integral equation:

aO(q1w)

H(xy). (8

Equations(5) and (8) constitute the basis of our scattering

problem.
aGo(r, ")

X3

> ) (=

H (r)=H;'(r)+ EJ dxH(x7)
- B. Scattering geometry
Our aim in this work is to study the coupling of an inci-

) dent wave into a SPP through a finite grating coupler, and
, then the scattering of the SPP by a second finite grating of
where HY) is the amplitude of the incident wave, distinct period. To that end, we assume the surface imped-
r=(xy,X3) and r'=(xy,x3=0). Ggy(r,r') is the two- ance to besee Fig. 1
dimensional free-space Green'’s function,

+ Z—e(0)] M L+5()1Go( 1, 1)

w _ 2m(X1—Xo) h L
Gyl T, r,):Wngl>(E| r r'|), S(X1) =5CO T thf(x1—Xo,L¢)
(1) : . . 2’7TX1
whereHy™” is the zeroth-order Hankel function of the first + 5,008 —— | thf(xq,Ls), 9)
kind. In Eq.(4) we have defined the source functibi{x,) ds

as the surface magnetic field: ) . ) )
with xqg= —L¢2—L;—L/2. It consists of a sinusoidal grat-

ing coupler, centered at = x,, of periodd,, heights., and
length L., separated from another sinusoidal grating, cen-
tered atx; =0, of perioddg, heights,, and lengthL¢, by a
flat segment of length. ;. Two additional flat segments of
lengthL; are included at the leftmost and rightmost ends of
the surface impedance. The function thf(W) is used to

H(x1)= H2>(X11X3:O)-

In order to determinéd(x;), we makexz—0 in Eq. (4)
so that

A 1 (= dG ' ini ings:
H(x1)=HS)(x1,x3=O)+ _j X, H (X)) _,o smooth the boundaries of the finite gratings:
Am) X3
o L _ 2cosH(BL/4)
+ C[ 8((1))] 2[1+S(X1)]Go o (5) thf(Xl,L)— COSl’(BL/Z)"‘COSl”(BXl) .
=

This Fredholm integral equation of the second kind is therTo provide sharp enough boundarigss 100L in all of our
converted into a matrix equation by means of a quadraturealculations.

scheme that truncates the surface at a leihgthivided into Let us consider a Gaussian beam of half-widthncident

N points, following a procedure analogous to that of Refs. 1%t the center of the grating couplgs making an angled,
and 21. Once Eq(4) is numerically solved, the magnetic measured counterclockwise with respect to xgeaxis. The
field H; (x;,X3) is obtained by introducingd (x,) into Eq.  half-width of its intercept with the planex;=0 is
(4). By expanding the Green’s function in E@), the scat- g=W/cos9y=L 4, in such a way that the incident field van-
tered field can be written in the form ishes outside the grating coupler region. Namely,
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_ ® is, neglecting the contribution from inside the metal,
H(x,,%3) =ex i L(X1=Xo)sinfo— X300, ]

CZLz |A|2 Kse )

= — , 16
X [1+W(X;—Xg,X3)] SPT8mw 2 Bo(w) (16)
1 with
X ex% - W[(Xl—XO)COS90+X3Sin00]2},
Bo(w)= —[—e(w)] "2
(10a 0 c ’
where Consequently, if the surface field on the leftmost and right-
5 most flat ends of the interface are of the form of ELp), the
W(Xy,Xg) = c L (X,COSg+ XaSiNfg)2— 1 reflection and transmission coefficients become, respectively,
1:73)— w2w2 W2 1 0 3 0 .
10b
(105 AP ks(w) 7
The periodd. of the grating coupler is 2 Bolw)”
d. [cRdk -1
f:(M—smao) | 1 AL kse) .
2 Bo(w)

where Re denotes the real part. Hence the first diffracte Eas.(17). A. andA h di ic field
order coincides with a forward propagating SPP, whose wav qs.( 7. A an ¢ are the corresponding magnetic fie
amplitudes. The unitarity conditiofenergy conservation

vector is given within the impedance boundary condition ap—h q
proximation by thus reads
® 1 \12 S+R+T=1. (18)

kSP(w):E<1_ ) (12

e(w)

