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The Green’s-theorem integral equation formulation is employed to study numerically the coupling into
surface plasmon polaritons by illuminating a finite metal grating with a Gaussian beam from the vacuum
half-space above the metal surface. A flat surface impedance boundary condition is used to simplify the
scattering integral equations. The grating coupler period is chosen so that the first diffracted order excites a
surface plasmon polariton and the zeroth diffracted order is the only radiating order. In particular, the surface
magnetic field and the angular distribution of scattered intensity are calculated. These functions provide in turn
the total intensity of the radiation scattered into the vacuum and the total power flow carried by the surface
plasmon polariton, from which the energy balance is monitored. In this way, the zeroth order and coupling
efficiencies are studied as functions of the angle of incidenceu0 and the grating coupler heightsc , with the aim
of analyzing the influence of the length of the illuminated coupler. Our results show that, when the illuminated
coupler length is decreased, the photon-surface plasmon polariton coupling resonance broadens as a function of
bothu0 andsc , and that larger values ofsc are required to optimize this coupling resonance. In addition, the
coupling geometry is exploited to obtain the reflection and transmission coefficients, and the intensity of the
scattered volume waves, of a surface plasmon polariton thus excited that impinges on another finite metal
grating, called a grating scatterer. Two frequencies of the incoming surface plasmon polariton are considered
that lie very close to the lower band edge of the gap in the surface plasmon polariton dispersion relation for the
infinite grating scatterer. If the frequency is in the band, a strongly oscillating, resonant behavior of the
transmission coefficient as a function of the grating length is obtained. For a frequency in the gap, transmission
is negligible unless the grating is short enough that the surface plasmon polariton can tunnel through it.

I. INTRODUCTION

The subject of diffraction of electromagnetic waves by
gratings is a classical one. The existence of anomalies in the
spectral and angular dependence of the various diffracted
orders has attracted a great deal of attention ever since the
observation by Wood1 in 1902 of such anomalies forp po-
larization~magnetic field vector parallel to the grooves, TM!
in experiments on shallow metal gratings. Lord Rayleigh2

presented in 1907 the first theoretical treatment of these
anomalies, which prompted a number of subsequent studies
in the following decades based on the so-called Rayleigh
method. Among them, the work by Fano3 represented an
important step forward, for it first indicated the existence of
two types of anomalies. But it was not until the work by
Hessel and Oliner,4 by means of an idealized surface reac-
tance model of a planar periodic structure, that thosep-type
anomalies were correctly understood. They distinguished
Rayleigh anomalies,2 occurring when one of the diffracted
orders emerges from the grating at a grazing angle, from
those resonance anomalies appearing when an evanescent or-
der excites a surface plasmon polariton~SPP! supported by
the corrugated metal interface.

In recent years, a great variety of rigorous vector theories
of gratings have been developed for either perfectly conduct-
ing or finite conductivity materials~cf. Refs. 5 and 6!, which
can be grouped into differential and integral methods. Sev-
eral works have been devoted to the anomalies originating in
the grating-induced coupling of light into a SPP~Refs.

7–12!, with special emphasis on the occurrence of both total
absorption of light and large surface electromagnetic field
enhancements, and their implications in surface-enhanced
Raman spectroscopy and other nonlinear phenomena.8,9,13 In
particular, the integral equation methods have been proven to
be more appropriate for analyzing gratings with continuous
profiles, and capable of giving very accurate numerical re-
sults even for deep and inhomogeneous gratings.14–17Up to
the present, most of the existing theoretical formulations
have exploited the pseudoperiodicity of the electromagnetic
field inherently associated with the infinite extent of the grat-
ing. Nonetheless, in many instances, the conditions of grat-
ing illumination and geometry make it necessary to develop
a diffraction theory that deals with finite gratings~cf., for
example, Ref. 18 and references therein!. In addition, the
possibility of combining different gratings of finite length
into a single device, which might be of great interest in many
practical applications in diffractive and integrated optics,
also suggests the need of such theories.

For that purpose, we have applied in this paper the rigor-
ous Green’s-theorem integral equation formulation, used in
the scattering of electromagnetic waves from rough metal or
dielectric surfaces,19–23 to determine the field scattered by a
one-dimensional metal surface consisting of two sections of
sinusoidal gratings with different periods separated by a pla-
nar section~a similar configuration has been treated by
Saillard,23 but the emphasis there was put on the qualitative
aspects of SPP localization in random media!. A Gaussian
beam impinges on one of the gratings~see Fig. 1!, whose
period is such that a forward propagating SPP is excited
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whereas only the zeroth order is diffracted into the vacuum
above the metal surface. The SPP thus excited then impinges
on a second grating; as a result, it is partially reflected, par-
tially transmitted, and partially converted into volume waves
in the vacuum region. The period of the second grating is
chosen so that the frequency of the incoming SPP lies in the
vicinity of the lower band edge of the gap in the SPP disper-
sion relation. In what follows, we will refer to the two grat-
ings as coupler and scatterer, respectively. The numerical
treatment of the formulation allows us to obtain the scattered
electromagnetic field throughout the entire space. In particu-
lar, we focus on the far-field radiated intensity and the sur-
face field. In addition, the energy carried by the SPP is also
calculated, so that the energy balance is accurately deter-
mined. In this manner, we study the finite-scale effects in the
coupling and scattering of SPP. First, as regards photon-SPP
coupling, the dependence of the diffracted and coupling ef-
ficiencies on the angle of incidence and grating depth is ana-
lyzed for both an ideal lossless metal and for silver. Second,
we are concerned with the behavior of the SPP reflection and
transmission coefficients, properly normalized for a lossless
metal, as a function of the number of grating scatterer peri-
ods for frequencies both in the band and in the gap of the
SPP band structure of the infinite grating.

