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We present an extensive work on the conductance as well as the transmission and reflection probabilities of
disordered nanowires. We use a tight-binding Hamiltonian with diagonal disorder to describe the quantum
wire, and a two-terminal Landauer-type formula for its conductance. For short wires, in the quasiballistic
regime, we study the behavior of these quantities as a function of the degree of disorder and the Fermi energy
of the electron, following their evolution when a channel disappears, finding an effective closing of the last
opened channdfor strong disorderbefore the actual closing energy. We analyze the influence of the length
and width of the wire, noticing different transmission and reflection behavior depending on the incident
channel. We have compared these results with the isotropic model predictions and found that these are satisfied
only partially.

I. INTRODUCTION degradation of the conductance quantization, reducing the

electronic mobility. The disappearance of the characteristic

The ability to handle and control structures of nanometricstructure of the conductance quantization in the diffusive

size is of fundamental importance for the basic knOWIedge aﬁ’ansport region is a consequence of the universal conduc-
well as for the broad range of technological applications ingpce fluctuationgUCF),'® which have been widely studied

communication and information processing technologies;, quantum wired?19

permitting the fabrication of integrated systems at nanomet- Experimental studies tried to confirm these theoretical

ric and submicrometric scalédn particular, the study of the eoredictions With the help of the scanning tunneling micro
electronic transport through such nanometric structures de- : i ; i
P 9 scope(STM),?° the transition from tunnel to contact is stud-

serves special attention. ; .
From the theoretical point of view, the study of conduc- ied at room temperature and atmospheric pressure. The cur-

tivity through small systems has been a matter of increasinfent Petween tigggold) and samgiégolgl) shows quantization
interest since the 1950%?7 indicating that quantum me- Just pefore _the contact breaks?? Similar results have been
chanical effects must be accurately treated in order to cha@Ptained with STM under well controlled ultrahigh vacuum
acterize the electron transmission in these small systems. (PHV) conditions for different materiafs;*and using me-
was discovered that a small constriction in a two-chanically controllable break junctionMCBJ).?°~?® The
dimensional(2D) electron gas2DEG) shows conductance Same conductance jumps have been measured when two
quantization in units ofGy=2e?/h as a function of the macroscopic metals get in and out of confdathowing that
width® due to the presence of a finite number of conductancé is not necessary to have any special condition or experi-
channels. This phenomenon brought new interest over elegrental equipment to detect them. This indicates that the for-
tronic transport in small systems. It was shown that the elecmation of nanocontacts is a universal phenomenon. But the
tron resistance of small contacts or constrictions shows axperimental conductance steps can be interpreted in terms
well marked oscillatory behavibr® for a wide variety of of conductance quantization or in terms of strain-induced
contact shapes. atomic rearragements in the contact area. MCBJ experiments
In an idealized system, when the transport is ballistic, thevith sodiunt® support the first interpretation, while experi-
conductance quantization is perfect, showing steps of heightients with the same technique done with semimétaisp-
Go.#However, the presence of defects or impurities modi-port the second. Furthermore, simultaneous measurements of
fies the effective potential, affecting the electron mobility the force between tip and sample and the electron current
and destroying the form of the conductance figdfé’As a  during the deformation proceSsshow that there is a corre-
main feature, there is an overall decrease of the conductivitiation between the conductance steps and structural transfor-
as disorder increases. Furthermore, the characteristic condugations inside the nanostructure. These results are in good
tance steps are rounded, with dips appearing between adjagreement with reported molecular dynamid$iD)
cent conductance plateaus. In other words, there is a generealculations>*%3! where the change in the contagteck
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section after each structural transformation gives rise to an L atoms
abrupt jump in the conductanééas the second model pre- .
dicts. In selected experimeft$® the conductance shows J—¢
dips between two adjacent plateaus when it is represented R. .= i
versus the nanoneck elongation. These dips have been ana- ' i L. .
lyzed in terms of an increase of the positional disorder within perfect! disordered zone *perfect
the system when the conductance jumps take place, whereas wire wire
atomic positions are changing due to the elongation or con-
traction of the neck. MD simulations show this increase in

dls_?[]der Whetn ”t].e atofr‘rlﬁ rea}rratnge thelzj pofsn_f@ﬁdg. to th two perfect wires of the same width. The gray scale represents the
€ quantization of the €electron conauctivity du€ 1o the.,, ;e energy uniformly distributed in the range- W/2,W/2].

smgll size of the contact has its analog i|_1 pptics as the propg:iectrons come from the left part of the wire.
gation of a classical wave through a finite small aperture.
The light power transmitted through a slit of variable width ) )
is also quantized In addition, electron conductance through (2D) structure formed by three different are@ee Fig. 1
disordered systems exhibits similar properties to those of théhe disordered central zoreith lengthL) is connected to
propagation of light through a disordered scattering mediumboth sides with semi-infinite perfectly ordered wires, having
Moreover, the advantage of performing experiments on lighthe same width ). The wire is confined in an infinite
transmission is that the role of each conducting channel casquare well. To describe the two regiofmsdered and disor-
be analyzed and compared with theoretical predictions. Imlered we assume that the system is formed by atoms located
this case, there is a simple formulation of the weak localizaat the sites of a square lattice with lattice constauin this
tion of waves in terms of coherent multiple scatteringwork we have takera=1, defining the unit length The
theory®® Within this scheme it is possible to determine thedifferent interactions acting on the electrons when moving
correlation functions of the transmission as well as reflectiorthrough the wire are summarized in the one-electron tight-
coeﬁicsjfglsts for scalar wave propagation through disordere@inding Hamiltonian given by
media>™*

In the present work, we have studied the conductivity of
electrons through a disordered two-dimensional medium. We
have adopted a perspective similar to that used to describe =2 [N, m)Ep m(n,m|
the propagation of a classical wave, emphasizing the role of nm
the transmission and reflection coefficients, and their depen-
dence on different magnitudes configuring the systdisor- + > [N, M)V e, me(n”,m’[ (1)
der strength, size, and Fermi enexgin the literature, the nmin’,m’
behavior of these coefficients has not been studied in depth.

