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We model photoelectron angular distributions obtained earlier by Himpselet al. @Phys. Rev. Lett.68, 3611
~1992!# for the F 2p bands in LiF~100!. The F 2p states are treated within a many-body, quasiparticle approach,
and a nearly-free-electron model is presented for the description of conduction-band states relevant to the
photoemission process. In the quasiparticle results, we find a band gap of 14.4 eV and a F 2p bandwidth of 3.6
eV, in satisfactory agreement with experimental values of 14.2 and 3.5 eV for these respective quantities. A
method for computing photoelectron angular distributions is presented, followed by a comparison of simulated
and measured photoelectron angular distributions for several parts of the three-dimensional Brillouin zone. In
this comparison, constant-energy contours in the F 2p bands are clearly portrayed in both theoretical and
experimental images. Using the model, we also identify the origin of a Brillouin-zone-dependent intensity
variation for equivalent valence states, i.e., states which are related by reflection through a~010!-type Bragg
plane and which lie close to such a plane.

I. INTRODUCTION

Lithium fluoride ~LiF! has been widely used in several
technological applications such as in x-ray monochroma-
tors,1 as a filter for ultraviolet radiation,2 and in thermolumi-
nescent dosimetry.3 LiF may also prove useful in
germanium-device, epitaxial heterostructures,4 and has been
considered for neutron detector5 and other uses.6 LiF is also
interesting for a variety of fundamental physical reasons,
such as the fact that it lies essentially at one extreme of the
‘‘band-gap scale,’’ making it a prototypical insulator. Indeed,
in many ways, this rock-salt-structure material may be
thought of as a face-centered-cubic, noble-gas solid.

Among the many intriguing physical properties of this
material, LiF has the widest band gap~14.2 eV! of any ma-
terial except for exotic systems such as noble-gas solids.
Along with its large band gap, LiF exhibits strong excitonic
effects in its optical spectra.7–9 These effects, interesting in
their own right, considerably complicate the determination of
the mobility edge~quasiparticle band gap! using optical
spectroscopy.8 One may also consider the problems of under-
standing and measuring the F 2s and F 2p bandwidths.10,11

There are substantial contributions to these parameters from
many-body effects. Indeed, the F 2p band has been proposed
as a good system for studying the behavior of localized elec-
tron states~in this case, F 2p states! in solids.10

Angle-resolved photoelectron spectroscopy, both in its di-
rect and inverse versions, is an invaluable probe for use in
studying band structures of solids. In this work, we model a
variety of experimental data for LiF, and especially valence-
band photoelectron spectroscopy results. We first model the
band structure of this material, including the band gap,12 F
2p band width,10 and F 2s to F 2p energy separation.13 This is

done in a detailed, many-body~quasiparticle! fashion, fol-
lowing the approach of Hybertsen and Louie.14 Using their
approach, we find good agreement with experiment for the
above quantities.

Once the band-structure results are in hand, we utilize
them to simulate detailed photoelectron angular distributions
~PAD’s! for LiF. Such PAD’s for LiF F 2p electrons were
measured10 using a display-type electron analyzer with an
84° full-cone angle of acceptance.15 Because data for each
PAD were collected using monochromatic incident radiation,
while counting only the photoelectrons lying within a narrow
range of energies, the PAD’s displayed reciprocal-space, con-
stant energy contours in the LiF, F 2p band structure. This
enabled unambiguous determination of the F 2p band ex-
trema, yielding a definitive measurement of the bandwidth,
along with the dispersion of these F 2p states. Other ex-
amples of rendering band structures, and particularly Fermi
surfaces, as two-dimensional slices ink space have been re-
ported recently.16

The present PAD’s contain much more information re-
garding the F 2p valence-band states than was used to deter-
mine the bandwidth. However, a great deal of this informa-
tion is very complicated to interpret. The PAD’s sample three
F 2p bands that disperse in a complicated fashion as one
traverses the Brillouin zone. Rather than attempt to infer
more about the band structure from the experimental PAD’s
we found it more profitable to compare the theoretical PAD’s
with their experimental counterparts. Besides ascertaining
the trustworthiness of the theory, such comparisons may also
distinguish information in the experimental PAD’s that is re-
lated to the intrinsic, F 2p bands, versus all forms of extrin-
sic, experimental artifacts.

This paper is organized as follows. We first define the
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‘‘quasiparticle’’ description of electrons that we use. Then, a
section is devoted to the electronic structure of bulk LiF;
electronic excitations in LiF have been studied extensively
both experimentally and theoretically and we review some of
the work by others. Particular care must be taken, we note,
when inferring band edges from absorption spectra. We
present quasiparticle calculations, carried out by the
Hybertsen-Louie method, of the LiF band structure. With the
results of these calculations, we construct Slater-Koster17 and
nearly-free-electron descriptions of photoelectron initial and
final states, respectively.

The theory of photoemission from solids is well devel-
oped and has been described in several classic papers.18–20

Building on this work, we develop the particular model that
is used here to compute PAD’s. A PAD is identified by pho-
ton energy and polarization and by the electron initial-state
energyE. We use the convention of havingE50 for states at
the valence-band maximum. Several pertinent issues are ad-
dressed here: kinematical effects, surface effects~since we
describe electron states based largely on calculations for bulk
LiF!, and various experimental considerations. We discuss
the elements of the present model and we assemble them to
arrive at formulas used here to predict PAD’s.

The central result of this work, simulated PAD’s are pre-
sented and compared to their experimental counterparts. The
comparison includes quantitative determination of the level
of correlation between simulation and experiment. The
PAD’s are displayed in this work using gray-scale images, a
manner of presentation that reveals physical effects quite
readily. We analyze one particularly striking effect seen in
the images, viz., a ‘‘zone-selection’’ effect. This involves a
lowering of the symmetry, which s to be found in the PAD’s,
from the symmetry that is present in the underlying band
structure.~This symmetry in the band structure is best illus-
trated within the extended-zone scheme. A different sort of
zone-selection effect has been reported elsewhere for
graphite.21! Thereafter, we provide some concluding re-
marks.

II. QUASIPARTICLE CONCEPT

One can discuss photoemission within aquasiparticle
picture.22 In such a picture, the photoemission process,
which involves photoexcitation of a complex, many-electron
system~a crystal!, is treated phenomenologically as the ex-
citation of a single, renormalized electron~quasiparticle!. A
quasiparticle treatment of electrons can be based on the rig-
orous, field-theoretic modeling of a many-body system. The
band-structure calculation in this work relies on a detailed,
field-theoretic treatment of electron self-energy effects.14 In
modeling PAD’s meanwhile, we rely on more approximate
~intuitive and computationally simpler! quasiparticle descrip-
tions of electrons. A treatment of the PAD’s at the same level
of detail as that used to describe the valence band structure
would be very difficult.

A quasiparticle energyis either ~i! minus the removal
energy for an occupied state or~ii ! the addition energy for an
unoccupied state. Quasiparticle energies, for states in valence
and conduction bands, can be measured respectively by di-
rect and inverse photoelectron spectroscopy. These methods
respectively involve processes in which a solid loses or ac-

quires an electron. Such energies are not directly probed by
nonionizing excitations that are probed, for instance, in ab-
sorption spectroscopy. Such a spectroscopy really involves
the creation of electron-hole pairs, but not single electrons or
holes. In particular, the onset of absorption, as one increases
incident photon energy, occurs initially because of the forma-
tion of excitons.

When computing photoelectron angular distributions, one
needs to properly identify the initial and final states of one’s
physical system. In the case of photoemission from a solid,
the initial state of the system is a crystal in its ground state,
plus an incoming photon. The final state of the system,
achieved by photoexcitation when that photon is absorbed, is
the crystal with a hole in its valence band, plus the ejected
photoelectron. One may describe initial and final states dur-
ing photoemission not only in terms of the system initial and
final states, but more relevantly for this work, also in terms
of the electron~quasiparticle! initial and final states.