It should be remarked that the motivation for this work, in
addition to its above-mentioned relevance in the diffractive
optics of metallic gratings, stems from the interest in the
propagation properties of SPP,24,25 especially with regard to
their scattering and localization on corrugated metal inter-
faces~cf. Refs. 23 and 26–28!. Furthermore, much effort has
been concentrated on the experimental and theoretical inves-
tigation of these problems in connection with the recent de-
velopment of near-field optical microscopy.29–33On the other
hand, the configurations studied here could be extended to
address equivalent configurations for guided-wave polaritons
in dielectric gratings, which are of significant importance in
related applications such as couplers, filters, and distributed-
feedback lasers.

Finally, we would like to point out that a local impedance
boundary condition on a planar surface has been used to
simplify the set of integral equations upon which the formu-
lation is based. In this manner, the electromagnetic field in-
side the metal is eliminated from the calculation, thus lead-
ing to a considerable reduction of computation time in the
numerical simulations. Recently, Maradudin34 has shown the
connection of such a surface impedance with the real surface
corrugation as an expansion in powers of the surface profile
function, which is valid for the frequencies and shallow grat-

ings ~groove depth to period ratios lower than 0.5! we are
interested in. However, if deeper gratings were to be studied,
one could either use local35,36 and nonlocal37 impedance
boundary conditions at a curved surface, which are not re-
stricted to smooth corrugations, or leave the rigorous scatter-
ing integral equations unaltered~so that the formulation is
intrinsically exact!.

The paper is organized as follows. In Sec. II, the configu-
ration studied in this work is defined, and the integral equa-
tion formulation is described. In Sec. III, we present the nu-
merical results for the coupling of a Gaussian beam into SPP
through a finite metal grating. The calculations for the scat-
tering of a SPP by a finite section of a grating under condi-
tions close to Bragg reflection are shown in Sec. IV. Finally,
Sec. V contains the conclusions drawn from the results ob-
tained.

II. FORMULATION OF THE PROBLEM

A. Scattering equations

Let us consider a one-dimensional rough interface
x35z(x1) separating vacuum@x3.z(x1)# from a metal
@x3<z(x1)# characterized by an isotropic, frequency-
dependent dielectric function«(v). A monochromatic,
p-polarized electromagnetic~EM! wave whose plane of inci-
dence is thex1x3 plane impinges on the surface. Under these
conditions, the problem is fully described by means of the
transverse component of the magnetic field,H2(x1 ,x3),
whose amplitude obeys the two-dimensional Helmholtz
equation:

S ]2
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]x3
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v2
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The superscripts. and, indicate inside vacuum and metal,
respectively. It has been shown in Refs. 19–22 that this prob-
lem can be cast into the form of four integral equations
through the use of Green’s theorem. These integral equations
relateH2

.(x1 ,x3) andH2
,(x1 ,x3) to the magnetic field and

its normal derivative evaluated at the interface, which in turn
play the role of source functions. With the aid of the conti-
nuity conditions across the interface, and on using the inte-
gral equations as extended boundary conditions, these source
functions can be obtained by numerically solving a set of
two coupled integral equations~see Refs. 19 and 21!. How-
ever, instead of proceeding in that manner, we further sim-
plify the formulation by mapping the continuity conditions at
the corrugated surfacex35z(x1) onto a local impedance
boundary condition on the planar surfacex350 as follows:

]

]x3
H2

.~x1 ,x3! U
x350

52
v

c
@2«~v!#21/2@11s~x1!#H2

.~x1 ,x3! U
x350

, ~2!

FIG. 1. Illustration of the scattering geometry.
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wheres(x1) is the surface impedance. It has been demon-
strated by Maradudin34 that the right-hand side of Eq.~2!
corresponds to the zeroth- and first-order terms of an expan-
sion in powers of the surface profile functionz(x1), so that

s~x1!52
12«~v!

«~v!

1

d~v!
@12d2~v!D2#1/2z~x1!1O~z2!,

~3!

whereD[d/dx1 , andd(v)[c@2«(v)#21/2/v is the skin
depth. We will not discuss here the constraints on this con-
nection between the real corrugationz(x1) and the surface
impedances(x1) ~cf. Ref. 34!; for our purpose, it suffices to
know that boundary condition~2! describes the metallic
character of the interface for moderate corrugations and a
wide range of frequencies for which the optical skin depth
d(v) is small compared to the wavelength. We will refer
hereafter to the surface impedance rather than to the surface
profile function.

With the help of Eq.~2! we restrict the analysis to the
magnetic field in the vacuum half-space, which can be
shown to satisfy the following integral equation:

H2
.~ r !5H2

~ i !~ r !1
1

4pE2`

`

dx18H~x18!F]G0~ r , r 8!

]x38

1
v

c
@2«~v!#21/2@11s~x18!#G0~ r , r 8!G , ~4!

where H2
( i ) is the amplitude of the incident wave,

r[(x1 ,x3) and r 8[(x18 ,x3850). G0( r , r 8) is the two-
dimensional free-space Green’s function,

G0~ r , r 8!5p iH 0
~1!S v

c
u r2 r 8u D ,

whereH0
(1) is the zeroth-order Hankel function of the first

kind. In Eq. ~4! we have defined the source functionH(x1)
as the surface magnetic field:

H~x1!5H2
.~x1 ,x350!.

In order to determineH(x1), we makex3→0 in Eq. ~4!
so that

H~x1!5H2
~ i !~x1 ,x350!1

1

4pE2`

`

dx18H~x18!F]G0

]x38

1
v

c
@2«~v!#21/2@11s~x1!#G0G

x350

. ~5!