Bagwelf® analyzed transmission and reflection coefficients\,\,here|rl m) represents the one-electron wave function of
for the first three allowed modes when a Sms%le defett ( the atomic orbital at the siten(m), Enm is the self-energy or
function) is present in a wire. Laughtoet al. s;udled “on site” energy, andV, ..« m is the hopping matrix ele-
mc_)dal analy_5|_s of transport through a quantum point contaghant petween the lattice éitée,(n) and (1',m’). We have
using a realistic potential. In both works, only specific Caseaionsidered that there are only interactions between nearest-

were considered Withput statistical analysis over sever eigbor sites, and that this hopping element is the same for
samples. We use a simpler model than that of Laughton the wire sites(in both regiong then V

et al, which allows us to get averaged properties about the(n m)
behavior of electronic modes in quantum wires. We havg, '

analyzed the modal mixing, the evolution of the coefficientsv defines our ener - : ; ;
: ) gy uniM=1). In the region without dis-
with different parameters, and how the forward afwah- order, we have taken for the site energy the valyg,=0. In

hanced backscatteri.ng changes.'ln this way, we are ?‘b'et he disordered section of the wire we have assumed that
compare our humerical results with theoretical predlctlonsohe site energy is uniformly distributed in the range

the enhanced backscatterifd’ for different situations. On "\, > Wi2] (diagonal disorder, Anderson motlel
the other hand, it is hard to compare with previous works org The'chosen model and thé type of disorder are well
modal analysis because they used single samples. known and they have been used for a long time in the

The rest of the paper is organized as follows. In Sec. Il W8iterature2121417t is a very simple model, whose computa-

present the 2D model and the tight-binding framework YEional implementation is relatively easy. Similar three-

have used to calculate the conductivity through small SYSgimensional(3D) models need prohibitive CPU time and
tems. In Sec. 11l we show the results obtained for the ba"iSti%emory and the 2D model contains the essential physics of
as well as the diffusive regimes of the conductivity. Finally, the prot;lem Other 3D models in the literatiteave cylin-

in Sec. IV we present some concluding remarks about theS&rical symmetry, which simplifies the numerical problem to a

results. quasi-2D one, and with the additional difficulty of introduc-
ing impurities or arbitrary potential disorder.
Assuming that the incident waves come from the left, the
To describe the propagation of an electronic wave througlwave function for the perfectly ordered wire at the left region
a disordered region, we have considered a two-dimensionalan be written as

N atoms

—
=T

FIG. 1. Schematic representation of the model. The disordered
zone, of lengtiL and widthN atoms, is connected on both sides to

n,m;n/,m/:V |f
and (',m’) are nearest-neighbor sites and
nmn.m =0 elsewhere. In the present work the quantity

Il. MODEL AND CALCULATION METHOD
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of equations given by Eq(7) through the disordered zone
allows us to determine the ratio between the coefficients
A;, B;, andC;, and then to calculate the amplitude of the
transmission and reflection coefficients as defined in the scat-
tering matrix,t; ; andr; ;, by

+ 2, Bijexp —ik;m)sin(pin) ¢nm,  (2) -
J t”_ \/U:]tll' (10)

|n!m>left:|n!m>incident+ nvm>reflected

=; Ajexpik;m)sin(p;n) ¢n m

where ¢, ,, are the atomic orbitals at the sita,(n) and

) (Vi
Pi=N ) rij= \/U:jrij, (11)

represents the wave vector associated with the transversahere
modes (they define the different subbands or conducting
channels The Fermi energyE) of the system determines

the number of open channels and the valug;ofthe wave

vector along the propagating direction, since in the perfectly . . .
ordered wire the following relation is satisfied: Is the mean velocity of an electron in the chaninet group

velocity.
E=4[cogk;)+cogp))]. (4) We have calculated the conductar@ewith a two-probe
Landauer-type formufs

1 9E  4sink;)

Thak A 12

Uj

Only if k; is real do we have a propagating state. Wkeis

imaginary we have an evanescent state. All the kealill be 2e?

greater than zero, because we have already considered sepa- G= TE Tijs (13
rately the states propagating to the rightident wave or to h

the left(reflected wave Notice that the bandwidtAE fora  where T; ; represents the transmission probability, i.e., the

i

wire without disorder isSAE=8. probability that an incident electron in the left chaniel
The wave function for the perfectly ordered wire at theemerges in the right onie The factor 2 comes from the spin
right will take the form degenerationT; ; is connected with the transmission coeffi-
B cientst; ; simply by T; ;=t; ;|>. Analogously, the probabil-
[0, Mrighe= M M)transmitied ity of reflection for an incident electron from the left in the
j mode and coming back through thenode,R; ;, is calcu-
=§j) Cjexplikjm)sin(pin)¢nm, (B  lated withR; ;=|r;;|?. The limitations of this conductance

formula and its applicability have been already discussed
where we have discarded the wave propagating to thédeft extensively in the literaturé.

