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We present an extensive work on the conductance as well as the transmission and reflection probabilities of
disordered nanowires. We use a tight-binding Hamiltonian with diagonal disorder to describe the quantum
wire, and a two-terminal Landauer-type formula for its conductance. For short wires, in the quasiballistic
regime, we study the behavior of these quantities as a function of the degree of disorder and the Fermi energy
of the electron, following their evolution when a channel disappears, finding an effective closing of the last
opened channel~for strong disorder! before the actual closing energy. We analyze the influence of the length
and width of the wire, noticing different transmission and reflection behavior depending on the incident
channel. We have compared these results with the isotropic model predictions and found that these are satisfied
only partially.

I. INTRODUCTION

The ability to handle and control structures of nanometric
size is of fundamental importance for the basic knowledge as
well as for the broad range of technological applications in
communication and information processing technologies,
permitting the fabrication of integrated systems at nanomet-
ric and submicrometric scales.1 In particular, the study of the
electronic transport through such nanometric structures de-
serves special attention.

From the theoretical point of view, the study of conduc-
tivity through small systems has been a matter of increasing
interest since the 1950’s,2–5 indicating that quantum me-
chanical effects must be accurately treated in order to char-
acterize the electron transmission in these small systems. It
was discovered that a small constriction in a two-
dimensional~2D! electron gas~2DEG! shows conductance
quantization in units ofG052e2/h as a function of the
width,6 due to the presence of a finite number of conductance
channels. This phenomenon brought new interest over elec-
tronic transport in small systems. It was shown that the elec-
tron resistance of small contacts or constrictions shows a
well marked oscillatory behavior7–9 for a wide variety of
contact shapes.

In an idealized system, when the transport is ballistic, the
conductance quantization is perfect, showing steps of height
G0 .

8,10However, the presence of defects or impurities modi-
fies the effective potential, affecting the electron mobility
and destroying the form of the conductance figure.11–17As a
main feature, there is an overall decrease of the conductivity
as disorder increases. Furthermore, the characteristic conduc-
tance steps are rounded, with dips appearing between adja-
cent conductance plateaus. In other words, there is a general

degradation of the conductance quantization, reducing the
electronic mobility. The disappearance of the characteristic
structure of the conductance quantization in the diffusive
transport region is a consequence of the universal conduc-
tance fluctuations~UCF!,18 which have been widely studied
in quantum wires.17,19

Experimental studies tried to confirm these theoretical
predictions. With the help of the scanning tunneling micro-
scope~STM!,20 the transition from tunnel to contact is stud-
ied at room temperature and atmospheric pressure. The cur-
rent between tip~gold! and sample~gold! shows quantization
just before the contact breaks.21,22 Similar results have been
obtained with STM under well controlled ultrahigh vacuum
~UHV! conditions for different materials,23–25and using me-
chanically controllable break junctions~MCBJ!.26–28 The
same conductance jumps have been measured when two
macroscopic metals get in and out of contact,29 showing that
it is not necessary to have any special condition or experi-
mental equipment to detect them. This indicates that the for-
mation of nanocontacts is a universal phenomenon. But the
experimental conductance steps can be interpreted in terms
of conductance quantization or in terms of strain-induced
atomic rearragements in the contact area. MCBJ experiments
with sodium28 support the first interpretation, while experi-
ments with the same technique done with semimetals27 sup-
port the second. Furthermore, simultaneous measurements of
the force between tip and sample and the electron current
during the deformation process25 show that there is a corre-
lation between the conductance steps and structural transfor-
mations inside the nanostructure. These results are in good
agreement with reported molecular dynamics~MD!
calculations,22,30,31 where the change in the contact~neck!
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section after each structural transformation gives rise to an
abrupt jump in the conductance,31 as the second model pre-
dicts. In selected experiments22,29 the conductance shows
dips between two adjacent plateaus when it is represented
versus the nanoneck elongation. These dips have been ana-
lyzed in terms of an increase of the positional disorder within
the system when the conductance jumps take place, whereas
atomic positions are changing due to the elongation or con-
traction of the neck. MD simulations show this increase in
disorder when the atoms rearrange their positions.22,30

The quantization of the electron conductivity due to the
small size of the contact has its analog in optics as the propa-
gation of a classical wave through a finite small aperture.
The light power transmitted through a slit of variable width
is also quantized.32 In addition, electron conductance through
disordered systems exhibits similar properties to those of the
propagation of light through a disordered scattering medium.
Moreover, the advantage of performing experiments on light
transmission is that the role of each conducting channel can
be analyzed and compared with theoretical predictions. In
this case, there is a simple formulation of the weak localiza-
tion of waves in terms of coherent multiple scattering
theory.33 Within this scheme it is possible to determine the
correlation functions of the transmission as well as reflection
coefficients for scalar wave propagation through disordered
media.34,35

In the present work, we have studied the conductivity of
electrons through a disordered two-dimensional medium. We
have adopted a perspective similar to that used to describe
the propagation of a classical wave, emphasizing the role of
the transmission and reflection coefficients, and their depen-
dence on different magnitudes configuring the system~disor-
der strength, size, and Fermi energy!. In the literature, the
behavior of these coefficients has not been studied in depth.
Bagwell13 analyzed transmission and reflection coefficients
for the first three allowed modes when a single defect (d
function! is present in a wire. Laughtonet al.36 studied
modal analysis of transport through a quantum point contact
using a realistic potential. In both works, only specific cases
were considered without statistical analysis over several
samples. We use a simpler model than that of Laughton
et al., which allows us to get averaged properties about the
behavior of electronic modes in quantum wires. We have
analyzed the modal mixing, the evolution of the coefficients
with different parameters, and how the forward and~en-
hanced! backscattering changes. In this way, we are able to
compare our numerical results with theoretical predictions of
the enhanced backscattering33,34 for different situations. On
the other hand, it is hard to compare with previous works on
modal analysis because they used single samples.