L . D. Numerical calculations
Moreover, fory=<0 only the zeroth order lies in the radia-

tive region of the spectrum. In this way, the efficiency of the ~As mentioned above, the integral equati@ is solved
photon-SPP coupling should be enhanced. numerically by means of a quadrature scheme. For that pur-
Then the SPP thus excited propagates along the flapose, the finite surface is discretized in accordance with the
impedance section, impinging on the grating scatterer. As #ollowing criterion for the sampling interval Ax;:
result, the SPP is reflected, transmitted, and also scatterédx;=A/20 in the regions of flat surface impedance,

into propagating waves in the vacuum. Ax;= min(\/20,d./20) within the grating coupler, and
Ax;= min(\/20,d4/20) within the grating scatterer. The
C. Energy balance number of sampling points per regionhs,=L,/Ax, (the

o . . . . subscripta stands fora=f, ¢, ands, respectively. The total
The incident beam is normalized so that its total, time- " " " points isN=3N,+ N+ N,. Therefore, our nu-

. — 2 .
averaged power flow i8o=c"L,/(87w), whereL, is the merically solving Eq(5) translates into solving Bl X N sys-
length in thex, direction. Then the angular distribution of d g i i
tem of linear equations. This allows us to obtain the mag-

thg §catt§red_ intensity, namely, the differential reflection COhetic field evaluated at a set of points on the surface. Then
efficient, is given by

the scattering amplitud®R,(q,») can be also computed
through a discretized version of E), which leads to the
2 differential reflection coefficient by the use of HG.3).
' The numerical calculations have been carried out on an
(13)  ALPHA AXP-2100. The total number of points employed

where 4, is the scattering angle measured clockwise withVares as needed in the ranbe=1000-10 000. As an ex-

respect to the axis. Ry(d,w) is obtained from Eq(8). The ample, the cor_nputation time for a surface _consisting of
total radiated energ is therefore Nf2000 is 5 min. Energy- cqnservatldéﬁq: (18)]is system-
atically checked, being within 2% error in all cases studied
o here in the absence of dissipative losses. In order to make
™ IR . ;
S:f do—>. (14)  sure that our truncating the total surface length in the nu-
—al2 d0s merical calculations does not give rise to inconsistent results,

. we have increaseld;, keeping the other lengths fixed, find-
Nevertheless, it is also necessary to account for the energyy 1t the differences in the results are negligible. In what

carried by the S_PP. The total, time-averaged flux transporteg)now& we present the results obtained by means of the
by a SPP described by numerical procedure described above for the study of both
- _ the excitation of SPP by a grating coupler illuminated by a

HJ (X1, %3] @) sp=Aexf ikse @)X, — Bo(w)X3], (15)  Gaussian beam and the scattering of such SPP by another

Ry _ 1 o singo/c. o R wsing./
T‘%—zao(q—wsm s/C,0)|Ry(q= wsinds/c,w)
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grating for frequencies in the vicinity of the lower band edge ML R B B
in the SPP dispersion relation.

Ill. SURFACE PLASMON POLARITON COUPLING

First, we will focus on the excitation of SPP by a Gauss-
ian beam impinging on a grating coupler; thus we set
ss=0 in Eq.(9), so that there is no grating scatterer on the
right-hand side of the grating coupler hindering the propaga-
tion of the SPP. The metal occupying the lower half-space 0.4 |H—————————
is characterized by Drude’s dielectric  function
e(w)=1-wj/w?, where w,=2m/\, is the plasma fre-
quency. The plasma wavelengthNg=157.1 nm, which re-
sults from fittinge(w) as given above to the experimental
values of the real part of the dielectric function of silver in
the visible. The period of the sinusoidal grating coupler, un-
less otherwise stated, is hereafter given by @4). It de-
pends on the wavelength and the angle of incidencg, of
the incident beam, and on the wave vedte w) of the SPP L
supported by the vacuum-metal interfdés. (12)]. 0.4 )

The procedure to determine the coupling and diffracted -0 (deg.