In this work, photoexcitation matrix elements between
system initial and final states are approximated by one-
electron matrix elements between associated, quasiparticle
wave functions. Whereas photoemission involves an ionizing
excitation, there are nonetheless electron-hole interactions in
the system final state and we neglect these interactions.
Within the quasiparticle approach, necessary summations
over electron initial and final states are achieved by direct
summation over initial states and by construction of an elec-
tron final-state propagator. In photoemission, the system final
state~for the many-body solid! can be a superposition of a
continuum of stationary states. Phenomenologically, this
leads to finite mean free paths for photoelectrons. In a qua-
siparticle description, quasiparticles correspondingly have
complex self-energies~which produces equivalent damping!.

III. ELECTRONIC STRUCTURE OF BULK LiF

A. Background: Previous work

As determined from photoelectron spectroscopy, the band
gap of LiF is 14.1–14.2 eV,12 separating F 2p valence and Li
2s conduction bands. The conduction-band minimum
~CBM! is at the zone center~G!. The valence-band maximum
~VBM ! is also at the zone center, and F 2p band energies
extend over a total width of 3.5 eV.10 The next lowest occu-
pied band has predominantly F 2s character and its center is
found to lie 24.9 eV below the VBM.13

Besides photoelectron spectroscopy, which gives the
above results, one may also consider optical data.7–9 Con-
sidere2 spectra presented in these references, wheree2~v! is
the imaginary part of the dielectric function as a function of
photon frequencyv. These spectra exhibit a broad excitonic
peak near photon energy\v512.6 eV, followed by a shoul-
der beginning around\v513.7 eV, wheree2~v! has a local
minimum. ~In early work, this minimum was incorrectly in-
terpreted as the mobility edge.! Going to even higher photon
energies,e2~v! varies smoothly until above\v516 eV.
There is no particular indication of the mobility edge near
\v514.2 eV in e2~v!, illustrating the difficulty of directly
assessing such a quantity by optical methods. For instance,
by analyzing reflectance data with the aid of a particular
model for excitons, Piacentini9 estimates the mobility edge to
lie at 14.5 eV, slightly higher than is given by photoemission.
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Of the past theoretical work on the band structure of LiF,
we shall emphasize a density-functional23 calculation by
Zunger and Freeman,24 done using theXa-method with sev-
eral values ofa, and a Hartree-Fock calculation by Kunz,25

who also cites other work. As is common in density-
functional theory, Zunger and Freeman find too small a gap:
9.8 eV for a52

3 and 10.5 eV fora51. However, the F 2p
bandwidth is about 3.1 eV fora52

3, and it is even smaller
~2.5 eV! for a51. Zunger and Freeman also present a model
that considers the total-energy difference induced by intro-
duction of an electron or hole in the solid. This leads to a
13.9-eV band gap, but Zunger and Freeman do not discuss
the F 2p bandwidth found in this approach. As is common in
Hartree-Fock results, the band gap is far too large~22.7 eV!
in Kunz’s work. With the aid of a particular model for cor-
relation effects, Kunz estimates correlation effects on band
energies. This gives a band gap much closer to the experi-
mental one. Kunz found a width of the F 2p bands equal to
4 eV without correlation effects, but 3.1 eV with correlation
effects.

B. This work: Computational details

We calculate band energies in the Hybertsen-Louie
scheme, which is anab initio, many-body, quasiparticle ap-
proach. We rely on the ‘‘GW approximation’’ to the one-
electron, self-energy operator. This approximation involves
expansion of the electron self-energy in terms of the Green’s
functionG and a dynamically screened Coulomb interaction
W. For solids, which have substantial screening effects, ter-
minating the expansion at lowest order inW is often an ac-
ceptable approximation, known as theGW approximation.
This approximation treats many-body effects on band ener-
gies with greater accuracy than is found in either the density-
functional or Hartree-Fock approaches, evenmodulo the
above-mentionedad hocextensions of such approaches. The
GWapproximation has typical errors of 0.1–0.2 eV in band-
energy differences for a wide variety of semiconductors and
insulators, but it is computationally more demanding. For an
extensive discussion of theGWapproach, we refer the reader
to the length review by Hedin and Lundqvist.22 A detailed
presentation of more recent, first-principles quasiparticle cal-
culations is given in the work by Hybertsen and Louie,14 in
addition to others.26,27

In computing the band structure, we rely on first prin-
ciples, except for the use of the experimental~zero-
temperature, zero-pressure! lattice constant~4.03 Å! and
crystal structure~rock salt!.28 Our work includes a self-
consistent calculation of the charge density and band orbitals
and energies in the local-density approximation~LDA !.23We
use the Ceperley-Alder exchange-correlation functional,29

but generate standard, norm-conserving pseudopotentials30

by the methods of Vanderbilt31 in the core-polarization-
potential ~CPP! formulation.27,32–34 This formulation treats
core-valence exchange interactions in an~exact! Hartree-
Fock fashion and provides a model for core-valence correla-
tion, including dynamical core polarization in the presence of
valence electrons. We employ an extended version of the
CPP approach of Mu¨ller, Flesch, and Meyer,33 with first-
principles CPP parameters of Shirley and Martin.32 ~In con-
trast, Shirley, Zhu, and Louie27 employed CPP’s param-
etrized using vapor-phase, atomic spectral data for several

elements present in semiconductors, because of difficulties
with accurately treating core-valence correlation strictly by
first principles in post-transition elements.!

The solid-state, LDA calculation was done using sepa-
rable pseudopotentials.35 Pseudopotentiald channels were
considered as local potentials and nine radial projectors de-
scribed s- and p-channel nonlocality. The nine projectors
constrained the nonlocal~separable! pseudopotentials to
have the same action as semilocal~nonseparable! pseudopo-
tentials within the subspace of the zeroth, first, and second
energy derivatives of the radial pseudovalence wave func-
tions. We carried out rigorous tests to ensure the absence of
spurious solutions in the separable case. The radial Schro¨-
dinger equation was solved for the solution regular at the
origin, but with arbitrary boundary conditions at a radius
well outside of the atomic core. This solution was obtained
by three different approaches:~i! radial integration of the
ordinary differential equation in the semilocal case;~ii ! tak-
ing the effective Hamiltonian associated with each set of
imposed boundary conditions and solving it for the lowest
few energies using a converged, finite basis set, for the
semilocal pseudopotential; and~iii ! the same as~ii !, but for
the separable pseudopotential. For the entire range of ener-
gies probed by summing over bands to construct the solid-
state, one-electron Green’s function, there were only minor
differences between scattering properties found in all three
approaches.

We used a plane-wave basis set with a 100-Rydberg cutoff
and tenk points36 in the irreducible wedge of the Brillouin
zone. Hamiltonian-matrixdiagonalizationwas done essen-
tially in the preconditioned, conjugate-gradient fashion dis-
cussed by Teter, Payne, and Allan.37 ~Aminor difference was
our exact diagonalization of a small block of the matrix to
enhance preconditioning. This was actually of little benefit.!
We achieved self-consistency in the indirect Broyden
scheme.38 To accelerate iterative diagonalization, we used
wave functions from previous iterations as initial guesses for
wave functions in each self-consistency loop, beginning with
random numbers in the first iteration. Fast Fourier-transform
~FFT! technology was used extensively.