The rest of the paper is organized as follows. In Sec. II we
present the 2D model and the tight-binding framework we
have used to calculate the conductivity through small sys-
tems. In Sec. III we show the results obtained for the ballistic
as well as the diffusive regimes of the conductivity. Finally,
in Sec. IV we present some concluding remarks about these
results.

II. MODEL AND CALCULATION METHOD

To describe the propagation of an electronic wave through
a disordered region, we have considered a two-dimensional

~2D! structure formed by three different areas~see Fig. 1!.
The disordered central zone~with lengthL) is connected to
both sides with semi-infinite perfectly ordered wires, having
the same width (N). The wire is confined in an infinite
square well. To describe the two regions~ordered and disor-
dered! we assume that the system is formed by atoms located
at the sites of a square lattice with lattice constanta ~in this
work we have takena51, defining the unit length!. The
different interactions acting on the electrons when moving
through the wire are summarized in the one-electron tight-
binding Hamiltonian given by

H5(
n,m

un,m&En,m^n,mu

1 (
n,m;n8,m8

un,m&Vn,m;n8,m8^n8,m8u, ~1!

where un,m& represents the one-electron wave function of
the atomic orbital at the site (n,m), En,m is the self-energy or
‘‘on site’’ energy, andVn,m;n8,m8 is the hopping matrix ele-
ment between the lattice sites (n,m) and (n8,m8). We have
considered that there are only interactions between nearest-
neigbor sites, and that this hopping element is the same for
all the wire sites~in both regions!; then Vn,m;n8,m85V if
(n,m) and (n8,m8) are nearest-neighbor sites and
Vn,m;n8,m850 elsewhere. In the present work the quantity
V defines our energy unit (V51). In the region without dis-
order, we have taken for the site energy the valueEn,m50. In
the disordered section of the wire we have assumed that
the site energy is uniformly distributed in the range
@2W/2,W/2# ~diagonal disorder, Anderson model!.

The chosen model and the type of disorder are well
known and they have been used for a long time in the
literature.2,12,14,17It is a very simple model, whose computa-
tional implementation is relatively easy. Similar three-
dimensional~3D! models need prohibitive CPU time and
memory, and the 2D model contains the essential physics of
the problem. Other 3D models in the literature9 have cylin-
drical symmetry, which simplifies the numerical problem to a
quasi-2D one, and with the additional difficulty of introduc-
ing impurities or arbitrary potential disorder.

Assuming that the incident waves come from the left, the
wave function for the perfectly ordered wire at the left region
can be written as

FIG. 1. Schematic representation of the model. The disordered
zone, of lengthL and widthN atoms, is connected on both sides to
two perfect wires of the same width. The gray scale represents the
‘‘on-site’’ energy uniformly distributed in the range@2W/2,W/2#.
Electrons come from the left part of the wire.
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un,m& le f t5un,m& incident1un,m& reflected

5(
j
Ajexp~ ik jm!sin~pjn!fn,m

1(
j
Bjexp~2 ik jm!sin~pjn!fn,m , ~2!

wherefn,m are the atomic orbitals at the site (n,m) and

pj5
p j

N
~3!

represents the wave vector associated with the transversal
modes ~they define the different subbands or conducting
channels!. The Fermi energy (E) of the system determines
the number of open channels and the value ofkj , the wave
vector along the propagating direction, since in the perfectly
ordered wire the following relation is satisfied:

E54@cos~kj !1cos~pj !#. ~4!

Only if kj is real do we have a propagating state. Whenkj is
imaginary we have an evanescent state. All the realkj will be
greater than zero, because we have already considered sepa-
rately the states propagating to the right~incident wave! or to
the left ~reflected wave!. Notice that the bandwidthDE for a
wire without disorder isDE58.

The wave function for the perfectly ordered wire at the
right will take the form

un,m& right5un,m& transmitted

5(
j
Cjexp~ ik jm!sin~pjn!fn,m , ~5!

where we have discarded the wave propagating to the left~at
this region we have only the transmitted wave!. In the disor-
dered zone we have taken the wave function as

un,m&disorder5Dn,mfn,m ; ~6!

we are not interested in the specific form of the wave func-
tion in this zone.

The HamiltonianH gives rise to a series of coupled
equations of the type

~Enm2E!in,mi1~ in11,mi1in21,mi

1in,m11i1in,m21i !50, ~7!

connecting the solution of the two perfectly ordered zones
@ in,mi is the modulus of the wave function at the site
(n,m)#.

The coefficientsAj , Bj , andCj are connected through
the expression

S Bj

Cj
D 5T~Aj !, ~8!

T5S r̃ i jt̃ i j D , ~9!

whereT is the matrix that gives the relationship between the
wave-function amplitudes. The numerical solution of the set

of equations given by Eq.~7! through the disordered zone
allows us to determine the ratio between the coefficients
Aj , Bj , andCj , and then to calculate the amplitude of the
transmission and reflection coefficients as defined in the scat-
tering matrix,t i , j and r i , j , by

t i j5Av i
v j
t̃ i j , ~10!

r i j5Av i
v j
r̃ i j , ~11!

where

v i5
1

\

]E

]ki
5
4sin~ki !

\
~12!

is the mean velocity of an electron in the channeli or group
velocity.

