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Plasmons in a spatially modulated quasi-one-dimensional quantum wire
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We consider a quasi-one-dimensional superlattice consisting of a quantum wire, the equilibrium
carrier density of which is spatially modulated along its length. We apply a simple hydrodynamic
model for the collective excitations of low-dimensional inhomogeneous systems to calculate the
plasmon dispersion relation of the periodic heterostructure. As expected, the acoustic plasmon of
the homogeneous quantum wire is folded into the first Brillouin zone due to the modulation and
acquires optical branches. Gaps open at the zone boundary due to Bragg scattering, but unlike the
two-dimensional and three-dimensional cases, no gap opens at the zone center for the modulated
wire.

I. INTRODUCTION

Advances in the fabrication of mesoscopic semiconduc-
tor systems have produced devices where confinement
plays a major role and whose physical properties, such as
carrier densities, band gaps and widths, and even dimen-
sionality, may be controlled. There are expectations of
possibly producing very high speed transistors, photode-
tectors and lasers. On the other hand, theory predicts
curious effects in one dimension, such as Peierls instabil-
ity, Anderson localization, spin density excitations, etc.
In quasi-one-dimensional (Q1D) quantum wires electrons
move freely in one direction but their motion is confined,
and therefore quantized, in the two other independent
directions, originating electronic subbands. If only the
lowest lying subband is occupied, a finite energy is re-
quired to excite the transverse degrees of freedom and
a truly Q1D electron gas ensues. These systems have

already been fabricated, for instance, by laterally modu-
lating a quasi-two-dimensional electron gas. For experi-
mental and theoretical reviews, see Refs. 1 and 2.

Another class of tunable systems which have attracted
considerable attention are superlattices. In these, an
artificial periodicity is imposed, reducing the Brillouin
zones and resulting in the folding of the dispersion re-
lations of all the elementary excitations, thus yielding
tunable minigaps. Large wave-vector regions within the
original Brillouin zone, which are inaccessible to some
optical spectroscopies in homogeneous systems, may be-
come accessible when folded into the reduced zone of a
superlattice. By modulating the potential and, there-
fore, the carrier density of a low-dimensional electron
gas, a Q2D or a Q1D superlattices could be produced.
Strongly modulated Q2D systems can be viewed as ar-
rays of multiple quantum wires, weakly coupled among
themselves through Coulomb and tunneling effects. They

are the most frequently studied low-dimensional super-
lattices. In contrast, here we focus our attention on a
quantum wire, the equilibrium density of which is peri-
odically modulated along its length. Such Q1D superlat-
tices could be fabricated by superposing two perpendic-
ular electrode grids above a Q2D electron gas: a strong
potential would be applied to the first to create the quan-
tum wires and a weaker one to the second to modulate
their density.

Among the various modes that form the elementary
excitation spectra of periodically modulated QlD wires,
we are interested in the theoretical study of its plas-
mons. These collective charge excitations have attracted
at tention lately. For example, it has recently been
proposed4 that modulated Q1D systems might support
current-driven plasma instabilities at much lower thresh-
old drift velocities than in 3D systems. The plasmon
dispersion relation for the unmodulated case is closely
linked ' to the dimensionality and depends on the width,
but is rather insensitive to the geometry. It has been
shown that, unlike the intersubband plasmon and the
electronic eigenenergies, the intrasubband plasmon fre-
quency is only marginally dependent on the wire shape.
The plasmon dispersion relation of an unmodulated wire
has been calculated within the random phase approxi-
mation (RPA) and within a hydrodynamic model. The
latter is simpler and has proved to agree with more so-
phisticated treatments in the long-wavelength regime. In
this paper, we employ a recent extension of the hydro-
dynamic model to inhomogeneous electron Huids and
apply it to the Q1D modulated case. A similar exten-
sion has been succesfully applied to calculate the linear
and nonlinear optical response of metal surfaces having
a smoothly varying electronic density profile.

In the next section we present a hydrodynamic ap-
proach to the collective dynamics of our system, in
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Sec. III we present our results for the plasmon disper-
sion relation, and we present our conclusions in Sec. IV.