We included the lowest 60 bands in the Green’s function
used in quasiparticle calculations, which included all states
up to 130 eV above the electron chemical potential. FFT
techniques were used in convolutions required to compute
the static Linhard polarizability matrix and self-energy. Bare
and screened Coulomb potentials were expanded up to 100-
Rydberg and 36-Rydberg cutoffs, respectively. All local-field
effects were included. The dielectric matrix was extended to
finite frequency using a generalized, plasmon-pole model,
suitably modified according to the CPP formulation.27 We
obtained, theoretically,e`51.97, in adequate agreement with
the experimental value of 1.94.39

C. This work: Band-structure results

Besides the quasiparticle calculations, we also carried out
LDA calculations with LDA-based pseudopotentials, for di-
agnostic purposes. These LDA-based pseudopotentials were
generated in exactly the same fashion as the CPP-based
pseudopotentials used throughout the quasiparticle calcula-
tions, except for treatment of core-valence exchange and cor-
relation. When generating the LDA-based pseudopotentials,
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we used the nonlinear core correction for lithium.40 This cor-
rection was not needed when generating CPP-based pseudo-
potentials, which were not of density-functional origin. In
the LDA, the LiF band gap was 8.7 eV, the F 2p bandwidth
was 3.1 eV, and the centroid of the F 2s band was 19.0 eV
below the VBM. These LDA results for band energies fell
within 3% of the results of three other LDA calculations
done in the pseudopotential, plane-wave,41 pseudopotential,
mixed-basis,42 and full-potential, linear muffin-tin orbital43

methods. Also, we predicted the structural properties of LiF
with an accuracy to be expected for LDA results.

The quasiparticle results yielded considerable improve-
ment over LDA results regarding agreement with experiment
for the band gap, the F 2p bandwidth, and the F 2s to F 2p
splitting. The band gap was 14.4 eV, the bandwidth 3.6 eV,
and the centroid of the F 2s band lay 21.7 eV below the
VBM. These results corroborate the suggestion, by Himpsel
et al.,10 that the F 2p band is wider than predicted by
density-functional theory. In Table I we summarize results
for LiF that are discussed in this section. In Fig. 1 we plot
quasiparticle F 2s and F 2p bands.

Regarding theGW approximation’s giving a larger F 2p
bandwidth than the LDA, similar results occur in other ma-
terials, such as C60,

44 LiCl,45 and CaF2. It is useful, when
discussing many-body effects on the bandwidths in insula-
tors, to describe the replacement of the LDA with theGW
approximation in two parts. First, there is the replacement of
the LDA with the Hartree-Fock approach which treats ex-
change exactly but neglects correlation altogether. Second,
there is the inclusion of correlation effects at some level of
approximation. The bandwidths given by the Hartree-Fock
approach are similar to those given by theGW approxima-
tion, so they are also larger than the bandwidths given by the
LDA. Correlation effects do not necessarily narrow a band-

width from Hartree-Fock results. Indeed, within model
Hamiltonians, we have found instances of correlation effects
increasing bandwidths.

Underestimation by the LDA of bandwidths in insulators
appears to follow from its treatment of exchange. The LDA
incorrectly allows a particle to ‘‘see’’ its own Hartree poten-
tial. ~Note that the Hartree-Fock approach does not permit
this.! Meanwhile, within a given band, lower-energy states
tend to be more localized to atomic or molecular sites. Thus,
for a filled band in an insulator, the errors arising from the
LDA treatment of exchange will tend to be more positive
near the bottom of the band, leading to underestimation of
the bandwidth.

This notion does no resolve the related issues that occur in
metals where the LDA gives occupied widths for partially
filled bands that are too large.46 Also, the widths of unoccu-
pied bands in insulators are wider than obtained in the LDA,
once many-body corrections are included. Northrup, Surh,
Hybertsen, and Louie found a means of obtaining narrower
bands in theGW approximation, but only if treating certain
correlation effects in a somewhat inconsistent fashion. How-
ever, the results by Northrup, Surh, Hybertsen, and Louie
are, to date, the most accurate, so these issues remain some-
what unresolved.

D. Slater-Koster description of electron initial states

The PAD’s were computed by parametrizing the quasipar-
ticle results for the F 2p bands using an orthogonal, tight-
binding model, based on the approach of Slater and Koster.17

We used a basis set of Li 2s, Li 2p, F 2s, and F 2p atomic
orbitals and coupled Li orbitals to those on the nearest F and
Li and vice versa. We adjusted Slater-Koster parameters to
maximize the agreement between the tight-binding and qua-
siparticle band energies. Using as a figure of merit the largest
discrepancy in band-energy differences, the best results for

FIG. 1. LiF, F 2s, and F 2p energy bands, plotted along theL,
D, andS lines in the Brillouin zone. These bands are based on a
Slater-Koster fit to quasiparticle results.~That the Slater-Koster
VBM is on theS line rather than precisely atG is an artifact of the
fit.!

TABLE I. Band gap, F 2s to F 2p interval, and F 2p bandwidth
in LiF, as found by various approaches discussed in the text. All
energies are in eV.

Approach Band gap
F 2s–F 2p
interval

F 2p
bandwidth

Experiment
photoemission 14.1~1!a 24.9b 3.5c

optical data 14.2~2!,d 14.5e

Theory
this work ~quasiparticle! 14.4 21.7 3.6
this work ~LDA ! 8.7 19.0 3.1

Xa,a5
2
3
f 9.8 '20 3.1

Xa,a51f 10.5 '20 2.3

Hartree-Fockg 22.7 4.0
Hartree-Fock plus
correlationg

14.0 3.1

aReference 12.
bReference 13.
cReference 10.
dReference 8.
eReference 9.
fReference 24.
gReference 25.
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energies atG, X, andL gave a F 2p bandwidth of 3.4 eV.
Meanwhile, the root-mean-square deviation of the tight-
binding energies from their quasiparticle counterparts was
0.05 eV. However, since the widest band was the most
prominent in PAD’s, we chose to use Slater-Koster param-
eters that were uniformly scaled to give a 3.6-eV total band-
width. Effects of this scaling on theoretical PAD’s were mi-
nor, except near the bottom of the F 2p bands.

E. Nearly-free-electron description of final states

We include crystal-field effects on the electron final state
within a nearly-free-electron picture. We use the crystal po-
tential given by the LDA pseudopotential calculations,
thereby including Bragg-diffraction effects arising from the
low-order Fourier components of the crystal potential. These
diffraction effects influence PAD’s substantially, leading,
among other things, to zone-selection effects~to be defined
in Sec. VI A!. The approach also neglects some other scat-
tering effects of ion cores, especially for higher-energy pho-
toelectrons and for partial waves with high angular momenta.
Neglected effects may be treated more accurately using real-
space, multiple-scattering theory.47,48However, these effects
would introduce a relatively weak, smooth modulation of
contrast in PAD’s and this modulation would be similar for
all electron initial states in the F 2p bands.~The F 2p band-
width is only 4% of the lowest photon energy used in obtain-
ing the PAD’s we model.! The strongest contrast in PAD’s
arises from kinematical requirements of energy and momen-
tum conservation, as well as matrix-element effects, and the
F 2p PAD’s change dramatically as the electron initial-state
energy is varied throughout the F 2p band.

The nearly-free-electron Hamiltonian that was used in our
calculations is defined as follows. Let us label a reciprocal-
lattice vector with indexG and its Fourier component of the
crystal potentialV~G!. We treat theG50 component sepa-
rately, expressing it as an electrostatic energy2eV0 plus a
complex self-energyS. We abbreviate2eV0 plus the real
part of S by U52eV01S8. So nearly-free-electron~NFE!
dynamics are governed by this Hamiltonian

ĤNFE52
\2

2m
¹22eV01S1 (

GÞO
V~G!eiG–r2efvac.