We have calculated the conductanceG with a two-probe
Landauer-type formula3,4

G5
2e2

h (
i , j

Ti , j , ~13!

whereTi , j represents the transmission probability, i.e., the
probability that an incident electron in the left channelj
emerges in the right onei . The factor 2 comes from the spin
degeneration.Ti , j is connected with the transmission coeffi-
cientst i , j simply byTi , j5ut i , j u2. Analogously, the probabil-
ity of reflection for an incident electron from the left in the
j mode and coming back through thei mode,Ri , j , is calcu-
lated withRi , j5ur i , j u2. The limitations of this conductance
formula and its applicability have been already discussed
extensively in the literature.4

We have calculated the conductance fluctuations as the
square root of the variance

DG5~^G2&2^G&2!1/2, ~14!

where ^ & denotes averaging over an ensemble of samples
with the same degree of disorder.

III. NUMERICAL RESULTS

A. Short wires: Quasiballistic regime

When the nanowire has small dimensions in comparison
with the electron mean free pathl ( l.L,N), and the degree
of disorder is relatively small, the conduction process falls
into the quasiballistic regime.10 The creation of this type of
nanoneck is a usual experimental situation,21–29 and we can
assume that is always true at the last stages of the nanoneck
fracture, when only a small amount of atoms forms the con-
tact. We must remark that in the experimental situations, the
principal disorder source is ‘‘positional disorder’’~disloca-
tions, defects in the crystal structure, roughness, . . .!,
whereas in our model we have some kind of ‘‘compositional
disorder’’ keeping a constant wire width.

We have performed calculations for a disordered wire of
lengthL515 and widthN515, in order to study the main
properties of the conductance when the Fermi energyE var-
ies, i.e., when modifying the population of the incident
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modes. The conductanceG is calculated by averaging over
an ensemble of 250 samples for each disorder parameter
W; in this way the major effects of the UCF will be
eliminated.14 In Fig. 2~a! we show the conductanceG ~in
units ofG052e2/h) versus the Fermi energyE for six dif-
ferent values ofW with 0<W<1.0. We have considered the
Fermi energy to vary between the middle of the bandE50
and the top of the bandE54. These curves are very similar
to those shown in Ref. 14, although the resolution we have
achieved is much higher, due to the use of a larger statistical
ensemble. As shown in Fig. 2~a!, with increasing disorder,
the perfect conductance steps are rounded, and well defined
dips appear between two adjacent conductance plateaus.
These dips have already been found in other kinds of
systems,11–13,15,16with this behavior explained in terms of
the destructive scattering of the disappearing mode into the
existing modes,12,16 or the presence of quasibound states
formed in the wire.13,15 Dip energies vary with the sample
but always appear after a channel closing; average results are
wide dips, as Fig. 2~a! shows. Furthermore, the separation
between two adjacent distorted plateaus is below the conduc-
tance quantumG0 .

The presence of dips in the conductance curves when the
nanoneck is elogated at room temperature has been experi-
mentally reported.22,29However, in the same experiments the
step height between conductance plateaus is'G0 . These
jumps of the conductance have been interpreted to arise from
the contact area losing atoms during the atomic rearrange-
ments in the crystal layers, because of the existence of sub-
quantum conductance steps in atomic-sized contacts when a
semimetal is used instead of a metal.27 During these atomic
rearrangements, the nanocontact has a high degree of disor-
der and the conductance is lower. This is supported by mo-
lecular dynamics calculations,22,30,31 in which the conduc-
tance steps are simultaneous with the rearrangement of the
atomic positions within the nanoneck. With this structural
transformation there is also a consistent increase in disorder.
Anyway, the quantitation of the conductance cannot be ruled
out completely because metals with a high free-electron
character show results that can be interpreted as a function of
the contact area size.28 Although in our calculations we do
not simulate the elongation process of the wire, we can in-
terpret the experimental results in terms of our diagonal dis-
order. In our scheme, the only possibility to keep the sepa-
ration between conductance plateaus of the order ofG0 , and
simultaneously notice the appearance of dips, is to consider
that disorder should be included only around the conduc-
tance step itself. In Figs. 2~c! and 2~d! we show two ways of
including disorder around the steps. In both cases, the disor-
der does not affect theG0 conductance jump~measured be-
tween plateaus!, although a dip proportional to the disorder
parameter (W) is present at the step position. For weak dis-
order (W,0.4), our calculations resemble the experimental
curves.22,29

Although in conductance experiments it is impossible to
measure the different individual contributionsTi , j andRi , j ,
we have decided to explore the behavior of these magni-
tudes, in order to gain insight on several aspects related to
the transmission process. The analogous case of electromag-
netic wave scattering in waveguides can provide an easy way
to check experimentally our results.

FIG. 2. ~a! Averaged conductancêG& as a function of the
Fermi energyE, for a wire withL515 andN515, and for different
values of the disorder parameterW50, 0.2, 0.4, 0.6, 0.8, and 1.0.
~b! A detail of the previous figure forW50.2 andW51.0, showing
two conductance steps, when modesj510 and j59 disappear~at
Fermi energiesE51.235 andE51.61, respectively!. Arrows denote
the energies used to represent Figs. 3, 4, 5, and 6. All energies are
given in units ofV ~hopping matrix element!. ~c! and~d! Averaged
conductancêG& as a function of the Fermi energyE, for a wire
with L515 andN515. In these cases, the disorder parameter is
multiplied by a function depending on the energy~see dashed line!
with maxima at conductance jumps. Different solid lines show dif-
ferent values of the disorder parameterW50, 0.2, 0.4, 0.6, 0.8, and
1.0.
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In particular, we have analyzed the same 15315 system
with the different degrees of disorder shown in Fig. 2~a!. The
Ti , j andRi , j features do not present abrupt transitions within
the range of disorder studied: stronger disorder, stronger
scattering~back and forward! is obtained. We present results
for only two cases:W50.2 ~very weak disorder! and
W51.0 ~relative high disorder!. In Fig. 2~b! we draw the
energy regions we have explored~the arrows show the en-
ergy values we have used for Figs. 3, 4, 5, and 6!. Since UCF
affect the values of the transmission and reflection probabili-
ties, we have studied the averaged quantities^Ti , j& and
^Ri , j&.