this region we have only the transmitted wavie the disor- We have calculated the conductance fluctuations as the
dered zone we have taken the wave function as square root of the variance
|n’m>disorder:Dn,m¢n,m; (6) AG:(<GZ>_<G>2)1/2! (14)
we are not interested in the specific form of the wave funcwhere( ) denotes averaging over an ensemble of samples
tion in this zone. with the same degree of disorder.
The Hamiltonian.7Z gives rise to a series of coupled
equations of the type IIl. NUMERICAL RESULTS
(Epm—E)In,m||+ (In+1,m||+|[n—1,m]| A. Short wires: Quasiballistic regime
+[|n,m+1||+|n,m—1|)=0 (7) When the nanowire has small dimensions in comparison

with the electron mean free path{l>L,N), and the degree
connecting the solution of the two perfectly ordered zonesf disorder is relatively small, the conduction process falls
[|[n,m| is the modulus of the wave function at the site into the quasiballistic regim¥. The creation of this type of
(n,m)]. nanoneck is a usual experimental situafibrf° and we can
The coefficientsA;, B;, andC; are connected through assume that is always true at the last stages of the nanoneck
the expression fracture, when only a small amount of atoms forms the con-
tact. We must remark that in the experimental situations, the
(Bl) ~T(A) ) principal disorder source is “positional disordefdisloca-
C| 1 tions, defects in the crystal structure, roughness,
whereas in our model we have some kind of “compositional
i disorder” keeping a constant wire width.
, ©) We have performed calculations for a disordered wire of
lengthL=15 and widthN=15, in order to study the main
whereT is the matrix that gives the relationship between theproperties of the conductance when the Fermi en&gwr-
wave-function amplitudes. The numerical solution of the sefes, i.e., when modifying the population of the incident
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modes. The conductane® is calculated by averaging over
an ensemble of 250 samples for each disorder parameter

16lll|||||||l||

W: in this way the major effects of the UCF will be 12 & (a)_:
eliminated™® In Fig. 2@ we show the conductand® (in ~ 02

units of Go=2e?/h) versus the Fermi enerdy for six dif-
ferent values oW with 0<W=1.0. We have considered the
Fermi energy to vary between the middle of the b&vd0

and the top of the banB=4. These curves are very similar
to those shown in Ref. 14, although the resolution we have
achieved is much higher, due to the use of a larger statistical 0 1 2 3 4
ensemble. As shown in Fig.(®, with increasing disorder, E

the perfect conductance steps are rounded, and well defined
dips appear between two adjacent conductance plateaus.
These dips have already been found in other kinds of

Conductance (2e?/h)
- (=]
11 | 11 1 I 111 t 11 1|

10_IIIIIIIIIIIIIIIIIIIIII_

)
@
o
systems}~131516\yith this behavior explained in terms of @
the destructive scattering of the disappearing mode into the £
existing mode$?!® or the presence of quasibound states S
formed in the wire*® Dip energies vary with the sample s
but always appear after a channel closing; average results are s
wide dips, as Fig. @ shows. Furthermore, the separation o AL e e e o
between two adjacent distorted plateaus is below the conduc- 1.2 13 1.4 15 1.6 1.7
tance quantunG,. E

The presence of dips in the conductance curves when the
nanoneck is elogated at room temperature has been experi-
mentally reported®?°However, in the same experiments the
step height between conductance plateaus-3,. These
jumps of the conductance have been interpreted to arise from
the contact area losing atoms during the atomic rearrange-
ments in the crystal layers, because of the existence of sub-
guantum conductance steps in atomic-sized contacts when a
semimetal is used instead of a métaDuring these atomic

16III|IIIIII|II|

() ]

=~
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Conductance (2e%/h)
[~
1 I 111 l 11 1 | 1 1l

rearrangements, the nanocontact has a high degree of disor- 0 e
der and the conductance is lower. This is supported by mo- 0 1 2 3 4
lecular dynamics calculatiort$*°*!in which the conduc- E

tance steps are simultaneous with the rearrangement of the 16

atomic positions within the nanoneck. With this structural
transformation there is also a consistent increase in disorder.
Anyway, the quantitation of the conductance cannot be ruled
out completely because metals with a high free-electron
character show results that can be interpreted as a function of
the contact area siZ&.Although in our calculations we do
not simulate the elongation process of the wire, we can in-

-
[
|

E -3

|I|III'III

Conductance (2e%h)
(-]

NN N R R RS

terpret the experimental results in terms of our diagonal dis- L B L R IR
order. In our scheme, the only possibility to keep the sepa- 0 1 2 3 4
ration between conductance plateaus of the ord&gfand E

simultaneously notice the appearance of dips, is to consider

that disorder should be included only around the conduc-

tance step itself. In Figs.(® and Zd) we show two ways of

including disorder around the steps. In both cases, the disor- FIG. 2. () Averaged conductanc¢G) as a function of the

der does not affect th&, conductance jumgpmeasured be- Fermi energyE, for a wire withL =15 andN=15, and for different

tween plateays although a dip proportional to the disorder values of the disorder parametéf=0, 0.2, 0.4, 0.6, 0.8, and 1.0.
parameter V) is present at the step position. For weak dis-(?) A detail of the previous figure fo/=0.2 andW=1.0, showing

order (W<0.4), our calculations resemble the experimentalWO conductance steps, when moges10 andj =9 disappearat
curves229 Fermi energie€=1.235 andE=1.61, respectively Arrows denote

Although in conductance experiments it is impossible toth_e energies used to represent Figs. 3, 4, 5, and 6. All energies are

: o L given in units ofV (hopping matrix elemet(c) and(d) Averaged
meaﬁure tdhe %If‘f(;rfnt md:wdu?r! COJHLIbUFIth'g}l ,?hnd Rij conductancdG) as a function of the Fermi enerdy, for a wire
we have decided 1o explore the behavior of tNeS€ Magnizy, | —15 andN=15. In these cases, the disorder parameter is

tudes, in o_rde_r to gain insight on several aspects related tr‘ﬁultiplied by a function depending on the enelgge dashed line
the transmission process. The analogous case of electromagith maxima at conductance jumps. Different solid lines show dif-

netic wave scattering in waveguides can provide an easy Waérent values of the disorder parameté=0, 0.2, 0.4, 0.6, 0.8, and
to check experimentally our results. 1.0.
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E =1.1890 E = 1.2441