Here,fvac is the vacuum potential. We neglect the nonlocal
parts of pseudopotentials in this Hamiltonian. Presumably,
this is not a substantial approximation, when compared to the
others made.

IV. MODEL FOR PHOTOELECTRON ANGULAR
DISTRIBUTIONS

A. Kinematical considerations

In angle-resolved, photoelectron spectroscopic studies of
materials, one measures the photocurrent for electrons with a
given energy—call itEfinal—with the two components of
wave vector parallel to the surface specified. Call these com-
ponentsp i

(1) andp i
(2). In the vacuum, the third wave-vector

componentp' is known from the relation

Efinal5
\2

2m
@~pi

~1!!21~pi
~2!!21p'

2 #2efvac.

Let us denote wave vector in the solid byq. Varying the
vacuum kinetic energy and exit direction of photoelectrons
detected, one selects the energy,q i

(1) and q i
(2) of states

probed. For periodic crystals, these two wave-vector compo-
nents are given byq i

(1)5p i
(1) andq i

(2)5p i
(2) , modulo sur-

face umklapp effects. On the other hand, surface termination
and lifetime effects preventq' from being a good quantum
number in the solid. However, the nearly parabolic disper-
sion for moderate-energy photoelectrons, say, those with
vacuum kinetic energies exceeding 50 eV, restrictsq' to a
narrow range of values and thus renders the associatedp
values useful for probing the third momentum dimension.
The typical value ofq' may be selected by varying photon
energy.

The present PAD’s are computed, for several electron
initial-state energies, with continuous sampling ofq i

(1) and
q i
(2) . Band-dispersion effects are the chief mechanism be-

hind contrast in the PAD’s, and photoelectron diffraction ef-
fects are of secondary importance.

B. Treatment of surface effects

PAD’s are influenced by the behavior of electron states
near surfaces. For simplicity, we assume a spatially abrupt
transition between vacuum and bulk environments. Complex
surface termination can complicate PAD’s,49 but LiF~100!
should have a nearly ideal termination. Since LiF is a wide-
gap ionic insulator, the electron charge density should be
bulklike even very close to the surface. Nonetheless, effects
may arise from surface electronic states and even an ideal
termination should perturb the crystal potential from its bulk
value at finite proximity to the surface.

With the VBM approximately equal to 11 eV below the
vacuum zero,11 we neglect highly evanescent vacuum tails of
electron initial states. Because valence-band F 2p holes are
presumably long lived, we also neglect any imaginary parts
of electron initial-state self-energies. So electron initial states
can have a goodq' within the solid, except that they form
spatially undamped standing waves to accommodate crystal
termination. An electron final-state wave function is a plane
wave in the vacuum, but it is evanescent in the solid~via the
imaginary part of its self-energy! and exhibits spatial modu-
lation on the scale of the unit cell similar to that exhibited by
wave functions for equal-energy conduction-band states in
the bulk solid. The electron final-state wave function is con-
tinuously differentiable at the surface.

For PAD’s, one seeks the vacuum amplitude of the elec-
tron final state, which determines the likelihood of a photo-
electron’s leaving a solid. However, a photoexcitation matrix
element between electron initial and final states depends on
the corresponding wave functions in the solid. It is straight-
forward to compute a photoexcitation matrix element in the
bulk, where crystal momentum is a good quantum number
and must be conserved. For the present electron final states,
evanescence produces uncertainty inq' in the solid. The
decay length for the electron final-state wave function in the
direction normal to the surface is the normal band velocity
divided by the imaginary part of the self-energy. A single
evanescent electron final state can couple to many electron
initial states having a spectrum of values ofq' . Photoexci-
tation matrix elements for couplings involving different val-
ues of the initial stateq' may be approximately related to
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matrix elements for the corresponding bulk states. Summa-
tion over values of the electron initial stateq' is essentially
independent of whether one sums over the above-mentioned
standing waves or one sums over states with different values
of q' without paying special attention to the presence of a
surface.~Note that this sum over electron initial stateq' is
veritably a sum over system final states.!

C. Other experimental considerations

PAD’s were affected by the transmission function of the
detector. Instrumental and other uncertainties introduced an
estimated 0.1 eV~full width at half maximum! Gaussian
broadening of photoelectron energy distributions, which
should be used to convolute the ideal transmission function,
which was set to accept electrons within a 0.4-eV energy
window. However, comparison of theoretical and experimen-
tal PAD’s was improved dramatically when a much higher
level of experimental broadening was invoked. As results
depended weakly on the precise profile of the assumed
energy-pass function, we used a detecting efficiency
Z(Efinal2E0! for an electron with energyEfinal and the en-
ergy window centered atE0 , with Z(x)5exp@2x2/~2s2!#,
and the optimals was 0.725 eV. Introducing such a level of
uncertainty in the simulations is actually quite reasonable
since defects or impurities in the LiF crystal could induce
local, Fermi-level pinning, thus changing the local energy
reference and accompanying resolution. So with theZ func-
tion included in our modeling of PAD’s, the detector sampled
electron final states in a so-defined range of energies and
with so-defined quantum efficiencies.

Because of finite energy and angular resolutions and the
uncertainty~broadening! in q' , each pixel in an experimen-
tal PAD’s image represented a collection of electron initial
states in a region of the Brillouin zone. Energy-resolution
effects were accounted for by incorporating the aboveZ
function in the results; uncertainty inq' necessitated integra-
tion over q' . ~Note that energy-conservation requirements
served to control the range ofq' which is weighted heavily
in a given electron final state.! Finite angular resolution was
simulated by convolution of computed PAD’s in theqi di-
rections. This convolution obfuscated most complications
that follow logically from this simple fact: for most emission
directions, whenEfinal , p i

(1) , p i
(2) , or p' changes, the other

three quantities change with it.
Simulated PAD’s computed as photocurrent per

(p i
(1) ,p i

(2)) element were multiplied byp' for comparison
with what was measured: photocurrent per solid angle. The
experimental PAD’s we consider have already been normal-
ized to PAD’s for secondary electrons having similarEfinal .
Some photoelectron-diffraction effects, angular distortion by
the detector, and photon-flux inhomogeneities were partially
compensated by this procedure. Subtracting a flat, experi-
mental ‘‘base line’’ in the renormalized PAD’s could, in prin-
ciple, remove the secondary-electron signal; the height of
this base line would depend onE. Final-state Bragg-
diffraction effects on PAD’s should not be canceled by this
normalization, because such diffraction effects depend on a
certain coherence in one’s wave function, whereas such co-
herence is presumably absent in secondary-electron wave
functions.

In matching the parameters of our model to the experi-
ment, we incorporated damping effects based on an elastic
mean free path of 5 Å estimated from the ‘‘universal
curve.’’50 This would mean a resolution inq' of about
0.2 Å21. On the other hand, the PAD’s modeled sampled
states clustered near the~300! or ~400! Bragg planes, which
were separated by about 1.56 Å21. The effectiveq' resolu-
tion was further reduced by finite energy resolution. At nor-
mal emission, we knew empirically that the central value of
q' for states probed was, for electron initial states at the top
or bottom of the F 2p band, at either a zone center or zone
boundary, respectively: the photon energy had been chosen
to achieve this. Correspondingly, our values ofU in the
nearly-free-electron Hamiltonian~one value for each photon
energy! was chosen to make the initial-state energy at the
respective zone center or boundary, plushn, equal to the
nearly-free-electron energy for such a value of crystal mo-
mentum.

D. Constituents of the present model

With the above considerations, we motivate the formulas
used to compute PAD’s. We first consider the problem of an
excited electron leaving a semi-infinite, uniform solid. Ef-
fects of the crystal potential and complex electron self-
energy are addressed. This problem is first solved in real
space. Next, Fourier analysis of the result yields the admix-
ture, in an evanescent, electron, final-state wave function, of
a free-electron-like state with someq in the solid. This ad-
mixture is related to the electron propagator for such an
energy-momentum combination in the bulk material.