e p . ! (deg.)
efficiencies, and the energy balance, is as follows. First, the
results for the squared modulus of the transverse surface
magnetic fie'dH(X1)|2 (see the solid curve in Fig. 5 below, FIG. 2._ Zgroth-order diﬁractgd efficiencies as a function c_)f the
and also Fig. 2 in Ref. 23vhen a Gaussian beam is incident angle of incidenced, for a grating coupler withs,=1.2. Solid
at 6, on the grating coupler reveal that a SPP is excitedcurve: Nc=150; dashed curveN:=100; long-dashed curve,
which propagates in the forward direction—to the right of Ne=45. (@ A=981.2 nm ¢=-38) and d.=648.6 nm; (b)
the grating—along the flat surface-impedance region. In thid =823-3 "M €=—28.5) andd,=562.4 nm.
regard, the existence of a strong resonance appearing in the
squared modulus of the scattering amplitiide Eq. (8)] at  ficiency, denoted byysp=T. In Fig. 2, the zeroth-order ef-
g~ksp corroborates the existence of a forward propagatingiciencies versusd, are shown fors,=1.2 and: (a)
SPP. Since the metal is assumed to be lossless, the amplituge- 981.2 nm andb) A =853.3 nm. The coupler periods are,

of this forward propagating SPP remains constant, except fQ*espectiver,dC:648.6 and 562.4 nm, which are obtained
a small oscillation due to the interference with the SPP reg.o, Eq. (1) with 6,= —30°. For each value of the wave-

flected at the edge of the truncated surfadde amplitude length, three cases have been considekeg:45, 100, and

of this backward—prlopa'lgating SPP is "?"m‘?’St negligible, 4350. The curves shown contain information about the SPP
deduced from the visibility of these oscillations and the faCtdispersion relation on the surface impedance under consider-

that R~0.) Hence the SPP coupling efficieneysp can be : o L .
. _ ... ation. On the one hand, the position of the minim(maxi-
defined asysp=T [cf. Bgs.(17)]. Second, the angular distri mum) of the zeroth-ordefcoupling efficiency accounts for

bution of scattered intensity, calculated from E(®). and
(13), shows a strong peak &= 6, that corresponds to the the real part of the parallel component of the SPP wave vec-
' tor ks{w): Since there is no observable shift of these posi-

zeroth diffraction order, its width being inversely propor- A
tional to the spatial width of the incident beam. This contri-ions from go=—30° in Fig. 2, the Reks{(w)] can be re-
bution yields the zeroth-order diffraction efficienay,. In ~ 9arded for the set of frequencies and parameters used in
addition, a small contribution arises near the grazing direcobtaining the results shown in Fig. 2 as accurately given by
tion 6;=90° due to SPP diffraction effects. However, whenthe real part of the flat surface-impedance valué Eg.
checking energy conservation, one should bear in mind thdil2)]. On the other hand, the coupling resonance width in
the small SPP edge-diffraction contributi®g, comes from g space is proportional to the imaginary part of the SPP wave
the energy transported by the SPP along the interface, whic¥ector. Hence the wider the resonance, the smaller the SPP
has already been accounted for by the coefficiEnfThus  mean free path: in the absence of losses, the only contribu-
Sqp has to be subtracted froB Therefore energy conserva- tion to Imksdw)] (Im being the imaginary partcomes
tion is redefinedR+T+S'= 5o+ 7 5p (S' =S—Sgp). from the SPP-SPP and SPP-photon decay rates. Nonetheless,

Recall that the metal has been considered lossless with tiibis resonance width is also limited by the incident-beam
aim of providing accurate and reliable results in the sense o#vidth in Fourier space, which constitutes in turn the prevail-
the energy conservation criterion. In a more realistic situaing mechanism for such narrow Gaussian beams as used in
tion, dissipative losses in the metal should be taken into acebtaining the results shown in Fig. 2. As expected from the
count. This would facilitate the elimination of spurious edge-fact that the beam width increases withy, the larger\, is
diffraction contributions by placing on both sides of the finite the narrower is the coupling resonance width. Note the hori-
grating coupler flat segments slightly longer than the SPRon for the first diffracted order at9,=-30.8° and
mean free path. We will discuss this point below. fo=—31.1° in Figs. 2a) and 2b), respectively; these Ray-

Let us first study the influence @, on the coupling ef- leigh anomalies appear also more abruptly the laMers.
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FIG. 3. Coupling efficiencies as a function of surface-impedance FIG. 4. Zeroth-order diffracted efficiencies as a function of the
grating heights,. Solid curve, N,=150; long-dashed curve, ratio {./d. (real corrugation grating height over perjodDots,
N.=100; dashed curveN.=45; dot-dashed curvel.=20. (a) N.=200; solid curve,N.=150; long-dashed curveN.=100;
A=981.2 nm ¢=-38) andd,=648.6 nm;(b) A=853.3 nm dashed curvelN;=45; dot-dashed curvéy.=20. (a) A=981.2 nm

(¢=—28.5) andd,=562.4 nm;(c) \=633 nm g=—16.4) and (¢=—38+i2.5) and d.=6486 nm; (b) r=853.3 nm
d.=413.1 nm. (e=-28.5+i1.94) and d.=562.4 nm; (c) A=633 nm

(e=—16.4+i0.5) andd.=413.1 nm.