3
Incoming 20123 567 8910 Incoming
channels channels

E =1.3253

3
Incoming 2112345678910 Incoming 21123456

channels Outgoing channels channels Outgoing channels

E = 1.4500

Incoming 21 1 2 456 7 8 910 Incoming

h
channels Outgoing channels channels Outgoing channels

FIG. 3. Averaged reflection probabilitig®, ;) at different Fermi energy valugs&= 1.1890(a), 1.2325(b), 1.2354(c), 1.2441(d),
1.3253(e), and 1.4500(f)] for an incident electron through channeland reflected through channiel The wire is characterized by
L=15,N=15, andW=0.2. The represented Fermi energy values were marked with arrows in(Bjgo2 W=0.2. Two gray colors have
been used in all the histograms to help the visualization. Notice the differaxis scales used.

In particular, we have analyzed the samexI% system  tribution (Ryq 10 is the most important, although the differ-
with the different degrees of disorder shown in Figg2The  ent intersubband componenrtg; 1) also show a significant
Ti; andR; ; features do not present abrupt transitions withincontribution. That is, the main contribution to the reflection
the range of disorder studied: stronger disorder, strongeas originated from the mode closest to the Fermi leftbk
scattering(back and forwarflis obtained. We present results higher occupied modp,). When the Fermi levek is just on
for only two cases:W=0.2 (very weak disordgr and the step[Fig. 3(b)] the componentR, 19 increases enor-
W=1.0 (relative high disorder In Fig. 2b) we draw the mously (notice thez axis scal¢ by an order of magnitude.
energy regions we have exploréithe arrows show the en- Once the modg =10 cannot be an electron propagating
ergy values we have used for Figs. 3, 4, 5, andSthce UCF  channel through the wire, the situation drastically changes
affect the values of the transmission and reflection probabilifsee Fig. &), at the dip positioh Although there is higher
ties, we have studied the averaged quantifiés;) and contribution to the reflection through thig=9 mode, it is
(Rij)- clear that there is a strong contribution to the backscattering

In Fig. 3 we representR; ;) for the caseV=0.2 at six  coming from the intrasubban(diagonal terms(R; ;). Their
different energies, describing the situation along the conducsontribution is almost as important as that of terms involving
tance step wheft increases. In this case the conductancethe j,,=9 mode. Notice that there is a strong decrease of the
channelj =10 will disappear at the third of the six snapshotsz axis scale. Although we are in the quasiballistic regime,
sequencéFigs. 3a)—3(f)]. Before reaching the conductance this result shows certain similarities to that predicted by the
step[Fig. 3(a)] the reflection is dominated by the contribu- weak-localization theors?** where an enhanced back-
tions of thej =10 mode. In particular the intrasubband con- scattering for the intrachannel terms is obtained. However, it
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the j,=10 mode, we could obtain a peak of reflected and
transmitted currentor intensity in experiements with light
in this j,=10 mode, indicating the presence of the condu-
cance step.
In Fig. 5 we show the factok®,; ;) for the caseV=1.0 at
six different energy positions, describing the situation along
the conductance step whé&nincreasegsee Fig. 2o) to de-
termine the energy positiohsNow, the sequencéFigs.
5(a)-5(f)] illustrates how the conductance channgk9
Incoming 891010 987654321 will disappear. Before reaching the conductance_ $Eags.
channels . 5(a) and §b)] we can see that although there is a larger
Outgoing channels contribution from factors involving thg,=9 mode and from
diagonal factors, there is a considerable background due to
the rest of the reflection factors, denoting the presence of a
stronger intermixing of modes caused by the larger disorder
(W=1). As an additional effect derived from the larger dis-
order, notice that the average reflection probabilities are
larger than that foWW=0.2. In Fig. c) (just at the conduc-
tance jump the intrasubband componefRg o) increases
enormously. Notice that in this case the intrasubmode terms
(R;,;) keep a relatively high value in comparison with non-
diagonal factors. A stronger mode intermixing due to stron-
ger disorder makes this system closer to the weak-
Outgoing channels localization regime, although andN are the same as in the
previous case. At the dip enerd¥ig. 5d)], the diagonal
E = 1.2354 reflection factors are more important, especially the term
(Rgg. For increasinge [Figs. 5e) and §f)], the situation
slowly evolves towards a new one, very similar to that of
Fig. 5@), although with only eight channels. One important
difference betweeftv=0.2 andW=1 is the near disappear-

ance of the term¢R; ;) and(R; ; ) (i#]y,) for the stronger

disorder case before the energy of fhenode becomes for-
bidden [Fig. 5(c)]. For the case with more disorder
Incoming 8 91610'9'8'7'6'5'4'3'2'1'O (W=1), we see thafR; ;) and(R;; ) (i#]n, jn=9) take
channels ) a lower value than the rest of the term&;;), at
Outgoing channels E=1.6095 below the closing energy for the mogle=9
(E=1.6124). This is different for a situation with less disor-

FIG. 4. Averaged transmission probabiliti¢s; ;) at different  qqr [see Fig. &) for W=0.2], where the teerRj ) and
Fermi energy valuefE= 1.1890(a), 1.2325(b), and 1.2354(c)] . . U .
for an incident electron through channgland reflected through <Ri*jh>’ with '7&]“’_ are hlgher than(R; j), i,j#jn. This )
channeli. The wire is characterized by =15 N=15, and Mmeans that when disorder increases, near the energy at which