We next provide formulas for photoexcitation matrix ele-
ments, appropriate in bulk situations, for excitations from
valence bands to conduction bands lying in the same energy
range as the photoelectrons we study. In the nearly-free-
electron approach, a conduction-band wave function is ap-
proximated by a limited summation over its Fourier compo-
nents: it is described as a few plane waves. Correspondingly,
in the tight-binding approach, an electron, initial-wave func-
tion is described as the Bloch sums of a few atomic orbitals.
We discuss how ‘‘p–A’’ matrix elements between electron
initial states and plane waves are computed; linear combina-
tions of these objects form photoexcitation matrix elements.

We then consider extensions, related to the complications
present in a real solid, to the description of an excited elec-
tron leaving a semi-infinite crystal. Many salient features of
the uniform-solid illustration are retained. PAD’s may still be
modeled with the aid of the bulk electron propagator. How-
ever, the electron propagator is complicated by the variation
~on the scale of the crystal unit cell! of the electron final-state
wave function. Changes in the bulk electron propagator
should reasonably account for most of the changes in PAD’s.
Indeed, the propagator for wave vectorq neatly expresses the
coherent superposition of the contributions by various
channels—really, the equivalents of nearly-free-electron
bands in a bulk system—to the photoelectron vacuum ampli-
tude that results from photoexcitation of an electron initially
in the valence band and having wave vectorq. Finally, by
combining single-plane-wave photoexcitation matrix ele-
ments with the electron propagator and including effects of
integration overq' and the detector’s transmission function,
we arrive at the formula used for simulating PAD’s.
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E. Excited electron leaving a semi-infinite, uniform solid

Consider a semi-infinite uniform solid with an electro-
static potentialV0 relative to vacuum potential. In the solid,
an electron experiences a self-energy because of screening
and other many-body effects, adequately described by a ho-
mogeneous, local, complex effective potentialS5S81iS9.
AbbreviateU52eV01S8. Coordinates are labeled so that
the surface lies in theyzplane atx50, with the solid on the
negative-x side. Components of the electron’s wave vector
parallel to the surface,q i

(1) andq i
(2) , may be taken as good

quantum numbers and the dynamics of the electron in thex
direction may be solved separately. In solving these dynam-
ics, consider the abbreviation

Efinal1efvac5e1
\2

2m
@~qi

~1!!21~qi
~2!!2#.

Mathematically, it would be possible to havee,0. We have
only dealt with combinations ofEfinal , q i

(1) , and q i
(2) , so

that we had e.0. We limit our discussion to such
circumstances.51

For an excited electron leaving the solid, the electron
propagator may be written as

T0~r ,r 8;E!5eiq i
~1!

~y2y8!eiq i
~2!

~z2z8!S0~x,x8;e!.

It obeys the Dyson equation, which, forS0, may be written
as

Fe1
\2

2m

]2

]x2
2~U1 iS9!Q~2x!GS0~x,x8;e!5d~x2x8!

and

Fe1
\2

2m

]2

]x82
2~U1 iS9!Q~2x8!GS0~x,x8;e!5d~x2x8!.

HereQ~x! is the Heaviside function; which is equal to unity
for x.0 and zero otherwise. The zero superscripts remind us
that we are working presently with a uniform solid.

We wish to evaluateS0. Causality implies a wave initially
radiating fromx8 in both directions~toward and away from
the surface!. In the solid, it is damped. Upon reaching the
surface, the wave is partially reflected, whereas the part
transmitted into the vacuum propagates indefinitely without
further damping. Forx8,0, we find

\2

m
S0~x,x8;e!5@Aeikux2x8ue2kux2x8u

1Beikuxueikux8ue2kuxue2kux8u#Q~2x!

1@CeiK uxue~ ik2k!ux8u#Q~x!.

By satisfying the Dyson equation, including the ‘‘x5x8’’ and
‘‘ x50’’ boundary conditions, one finds

A5S 1

ik2k D ,
B5S i ~k2K !2k

~ ik2k!~ ik1 iK2k! D ,

and

C5S 2

ik1 iK2k D .
We have defined

K[p'5F2me

\2 G1/2,
k22k25

2m

\2 ~e2U !,

\2

m
kk5uS9u.

If we have e.0, thenK, k, and k may be taken as real,
positive numbers. In that case, the above results show that,
for x8,0 andx.0, we have

\2

m
S0~x,x8;e!5eiKxe~ ik2k!ux8uS 2

ik1 iK2k D .
The Fourier transform ofT0 involves the transform ofS0 .

Consider the transform ofs(x,x8! with respect tox andx8,
whereE ~ande! are specified:

s~x,x8!5Q~2x!Q~2x8!S0~x,x8;e!.

That is, we seek

s̃~q,q8!

@m/\2#
5
1

LE2L

0

dx e2 iqxE
2L

0

dx8e1zq8x8

3@Aeikux2x8ue2kux2x8u1Be~ ik2k!uxue~ ik2k!ux8u#.

HereL is the thickness of our solid in thex direction and we
take theL→` limit. For largeL, we find

s̃~q,q8!

@m/\2#
5Adqq8S 1

k2 ik2 iq
1

1

k2 ik1 iq D
1O~A/L !1

B

L S 1

k2 ik2 iq D S 1

k2 ik1 iq8D .
Let us combine the fractions in the first term. From the for-
mulas forA, B, andC, one finds

s̃~q,q8!5
dqq8

~k22k2!/21 ikk2q2/2
1O~L21!.

From further substitutions, we may deduce

s̃~q,q8!

5
dqq8

Efinal2\2/2m@~qi
~1!!21~qi

~2!!21q2#1eV02S1efvac

1O~L21!.

The first term in the above equation is the electron propaga-
tor in the bulk solid. Presumably, we may ignore terms
O(L21! in the above equations. Such terms describe the fol-
lowing effects:~i! the electron’s partial reflection at the sur-
face ~the term proportional toB! and ~ii ! the absence of
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waves originating outside of the crystal~the term propor-
tional toA!. @Such waves would be present in the case of an
infinite ~versus finite! crystal.# If one ignores such terms, the
last equation implies that the presence of a surface does not
strongly influence electron states inside the solid. In particu-
lar, although such states must be standing waves, the electron
propagator~which sums over such waves! is still ‘‘diagonal’’
in q' .

The contribution to a PAD by an electron initial state with
someq' is related to the Fourier transform ofS0 with re-
spect tox8 for the x8,0,x situation. Namely, consider the
formula

D~q'!5S 2

ik1 iK2k D E
2L

0 dx8

L
e1 iq'x8e~ ik2k!ux8u,

where we suppress trivial dependence of the result onx. For
largeL, we find

D~q'!

5
2

~ ik1 iK2k!~k2 ik1 iq'!

'
\2/2m

Efinal2\2/2m@~qi
~1!!21~qi

~2!!21q'
2 #1eV02S1efvac

.

Except for the factor\2/2m, this right-hand side is the bulk
electron propagator for wave vectorq.

F. Bulk, interband, photoexcitation matrix elements

The photoexcitation matrix element between a bulk elec-
tron initial stateuc i

nq& and an electron final state is linear
combination of several matrix elements between the former
state and individual plane waves. Such single-plane-wave
matrix elements have been derived previously.52,53Heren is
a band index andq is now a ~crystal! wave vector. In the
Slater-Koster description of the F 2p states, we have

^r uc i
nq&5

1

N1/2(
R

eiq•R(
m

Dm
nqfm~r2R2tm!.