This Fredholm integral equation of the second kind is then
converted into a matrix equation by means of a quadrature
scheme that truncates the surface at a lengthL divided into
N points, following a procedure analogous to that of Refs. 19
and 21. Once Eq.~4! is numerically solved, the magnetic
field H2

.(x1 ,x3) is obtained by introducingH(x1) into Eq.
~4!. By expanding the Green’s function in Eq.~4!, the scat-
tered field can be written in the form

H2
.~x1 ,x3!5E

2`

` dq

2p
Rp~q,v!exp@ iqx11 ia0~q,v!x3#,

where

a0~q,v!5H S v2

c2
2q2D 1/2, uqu<

v

c
~7a!

i S q22 v2

c2 D
1/2

, uqu.
v

c
, ~7b!

and the scattering amplitude is given in terms ofH(x1) by

Rp~q,v!5
1

2a0~q,v!
E

2`

`

dx18e
2 iqx1Fa0~q,v!

1 i
v

c
@2«~v!#21/2@11s~x1!#GH~x1!. ~8!

Equations~5! and ~8! constitute the basis of our scattering
problem.

B. Scattering geometry

Our aim in this work is to study the coupling of an inci-
dent wave into a SPP through a finite grating coupler, and
then the scattering of the SPP by a second finite grating of
distinct period. To that end, we assume the surface imped-
ance to be~see Fig. 1!

s~x1!5sccosS 2p~x12x0!

dc
D thf~x12x0 ,Lc!

1sscosS 2px1
ds

D thf~x1 ,Ls!, ~9!

with x052Ls/22L f2Lc/2. It consists of a sinusoidal grat-
ing coupler, centered atx15x0 , of perioddc , heightsc , and
length Lc , separated from another sinusoidal grating, cen-
tered atx150, of periodds , heightss , and lengthLs , by a
flat segment of lengthL f . Two additional flat segments of
lengthL f are included at the leftmost and rightmost ends of
the surface impedance. The function thf(x1 ,W) is used to
smooth the boundaries of the finite gratings:

thf~x1 ,L ![
2cosh2~bL/4!

cosh~bL/2!1cosh~bx1!
.

To provide sharp enough boundaries,b5100/L in all of our
calculations.

Let us consider a Gaussian beam of half-widthW incident
at the center of the grating couplerx0 making an angleu0
measured counterclockwise with respect to thex3 axis. The
half-width of its intercept with the planex350 is
g5W/cosu05Lc/4, in such a way that the incident field van-
ishes outside the grating coupler region. Namely,
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H2
~ i !~x1 ,x3!5expF i v

c
@~x12x0!sinu02x3cosu0#

3@11w~x12x0 ,x3!#G
3expF2

1

W2 @~x12x0!cosu01x3sinu0#
2G ,
~10a!

where

w~x1 ,x3!5
c2

v2W2 F 2W2 ~x1cosu01x3sinu0!
221G .

~10b!

The perioddc of the grating coupler is

dc
l

5S cRe@kSP~v!#

v
2sinu0D 21

, ~11!

where Re denotes the real part. Hence the first diffracted
order coincides with a forward propagating SPP, whose wave
vector is given within the impedance boundary condition ap-
proximation by

kSP~v!5
v

c S 12
1

«~v! D
1/2

. ~12!

Moreover, foru0<0 only the zeroth order lies in the radia-
tive region of the spectrum. In this way, the efficiency of the
photon-SPP coupling should be enhanced.

Then the SPP thus excited propagates along the flat-
impedance section, impinging on the grating scatterer. As a
result, the SPP is reflected, transmitted, and also scattered
into propagating waves in the vacuum.

C. Energy balance

The incident beam is normalized so that its total, time-
averaged power flow isP05c2L2 /(8pv), whereL2 is the
length in thex2 direction. Then the angular distribution of
the scattered intensity, namely, the differential reflection co-
efficient, is given by

]Rp

]us
5

1

2p
a0
2~q5vsinus /c,v!uRp~q5vsinus /c,v!u2,

~13!

where us is the scattering angle measured clockwise with
respect to thex3 axis.Rp(q,v) is obtained from Eq.~8!. The
total radiated energyS is therefore

S5E
2p/2

p/2

dus
]Rp

]us
. ~14!

Nevertheless, it is also necessary to account for the energy
carried by the SPP. The total, time-averaged flux transported
by a SPP described by

H2
.~x1 ,x3uv!SP5Aexp@ ikSP~v!x12b0~v!x3#, ~15!

is, neglecting the contribution from inside the metal,

PSP5
c2L2
8pv

uAu2

2

kSP~v!

b0~v!
, ~16!

with

b0~v!5
v

c
@2«~v!#21/2.

Consequently, if the surface field on the leftmost and right-
most flat ends of the interface are of the form of Eq.~15!, the
reflection and transmission coefficients become, respectively,

R5
uAr u2

2

kSP~v!

b0~v!
. ~17a!

T5
uAtu2

2

kSP~v!

b0~v!
. ~17b!

In Eqs.~17!, Ar andAt are the corresponding magnetic field
amplitudes. The unitarity condition~energy conservation!
thus reads

S1R1T51. ~18!