W=0.2. Note the reversed representation of the modes on #mel @ channel becomes forbiddéchannel closing energyelec-
y axis, in relation to Fig. 3. trons traveling through the last open subband stop scattering
to other subbands, and prefer to come back through the same

must be reminded that we are far away from the criteria ochannel.

applicability of this theory, since the considered wire is very In Fig. 6 we have shown the evolution of the factors
short for the disorder used. WhéhincreasegFigs. 3d)—  (Ti,j) for three specific situations around the dip region,
3(f)], the new conductance plateau is formed and the situsshowing that when disorder increases there is a slower evo-
tion is slowly changing towards a situation similar to thatlution of the componen{Ty g at the step region, and that
found in Fig. 3a), but now thej,,=9 mode is the main one other diagonal transmission factors are affected at the dip
responsible for the backscattering. However, notice that durtegion. As it can be seen, there is an appreciable intermixing
ing a wide energy intervdtorresponding to the conductance Of modes in comparison with thé&/=0.2 case, but it is still
plateay the increase of the tern’(ﬁivg> and<ngg> is very small. Again, before the last mod¢,E9) becomes forbid-
slow, and only when the energy approaches the next condu€len in energy, it nearly ceases to intermix with othigfig.
tance step do these reflection factors dramatically change. 6(b)], and hardly any current comes from or to this mode.

In Figs. 4a)—4(c) we have shown the evolution of the In conclusion, we have shown that when the Fermi energy
factors(T; ;) for three specific situations, showing the fast yarieg along a corjductance step, strong changes can be no-
disappearance of the componélit, ;9 at the jump region. ticed in the evolution of the coefficien®, ;), determining
However, near the difFig. 4(b)] there is a slight increase of the backscattering. In particular, the intrasubband reflection
the factors(T; 1o (with i<10). This indicates that if we factor (R;, ;) suffers strong variations. The intersubband
were able to prepare an incident state without the presence oéflection factorg Ri,jh> also play an important role for small

o e -
Incoming 910109 8 76 543 21
channels
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E = 1.4500 E=1.6124

Incoming 1 Incoming 112
channels channels

E = 1.5660 E =1.6385

Incoming 11

9 Incoming 1

channels channels

E =1.6095 E =1.7197

Incoming

Incoming 112 3

channels Outgoing channels channels Outgoing channels

FIG. 5. Averaged reflection probabiliti¢®; ;) at different Fermi energy valu¢&E= 1.45(a), 1.566(h), 1.6095(c), 1.6124(d), 1.6385
(e), and 1.7197f)]. The wire is characterized Hy=15, N=15, andW=1. The represented Fermi energy values were marked with arrows
in Fig. 2(b) for W=1. Notice the differenz-axis scales employed.

disorder. However, when disorder increases, there is a welave been interpreted in terms of electronic localizafitm.
marked trend, and the diagonal fact¢R ;) start to be de- both cases, the electron conduction falls into the diffusive
terminant, as predicted by the weak-localization theory. Theegime, since the electronic mean free plate smaller than
forward scattering is of little importance and the mixing of the contact or neck sizel€N,L). The main goal of this
modes is low, even for the stronger disorder studied. This igection is to analyze the way in which the different factors,
not in agreement with previous results by LaL_Jgh(zd:r’.ﬁtl.,3_6 (Ti;) and(R;;), evolve when the length of the wire in-
although they used a different model and a different kind of¢reases, passing from the quasiballistic regime to the diffu-
disorder. When disorder rises, themode ceases to contrib- gje one. Conductance studies for different models—as a
ute to the conductandé does not scatter to other modes a”dfunction of length, varyingE, and the degree of disorder—
they do not scatter to)itbefore it has a forbidden energy, p, e already been don&?’ but the transmission and reflec-

becoming an effective closing of thig mode. tion probabilities between the modes as a function of the
length have not been studied yet.
B. Evolution with length: From quasiballistic We have considered the same kind of disorder described
to diffusive regimes in Sec. II, but in order to simplify the number of parameters,
Nowadays, it is impossible to create perfect long GaAsMe consider for all the calculations presented in this section
AlAs quantum-well wired’ without some kind of intrinsic that the Fermi energy is fixed =0. The reason for this
disorder(compositional and/or geometyicFurthermore, re- choice is that we want to have all the channels opened to
cent results on STM based contatishowing the absence study their mixing. The use of a different Fermi energy,
of quantization during the elongation of long nanowires,where P channels can be closed, is nearly equivalent to
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Incoming 896 876543 21 width N=5 (circle_s) andN=10 (squarey _with disorder parameter
channels W=1.0 and Fermi energg=0. The localization lengti for each
wire width is also shown(b) Conductance fluctuations of the sys-
tems shown in@). The thick horizontal line represents the theoreti-

E=1.6124 cal value of the fluctuations for quasi-one-dimensional systems.

the conductance begins to decrease exponentfalijis is
the weak-localization regime. Finally, for much londaot
shown) lengths, the strong-localization regime is reached. As
we will see, in our case we are working within the quasibal-
listic and weak-localized regimes. The localization length
can be estimated By

Incoming 5998765432 1 In Gy ~*
channels . A= . (15
Outgoing channels JL
FIG. 6. Averaged transmission probabilitié§; ;) at different We have foundfor this particular disordgmn =85+ 3 for
Fermi energy valuefE= 1.566(a), 1.6095(b), and 1.6124c)]. =~ N=5, A=100+6 for N=7, and A=120+10 for N=10.
The wire is characterized by=15, N=15, andw=1. Furthermore, we can see how the two different averages start

to deviate from each other whdnexceeds the localization
studying a system wittN—P width (the difference is the length\,® reflecting the singular distribution of the conduc-
existence ofP evanescent states where it is possible to scattance in the localization region. After determining the local-
ter in theE+#0 case, and their absence in the:0 case; but ization lengths for the thredl cases studied, we can con-
in the final result, i.e.,T;; and R; j, these states do not clude that the wire lengths we have taken into account in the
change anything significanflyln this way, we describe the present work fall in the semiballistic, weak localization, or
case in which all the possible incident modes are populatednesoscopic regime.