We sumR over allN unit cells in a solid and consider the
N→` limit. We summ over all ‘‘atomic orbitals’’ in each
cell and the orbitals are described by thef functions, with
associated atoms located at thetm basis vectors within each
cell. EachDm

nq is the expansion coefficient for orbitalm in
stateuc i

nq&. Spin indices, irrelevant here, are suppressed. We
separate radial and angular character of thef’s as

fm~x!5 f m~ uxu!Ym~ x̂!.

TheYm functions are angular harmonics.
Consider the maxtrix element

IK
nq5^ei ~G1q!•ru~p•A!uc i

nq&.

We use the abbreviationG1k5K . We may write this matrix
element as

IK
nq}~K•e!(

m
Dm
nqe2 iK•tmgm~ uK u!Ym~K̂ !.

~We suppress a proportionality constant.! The Dm
nq coeffi-

cients determine how atomic orbitals are weighted in the
matrix element. For each orbital,g is a radial Fourier trans-
form of f. For states originating from one kind of atomic
orbitals,g might serve only to give an overall prefactor to
PAD’s. We found this to be true in this work, withg evalu-
ated using Hartree-Fock atomic orbitals. However, wheng
varies sufficiently over a range ofuK u’s represented in the
electron final state, then the presence ofg might play a
greater role in influencing PAD’s.

The polarization factor~K•e! is of interest, as is the factor
Ym~K !. Here e is the electric-field polarization vector. The
former selects emission directions based on photon polariza-
tion, while the latter selects initial states based on an emis-
sion direction. For initialp states, theYm factor indicates
PAD’s being dominated by states involving heavy weighting
of the p orbital most parallel toK . The phase factor of
exp~2 iK–tm! for eachm can produce interesting interference
effects when a state is located on more than one atom in the
unit cell. However, initial states in this work are essentially
located on fluorine atoms only. Multiatom interference ef-
fects are substantial in the case of graphite21 and in the case
of CaF2.

G. Excited electron leaving a semi-infinite, real solid

Consider first the role played by the vectorq in the above
problem of an excited electron leaving a uniform solid. An
electron final state with vacuum wave vectorp continues into
a uniform solid with a momentum distribution determined by
the evanescent solution that was derived above. We sampled
this momentum distribution with the total momentum of the
electron in the uniform solid\q. Furthermore, evanescence
preventedq' from being a good quantum number. Note that
the totalvacuumwave vector of a detected photoelectronp
was not restricted to the first Brillouin zone, nor was the
value ofq.

Consider next one value in the continuum of values ofq
represented by the electron final state. Let us continue to
considerq in an extended-zone picture. Heuristically, be-
cause of the crystal potential in a real solid, an electron final
state may, in addition to amplitude for each value ofq ap-
propriate in the uniform-solid case, also have a nonzero am-
plitude for a wave vectorG1q. Besides the fundamental
G50 reciprocal-lattice vector, we will consider the next few
lowest stars ofG’s. We do not consider further elaboration of
an evanescent electron final state than this generalization of
each value ofq. Furthermore, this generalization will be
made as prescribed by the bulk electron propagator. In other
words, to estimate the crystal-field effects on a photoexcita-
tion matrix element involving an evanescent photoelectron
final state, we assume the corresponding effects that would
occur for the corresponding bulk, photoexcitation matrix el-
ements. In turn, these effects are estimated in this work using
a nearly-free-electron picture.~We remind the reader that an
electron, final-state wave function is continuously differen-
tiable at the crystal surface, so the photoelectron vacuum
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amplitude is still closely related to the ‘‘free-electron’’ part of
any more elaborate propagator.!

We then arrive at an expression describing the contribu-
tion to the photoelectron vacuum amplitude from the elec-
tron initial stateuc i

nq&. This involves bulk, single-plane-wave
matrix elements and the electron propagator. However, we
now use the nearly-free-electron version thereof. Except for
a proportionality constant, the photoelectron vacuum ampli-
tude is given as

Dnq~Efinal!5(
G8

SG,G8~q,Efinal!uG50I
nq
G81q.

HereSG,G8(q,Efinal) is a matrix element of the bulk, nearly-
free-electron propagator. It is given by

SG,G8~q,Efinal!

5K exp@ i ~G1q!•r #U 1

Efinal2ĤNFE
Uexp@ i ~G81q!•r #L .

H. Formula for PAD’s

For conciseness, we now write the formula used to com-
pute PAD’s, save for inclusion of finite-angular-resolution
effects. We write the formula for the case, that the detector’s
energy-acceptance window is centered at energyE0, and the
emission angle corresponds to states with wave-vector com-
ponentsq i

(1) andq i
(2) . Photocurrent per (q i

(1) ,q i
(2)) element

is given as

F~qi
~1! ,qi

~2! ;E0!}(
n
E dq'Z~enq1hn2E0!

3uDnq~enq1hn!u2.

V. THEORETICAL PHOTOELECTRON ANGULAR
DISTRIBUTIONS, WITH COMPARISON TO EXPERIMENT

In Ref. 10, the F 2p bandwidth was determined according
to the following scenario. For a given datum in a PAD, let us
refer to the central value ofq' as ‘‘Q' .’’ The PAD’s were
collected for LiF~100! using photon energies 85.5 and 152
eV. At normal emission, consequently,Q' coincides with the
~300! and ~400! Bragg planes, respectively~cf. Fig. 2!. ~We
indicate these planes in units of 2p/a, wherea is the lattice
constant.! For large portions of the PAD’s, in particular, close
to normal emission,Q' would have remained close to one of
these Bragg planes. Furthermore, the strongest features in the
PAD’s were to be found near normal emission. Near the
~N00! Bragg planes, symmetry implied that the fluorine 2px
orbitals did not couple strongly to the 2py or 2pz orbitals,
when Bloch sums of these three atomic orbitals were com-
bined to form each state,uc i

nq&. So one band could be dis-
tinguished from the other two bands near an~N00! Bragg
plane and, in such regions of reciprocal space, we label this
band the ‘‘2px’’ band. Meanwhile, this 2px band was pre-
eminent in PAD’s, a consequence of theY factors in formulas

for photoexcitation matrix elements, and while the PAD’s
therefore illustrated constant-energy contours for this 2px
band very plainly, this 2px band also spanned the entire F 2p
bandwidth.

There are two types ofX points in the~N00! Bragg planes.
Zone boundaries, centers, and the two types ofX points (X1
andX2! in such planes are illustrated in Fig. 3, in addition to
energy contours for the 2px band. Because the reciprocal

FIG. 2. Constant-wave-number contours~solid lines!, drawn in
reciprocal space, along with several wave vectors~written in units
of 2p/a, wherea is the lattice constant!. At normal emission for
LiF~100!, these contours are tangent to the~400! and ~300! Bragg
planes~dashed lines!.

FIG. 3. Brillouin-zone boundaries~black! and zone and zone-
face centers that are found in an~N00! Bragg plane. In addition, at
intervals of 0.6 eV, from23.6 to 0.0 eV ~VBM !, we indicate
constant-energy contours for the ‘‘2px band’’ ~cf. the text!, where
each contour has a 0.06 eV width.
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lattice for LiF is body-centered cubic, either anX1 point or a
zone center was sampled at normal emission in the PAD’s
described. In the present Slater-Koster approach, the 2px
band energy in an~N00! plane is approximated as

enq~2px!'e024 cosS qya2 D cosS qza2 D uVpp
p u12 cosS qxa2 D

3FcosS qya2 D1cosS qza2 D G~ uVpp
s u2uVpp

p u!.