D. Numerical calculations

As mentioned above, the integral equation~5! is solved
numerically by means of a quadrature scheme. For that pur-
pose, the finite surface is discretized in accordance with the
following criterion for the sampling interval Dx1:
Dx15l/20 in the regions of flat surface impedance,
Dx15 min(l/20,dc/20) within the grating coupler, and
Dx15 min(l/20,ds/20) within the grating scatterer. The
number of sampling points per region isNa5La /Dxa ~the
subscripta stands fora5f, c, ands, respectively!. The total
number of points isN53Nf1Nc1Ns . Therefore, our nu-
merically solving Eq.~5! translates into solving aN3N sys-
tem of linear equations. This allows us to obtain the mag-
netic field evaluated at a set of points on the surface. Then
the scattering amplitudeRp(q,v) can be also computed
through a discretized version of Eq.~8!, which leads to the
differential reflection coefficient by the use of Eq.~13!.

The numerical calculations have been carried out on an
ALPHA AXP-2100. The total number of points employed
varies as needed in the rangeN51000–10 000. As an ex-
ample, the computation time for a surface consisting of
N52000 is 5 min. Energy conservation@Eq. ~18!# is system-
atically checked, being within 2% error in all cases studied
here in the absence of dissipative losses. In order to make
sure that our truncating the total surface length in the nu-
merical calculations does not give rise to inconsistent results,
we have increasedL f , keeping the other lengths fixed, find-
ing that the differences in the results are negligible. In what
follows, we present the results obtained by means of the
numerical procedure described above for the study of both
the excitation of SPP by a grating coupler illuminated by a
Gaussian beam and the scattering of such SPP by another

10 320 53JOSE A. SÁNCHEZ-GIL



grating for frequencies in the vicinity of the lower band edge
in the SPP dispersion relation.

III. SURFACE PLASMON POLARITON COUPLING

First, we will focus on the excitation of SPP by a Gauss-
ian beam impinging on a grating coupler; thus we set
ss50 in Eq. ~9!, so that there is no grating scatterer on the
right-hand side of the grating coupler hindering the propaga-
tion of the SPP. The metal occupying the lower half-space
is characterized by Drude’s dielectric function
«(v)512vp

2/v2, where vp52p/lp is the plasma fre-
quency. The plasma wavelength islp5157.1 nm, which re-
sults from fitting«(v) as given above to the experimental
values of the real part of the dielectric function of silver in
the visible. The period of the sinusoidal grating coupler, un-
less otherwise stated, is hereafter given by Eq.~11!. It de-
pends on the wavelengthl and the angle of incidenceu0 of
the incident beam, and on the wave vectorkSP(v) of the SPP
supported by the vacuum-metal interface@Eq. ~12!#.

The procedure to determine the coupling and diffracted
efficiencies, and the energy balance, is as follows. First, the
results for the squared modulus of the transverse surface
magnetic fielduH(x1)u2 ~see the solid curve in Fig. 5 below,
and also Fig. 2 in Ref. 23! when a Gaussian beam is incident
at u0 on the grating coupler reveal that a SPP is excited,
which propagates in the forward direction—to the right of
the grating—along the flat surface-impedance region. In this
regard, the existence of a strong resonance appearing in the
squared modulus of the scattering amplitude@cf. Eq. ~8!# at
q'kSP corroborates the existence of a forward propagating
SPP. Since the metal is assumed to be lossless, the amplitude
of this forward propagating SPP remains constant, except for
a small oscillation due to the interference with the SPP re-
flected at the edge of the truncated surface.~The amplitude
of this backward-propagating SPP is almost negligible, as
deduced from the visibility of these oscillations and the fact
that R'0.) Hence the SPP coupling efficiencyhSP can be
defined ashSP5T @cf. Eqs.~17!#. Second, the angular distri-
bution of scattered intensity, calculated from Eqs.~8! and
~13!, shows a strong peak atus5u0 that corresponds to the
zeroth diffraction order, its width being inversely propor-
tional to the spatial width of the incident beam. This contri-
bution yields the zeroth-order diffraction efficiencyh0 . In
addition, a small contribution arises near the grazing direc-
tion us&90° due to SPP diffraction effects. However, when
checking energy conservation, one should bear in mind that
the small SPP edge-diffraction contributionSSP comes from
the energy transported by the SPP along the interface, which
has already been accounted for by the coefficientT. Thus
SSPhas to be subtracted fromS. Therefore energy conserva-
tion is redefined:R1T1S85h01h SP (S85S2SSP).

Recall that the metal has been considered lossless with the
aim of providing accurate and reliable results in the sense of
the energy conservation criterion. In a more realistic situa-
tion, dissipative losses in the metal should be taken into ac-
count. This would facilitate the elimination of spurious edge-
diffraction contributions by placing on both sides of the finite
grating coupler flat segments slightly longer than the SPP
mean free path. We will discuss this point below.

Let us first study the influence ofu0 on the coupling ef-

ficiency, denoted byhSP5T. In Fig. 2, the zeroth-order ef-
ficiencies versusu0 are shown for sc51.2 and: ~a!
l5981.2 nm and~b! l5853.3 nm. The coupler periods are,
respectively,dc5648.6 and 562.4 nm, which are obtained
from Eq. ~11! with u05230°. For each value of the wave-
length, three cases have been considered:Nc545, 100, and
150. The curves shown contain information about the SPP
dispersion relation on the surface impedance under consider-
ation. On the one hand, the position of the minimum~maxi-
mum! of the zeroth-order~coupling! efficiency accounts for
the real part of the parallel component of the SPP wave vec-
tor kSP(v): Since there is no observable shift of these posi-
tions from u05230° in Fig. 2, the Re@kSP(v)# can be re-
garded for the set of frequencies and parameters used in
obtaining the results shown in Fig. 2 as accurately given by
the real part of the flat surface-impedance value@cf. Eq.
~12!#. On the other hand, the coupling resonance width in
q space is proportional to the imaginary part of the SPP wave
vector. Hence the wider the resonance, the smaller the SPP
mean free path: in the absence of losses, the only contribu-
tion to Im@kSP(v)# ~Im being the imaginary part! comes
from the SPP-SPP and SPP-photon decay rates. Nonetheless,
this resonance width is also limited by the incident-beam
width in Fourier space, which constitutes in turn the prevail-
ing mechanism for such narrow Gaussian beams as used in
obtaining the results shown in Fig. 2. As expected from the
fact that the beam width increases withNc , the largerNc is
the narrower is the coupling resonance width. Note the hori-
zon for the first diffracted order atu05230.8° and
u05231.1° in Figs. 2~a! and 2~b!, respectively; these Ray-
leigh anomalies appear also more abruptly the largerNc is.