In Fig. 3 we represent̂Ri , j& for the caseW50.2 at six
different energies, describing the situation along the conduc-
tance step whenE increases. In this case the conductance
channelj510 will disappear at the third of the six snapshots
sequence@Figs. 3~a!–3~f!#. Before reaching the conductance
step@Fig. 3~a!# the reflection is dominated by the contribu-
tions of thej510 mode. In particular the intrasubband con-

tribution ^R10,10& is the most important, although the differ-
ent intersubband components^Ri ,10& also show a significant
contribution. That is, the main contribution to the reflection
is originated from the mode closest to the Fermi level~the
higher occupied modej h). When the Fermi levelE is just on
the step@Fig. 3~b!# the component̂R10,10& increases enor-
mously ~notice thez axis scale! by an order of magnitude.
Once the modej510 cannot be an electron propagating
channel through the wire, the situation drastically changes
@see Fig. 3~c!, at the dip position#. Although there is higher
contribution to the reflection through thej h59 mode, it is
clear that there is a strong contribution to the backscattering
coming from the intrasubband~diagonal! terms^Ri ,i&. Their
contribution is almost as important as that of terms involving
the j h59 mode. Notice that there is a strong decrease of the
z axis scale. Although we are in the quasiballistic regime,
this result shows certain similarities to that predicted by the
weak-localization theory,33,34 where an enhanced back-
scattering for the intrachannel terms is obtained. However, it

FIG. 3. Averaged reflection probabilities^Ri , j& at different Fermi energy values@E5 1.1890~a!, 1.2325~b!, 1.2354~c!, 1.2441~d!,
1.3253 ~e!, and 1.4500~f!# for an incident electron through channelj and reflected through channeli . The wire is characterized by
L515,N515, andW50.2. The represented Fermi energy values were marked with arrows in Fig. 2~b! for W50.2. Two gray colors have
been used in all the histograms to help the visualization. Notice the differentz-axis scales used.
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must be reminded that we are far away from the criteria of
applicability of this theory, since the considered wire is very
short for the disorder used. WhenE increases@Figs. 3~d!–
3~f!#, the new conductance plateau is formed and the situa-
tion is slowly changing towards a situation similar to that
found in Fig. 3~a!, but now thej h59 mode is the main one
responsible for the backscattering. However, notice that dur-
ing a wide energy interval~corresponding to the conductance
plateau! the increase of the termŝRi ,9& and ^R9,9& is very
slow, and only when the energy approaches the next conduc-
tance step do these reflection factors dramatically change.

In Figs. 4~a!–4~c! we have shown the evolution of the
factors ^Ti , j& for three specific situations, showing the fast
disappearance of the component^T10,10& at the jump region.
However, near the dip@Fig. 4~b!# there is a slight increase of
the factors^Ti ,10& ~with i,10). This indicates that if we
were able to prepare an incident state without the presence of

the j h510 mode, we could obtain a peak of reflected and
transmitted currents~or intensity in experiements with light!
in this j h510 mode, indicating the presence of the condu-
cance step.

In Fig. 5 we show the factorŝRi , j& for the caseW51.0 at
six different energy positions, describing the situation along
the conductance step whenE increases@see Fig. 2~b! to de-
termine the energy positions#. Now, the sequence@Figs.
5~a!–5~f!# illustrates how the conductance channelj h59
will disappear. Before reaching the conductance step@Figs.
5~a! and 5~b!# we can see that although there is a larger
contribution from factors involving thej h59 mode and from
diagonal factors, there is a considerable background due to
the rest of the reflection factors, denoting the presence of a
stronger intermixing of modes caused by the larger disorder
(W51). As an additional effect derived from the larger dis-
order, notice that the average reflection probabilities are
larger than that forW50.2. In Fig. 5~c! ~just at the conduc-
tance jump! the intrasubband component^R9,9& increases
enormously. Notice that in this case the intrasubmode terms
^Rj , j& keep a relatively high value in comparison with non-
diagonal factors. A stronger mode intermixing due to stron-
ger disorder makes this system closer to the weak-
localization regime, althoughL andN are the same as in the
previous case. At the dip energy@Fig. 5~d!#, the diagonal
reflection factors are more important, especially the term
^R8,8&. For increasingE @Figs. 5~e! and 5~f!#, the situation
slowly evolves towards a new one, very similar to that of
Fig. 5~a!, although with only eight channels. One important
difference betweenW50.2 andW51 is the near disappear-
ance of the termŝRjh ,i

& and^Ri , j h
& ( iÞ j h) for the stronger

disorder case before the energy of thej h mode becomes for-
bidden @Fig. 5~c!#. For the case with more disorder
(W51), we see that̂Rjh ,i

& and^Ri , j h
& ( iÞ j h , j h59) take

a lower value than the rest of the termŝRj ,i&, at
E51.6095 below the closing energy for the modej h59
(E51.6124). This is different for a situation with less disor-
der @see Fig. 3~b! for W50.2#, where the termŝRjh ,i

& and

^Ri , j h
&, with iÞ j h , are higher than̂Ri , j&, i , jÞ j h . This

means that when disorder increases, near the energy at which
a channel becomes forbidden~channel closing energy!, elec-
trons traveling through the last open subband stop scattering
to other subbands, and prefer to come back through the same
channel.