We assume now that the grating heighy is varied
whereas all of the other parameters remain fixed. The results On the other hand, note that the maximum value of the
thus obtained for the coupling efficienciesds) are shown coupling efficiency saturates beyondN.=100 at
in Fig. 3 for three values of the wavelengtt@ A\=981.2  7sp~50% (79~50%). In contrast, it is well known that
nm; (b) A=853.3 nm; andc) A =633 nm. Four distinct val- zeroth-order efficiencies close to zero can be theoretically
ues of the number of period¥, have been considered in and experimentally obtainéti*?Once again, one has to bear
every caseN,=20, 45, 100, and 150. The common featuresin mind that the results shown in Fig. 3 correspond to a
to all the coupling efficiencies are: rapid incredstow de-  lossless metal. In this connection, we have calculajgd
creasgfor low (high) values ofs;, exhibiting a maximum at Versuss as in Fig. 3 but taking into account the imaginary
an intermediate valus? . This behavior can be explained by part of the dllelectrlc functior, of silver at the correspond-
means of the following argumeRfor very smooth surfaces, INJ frequenciesc. Ref. 38. The results reveal that the po-
the grating allows the coupling of the incoming beam into asSitionss; at which 7 is minimum do not differ appreciably
SPP, which then propagates with a long mean free (raite from those shown in Fig. 3. However these minimum values
that in this case the metal is losslgghe larger the corruga- 70 are smaller when dissipative losses are included pro-
tion, the better the excitation is. When the grating heightvided thatN.=100, and tend to become even smaller as the
becomes sufficiently large, the probability of a SPP couplingength of the illuminated grating is further increased. In Fig.
back into light starts to grow, thus reducing the efficiency of4, some of these results for the zeroth-order efficiencies are
the SPP excitation. Therefore, the maximum coupling obshown as a function of the renormalized scéléd, where
served in the curves of Fig. 3 appears as a compromise b#e have used the relationshipf. Eq. (3)] between surface
tween both processes. Beyond that optimum height of maxiimpedances(x;) and surface roughneg$x;) established by
mum coupling, the SPP radiative damping graduallyMaradudin®In this manner, it is seen that the almost invari-
predominates over the excitation, leading to a decrease of trant behavior of the diffracted efficiencies for different fre-
coupling efficiency. It is also of interest to analyze the influ-quencies is maintained not only in the infinite grating limfit,
ence of the numbeN,, of periods in Fig. 3. A\, increases, but also for finite gratings under conditions of small illumi-
the position of the maximum coupling efficiency shifts to- nated spot size.
wards lower values of the grating height This reveals that The results forx =633 nm in Fig. 4c) can be compared
shortening the grating coupléequivalently, the illuminated Wwith the theoretical and experimental results of Ref. 12. The
spot sizé reduces the radiative damping rate relatively fastetmaximum coupling efficiency forN,=200 occurring at
than the excitation rate. §8/dc~0.04 corresponds to a surface heightg)fv 16 nm, in



53 COUPLING, RESONANCE TRANSMISSION, AND TUNNELING ... 10323

————— the strong magnetic fields resonantly generated within the
grating coupler, which are indeed larger than shown in Fig. 5
due to the fact that the oscillations of peridd have been
smoothed. Enhancement factors of the order of 100 have
been found in agreement with previous wofks! they di-
minish as dissipative losses increase, as expected. These fac-
tors play a crucial role in the surface-enhanced Raman spec-
troscopy of molecules adsorbed on such metallic gratifigs.