FIG. 2. Zeroth-order diffracted efficiencies as a function of the
angle of incidenceu0 for a grating coupler withsc51.2. Solid
curve, Nc5150; dashed curve,Nc5100; long-dashed curve,
Nc545. ~a! l5981.2 nm («5238) and dc5648.6 nm; ~b!
l5853.3 nm («5228.5) anddc5562.4 nm.
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We assume now that the grating heightsc is varied
whereas all of the other parameters remain fixed. The results
thus obtained for the coupling efficiencies (hSP) are shown
in Fig. 3 for three values of the wavelength:~a! l5981.2
nm; ~b! l5853.3 nm; and~c! l5633 nm. Four distinct val-
ues of the number of periodsNc have been considered in
every case:Nc520, 45, 100, and 150. The common features
to all the coupling efficiencies are: rapid increase~slow de-
crease! for low ~high! values ofsc , exhibiting a maximum at
an intermediate valuesc

0 . This behavior can be explained by
means of the following argument.8 For very smooth surfaces,
the grating allows the coupling of the incoming beam into a
SPP, which then propagates with a long mean free path~note
that in this case the metal is lossless!; the larger the corruga-
tion, the better the excitation is. When the grating height
becomes sufficiently large, the probability of a SPP coupling
back into light starts to grow, thus reducing the efficiency of
the SPP excitation. Therefore, the maximum coupling ob-
served in the curves of Fig. 3 appears as a compromise be-
tween both processes. Beyond that optimum height of maxi-
mum coupling, the SPP radiative damping gradually
predominates over the excitation, leading to a decrease of the
coupling efficiency. It is also of interest to analyze the influ-
ence of the numberNc of periods in Fig. 3. AsNc increases,
the position of the maximum coupling efficiency shifts to-
wards lower values of the grating heightsc . This reveals that
shortening the grating coupler~equivalently, the illuminated
spot size! reduces the radiative damping rate relatively faster
than the excitation rate.

On the other hand, note that the maximum value of the
coupling efficiency saturates beyondNc*100 at
hSP'50% (h0'50%). In contrast, it is well known that
zeroth-order efficiencies close to zero can be theoretically
and experimentally obtained.8–12Once again, one has to bear
in mind that the results shown in Fig. 3 correspond to a
lossless metal. In this connection, we have calculatedh0
versussc as in Fig. 3 but taking into account the imaginary
part of the dielectric function« I of silver at the correspond-
ing frequencies~cf. Ref. 38!. The results reveal that the po-
sitionssc

0 at whichh0 is minimum do not differ appreciably
from those shown in Fig. 3. However these minimum values
h0
min are smaller when dissipative losses are included pro-

vided thatNc>100, and tend to become even smaller as the
length of the illuminated grating is further increased. In Fig.
4, some of these results for the zeroth-order efficiencies are
shown as a function of the renormalized scalezc /d, where
we have used the relationship@cf. Eq. ~3!# between surface
impedances(x1) and surface roughnessz(x1) established by
Maradudin.34 In this manner, it is seen that the almost invari-
ant behavior of the diffracted efficiencies for different fre-
quencies is maintained not only in the infinite grating limit,12

but also for finite gratings under conditions of small illumi-
nated spot size.

The results forl5633 nm in Fig. 4~c! can be compared
with the theoretical and experimental results of Ref. 12. The
maximum coupling efficiency forNc5200 occurring at
zc
0/dc'0.04 corresponds to a surface height ofzc

0'16 nm, in

FIG. 3. Coupling efficiencies as a function of surface-impedance
grating height sc . Solid curve, Nc5150; long-dashed curve,
Nc5100; dashed curve,Nc545; dot-dashed curve,Nc520. ~a!
l5981.2 nm («5238) and dc5648.6 nm; ~b! l5853.3 nm
(«5228.5) anddc5562.4 nm;~c! l5633 nm («5216.4) and
dc5413.1 nm.

FIG. 4. Zeroth-order diffracted efficiencies as a function of the
ratio zc /dc ~real corrugation grating height over period!. Dots,
Nc5200; solid curve,Nc5150; long-dashed curve,Nc5100;
dashed curve,Nc545; dot-dashed curve,Nc520. ~a! l5981.2 nm
(«52381 i2.5) and dc5648.6 nm; ~b! l5853.3 nm
(«5228.51 i1.94) and dc5562.4 nm; ~c! l5633 nm
(«5216.41 i0.5) anddc5413.1 nm.
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agreement with the results shown in Fig. 5 of Ref. 12. This
gives support to the use of a surface impedance boundary
condition to simplify the scattering integral equations~cf.
Sec. II!, not only from a qualitative standpoint, but also as
regards obtaining accurate quantitative results, inasmuch as
the conditions for its validity are satisfied34 ~note that these
conditions are ensured forl5633 nm,dc5413.1 nm, and
zc
0516 nm!. The disagreement of the calculated values of the
zeroth-order efficiencies shown in Fig. 4~c! with respect to
the experimental values given in Ref. 12 stem from the dif-
ferent number of periods illuminated by the incoming beam:
Nc<200 in our case versusNc55000 therein, in practice
equivalent to an infinite grating.