In Fig. 6 we have shown the evolution of the factors
^Ti , j& for three specific situations around the dip region,
showing that when disorder increases there is a slower evo-
lution of the component̂T9,9& at the step region, and that
other diagonal transmission factors are affected at the dip
region. As it can be seen, there is an appreciable intermixing
of modes in comparison with theW50.2 case, but it is still
small. Again, before the last mode (j h59) becomes forbid-
den in energy, it nearly ceases to intermix with others@Fig.
6~b!#, and hardly any current comes from or to this mode.

In conclusion, we have shown that when the Fermi energy
varies along a conductance step, strong changes can be no-
ticed in the evolution of the coefficients^Ri , j&, determining
the backscattering. In particular, the intrasubband reflection
factor ^Rjh , j h

& suffers strong variations. The intersubband

reflection factorŝRi , j h
& also play an important role for small

FIG. 4. Averaged transmission probabilities^Ti , j& at different
Fermi energy values@E5 1.1890~a!, 1.2325~b!, and 1.2354~c!#
for an incident electron through channelj and reflected through
channel i . The wire is characterized byL515, N515, and
W50.2. Note the reversed representation of the modes on thex and
y axis, in relation to Fig. 3.
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disorder. However, when disorder increases, there is a well
marked trend, and the diagonal factors^Rj , j& start to be de-
terminant, as predicted by the weak-localization theory. The
forward scattering is of little importance and the mixing of
modes is low, even for the stronger disorder studied. This is
not in agreement with previous results by Laughtonet al.,36

although they used a different model and a different kind of
disorder. When disorder rises, thej h mode ceases to contrib-
ute to the conductance~it does not scatter to other modes and
they do not scatter to it! before it has a forbidden energy,
becoming an effective closing of thej h mode.

B. Evolution with length: From quasiballistic
to diffusive regimes

Nowadays, it is impossible to create perfect long GaAs/
AlAs quantum-well wires37 without some kind of intrinsic
disorder~compositional and/or geometric!. Furthermore, re-
cent results on STM based contacts,22 showing the absence
of quantization during the elongation of long nanowires,

have been interpreted in terms of electronic localization.2 In
both cases, the electron conduction falls into the diffusive
regime, since the electronic mean free pathl is smaller than
the contact or neck size (l,N,L). The main goal of this
section is to analyze the way in which the different factors,
^Ti , j& and ^Ri , j&, evolve when the length of the wire in-
creases, passing from the quasiballistic regime to the diffu-
sive one. Conductance studies for different models—as a
function of length, varyingE, and the degree of disorder—
have already been done,19,17 but the transmission and reflec-
tion probabilities between the modes as a function of the
length have not been studied yet.

We have considered the same kind of disorder described
in Sec. II, but in order to simplify the number of parameters,
we consider for all the calculations presented in this section
that the Fermi energy is fixed toE50. The reason for this
choice is that we want to have all the channels opened to
study their mixing. The use of a different Fermi energy,
where P channels can be closed, is nearly equivalent to

FIG. 5. Averaged reflection probabilities^Ri , j& at different Fermi energy values@E5 1.45 ~a!, 1.566~b!, 1.6095~c!, 1.6124~d!, 1.6385
~e!, and 1.7197~f!#. The wire is characterized byL515,N515, andW51. The represented Fermi energy values were marked with arrows
in Fig. 2~b! for W51. Notice the differentz-axis scales employed.

10 274 53P. GARCIA-MOCHALESet al.



studying a system withN2P width ~the difference is the
existence ofP evanescent states where it is possible to scat-
ter in theEÞ0 case, and their absence in theE50 case; but
in the final result, i.e.,Ti , j and Ri , j , these states do not
change anything significantly!. In this way, we describe the
case in which all the possible incident modes are populated.
We have fixed the disorder parameterW51, studied three
different widths (N55,7,10), and the wire lengthL has been
varied from 0 to 200.

In Fig. 7~a! we present the basic results for the average
conductancêG& as a function ofL ~we only plot results for
N55 andN510). We have averaged over 1000 samples for
N55 and over 1500 samples forN510. Notice that we have
represented two different averages: the arithmetic average
^G& ~empty symbols!, and the geometric average
exp(̂ ln G&) ~solid symbols!. Two different regions for the
conductance can be distinguished in the figure. The first re-
gion is characterized by a strong decrease from its quantized
starting value~this is the quasiballistic regime, already stud-
ied in the preceding section!. As the wire becomes longer,

the conductance begins to decrease exponentially.38 This is
the weak-localization regime. Finally, for much longer~not
shown! lengths, the strong-localization regime is reached. As
we will see, in our case we are working within the quasibal-
listic and weak-localized regimes. The localization lengthl
can be estimated by5

l5S ]^ ln G&
]L D 21

. ~15!

We have found~for this particular disorder! l58563 for
N55, l510066 for N57, and l5120610 for N510.
Furthermore, we can see how the two different averages start
to deviate from each other whenL exceeds the localization
lengthl,5 reflecting the singular distribution of the conduc-
tance in the localization region. After determining the local-
ization lengths for the threeN cases studied, we can con-
clude that the wire lengths we have taken into account in the
present work fall in the semiballistic, weak localization, or
mesoscopic regime.

In Fig. 7~b! we have plotted the conductance fluctuation
DG @Eq. ~14!# as a function ofL. As expected, with increas-
ing length, the fluctuation increases up to a value very close
to that predicted for UCF in quasi-1D systems
(DG50.729e2/h).18 Since the range ofL we have consid-
ered does not enter into the strong-localization regime, we
cannot detect the decrease ofDG whenL@l.19

With the results shown in Fig. 7, we have checked that
our model describes the well known basic features of the
conductance in quasi-1D disordered systems, and we have
been able to determine the kind of conductivity mechanism
for the set of parameters assumed. Now we can proceed in a
way similar to the preceding subsection, determining the role
of each transmission or reflection factor, and comparing with

FIG. 6. Averaged transmission probabilities^Ti , j& at different
Fermi energy values@E5 1.566 ~a!, 1.6095~b!, and 1.6124~c!#.
The wire is characterized byL515,N515, andW51.