02

IV. SURFACE PLASMON POLARITON SCATTERING

Let us now study the scattering of a SPP by another sinu-
“““““ soidal grating placed in its propagation path on the metal
L surface]cf. Eq. (9)]. The scatterer grating period and height
0 40 throughout this section will bd,=392.5 nm ands;=3, re-
spectively. As a result of the scattering, the incoming SPP is
partially reflected, transmitted, and converted into radiating
FIG. 5. Square modulus of the total surface magnetic field iandes into the vacuum half-space. This process is funda-
arbitrary units resulting from illuminatinil.= 45 periods of a grat- mentally ruled by the freql_Jency dependence of the SPP wave
ing coupler of periodd,=562.4 nm and heighs.=2. The other vectorksp_(w) on the g_ra_tlng pa_rameted;s and Ss- Thus, .
parameters are.=853.3 nm,L;=60\, and L,=4.6\ (5.=0). _bgfore going on to the finite grating case we are mte_rested in,
Solid curve, s=—28.5; dashed curves=—28.5+i1.94; long- !t is necessary to calcu_late.the SPP dlsper5|9n relation for an
dashed curves=—28.5+i10. The curves have been smoothed by INfinite sinusoidal grating impedance described by the pa-
averaging point by point over the periag . rametersdg andsg given above. This has been done numeri-
cally by looking for the zeros of the determinant of the ma-
trix resulting from imposing the impedance boundary
agreement with the results shown in Fig. 5 of Ref. 12. Thiscondition (2) on the magnetic field amplitude written in the
gives support to the use of a surface impedance boundafgrm of a truncated Rayleigh expansithThe results thus
condition to simplify the scattering integral equatioftd.  obtained, not shown here, reveal that a gap in the propaga-
Sec. 1), not only from a qualitative standpoint, but also astion of SPP opens up for frequencies such that
regards obtaining accurate quantitative results, inasmuch &45< w/(cG)<0.4945 G=2m/d), separating the first
the conditions for its validity are satisfiéd(note that these two allowed bands. In what follows, we focus on two
conditions are ensured for=633 nm,d;=413.1 nm, and frequencies: /(cG)=0.44 (A=892.0 nm, and
§2= 16 nm. The disagreement of the calculated values of thaw/(cG) =0.46 (\ =853.3 nm), which lie, respectively, in the
zeroth-order efficiencies shown in Fig(ch with respect to  band and in the gap of the SPP dispersion relation for the
the experimental values given in Ref. 12 stem from the dif-infinite grating. Note that both frequencies are close to the
ferent number of periods illuminated by the incoming beam:lower band edge, where the interesting finite-scale effects are
N.=<200 in our case versudl,=5000 therein, in practice more clearly manifested.
equivalent to an infinite grating. In order to excite a SPP of the required frequency, a grat-
Still the question remains open as to whether or not ang coupler of periodl, defined by Eq(11) and consisting
lower zeroth-order efficiency leads to a higher SPP couplin@f N.=45 periods is illuminated by a Gaussian beam as
efficiency when energy conservation is not guaranteed. Tdescribed in the preceding section. The energy conservation
answer this question, we show in Fig.|H(x,)|? in three  criterion for the entire process—couplirgcattering—is
cases that differ from each other only in the valuespf (a) satisfied in all the cases shown below within 2% error, as
lossless metak,=0; (b) real silverg;=0.5; and(c) very  mentioned in Sec. Il. Specifically, since we are now inter-
lossy metale,=10. In all three cases, the other parameterssted in the scattering of the SPP by the second grating, we
are: A\=633 nm,d.=413.1 nm,s,=2, andN.=45. The proceed as follows: First, the SPP transmission coefficient
rapid oscillations appearing within the grating coupler regionT is calculated in the absence of grating scattesge=0Q),
have been smoothed in Fig. 5 by averaging point by poinkeeping all the other parameters fixdgq, yields the squared
over the periodi, . Apart from the fact that the amplitude of modulus of the amplitude of the incoming SPP. Then the
the excited SPP decays exponentially wiagt 0 on propa- normalized SPP reflection and transmission coefficients as-
gating along the flat surface, one can extract informatiorsociated with the interaction of the SPP with the second grat-
about the output power carried by the SPP from the value oihg are obtained by dividin® andT, respectively, resulting
[H(x,)|? at the right border of the grating coupler. From from the entire process with grating scattereg#0), by
these values, it is evident that the SPP output power is highél,. Finally, the total radiated intensity due to the conversion
the less lossy the metal is, despite the fact thatlecreases of the SPP into volume waves at the grating scatterer can be
with g,. In other words, Figs. 3, 4, and 5 demonstrate thatleduced from energy conservation arguments. It should be
lower zeroth-order efficiencies do not necessarily indicateemphasized, however, that in some cases one may be inter-
higher SPP coupling efficiencies when comparing differentested in the entire process as, for instance, when a filter is
materials and/or frequencies, since dissipative effects beplaced sufficiently close to a coupler. Under such circum-
come very important when resonance takes place. Note alsiances, our numerical results based on the scattering integral

0.0
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FIG. 7. Angular distribution of scattered intensity for the same
scattering geometry as in Fig(l.