Still the question remains open as to whether or not a
lower zeroth-order efficiency leads to a higher SPP coupling
efficiency when energy conservation is not guaranteed. To
answer this question, we show in Fig. 5uH(x1)u2 in three
cases that differ from each other only in the value of« I : ~a!
lossless metal« I50; ~b! real silver « I50.5; and~c! very
lossy metal« I510. In all three cases, the other parameters
are: l5633 nm, dc5413.1 nm,sc52, andNc545. The
rapid oscillations appearing within the grating coupler region
have been smoothed in Fig. 5 by averaging point by point
over the perioddc . Apart from the fact that the amplitude of
the excited SPP decays exponentially when« IÞ0 on propa-
gating along the flat surface, one can extract information
about the output power carried by the SPP from the value of
uH(x1)u2 at the right border of the grating coupler. From
these values, it is evident that the SPP output power is higher
the less lossy the metal is, despite the fact thath0 decreases
with « I . In other words, Figs. 3, 4, and 5 demonstrate that
lower zeroth-order efficiencies do not necessarily indicate
higher SPP coupling efficiencies when comparing different
materials and/or frequencies, since dissipative effects be-
come very important when resonance takes place. Note also

the strong magnetic fields resonantly generated within the
grating coupler, which are indeed larger than shown in Fig. 5
due to the fact that the oscillations of perioddc have been
smoothed. Enhancement factors of the order of 100 have
been found in agreement with previous works;8–11 they di-
minish as dissipative losses increase, as expected. These fac-
tors play a crucial role in the surface-enhanced Raman spec-
troscopy of molecules adsorbed on such metallic gratings.13

IV. SURFACE PLASMON POLARITON SCATTERING

Let us now study the scattering of a SPP by another sinu-
soidal grating placed in its propagation path on the metal
surface@cf. Eq. ~9!#. The scatterer grating period and height
throughout this section will beds5392.5 nm andss53, re-
spectively. As a result of the scattering, the incoming SPP is
partially reflected, transmitted, and converted into radiating
modes into the vacuum half-space. This process is funda-
mentally ruled by the frequency dependence of the SPP wave
vector kSP(v) on the grating parametersds and ss . Thus,
before going on to the finite grating case we are interested in,
it is necessary to calculate the SPP dispersion relation for an
infinite sinusoidal grating impedance described by the pa-
rametersds andss given above. This has been done numeri-
cally by looking for the zeros of the determinant of the ma-
trix resulting from imposing the impedance boundary
condition ~2! on the magnetic field amplitude written in the
form of a truncated Rayleigh expansion.27 The results thus
obtained, not shown here, reveal that a gap in the propaga-
tion of SPP opens up for frequenciesv such that
0.45,v/(cG),0.4945 (G52p/ds), separating the first
two allowed bands. In what follows, we focus on two
frequencies: v/(cG)50.44 (l5892.0 nm!, and
v/(cG)50.46 (l5853.3 nm!, which lie, respectively, in the
band and in the gap of the SPP dispersion relation for the
infinite grating. Note that both frequencies are close to the
lower band edge, where the interesting finite-scale effects are
more clearly manifested.

In order to excite a SPP of the required frequency, a grat-
ing coupler of perioddc defined by Eq.~11! and consisting
of Nc545 periods is illuminated by a Gaussian beam as
described in the preceding section. The energy conservation
criterion for the entire process—coupling1scattering—is
satisfied in all the cases shown below within 2% error, as
mentioned in Sec. II. Specifically, since we are now inter-
ested in the scattering of the SPP by the second grating, we
proceed as follows: First, the SPP transmission coefficient
T0 is calculated in the absence of grating scatterer (ss50),
keeping all the other parameters fixed.T0 yields the squared
modulus of the amplitude of the incoming SPP. Then the
normalized SPP reflection and transmission coefficients as-
sociated with the interaction of the SPP with the second grat-
ing are obtained by dividingR andT, respectively, resulting
from the entire process with grating scatterer (ssÞ0), by
T0 . Finally, the total radiated intensity due to the conversion
of the SPP into volume waves at the grating scatterer can be
deduced from energy conservation arguments. It should be
emphasized, however, that in some cases one may be inter-
ested in the entire process as, for instance, when a filter is
placed sufficiently close to a coupler. Under such circum-
stances, our numerical results based on the scattering integral

FIG. 5. Square modulus of the total surface magnetic field in
arbitrary units resulting from illuminatingNc545 periods of a grat-
ing coupler of perioddc5562.4 nm and heightsc52. The other
parameters arel5853.3 nm, L f560l, and Ls54.6l (ss50).
Solid curve, «5228.5; dashed curve,«5228.51i1.94; long-
dashed curve,«5228.51i10. The curves have been smoothed by
averaging point by point over the perioddc .
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equation formulation yield straightforwardly the relevant
physical magnitudes of the problem.

A. Frequency in the band: Resonance transmission

Figure 6 showsuH(x1)u2 for sc50.5 in the region within
the grating scatterer, and its vicinity, for three values of the
number of periods:~a! Ns515; ~b! Ns522; and ~c!
Ns530. As is seen in Fig. 6, strong oscillations producing
significant field enhancements appear within the grating scat-
terer, symmetrically located aboutx150, that follow the
sinusoidal profile of the surface impedance. In this regard,
the field enhancements obtained within the grating have been
found to be larger the closer the frequency is to the band
edge. As a result of the scattering process, the incoming SPP
is partially transmitted~see Fig. 6 forx1*Nsds/2) and re-
flected~see Fig. 6 forx1&2Nsds/2). The reflected SPP can
be traced along the surface through its interference with the
incoming SPP within the flat section between the coupler and
the scatterer. Moreover, although not shown in Fig. 6, the
reflected SPP interferes with the magnetic field on the grating
coupler producing a complicated pattern, appearing as the
outcoming SPP on the left-hand side of the coupler. As men-
tioned above, the constant field squared moduli at the left-
most and rightmost flat sections of the entire surface yield
the SPP reflection and transmission coefficients, respectively.