FIG. 7. ~a! Averaged conductancêG& ~open symbols! and
exp̂ lnG& ~filled symbols! as a function of the wire lengthL, for a
width N55 ~circles! andN510 ~squares!, with disorder parameter
W51.0 and Fermi energyE50. The localization lengthl for each
wire width is also shown.~b! Conductance fluctuations of the sys-
tems shown in~a!. The thick horizontal line represents the theoreti-
cal value of the fluctuations for quasi-one-dimensional systems.
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predictions of the macroscopic approach of Melloet al.34

From this model we can extract two basic results to compare
with. On one hand, the average transmission factor^Ti , j&
takes the value

^Ti , j&5Nc
22^T&, ~16!

where^T& is the total averaged transmission probability into
all channels~when the incident channels are fed withNc
incoherent unit fluxes or channels!. In our particular case, we
haveNc5N since all the channels are populated. On the
other hand, the average reflection factor^Ri , j& is given by34

^Ri , j&5~11d i j !Nc
21~Nc11!21^R&, ~17!

where^R& represents the total averaged reflection coefficient
~notice that^Ri ,i&5^Rj , j&52^Ri , j& for any i and j ). These
two equations are valid whenL@N and whenL is smaller
than the localization length. These requirements are equiva-
lent to considering the weak-localization regime.

In order to clarify the terminology we will denote a ‘‘lat-
eral’’ mode as a channel whose transverse energy@term

4cos(pj) in Eq. ~4!# is the closest to the energy band side and
its pj is the closest value to 0 orp. A ‘‘central’’ mode will be
a channel having a ‘‘transverse’’ energy very close to 0 with
its pj close top/2. We consider that two modes (i , j ) are
‘‘symmetric’’ when pi5p2pj . For instance, in a system
with N57, the lateral subbands arej51 and j57, the cen-
tral one is j54 ~only one in this case!, and j53 is the
symmetrical mode ofj55. A diagonal term ofRi , j or Ti , j is
a term withi5 j . For a system havingN conducting modes,
we denote ‘‘corner’’ terms those of the form (1,1), (N,N),
(1,N), and (N,1) for (i , j ) ~in the previous example, the
‘‘corner’’ terms of Ti , j areT1,1, T7,7, T1,7, andT7,1).

In Figs. 8 and 9 we have represented the values of the
averageŝTi , j& and^Ri , j& for two different widths,N55 and
N510, respectively. In both cases we show three different
wire lengths (L55,55,190) representing three situations
along the transition from the quasiballistic to the weak-
localization regimes. In Figs. 8~a! and 9~a! we plot ^Ti , j& in
the quasiballistic regime; notice that the main contribution to
the total transmission comes from the diagonal factors, the

FIG. 8. ~a!–~c! Averaged transmission probabilities^Ti , j& ( j , incoming channel;i , outgoing channel! for three lengths@L55 ~a!, 55 ~b!,
and 190~c!#. ~d!–~f! Averaged reflection probabilitieŝRi , j& for three lengths@L55 ~d!, 55 ~e!, and 190~f!#. The calculation parameters were
N55,W51.0, andE50 in all the cases. Notice the differentz scale in each figure.
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central modes having a large weight. There is also a small
contribution corresponding to the ‘‘corner’’ terms^T1,5& and
^T5,1& for N55, and^T1,10& and^T10,1& for N510. When the
wire length increasesL555 @see Figs. 8~b! and 9~b!#, and we
start entering the weak-localization regime, the situation is
drastically modified. Notice that central modes have a strong
contribution to the transmission in this regime. However, it
seems that there is a bell-like distribution of the transmission
probability. This situation is evident when the system is in
the weak-localization regime@see Figs. 8~c! and 9~c!#. The
above results disagree with those represented in Eq.~16!.
Although we are at the weak-localization regime, there is not
a homogeneous distribution of the^Ti , j& factors. In general
we can say that one incident electron has a higher probability
of emerging at the right side occupying a central mode, and
that an incident electron through a central channel has a
higher probability of emerging in the right side.

In Figs. 8~d! and 9~d! we plot the reflection coefficients
^Ri , j& in the quasiballistic regime, forN55 andN510, re-
spectively. Notice that the main contribution to the back-

scattering comes from the ‘‘corner’’ factors. There are four
strong peaks showing enhanced backscattering~for instance
for N510 the factorŝ R10,10&, ^R10,1&, ^R1,10&, and ^R1,1&)
and the rest of the factors are almost identical, showing
strong intermixing of modes. By increasingL @Figs. 8~e! and
9~e!# we notice how the diagonal reflection coefficients start
to play a fundamental role, although there are remains of the
reflection ‘‘corner’’ factors. Finally, when the system can be
considered within the weak-localization regime@see Figs.
8~f! and 9~f!# the enhanced backscattering33 is clearly mani-
fested. The diagonal factors are approximately twice the non-
diagonal factors. However, the diagonal factors^Rj , j& are not
exactly equivalent among them, the extreme modes mani-
festing a slightly higher reflecting power@ j51 and j510 in
the caseN510, Fig. 9~f!#. From the previous analysis we
can conclude that there is not a simple transition from the
quasiballistic to the weak-localization regime, and that theo-
retical expectations for̂Ti , j& and for ^Ri , j& are not fully
satisfied.