- N 2 1 1 N 1
0'0_30 -15 0 15 30 evident in the contributions arising near grazing scattering

/d angled 6|<90°. In addition, the tiny peak a,= 30° reveals
s that a small fraction of the reflected SPP couples back into
5 propagating waves through its interaction with the grating
FIG. 6. [H(xy)|* versusx, /ds for )‘02892 nm,d.=588.5 nm,  cqypler. Note that, in the absence of reflected SPP, neither
Sc=0.5, Ng=45, £=—31.2, fp=—30°, andL(=10\, with the 0 hoak . —30° nor the contribution at negative grazing
pr/esec?cieoo‘fl 4a gr?jtlr;]g_s;:]attzajzr of pﬁlrltigilz5392b.5 ’Lml[;g that  gcattering angles ought to be present, as our results have
ﬁ(—cso)_ 44 and heights,=3. (@ Ns=15, (b) No=22, (c) confirmed(although not shown heye
s ' Let us now return to the analysis of the reflection and
transmission coefficients as derived frorh(x;)|? in Fig. 6.
equation formulation yield straightforwardly the relevant Note that the magnetic field inside the grating scatterer
physical magnitudes of the problem. ( |x1|=<Nd¢/2) presents a slowly varying envelope modulat-
ing the high-frequency oscillations mentioned above. The
spatial frequency of this envelope—divided by a factor of 2
A. Frequency in the band: Resonance transmission owing to the squared modulus—yields the crystal momen-
Figure 6 shows$H(x,)|? for s,=0.5 in the region within ~tum of the SPP mode on an infinite grating. Since the fre-
the grating scatterer, and its vicinity, for three values of theduency of the incoming SPP matches that of the SPP mode
number of periods:(a@ N¢=15; (b) Ng=22; and (c) kZ¥*close below the lower band edge of the SPP band struc-
N,=30. As is seen in Fig. 6, strong oscillations producingture, the real part of the crystal momemtum is consequently
significant field enhancements appear within the grating scasmall. (In fact, it tends to zero as the frequency approaches
terer, symmetrically located about=0, that follow the the band gap.Therefore the surface field structures in Figs.
sinusoidal profile of the surface impedance. In this regard§(@), 6(b), and &c) demonstrate that the grating lengths of
the field enhancements obtained within the grating have bedns/ds=15, 22, and 30 periods, respectively, approximately
found to be larger the closer the frequency is to the ban@orrespond to 1/2, 3/4, and 1 period of the SPP crystal mode.
edge. As a result of the scattering process, the incoming SPPwe now represent the normalized transmission and reflec-
is partially transmittedsee Fig. 6 forx;=N.d/2) and re- tion coefficients as a function of the number of grating peri-
flected(see Fig. 6 fox;<—Nd¢/2). The reflected SPP can ods(see Fig. 8 similar oscillations are observed. It turns out
be traced along the surface through its interference with th&hat maximum resonant SPP transmission is achieved when
incoming SPP within the flat section between the coupler anghe length of the grating matches an integer number of half
the scatterer. Moreover, although not shown in Fig. 6, théhe period of the SPP crystal model & nm/kg®,
reflected SPP interferes with the magnetic field on the grating=1,2,3,. .. ). On theother hand, the incident SPP is more
coupler producing a complicated pattern, appearing as thetrongly reflected—minimum transmission—when the grat-
outcoming SPP on the left-hand side of the coupler. As mening length lies between those values of resonant transmission
tioned above, the constant field squared moduli at the leftlengths. The radiated energy might represent a substantial
most and rightmost flat sections of the entire surface yielgart of the energy-{ 30%), but it originates to a large extent
the SPP reflection and transmission coefficients, respectivelin both edge-diffraction effects and grating-induced SPP-
In Fig. 7, the angular distribution of radiated intensity is photon coupling. The independence of the normalized trans-
shown for the same case as in Figh)6 Apart from the mission coefficient from the intensity of the incoming SPP is
contributions(zeroth order and edge diffractipdescribed in  demonstrated by considering another heighof the illumi-
the preceding section, the effects of the scattering process anatted grating coupler: the result obtained f&=2, not
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FIG. 8. Normalized(a) transmission andb) reflection coeffi-
cients as a function of the number of grating scatterer peribds
(ds=392.5 nm ands;=3). (a) s,=0.5. (b) Solid curve,s.=0.5;
dashed curve,s.=2. The other parameters are=892 nm
[w/(cG)=0.44), d,=588.5 nm,N,=45, e=—31.2, §,=—30°,
andL;=10\.