We have fixed the disorder parameiat=1, studied three In Fig. 7(b) we have plotted the conductance fluctuation
different widths N=5,7,10), and the wire length has been AG [Eq.(14)] as a function oL. As expected, with increas-
varied from 0 to 200. ing length, the fluctuation increases up to a value very close

In Fig. 7(a) we present the basic results for the averagego that predicted for UCF in quasi-1D systems
conductanc€G) as a function oL (we only plot results for (AG=0.72%?/h).2® Since the range of we have consid-
N=5 andN=10). We have averaged over 1000 samples forered does not enter into the strong-localization regime, we
N=5 and over 1500 samples fbi=10. Notice that we have cannot detect the decrease/o® whenL>\.1°
represented two different averages: the arithmetic average With the results shown in Fig. 7, we have checked that
(G) (empty symbols and the geometric average our model describes the well known basic features of the
exp(In G)) (solid symbolg. Two different regions for the conductance in quasi-1D disordered systems, and we have
conductance can be distinguished in the figure. The first rebeen able to determine the kind of conductivity mechanism
gion is characterized by a strong decrease from its quantizefdr the set of parameters assumed. Now we can proceed in a
starting valug(this is the quasiballistic regime, already stud- way similar to the preceding subsection, determining the role
ied in the preceding sectipnAs the wire becomes longer, of each transmission or reflection factor, and comparing with
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FIG. 8. (a)—(c) Averaged transmission probabiliti€3; ;) (j, incoming channel;, outgoing channglfor three length§L =5 (a), 55 (b),
and 190(c)]. (d)—(f) Averaged reflection probabiliti€s; ;) for three length$§L =5 (d), 55(e), and 19Q(f)]. The calculation parameters were
N=5, W=1.0, andE=0 in all the cases. Notice the differentscale in each figure.

predictions of the macroscopic approach of Metibal®  4cosgy) in Eq.(4)] is the closest to the energy band side and
From this model we can extract two basic results to compargs p; is the closest value to 0 er. A “central” mode will be
with. On one hand, the average transmission fa¢far;) 3 channel having a “transverse” energy very close to 0 with
takes the value its p; close tom/2. We consider that two modes, (j) are
-2 “symmetric” when p;=#—p;. For instance, in a system
(Tip=NcXT), 16 yith N=7, the lateral subbands aje1 andj=7, the cen-
where(T) is the total averaged transmission probability intotral one isj=4 (only one in this case and j=3 is the
all channels(when the incident channels are fed with, ~ symmetrical mode of =5. A diagonal term oR; ; or T;  is
incoherent unit fluxes or channglén our particular case, we a term withi=j. For a system havinfjl conducting modes,
have N;=N since all the channels are populated. On thewe denote “corner” terms those of the form (1,1 ,N),
other hand, the average reflection factBs ;) is given by (1N), and (N,1) for (i,j) (in the previous example, the
B 1 4 “corner” terms of T; j are Ty 4, T 7, T17, andTy ).
(Ri,j)=(1+6;)N¢ "(Nc+1)"(R), 17 In Figs. 8 and 9 we have represented the values of the
where(R) represents the total averaged reflection coefficienfVeragesT; j) and(R; ;) for two different widthsN=5 and
(notice that(R; ;)=(R; j)=2(R; ;) for anyi andj). These N_= 10, respectively. In both cases we show three_ dn‘fgrent
two equations are valid whebh>N and whenL is smaller ~Wire lengths [ =5,55,190) representing three situations
than the localization length. These requirements are equivé@long the transition from the quasiballistic to the weak-
lent to considering the weak-localization regime. localization regimes. In Figs.(8 and 9a) we plot(T; ;) in
In order to clarify the terminology we will denote a “lat- the quasiballistic regime; notice that the main contribution to
eral” mode as a channel whose transverse engtggym  the total transmission comes from the diagonal factors, the
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FIG. 9. (a)—(c) Averaged transmission probabiliti€3; ;) (j, incoming channel;, outgoing channglfor three length§L =5 (a), 55 (b),
and 190(c)]. (d)—(f) Averaged reflection probabilitig®; ;) for three length§L =5 (d), 55 (e), and 190(f)]. The calculation parameters were
N=10,W=1.0, andE=0 in all the cases. Notice the differentscale in each figure.