In order to determine the dependence of the different

FIG. 9. ~a!–~c! Averaged transmission probabilities^Ti , j& ( j , incoming channel;i , outgoing channel! for three lengths@L55 ~a!, 55 ~b!,
and 190~c!#. ~d!–~f! Averaged reflection probabilitieŝRi , j& for three lengths@L55 ~d!, 55 ~e!, and 190~f!#. The calculation parameters were
N510,W51.0, andE50 in all the cases. Notice the differentz scale in each figure.
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transmission and reflection coefficients on the wire length,
and verify the predictions of the isotropic model34 described
by Eqs.~16! and ~17!, we have followed the evolution with
L of determined average transmission and reflection coeffi-
cients. In Fig. 10 we present the averaged transmission prob-
abilities ^Ti ,10& and the averaged reflection probabilities
^Ri ,10& for a wire of widthN510. It can be seen that the
factors^T10,10& and^T1,10& exhibit a different behavior when
compared with the other transmission coefficients@see Fig.
10~a!#. Remember thatj51 and j510 are lateral modes,
symmetrical to each other. For short wires, both transmission
factors are the most important, although with increasing wire
length they decay rapidly. For wires withL.20 the situation
is reversed, the transmission through central modes being the
most relevant@as it was shown in Figs. 9~b! and 9~c!#. We
can notice that Eq.~16! is not satisfied, since the different
transmission modes are not equal during the wide range of
L we have considered~this range includes the region in
which the isotropic model34 is valid!.

For the reflection coefficients@Fig. 10~b!# we have no-
ticed that there are large differences between the numerical
calculations and the theoretical predictions@Eq. ~17!#. The
coefficient^R10,10& shows values almost 25% above the ex-
pected theoretical value~dashed line!. Furthermore, even for
smallL there is a significant increase of the reflection prob-
ability, indicating a strong backscattering enhancement. We
should point out that the total reflection coefficient^R& used
in Eq. ~17! is obtained from our numerical simulations.
Therefore, the enhanced backscattering exceeds the factor 2
determined by the isotropic models for this particular mode.
The intersubband reflection coefficient between the two lat-

eral modes,̂R1,10&, also shows higher values than those ex-
pected from Eq.~17! @solid line in Fig. 10~b!#. The other
coefficientŝ Ri ,10& seem to be very similar to the theoretical
predictions fluctuating around them@see the solid line in Fig.
10~b!#.

In Fig. 11 we show the transmission and reflection coef-
ficients when the incident mode isj56 ~a central type chan-
nel in the caseN510). In this case we can notice that the
coefficient ^T6,6& @see Fig. 11~a!# decreases very slowly in
comparison with the other coefficients^Ti ,6& ~with iÞ6).
This decrease is also less pronounced than that of the coef-
ficients^Ti ,10& shown in Fig. 10~a!. This means that the cen-
tral channels have a larger ‘‘memory’’ when propagating
through the disordered wire in comparison with the outer
channels. We can see that the coefficient^T6,6& presents an
exponential decrease, similar to the other coefficients, from a
length below the calculated localization length (l5120).
This fact indicates that the ultimate responsible modes for
the change of regime~from semiballistic to weakly local-
ized! are the central ones. We can see that forL.l the slope
of all the coefficients is very similar, equally contributing to
the localization length. In Fig. 11~b! we show the reflection
factors^Ri ,6&. In general, there is a good agreement between
theory and numerical calculations, although we can note that
the factor̂ R6,6& increases slower than the theoretical predic-
tion. This means that the enhanced backscattering effects are
delayed for the central channels when compared to the outer
ones. Once the length increases above the localization
length, the agreement between our calculations and Eq.~17!
is better, but always under the theoretical value.

The results for the evolution of̂Ti , j& and ^Ri , j& as a
function of the length forN57 andN55 ~not shown! dis-
play a similar tendency to that forN510: the theoretical

FIG. 10. ~a! Averaged transmission probabilities^Ti ,10& and ~b!
averaged reflection probabilities^Ri ,10& as a function of the length
L of the disordered wire, for the incident modej510 ~lateral
mode!. The outgoing channeli is identified in the legend. Wire
parameters:N510,W51.0, andE50. In ~b! we also plot the theo-
retical predictions@Eq. ~17!# for ^Rj , j& ~dashed line! and for ^Ri , j&
( iÞ j ) ~solid line!. The arrow indicates the localization lengthl.

FIG. 11. ~a! Averaged transmission probabilities^Ti ,6& and ~b!
averaged reflection probabilities^Ri ,6& as a function of the length
L of the disordered wire, for the incident modej56 ~central mode!.
See the legend in Fig. 10 to identify the outgoing channeli . Wire
parameters:N510,W51.0, andE50. In ~b! we also plot the theo-
retical predictions@Eq. ~17!# for ^Rj , j& ~dashed line! and for ^Ri , j&
( iÞ j ) ~solid line!. The arrow indicates the localization lengthl.
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predictions of the isotropic model are not completely full-
filled. But, it must be pointed out that the lower the number
of channelsN, the lower the difference is between theory
and our calculations. This is when the system has a more
marked 1D character.

Summarizing the main results of this section, we can say
the following.

~a! Transmission coefficients: ThêTi , j& distribution
changes from a diagonal form in the quasiballistic regime~in
such a way that the electron keeps track of the incoming
channel! to a bell form ~very smooth! in the weak-
localization regime. The memory of the central modes per-
sists up to near the weak-localization zone. Lateral modes
lose quickly their memory and have~relative! high probabili-
ties to be scattered to a central mode when the nanowire is
long enough.