FIG. 9. Same as in Fig. 6 but forA=853.3 nm
[w/(cG)=0.46], e=—28.5, andd.=562.4 nm.(a) Ns=4, (b)
Ns=8, (c) Ng=12.

part of the SPP crystal momemtuiits real part should van-
shown here, coincides with that of Fig(a for s.=0.5. ish). Despite the fact that the freq.u.ency lies in the gap, when
However, sinceR/T, underestimates the true reflection (e length of the grating is sufficiently small the SPP can

coefficient—part of the reflected SPP couples back into 4UMnel through the structure as revealed in Fig®) @nd
diffracted peak afi,=30° on passing through the coupler— 9(b), leading to a significant amount of transmitted SPP. The

there exist differences in the normalized reflection coefﬁcienfjeloenOIence of the_ SPP tunn_eling intensity on the barr_ier

[see Fig. &)]; the SPP-photon coupling fa.=2 is rela- ength can be studied by plotting the normalized transmis-

tively larger ';han fors.=05. thus producfng a smaller Sion coefficient as a function of the grating length in units of
C ]

R/Ty in the case ofs,=2. To emphasize the existence of the period (‘Sld,s: Ng). This is done. in Fig. 1@) for
strong finite-scale effects, we would like to stress the fac§9:0'5' As In Fig. &a), the 'result obtained by means'of a
that significant reflection coefficients, of the order of 30% ,d'ff.ef,e”‘ gratmg coupler heights{=2, not shown_ hepeis
(actually, an estimate of 60% or larger is made if the re-'T‘Q'St'“.gu'Shab'e from that fos.=0.5. The refle(;t|on coef-
flected SPP reradiation contributions are considerede ficient is also plotted for two V‘i"“es o [see F'g'.l“b)]'
found in spite of the frequency lying within the band of the W€ observe, regardiess of the input power, a rapid decay of
SPP dispersion relation, for which one would expect totall @S Ns increases up tNs=12, beyond which tunneling
transmission. This is not surprising, however, if it is recalled?€comes negligible and the incoming SPP is reflected back
that the finite grating scatterer behaves as a Fabry-Perot ihR/ To~60%). The remaining energy-{40%) is scattered
terferometer, or, similarly, as a resonance scattering potentid]l© Propagating modes in the vacuum. The decayTof
barrier®® It should be mentioned that other finite-scale effectsSightly departs from a negative exponential, possibly due to

in the frequency dependence of the transmission coefficierffoth radiative losses and the transient regime occurring for

have been shown elsewhéfe. very short grating lengthsNs=4).
B. Frequency in the gap: Tunneling V. CONCLUSIONS
Figure 9 shows$H (x,)|? for s;=0.5 andNg=4, 8, and 12 In summary, we have applied the exact Green's-theorem

periods, within the grating scatterdx(|<N.d¢/2), Leaving integral equation formalism for the scattering of electromag-
aside the fine structure related to the rapid oscillations comretic waves from a corrugated surface to study both the cou-
mented on abovgsee Fig. 6, we observe in the envelope of pling of a Gaussian beam into a surface plasmon polariton
the squared modulus of the magnetic field strong enhancdghrough a finite, sinusoidal metal grating coupler, and the
ments about the first two periods, followed by a rapid decaysubsequent scattering of the SPP thus excited by another
This decay is approximately exponential, as expected, and ignusoidal grating of finite length. A planar-surface imped-
decay length must be inversely proportional to the imaginarnance boundary condition has been used to write the normal
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) the real part fixed. It has been shown that, despite the fact
I ] that the zeroth-order efficiency for a lossy metal, becomes

08 L (@) | smaller than that for a losslegsr less lossy metal, appar-
I ] ently indicating a stronger coupling efficiency, the SPP
.06 F J power output escaping from the grating coupler is neverthe-
= ! ] less larger the less lossy the metal is. The reason why this
o4} g occurs is obviously the total conversion of the energy not
] contained in the zeroth diffracted order into SPP in a lossless

0.2 | . metal (actually, a coupling efficiency of 50% is found that

manifests the interplay between SPP excitation and reradia-
tion mechanisms in contrast, absorption is resonantly en-
hanced in a lossy metal, thus highly reducing the effective
photon-SPP conversion rate. In this regard, large field en-
hancements100) appear when the photon-SPP coupling
peaks, being larger the less lossy the metal is.