central modes having a large weight. There is also a smalicattering comes from the “corner” factors. There are four
contribution corresponding to the “corner” terni$, 5 and  strong peaks showing enhanced backscatte(fimginstance
(Ts,q) for N=5, and(T; ;9 and(Tyq ) for N=10. When the for N=10 the factorgRi 10, (R10,0), (R110, and(Ry 1))
wire length increasels=55[see Figs. &) and 9b)], and we and the rest of the factors are almost identical, showing
start entering the weak-localization regime, the situation istrong intermixing of modes. By increasihg Figs. 8¢) and
drastically modified. Notice that central modes have a stron§(e)] we notice how the diagonal reflection coefficients start
contribution to the transmission in this regime. However, itto play a fundamental role, although there are remains of the
seems that there is a bell-like distribution of the transmissiomeflection “corner” factors. Finally, when the system can be
probability. This situation is evident when the system is inconsidered within the weak-localization regimsee Figs.
the weak-localization regimgsee Figs. &) and 9c)]. The  8(f) and 9f)] the enhanced backscatterings clearly mani-
above results disagree with those represented in(Eg). fested. The diagonal factors are approximately twice the non-
Although we are at the weak-localization regime, there is notliagonal factors. However, the diagonal fact{s ;) are not
a homogeneous distribution of th&; ;) factors. In general exactly equivalent among them, the extreme modes mani-
we can say that one incident electron has a higher probabilitfesting a slightly higher reflecting powgj=1 andj=10 in
of emerging at the right side occupying a central mode, anthe caseN=10, Fig. 9f)]. From the previous analysis we
that an incident electron through a central channel has aan conclude that there is not a simple transition from the
higher probability of emerging in the right side. quasiballistic to the weak-localization regime, and that theo-
In Figs. 8d) and 9d) we plot the reflection coefficients retical expectations fo(T; ;) and for (R; ;) are not fully
(Rij) in the quasiballistic regime, fal=5 andN=10, re-  satisfied.
spectively. Notice that the main contribution to the back- In order to determine the dependence of the different
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L of the disordered wire, for the incident mopte 6 (central modg
See the legend in Fig. 10 to identify the outgoing channédire
parametersN=10,W=1.0, andE=0. In (b) we also plot the theo-
retical prediction§Eq. (17)] for (R; ;) (dashed lingand for(R; ;)
(i#]) (solid line). The arrow indicates the localization length

FIG. 10. (a) Averaged transmission probabiliti€$; ;o) and(b)
averaged reflection probabiliti€®; ;) as a function of the length
L of the disordered wire, for the incident mode=10 (lateral
mode. The outgoing channel is identified in the legend. Wire
parametersN=10, W=1.0, andE=0. In (b) we also plot the theo-
retical predictiongEq. (17)] for (R; ;) (dashed lingand for(R; ;)
(i#]) (solid ling). The arrow indicates the localization length eral modes(R; 1, also shows higher values than those ex-

pected from Eq.(17) [solid line in Fig. 1@b)]. The other
transmission and reflection coefficients on the wire lengthgoefficients(R; 10 seem to be very similar to the theoretical
and verify the predictions of the isotropic motfeflescribed  predictions fluctuating around thesee the solid line in Fig.
by Egs.(16) and(17), we have followed the evolution with 10(b)].
L of determined average transmission and reflection coeffi- In Fig. 11 we show the transmission and reflection coef-
cients. In Fig. 10 we present the averaged transmission prolficients when the incident mode js=6 (a central type chan-
abilities (T; 100 and the averaged reflection probabilities nel in the caséN=10). In this case we can notice that the
(Ri 10 for a wire of width N=10. It can be seen that the coefficient(Ts¢q [see Fig. 11a)] decreases very slowly in
factors(T 119 and(Ty 10 exhibit a different behavior when comparison with the other coefficientd; ¢) (with i#6).
compared with the other transmission coefficigstse Fig. This decrease is also less pronounced than that of the coef-
10(a)]. Remember thaf=1 andj=10 are lateral modes, ficients(T; ;o) shown in Fig. 10a). This means that the cen-
symmetrical to each other. For short wires, both transmissiotral channels have a larger “memory” when propagating
factors are the most important, although with increasing wirghrough the disordered wire in comparison with the outer
length they decay rapidly. For wires with> 20 the situation channels. We can see that the coeffici€fg s presents an
is reversed, the transmission through central modes being tlexponential decrease, similar to the other coefficients, from a
most relevanfas it was shown in Figs.(B) and 9c)]. We  length below the calculated localization length={120).
can notice that Eq(16) is not satisfied, since the different This fact indicates that the ultimate responsible modes for
transmission modes are not equal during the wide range dhe change of regimé&from semiballistic to weakly local-
L we have consideredthis range includes the region in ized are the central ones. We can see thatfor\ the slope
which the isotropic modét is valid). of all the coefficients is very similar, equally contributing to

For the reflection coefficientfFig. 10b)] we have no- the localization length. In Fig. 1) we show the reflection
ticed that there are large differences between the numericéhctors(R; ¢). In general, there is a good agreement between
calculations and the theoretical predictidisy. (17)]. The  theory and numerical calculations, although we can note that
coefficient(Ryo 19 shows values almost 25% above the ex-the factor(Rs ¢ increases slower than the theoretical predic-
pected theoretical valugashed ling Furthermore, even for tion. This means that the enhanced backscattering effects are
smallL there is a significant increase of the reflection prob-delayed for the central channels when compared to the outer
ability, indicating a strong backscattering enhancement. Wenes. Once the length increases above the localization
should point out that the total reflection coefficié®) used length, the agreement between our calculations and .
in Eq. (17) is obtained from our numerical simulations. is better, but always under the theoretical value.