~b! Reflection coefficients: ThêRi , j& distribution grows
uniformly with increasingL, except the diagonal terms
( i5 j ) that grow faster until they reach a value slightly below
twice the value of the rest of^Ri , j& ~at the weak-localization
regime!. In the quasiballistic regime, the scattering through
intralateral and interlateral modes has great importance,
whereas the backscattering through central modes appears
later than for the outer ones.

~c! The isotropic model is not exactly fulfilled. There are
appreciable differences whenN grows and/or we analyze the
behavior of the lateral modes. In general,^Ri ,i& are consid-
erably greater than̂Ri , j& ( iÞ j ) at the weak-localization
zone, although we have never found the factor 2 predicted by
the theory.34

IV. DISCUSSION AND CONCLUSIONS

In the quasiballistic regime, for short wires, the conduc-
tance takes place in such a way that the electron keeps
memory of the incoming channel, i.e.,^Ti ,i& terms are the
main coefficients even for a relatively strong disorder. The
intermode mixing, despite the growth of the disorder, is not
very high in the cases studied. The role of the Fermi energy
is not very important: when it approaches the energy of the
last opened channelj h , this decreases its contribution to the
conductance until its disappearance. The situation is different
for ^Ri , j&, its evolution with the Fermi energy has abrupt
changes. The termŝRjh , j h

& suffer a quick rise before the
channel closes. For the rest of the terms different things hap-
pen depending on the disorder strength. For very weak dis-
order the^Rjh ,i

& and ^Ri , j h
& are the second contribution to

the backscattering when the channel is going to disappear,
while the dominant terms once the subband is closed are
those corresponding to the intermixing with thej h21 mode.
For high disorder the intrachannel^Rj , j& coefficients provide
the second important contribution to the backscattering. The
evolution of ^Ti , j& and ^Ri , j& does not show abrupt changes
with disorder, and the transition between the two features
described above is smooth. Increased disorder leads to an
effective closing of the last mode before its energy became
forbidden. It ceases to contribute to the conductance and also
the mixed termŝTi , j h&, ^Tjh ,i

&, ^Rjh ,i
&, and^Ri , j h

& become
nearly 0, whereaŝRjh , j h

& approaches 1.

In the transition between quasiballistic and diffusive re-
gimes for incident lateral modesj , transmission coefficients
decrease quickly as a function of length:^Tj , j& soon takes
values beloŵ Ti , j& ( iÞ j ), and in the diffusive regime the
terms that indicate scattering to central modes are quite high.
In the quasiballistic regime, the reflection coefficients
^Rj , j& and ^Rj ,s& ~modes is the symmetrical one of mode
j ) present an enhanced backscattering that subsists in the
weak localization region.

Transmission probabilities of incident central modes have
a higher memory effect with longer lengths, and the^Ti ,i&
term is always greater than̂Ti , j& ( iÞ j ). Beyond the quasi-
ballistic region, the reflection coefficients of central modes
show enhanced backscattering through the same mode,
whereas the rest of̂Ri , j& grow equally as a function of
length.

The transmision coefficients, as a whole, in the quasibal-
listic regime have a diagonal aspect. The distribution shows a
smooth-shaped bell form in the weak-localization regime,
i.e., highest transmission probability for an electron when
central modes are involved. The transition is not uniform and
at intermediate stages the central modes are more prominent
than the rest. The figure of the reflection coefficients in the
quasiballistic regime presents marked peaks at the corner
terms,^R1,1&, ^R1,N&, ^RN,1&, and ^RN,N&. When approach-
ing the diffusive regime,̂Ri , j& grow uniformly except those
havingi5 j , in such a way that in the weak-localization zone
the figure has a uniform background with higher diagonal
terms.

By comparison of our calculations with the Melloet al.
isotropic theory,34 we can say that their predictions are not
completely fulfilled. In the weak-localization regime^Ri ,i&
values are greater but not twice than^Ri , j& ( iÞ j ). All the
^Ri ,i& are not equal, terms involving lateral modes are greater
than those involving central ones. Furthermore, our calcula-
tion does not show any uniform distribution of^Ti , j& as ex-
pected from their theory.

The Anderson model~AM ! leads to have simultaneously
attractive and repulsive scatterers. These two kinds of scat-
terers affect in a very different way the conductance figure if
the Fermi energy is changed.13,15Preliminary results of short
wires, with an AM modified in such a way that there are only
repulsive or attractive scatterers, show similar figures to that
obtained usingd ’s as scattering centers:15 for repulsive ones
the conductance varies smoothly with the Fermi energy,
meanwhile abrupt dips are present if we use only attractive
ones. More study is needed to be able to confirm for the AM
~and its modification! the two classes of dips found for Ku-
mar and Bagwell15 in their calculation for long wires: the
conductance drops abruptly after the opening of each new
channel when all the scatterers are repulsive; when half of
the scatterers are attractive, broadened dips appear before the
new channel opens, without any conductance drop after the
opening. The variation of the Fermi energy for long wires for
the AM is now under study.

Finally, we wish to make some remarks about the evolu-
tion of the coefficients with the system length near a conduc-
tance dip. The transition between the different regimes takes
place by increasing the wire length~for a fixed disorder! or
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by increasing the disorder~for a fixed length!. Thus, we ex-
pect that the evolution of conductance,^Ti , j& and ^Ri , j&
~around a conductance dip!, with the length of the system
can be extrapolated from the results obtained with changed
disorder. For instance, when the length increases~with fixed
disorder! the dip is smoothed~similar to what happened for
d scatterers15!. We expect also effective channel closing,
which will happen at lower energies for longer wires. Mode
mixing will be clearly more important with a length increase,

and interband reflection terms^Rj , j& will gain weight against
intraband oneŝRi , j&.
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