~The primary mechanism underlying the F 2p bandwidth is
interatomic, F 2p to F 2p hybridization.! Here e0 is to be
understood as an F 2p term energy and we otherwise use
standard Slater-Koster formalism, except that we avoid all
possible confusion regarding the effective signs of the tight-
binding parameters. Meanwhile, consider the F 2p bands
presented in Fig. 1. Dispersion of the 2px band in the~011!-
type directions is the same as that of the band that, along the
S line from G to X~X1!, spans the entire F 2p bandwidth.
Dispersion of the 2px band in the~010!-type directions is the
same as that of the twofold degenerate, upper bands along
theD line from G to X (X2).

Of course, our model for PAD’s also reflects many other
physical effects discussed in Sec. IV. Quantitative changes in
PAD’s, associated with these physical effects, can be quite
complicated. Some readily anticipated effects include the ap-
pearance of other bands off of normal emission, arising from
changes in theY factors, from departure ofQ' from the
Bragg planes, and from the imperfect knowledge ofq' . In
addition, other matrix element effects including those relat-
ing to the multiple-plane-wave character of final states
should play a role. These last considerations lead to zone-
selection effects, which are analyzed in Sec. VI.

In the remainder of this section we present theoretical and
experimental PAD’s and examine the level of agreement be-
tween them. The experimental data are those reported in Ref.
10. These images have been normalized as discussed in Sec.
IV and symmetrized according to theC4v symmetry

54 of the
LiF~100! surface. The incident photons were predominantlys
polarized and incident at 45°. The symmetrizations of the
data rendered the azimuthal angle of photon incidence irrel-
evant. We included all effects regarding photon incidence
and symmetrization when computing PAD’s.

Gray-scale images provide an efficacious rendering of
modulation in the electron flux per energy solid angle, which
is how the present PAD’s are presented. However, they are
presented as functions ofq i

(1) andq i
(2). The gray-scale ren-

dering of PAD’s has also been widely used in~core-level!
photoelectron diffraction and holography studies of materi-
als. PAD’s were computed on a coarse mesh inq i

(1) andq i
(2)

and interpolated onto a finer mesh. Empirically, we found
this had a negligible effect on PAD’s. Finite angular resolu-
tion was simulated by convolution of theoretical PAD’s, with
respect toq i

(1) andq i
(2) , using a Gaussian with a full width

at half maximum of 0.3 Å21. This corresponds to an angular
resolution of 2° or 3°, a poorer resolution than that which is
intrinsic to the apparatus. This particular resolution was cho-
sen to maximize agreement between the theoretical and ex-
perimental PAD’s. Such an apparent degradation of experi-
mental, angular resolution might arise partly from charging
in the sample.

In Fig. 4 we consider the PAD forhn5152 eV, and for
E522.3 eV. Theoretical results are shown for the inclusion
of 1 G-vector, 15G-vectors, and 65G-vectors in the nearly-
free-electron, final-state wave functions. For the cases of 1
G-vector and 65G-vectors we also show PAD’s computed
whenq' samples onlyQ' . In all other theoretical PAD’s,q'

was integrated, in 99 steps, fromQ'22p/a to Q'12p/a.
~Based on convergence tests, both this range and detail of
sampling proved adequate.! We also show the experimental
PAD and a ‘‘split-image’’ PAD, which features the best~65
G-vectors plusq' integration! theoretical PAD and its ex-
perimental counterpart juxtaposed, for comparison, with half
of each PAD shown on opposite sides of a~010!-mirror
plane. In split images of this type, the theoretical half is
shown below the experimental half. Perfect agreement be-
tween the two would produce PAD’s with top-bottom mirror
symmetry; imperfect agreement causes this symmetry to be
broken.

A given PAD includes a set ofN pixels, each pixel de-
noted by indexp. Each pixel corresponds to a (q i

(1) ,q i
(2))

element. The range of phase space sampled in a PAD is
determined by the acceptance angle of the electron analyzer,
sample orientation, and avoidance of spurious signals which
arise near the edge of the field of view~i.e., limitation of the
angles actually surveyed!. For each pixel, we denote the ex-
perimental or theoretical photocurrent per solid angle asEp
or Tp , respectively. When comparing PAD’s, one should
consider overall normalization and base-line subtraction.
Since these effects might vary from PAD to PAD, we allow
for a separate adjustment in each PAD of the normalization
and base-line height. The adjustment was based on minimiz-
ing

(
p

uTp2A2BEpu2

with respect to fitting parametersA and B. Agreement be-
tween the experimental and theoretical data was estimated
using a standard, linear regression correlation coefficient,55

r5
(pEpTp /N2~(pEp /N!~(pTp /N!

$@(pEp
2/N2~(pEp /N!2#@(pTp

2/N2~(pTp /N!2#%1/2
.

This r is independent of~positively signed! normalizations
and base-line subtractions and is confined to the range21 to
1. ~This fact is related to the Cauchy-Schmidt inequality.!

Each theoretical and experimental PAD had its counter-
part. A split-image PAD involved a theoretical PAD, de-
scribed by$Tp% and a scaled version of the corresponding,
experimental PAD, described by$E p8%5$A1BEp%. For ev-
ery split image, the gray scale was adjusted so that the image
spanned the full dynamic range of that scale, but neither the
experimental nor the theoretical image had substantial por-
tions saturated at either end of that scale.~The same adjust-
ment was made in both halves of each split image, i.e., for
Tp and E p8 .) To produce the all-theory or all-experiment
PAD’s shown in Fig. 4, we began with split images, and their
associated gray scales, and reflected these to display only the
experimental or theoretical parts.
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In Fig. 5, split images are presented for every PAD given
in Ref. 10. In Table II, we present results for the correlation
coefficients between the theoretical and experimental PAD’s.
As a control, correlation coefficients are given between all
experimental and all theoretical PAD’s for each photon en-
ergy and not only between each experimental PAD and its
unique theoretical counterpart. Evidently, one can use the
correlation coefficients tabulated in Table II to associate the
experimental PAD’s with the correct theoretical counterparts.
~This might not be true when two distinct PAD’s are quite
similar, such as when the two PAD’s are for similar ener-
gies.! In Table III we present correlation coefficients for each
experimental PAD and its theoretical counterpart and for
PAD’s computed according to the various approaches repre-
sented in Fig. 4.

VI. DISCUSSION

In Fig. 5, note the remarkable level of similarity between
the experimental and theoretical images of PAD’s, not only
in the strongest features, but also in the weaker features. On
a more quantitative note, consider the results in Table III.
Evidently, computed PAD’s are substantially influenced by
both integration overq' and attention to Bragg-diffraction

effects on electron final states. Whereas inclusion of Bragg-
diffraction effects is clearly vital for achieving the highest
level of accuracy, other diffraction effects that we neglect in
our approach may also be significant. This is difficult to as-
certain, however, partly because of our crude treatment of
mean-free-path effects. Note thatq'-integration affects com-
puted PAD’s substantially, suggesting that a better treatment
of mean-free-path effects could improve results. From the
last two columns in Table III, one might surmise that mean-
free-path effects are somehow being overestimated by the
present treatment. Issues are also complicated by the present
treatment of surface effects. However, aside from a more
complete treatment of photoelectron diffraction effects, ac-
complishing the refinements to which we allude, in a fashion
that is notad hoc, would be beyond the scope of this work.