The reflection and transmission of SPP, and their conver-
sion into volume waves, by a finite sinusoidal metallic grat-
ing has also been studied for two frequencies of the incident
EM wave, which lie in the band and in the gap, respectively,
of the SPP dispersion relation. These frequencies are close
enough to the lower band edge so that finite-scale effects are
encountered. When the frequency lies in the band, the reflec-
tion and transmission coefficients show a strongly oscillatory
) _ behavior as functions of the grating scatterer length in such a

FIG. 10. Same as in Fig. 8 but foA=853.3 nm 5y that maximum transmission occurs when the number of
[w/(cG)=0.46], & =—28.5, andd.=562.4 nm. periods coincides resonantly with an integer number of half
the period of the SPP crystal mode. This resonant transmis-

derivative of the magnetic field on the surface in terms of the’'O" 1S accompanied by moderate field enhancements

surface magnetic field itself. In this manner, the integraI(NA')'When the frequency lies in the gap, itis found that the

equations are simplified, leading to a considerable reductioﬁpp can tunnel through the grating provided that its width is

of the computation time and memory required in the numeri—SUfﬁCiently small ;<10 in this casp The decay of the

cal procedure, while still providing reliable results for the transmi;sion coefficient has been calcul_ated as a function of
range of parameters studied here. In particular, the magnetﬂ':‘e barrier 'ef‘g‘h- Beyonhl;=12 t_he_gra_tmg reflects a I_arge
field on the surface, the angular distribution of the scattere@art_(N 60% in the absence of d|SS|pat|\_/e !qs)se‘sthe n-
intensity, and the angular spectrum in the nonradiative regiof°MNg SPP power flow, except for a significant amount of
have been calculated. Energy balance is controlled not onl§N€rgy €-40%) that is radiated into the vacuum. o
by obtaining the entire energy radiated into the vacuum half-. Ve would like to stress the point here that the emphasis in

space, but also by calculating the power flow carried by thdhis _work has beep put on the gtudy of dif_“fraction by m‘?ta'
SPP from its amplitude at the surface edges. gratings with confined geometries, for which the numerical

As regards the excitation of SPP through a grating follreatment based on the exact integral equation formulation

which only the zeroth order is a propagating one, finite-scal@VeS rigorous results. These geometries might be of interest
effects have been addressed in the dependence of the zerdihPractical applications such as couplers, filters, and other
order and coupling efficiencies on the angle of incidenc ptical devices not only as concerns SPP, but also for other

6, and the grating height, . Upon varyingé,, it has been ind of surface wavegpolaritons. On the other hand, it

shown that the resonance becomes narrower as the illumoUld be mentioned that the electromagnetic field at any

nated length of the grating coupler increases, provided thaoint above the metal su.rface can be straightforwardly cal-
this Iengtf? does notgexceegd thepcorresponding pSPP dampirgylated from the surface fie[df. Eq.(4)]; this could provide.
length for the metal surface under consideration. No appre* Iugblg information in the gxpenmental z_ind_theoreucal n-
ciable angular shifts are observed in our calculations for thestigation of tré(iszpropagatlon and localization of SPP in
frequencies and coupler parameters dealt with, indicating€ar-field optics.

that the real part of the wave vector of the SPP propagating
along the finite grating couplers studied here does not differ
appreciably from its value for a planar surface. Our results The author would like to thank Professor A. A. Maradudin
for the coupling efficiency as a function of the grating heightfor helpful discussions during the course of this work, and
manifest a broadening of the resonance with decreasing illuProfessor M. Nieto-Vesperinas for critical reading of the
minated coupler length; moreover, a shift of the position ofmanuscript. Financial support from the Spanish Consejo Su-
the maximum coupling efficiency towards larger values ofperior de Investigaciones Ciéfitas and the Direccio Gen-

the surface height is observed when the coupler length deeral de Investigacio Cientfica y Tecnica(Grant No. PB93-
creases l.=<150). In addition, the influence of dissipative 0973-C02 is acknowledged. This work was supported in
losses inside the metal has been studied by arbitrarily modpart by Army Research Office Grant No. DAAL 03-92-G-
fying the imaginary part of the dielectric function, keeping 0239.
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