Therefore, the enhanced backscattering exceeds the factor 2 The results for the evolution ofT; ;) and (R;;) as a
determined by the isotropic models for this particular modefunction of the length foN=7 andN=5 (not shown dis-
The intersubband reflection coefficient between the two latplay a similar tendency to that fak=10: the theoretical
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predictions of the isotropic model are not completely full- In the transition between quasiballistic and diffusive re-
filled. But, it must be pointed out that the lower the numbergimes for incident lateral modgs transmission coefficients
of channelsN, the lower the difference is between theory decrease quickly as a function of leng{T; ;) soon takes
and our calculations. This is when the system has a morealues below(T; ;) (i#]), and in the diffusive regime the

marked 1D character. terms that indicate scattering to central modes are quite high.
Summarizing the main results of this section, we can sayn the quasiballistic regime, the reflection coefficients
the following. (R;;) and(R; ) (modes is the symmetrical one of mode

(@ Transmission coefficients: The&T; ;) distribution j) present an enhanced backscattering that subsists in the
changes from a diagonal form in the quasiballistic regime weak localization region.
such a way that the electron keeps track of the incoming Transmission probabilities of incident central modes have
channel to a bell form (very smooth in the weak- a higher memory effect with longer lengths, and tfg ;)
localization regime. The memory of the central modes perterm is always greater thaT; ;) (i#]). Beyond the quasi-
sists up to near the weak-localization zone. Lateral modeballistic region, the reflection coefficients of central modes

lose quickly their memory and haveelative) high probabili-  show enhanced backscattering through the same mode,
ties to be scattered to a central mode when the nanowire ishereas the rest ofR; ;) grow equally as a function of
long enough. length.

(b) Reflection coefficients: ThéR; ;) distribution grows The transmision coefficients, as a whole, in the quasibal-

uniformly with increasingL, except the diagonal terms listic regime have a diagonal aspect. The distribution shows a
(i=1j) that grow faster until they reach a value slightly below smooth-shaped bell form in the weak-localization regime,
twice the value of the rest dR; ;) (at the weak-localization j.e., highest transmission probability for an electron when
regime. In the quasiballistic regime, the scattering throughcentral modes are involved. The transition is not uniform and
intralateral and interlateral modes has great importanceyt intermediate stages the central modes are more prominent
whereas the backscattering through central modes appeatfan the rest. The figure of the reflection coefficients in the
later than for the outer ones. _ quasiballistic regime presents marked peaks at the corner
(c) The isotropic model is not exactly fulfilled. There are torms (R, ), (R, ), (Ryy), and(Ry.y). When approach-
appre(_:|able differences whé&hgrows and/or we analyze' the ing the diffusive fegime{ hiﬁ grow uhiformly except those
behavior of the lateral modes. In genexd; ) are consid- havingi =j, in such a way that in the weak-localization zone

erably greater thanR;,;) (i#]) at the weak-localization the figure has a uniform background with higher diagonal
zone, altho4ugh we have never found the factor 2 predicted byerms.
the theory’ By comparison of our calculations with the Meltd al.
isotropic theory’* we can say that their predictions are not
completely fulfilled. In the weak-localization regimi{&; ;)
values are greater but not twice thaR; ;) (i#j). All the

In the quasiballistic regime, for short wires, the conduc-(R; ;) are not equal, terms involving lateral modes are greater
tance takes place in such a way that the electron keepkan those involving central ones. Furthermore, our calcula-
memory of the incoming channel, i.€T; ;) terms are the tion does not show any uniform distribution 6F; ;) as ex-
main coefficients even for a relatively strong disorder. Thepected from their theory.
intermode mixing, despite the growth of the disorder, is not The Anderson modeglAM) leads to have simultaneously
very high in the cases studied. The role of the Fermi energyttractive and repulsive scatterers. These two kinds of scat-
is not very important: when it approaches the energy of therers affect in a very different way the conductance figure if
last opened channg},, this decreases its contribution to the the Fermi energy is changédi'® Preliminary results of short
conductanqe until ita disappearance. The situation is differerv;,ires’ with an AM modified in such a way that there are only
for (R; j), its evolution with the Fermi energy has abrupt repsive or attractive scatterers, show similar figures to that
changes. The termgR; ;) suffer a quick rise before the i ineq usings's as scattering centetéfor repulsive ones
channel closes. For the rest of the terms different things haghe conductance varies smoothly with the Fermi energy,
pen depending on the disorder strength. For very weak digneanwhile abrupt dips are present if we use only attractive
order the(R; ;) and(R;; ) are the second contribution to gnes. More study is needed to be able to confirm for the AM
the backscattering when the channel is going to disappeatand its modification the two classes of dips found for Ku-
while the dominant terms once the subband is closed argar and Bagwelf in their calculation for long wires: the
those corresponding to the intermixing with the-1 mode.  conductance drops abruptly after the opening of each new
For high disorder the intrachann@®; ;) coefficients provide channel when all the scatterers are repulsive: when half of
the second important contribution to the backscattering. Thene scatterers are attractive, broadened dips appear before the
evolution of (T ;) and(R; ;) does not show abrupt changes new channel opens, without any conductance drop after the
with disorder, and the transition between the two featuregpening. The variation of the Fermi energy for long wires for
described above is smooth. Increased disorder leads to ahe AM is now under study.
effective closing of the last mode before its energy became Finally, we wish to make some remarks about the evolu-
forbidden. It ceases to contribute to the conductance and alsgn of the coefficients with the system length near a conduc-
the mixed termgT; ; ), (Tj, i), (R, i), and(R; ; ) become  tance dip. The transition between the different regimes takes
nearly O, wherea$th1jh> approaches 1. place by increasing the wire lengtfor a fixed disorderor

IV. DISCUSSION AND CONCLUSIONS
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by increasing the disordéfor a fixed length. Thus, we ex-  and interband reflection ternd®; ;) will gain weight against
pect that the evolution of conductanc€l; ;) and (R;;) intraband onegR; ;).

(around a conductance djpwith the length of the system
can be extrapolated from the results obtained with changed
disorder. For instance, when the length incredseth fixed
disordej the dip is smoothedsimilar to what happened for We would like to thank J. J."®az, H. De Raedt, and Th.

5 scattererS). We expect also effective channel closing, M. Nieuwenhuizen for their fruitful ideas and discussions.
which will happen at lower energies for longer wires. Mode This work has been supported by the EU through a BRITE
mixing will be clearly more important with a length increase, project.
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