A. Low-order Bragg diffraction and zone-selection effects

The PAD’s displayed in Figs. 4 and 5 represent contribu-
tions from states on both sides of the~0,61,0! and~0,0,61!
Bragg planes. These planes correspond to
q i
( i )562p/a'1.56 Å21, where i now indicates they or z

direction. In principle, portions of PAD’s near these planes
could exhibit mirror symmetry with respect to reflection

FIG. 4. Forhn5152 eV,E522.3 eV, theoretical PAD’s using various numbers ofG vectors in the nearly-free-electron description of
photoelectron final states. Also shown are an experimental PAD and a split-image having theory~bottom! and experiment~top! juxtaposed.
An asterisk indicates that noq' has been performed in computing a given PAD. Note the wave-vector scale. Cartesian coordinates are as
shown in Fig. 3. A cross denotes the normal-emission direction. Higher-flux areas are shown more brightly.
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FIG. 5. For two photon energies and various initial states energies, split images of theoretical~bottom half! and experimental~top half!
PAD’s. Computational details are provided in the text. Note the wave-vector scale. Cartesian coordinates are as shown in Fig. 3. A cross
denotes the normal-emission direction. Higher-flux areas are shown more brightly.

TABLE II. Correlation coefficients for comparison of theoretical
and experimental PAD’s. The theoretical and experimental PAD’s
are respectively indicated by initial-state energiesEtheor andEexpt,
given in eV relative to the VBM. Results are presented for two
photon energies. Correlation coefficients for pairs of corresponding
PAD’s are underscored.

Eexpt

Etheor

23.4 22.7 22.0 21.3 10.9

hn585.5 eV
23.4 0.96 0.79 0.36 20.33 20.42
22.7 0.90 0.98 0.77 0.06 20.59
22.0 0.36 0.66 0.96 0.75 20.71
21.3 20.28 20.05 0.44 0.82 20.46
10.9 20.52 20.63 20.72 20.49 0.78

hn5152 eV
24.0 22.3 21.5 20.2

24.0 0.85 0.29 20.48 20.50
22.3 0.06 0.85 0.57 20.11
21.5 20.58 0.20 0.91 0.54
10.2 20.52 20.47 0.32 0.99

TABLE III. Correlation coefficients for comparison of experi-
mental and theoretical PAD’s, where theoretical PAD’s correspond
to includingNG reciprocal-lattice vectors in the nearly-free-electron
model used for electron final states, and an asterisk denotes that no
integration overq' has been performed. PAD’s are identified by the
photon energy and electron initial-state energyE, given relative to
the VBM. The rightmost column corresponds to results presented in
Table II and Fig. 5.

E ~eV!

NG

1* 1 15 65* 65

hn585.5 eV
23.4 0.94 0.95 0.96 0.96 0.96
22.7 0.97 0.97 0.98 0.99 0.98
22.0 0.96 0.95 0.96 0.93 0.96
21.3 0.91 0.84 0.84 0.74 0.82
10.9 0.75 0.85 0.82 0.76 0.78

1* 1 15 65* 65

hn5152 eV
24.0 0.74 0.50 0.86 0.84 0.85
22.3 0.61 0.13 0.71 0.93 0.85
21.5 0.85 0.65 0.85 0.94 0.91
10.2 0.80 0.93 0.98 1.00 0.99
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through the planes. However, this is found not to be the case.
Instead, photoelectron flux is generally much more pro-
nounced inside a (4p/a)3(4p/a) square centered around
the normal emission direction and on the corresponding sides
of those four Bragg planes. This breaking of symmetry often
occurs along planes that coincide with zone boundaries. This
effect is a result of photoelectron diffraction by low-order
Fourier components of the crystal potential, and this zone-
selection effect is already reproduced if our nearly-free-
electron approximation is used when computing PAD’s.

The zone-selection effect being discussed may largely be
explained in a two-plane-wave model. Suppose thatq is near
one of the four Bragg planes, e.g., the~010! plane. In the
wave functions of the conduction-band states, which are rep-
resented in the electron final state, two plane waves would be
most heavily weighted in the nearly-free-electron approxi-
mation. One plane wave has wave vectorq, which is close to
the Bragg plane in reciprocal space, and the other plane wave
has wave vectorG1q, whereG is the reciprocal-lattice vec-
tor ~0,24p/a,0!. Now in the photoemission process we are
interested in the nearly-free-electron bands that most closely
follow the free-electron dispersion relation~modulo a trivial
energy shift!. Let us choose our coordinates so that a fluorine
atom is at the origin of our unit cell. Then for thisG, V~G! is
both real and negative. Solution of the nearly-free-electron
Hamiltonian in the two-plane-wave model amounts to the
solution of a quantum-mechanical two-level system. In the
nearly-free-electron states that are energetically closest to the
free-electron dispersion curve, one find that on the same side
of the ~010! plane as the origin, Fourier components for
wave vectorsq andG1q will have like signs and that on the
other side of the~010! plane, these Fourier components will
have the opposite signs.

The above admixture of the plane waves having wave
vectorsq andG1q determines the weightings of the single-
plane-wave matrix elements discussed earlier. According to
these weightings and the relative signs of these single-plane-
wave matrix elements, contributions toDnq(Efinal) arising
from various single-plane-wave matrix elements may inter-
fere constructively or destructively. In an~N00! plane, where
N is greater than zero, and near the~010! plane, matrix ele-
ments between a fluorine 2px orbital and the two plane
waves are nearly the same. Therefore, contributions to PAD’s
from states dominated by the 2px orbitals should be stronger
on the same side of the~010! plane as the origin than on the
other side. This is seen in the PAD’s. Analogous matrix ele-
ments involving the 2py orbitals have one sign for the plane
wave described by wave vectorq and an opposite sign for
the other plane wave. Therefore, contributions to PAD’s from
states dominated by the 2py orbitals should be weaker on the
same side of the~010! plane as the origin than on the other
side. Since the contributions from 2py and 2pz orbitals are
weak in the PAD’s, the zone-selection effect for these con-
tributions is barely discernible in the images.

VII. CONCLUSION

We have presented quasiparticle results for the band struc-
ture of LiF and simulated photoelectron angular distributions

for the F 2p valence bands. The band gap, F 2p bandwidth,
and F 2s to F 2p separation~defined as the energy difference
between the F 2s centroid and valence-band maximum! were
found to be 14.4, 3.6, and 21.7 eV, to be compared with the
measured 14.2, 3.5, and 24.9 eV, respectively. Photoelectron
angular distributions were computed using the quasiparticle
results for the F 2p states. In this endeavor, photoelectron
final states were modeled to include their evanescence in the
solid plus their modulations on the scale of the unit cell.
Effects of such modulations on photoexcitation matrix ele-
ments were extrapolated from the analogous effects that
would occur in corresponding photoabsorption processes in
bulk LiF. These latter effects were estimated for the bulk
using the multiple-plane-wave character of isoenergy
conduction-band states as found within a nearly-free-electron
model.

Comparisons between experimental and theoretical photo-
electron angular distributions were made by analyzing corre-
lations in measured and predicted photocurrent per unit solid
angle as a function of emission direction. On a range from
21 to 1, correlation coefficients varied between 0.78 and
0.99 in the final results for the nine PAD’s that we examined.
We suggest possible areas for improvement of the present
model used to compute PAD’s. In particular, we suggest that
one could employ a more complete description of photoelec-
tron diffraction, perhaps based on real-space multiple-
scattering theory.

The results indicate the high level of detail, regarding a
material’s band structure, which may be inferred from pho-
toelectron angular distributions. This is a positive outcome,
considering current advances in synchrotron-radiation
sources and electron-analyzer technology. In future work, de-
tailed modeling of photoelectron angular distributions for va-
lence bands could be an invaluable tool that closely accom-
panies experiments. In our attempts to probe the electronic
structure of new materials, this may prove especially impor-
tant in the study of novel and complex systems, including
surfaces and heterojunctions.

Note added in proof.After submission of this manuscript,
subsequent tests indicated that omission of nonlocal parts of
pseudopotentials would have minimal effect on the results of
this work. However, studies of other systems and/or based on
different choices of local pseudopotential channels may ex-
hibit a greater role for such nonlocal parts in final-state
multiple-scattering processes.
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