In Fig. 7, the angular distribution of radiated intensity is
shown for the same case as in Fig. 6~b!. Apart from the
contributions~zeroth order and edge diffraction! described in
the preceding section, the effects of the scattering process are

evident in the contributions arising near grazing scattering
anglesuusu&90°. In addition, the tiny peak atus530° reveals
that a small fraction of the reflected SPP couples back into
propagating waves through its interaction with the grating
coupler. Note that, in the absence of reflected SPP, neither
the peak atus530° nor the contribution at negative grazing
scattering angles ought to be present, as our results have
confirmed~although not shown here!.

Let us now return to the analysis of the reflection and
transmission coefficients as derived fromuH(x1)u2 in Fig. 6.
Note that the magnetic field inside the grating scatterer
( ux1u<Nsds/2) presents a slowly varying envelope modulat-
ing the high-frequency oscillations mentioned above. The
spatial frequency of this envelope—divided by a factor of 2
owing to the squared modulus—yields the crystal momen-
tum of the SPP mode on an infinite grating. Since the fre-
quency of the incoming SPP matches that of the SPP mode
kSP
cryst close below the lower band edge of the SPP band struc-
ture, the real part of the crystal momemtum is consequently
small. ~In fact, it tends to zero as the frequency approaches
the band gap.! Therefore the surface field structures in Figs.
6~a!, 6~b!, and 6~c! demonstrate that the grating lengths of
Ls /ds515, 22, and 30 periods, respectively, approximately
correspond to 1/2, 3/4, and 1 period of the SPP crystal mode.
If we now represent the normalized transmission and reflec-
tion coefficients as a function of the number of grating peri-
ods~see Fig. 8!, similar oscillations are observed. It turns out
that maximum resonant SPP transmission is achieved when
the length of the grating matches an integer number of half
the period of the SPP crystal mode (Ls5np/kSP

cryst,
n51,2,3,. . . ). On theother hand, the incident SPP is more
strongly reflected—minimum transmission—when the grat-
ing length lies between those values of resonant transmission
lengths. The radiated energy might represent a substantial
part of the energy (;30%), but it originates to a large extent
in both edge-diffraction effects and grating-induced SPP-
photon coupling. The independence of the normalized trans-
mission coefficient from the intensity of the incoming SPP is
demonstrated by considering another heightsc of the illumi-
nated grating coupler: the result obtained forsc52, not

FIG. 6. uH(x1)u2 versusx1 /ds for l5892 nm,dc5588.5 nm,
sc50.5, Nc545, «5231.2, u05230°, andL f510l, with the
presence of a grating scatterer of periodds5392.5 nm @so that
v/(cG)50.44# and height ss53. ~a! Ns515, ~b! Ns522, ~c!
Ns530.

FIG. 7. Angular distribution of scattered intensity for the same
scattering geometry as in Fig. 6~b!.
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shown here, coincides with that of Fig. 8~a! for sc50.5.
However, sinceR/T0 underestimates the true reflection
coefficient—part of the reflected SPP couples back into a
diffracted peak atus530° on passing through the coupler—
there exist differences in the normalized reflection coefficient
@see Fig. 8~b!#; the SPP-photon coupling forsc52 is rela-
tively larger than forsc50.5, thus producing a smaller
R/T0 in the case ofsc52. To emphasize the existence of
strong finite-scale effects, we would like to stress the fact
that significant reflection coefficients, of the order of 30%
~actually, an estimate of 60% or larger is made if the re-
flected SPP reradiation contributions are considered!, are
found in spite of the frequency lying within the band of the
SPP dispersion relation, for which one would expect total
transmission. This is not surprising, however, if it is recalled
that the finite grating scatterer behaves as a Fabry-Perot in-
terferometer, or, similarly, as a resonance scattering potential
barrier.39 It should be mentioned that other finite-scale effects
in the frequency dependence of the transmission coefficient
have been shown elsewhere.28

B. Frequency in the gap: Tunneling

Figure 9 showsuH(x1)u2 for sc50.5 andNs54, 8, and 12
periods, within the grating scatterer (ux1u<Nsds/2), Leaving
aside the fine structure related to the rapid oscillations com-
mented on above@see Fig. 6#, we observe in the envelope of
the squared modulus of the magnetic field strong enhance-
ments about the first two periods, followed by a rapid decay.
This decay is approximately exponential, as expected, and its
decay length must be inversely proportional to the imaginary

part of the SPP crystal momemtum~its real part should van-
ish!. Despite the fact that the frequency lies in the gap, when
the length of the grating is sufficiently small the SPP can
tunnel through the structure as revealed in Figs. 9~a! and
9~b!, leading to a significant amount of transmitted SPP. The
dependence of the SPP tunneling intensity on the barrier
length can be studied by plotting the normalized transmis-
sion coefficient as a function of the grating length in units of
the period (Ls /ds5Ns). This is done in Fig. 10~a! for
sc50.5. As in Fig. 8~a!, the result obtained by means of a
different grating coupler height (sc52, not shown here! is
indistinguishable from that forsc50.5. The reflection coef-
ficient is also plotted for two values ofsc @see Fig. 10~b!#.
We observe, regardless of the input power, a rapid decay of
T as Ns increases up toNs512, beyond which tunneling
becomes negligible and the incoming SPP is reflected back
(R/T0'60%). The remaining energy (;40%) is scattered
into propagating modes in the vacuum. The decay ofT
slightly departs from a negative exponential, possibly due to
both radiative losses and the transient regime occurring for
very short grating lengths (Ns&4).

V. CONCLUSIONS

In summary, we have applied the exact Green’s-theorem
integral equation formalism for the scattering of electromag-
netic waves from a corrugated surface to study both the cou-
pling of a Gaussian beam into a surface plasmon polariton
through a finite, sinusoidal metal grating coupler, and the
subsequent scattering of the SPP thus excited by another
sinusoidal grating of finite length. A planar-surface imped-
ance boundary condition has been used to write the normal

FIG. 8. Normalized~a! transmission and~b! reflection coeffi-
cients as a function of the number of grating scatterer periodsNs

(ds5392.5 nm andss53). ~a! sc50.5. ~b! Solid curve,sc50.5;
dashed curve,sc52. The other parameters arel5892 nm
@v/(cG)50.44#, dc5588.5 nm,Nc545, «5231.2, u05230°,
andL f510l.

FIG. 9. Same as in Fig. 6 but forl5853.3 nm
@v/(cG)50.46#, «5228.5, anddc5562.4 nm. ~a! Ns54, ~b!
Ns58, ~c! Ns512.
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derivative of the magnetic field on the surface in terms of the
surface magnetic field itself. In this manner, the integral
equations are simplified, leading to a considerable reduction
of the computation time and memory required in the numeri-
cal procedure, while still providing reliable results for the
range of parameters studied here. In particular, the magnetic
field on the surface, the angular distribution of the scattered
intensity, and the angular spectrum in the nonradiative region
have been calculated. Energy balance is controlled not only
by obtaining the entire energy radiated into the vacuum half-
space, but also by calculating the power flow carried by the
SPP from its amplitude at the surface edges.

As regards the excitation of SPP through a grating for
which only the zeroth order is a propagating one, finite-scale
effects have been addressed in the dependence of the zeroth
order and coupling efficiencies on the angle of incidence
u0 and the grating heightsc . Upon varyingu0 , it has been
shown that the resonance becomes narrower as the illumi-
nated length of the grating coupler increases, provided that
this length does not exceed the corresponding SPP damping
length for the metal surface under consideration. No appre-
ciable angular shifts are observed in our calculations for the
frequencies and coupler parameters dealt with, indicating
that the real part of the wave vector of the SPP propagating
along the finite grating couplers studied here does not differ
appreciably from its value for a planar surface. Our results
for the coupling efficiency as a function of the grating height
manifest a broadening of the resonance with decreasing illu-
minated coupler length; moreover, a shift of the position of
the maximum coupling efficiency towards larger values of
the surface height is observed when the coupler length de-
creases (Nc<150). In addition, the influence of dissipative
losses inside the metal has been studied by arbitrarily modi-
fying the imaginary part of the dielectric function, keeping

the real part fixed. It has been shown that, despite the fact
that the zeroth-order efficiency for a lossy metal, becomes
smaller than that for a lossless~or less lossy! metal, appar-
ently indicating a stronger coupling efficiency, the SPP
power output escaping from the grating coupler is neverthe-
less larger the less lossy the metal is. The reason why this
occurs is obviously the total conversion of the energy not
contained in the zeroth diffracted order into SPP in a lossless
metal~actually, a coupling efficiency of;50% is found that
manifests the interplay between SPP excitation and reradia-
tion mechanisms!; in contrast, absorption is resonantly en-
hanced in a lossy metal, thus highly reducing the effective
photon-SPP conversion rate. In this regard, large field en-
hancements (;100) appear when the photon-SPP coupling
peaks, being larger the less lossy the metal is.

The reflection and transmission of SPP, and their conver-
sion into volume waves, by a finite sinusoidal metallic grat-
ing has also been studied for two frequencies of the incident
EM wave, which lie in the band and in the gap, respectively,
of the SPP dispersion relation. These frequencies are close
enough to the lower band edge so that finite-scale effects are
encountered. When the frequency lies in the band, the reflec-
tion and transmission coefficients show a strongly oscillatory
behavior as functions of the grating scatterer length in such a
way that maximum transmission occurs when the number of
periods coincides resonantly with an integer number of half
the period of the SPP crystal mode. This resonant transmis-
sion is accompanied by moderate field enhancements
(;4). When the frequency lies in the gap, it is found that the
SPP can tunnel through the grating provided that its width is
sufficiently small (Ns<10 in this case!. The decay of the
transmission coefficient has been calculated as a function of
the barrier length. BeyondNs512 the grating reflects a large
part (;60% in the absence of dissipative losses! of the in-
coming SPP power flow, except for a significant amount of
energy (;40%) that is radiated into the vacuum.

We would like to stress the point here that the emphasis in
this work has been put on the study of diffraction by metal
gratings with confined geometries, for which the numerical
treatment based on the exact integral equation formulation
gives rigorous results. These geometries might be of interest
in practical applications such as couplers, filters, and other
optical devices not only as concerns SPP, but also for other
kind of surface waves~polaritons!. On the other hand, it
should be mentioned that the electromagnetic field at any
point above the metal surface can be straightforwardly cal-
culated from the surface field@cf. Eq.~4!#; this could provide
valuable information in the experimental and theoretical in-
vestigation of the propagation and localization of SPP in
near-field optics.29–32
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FIG. 10. Same as in Fig. 8 but forl5853.3 nm
@v/(cG)50.46#, «5228.5, anddc5562.4 nm.
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