II. THEORY

I et us consider an inhomogeneous single quantum wire
running along the Z direction. Assuming that the Q1D
inhomogeneous electron gas has only one occupied elec-
tronic subband and that at temperature T = 0 can be
treated as a strictly one-dimensional nonviscous fluid, its
dynamics would be described by the 1D Navier Stokes
equation,

( c) |9
~mn —u~ = —enE — P, — (1)

c)t BZ

where e and n are the electronic charge and number den-
sity, m is the electron's effective mass, u is the average
velocity Geld of the electronic fluid, E is the total macro-
scopic electric field (including the external field E,„and
the average of the Coulomb interparticle interaction),
P = n28(U/N)/Bn is the hydrostatic pressure, assuming
we have local equilibrium, and U/N the average internal
energy per electron. We assume U/N is a local functional
of the density and for simplicity, we neglect exchange and
correlation contributions. Therefore, the Coulomb inter-
action is taken into account through the interaction with
the self-consistent Beld E and U is given by the energy
of a noninteracting fermion gas in one dimension,

U/N = pn, — (2)

where p = (~/2) ti /m is independent of the density pro-
file n. Here, we have assumed implicitly that the spatial
variations of the fields (density, electric potential, etc.)
are small compared with the Fermi wavelength 2m/kt
and also that the frequencies u of their temporal varia-
tions are below the interband. thresholds.

Substituting Eq. (2) in (1), we obtain

(o)E(o) &(n(P) )
2 n(o)

19Z

for a monochromatic oscillation of frequency ~.
To obtain the collective normal modes of this system,

we eliminate the external field and we set the oscillat-
ing field E(z) to the self-consistent field generated by
the charge fluctuation —en~ ). To deal with the singu-
larity of the Coulomb interaction in a zero-width sys-
tem, we follow Ref. 5, where a finite-width wire de-
scribed by a profile function N(x, y) is introduced. We
assume that the density fluctuation in 3D is given by
n(i) (r) = n(i) (z)N(x, y), so that the scalar potential p(r)
of the wire is written as

We average this potential over the cross section of the
wire to get the effective 1D potential,

4(z) = dx dyN(x, y)(p(r)

—n( )(q) d dy dx'dy'N(x, y)N(x', y')
27r

I
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the Fourier transform of which may be written as

4(q) = —en( )(q)v(q),

where

v(q) = 2 dR dR'N(R)Kp(~q~~R —R'~) N(R'),

(8)

is an efFective Q1D Coulomb potential, R = (x, y, 0), and
Ko is the modifled zeroth order Bessel function. Here, we
have defined the Fourier transform according to X(z) =
f dq/(2~) X(q)e'i'.

Now we go back to Eq. (5), we write E(z) in terms
of 4(q), and we use Eq. (8) to get the homogeneous
equation,

where E~ ) is an effective static electric field required to
maintain the equilibrium density profile n(P)(z). In the
presence of an additional time-varying field E(z, t), the
density fiuctuation n( ) (z, t) = n(z, t) —n(P) (z) obeys to
first order,

dq' mw 8(q —q') ——e qn( )(q —q')q'v(q')
27r

~q( ")'(q —q') (q+ q') "'(q-') = o
27r 2

(10)

mn )c)tu = —en( )E —en( )E( ) —p(n( )) —n( )
OZ
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Now we eliminate the first-order velocity field u(z, t)
through the first-order continuity equation c)n(p)u/c)z +
Bn(i)/c)t = 0 and obtain

m~'n(') (z) = —.—(n(') (.)E(.))BZ

Oz ( c)z )
1 c) ( c)

2 az ( az

n(')(q) = ) n(')S(q —K),
K

(n"')'(q) = ) .(n"')' ~(q —K) (12)

where K spans the reciprocal lattice. We look for normal
modes of the form of Bloch waves,

the nontrivial solutions of which describe the normal
modes of the Q1D superlattice. Here, we denote by
(n( )) (q) the Fourier transform of the square of the equi-
librium density, which must not be confused with the
square of the Fourier transform.

For a periodic superlattice, the Fourier transform of
the equilibrium density has a discrete nature,
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(i)
( ) ) (i) (k) i(k+A)z

K

Therefore,

n(') (q) = 2~ ) n~~) (k) h (k + K —q), (i4)

and hence, Eq. (10) is finally written as a matrix equa-
tion)

is a = 400 A, its average electronic number density is
n = 4 x 10 cm, and that the modulation length is
A = 2000 A. . All of these parameters are well within the
accessible experimental range. '

The total number of locally occupied subbands can be
calculated from the well known formula np ——P,& f (e,k),
with f the Fermi distribution and e,k the electronic en-

ergy corresponding to wave vector k within band i. In
QlD at T = 0, it gives

) m~„8~ ~ —e (k + K)n~ ~, (k + K')v(k + K')
K/

np —2 ) (e~ —e, ) ~,+2m . 12
7t.h

(21)

——(k+ K)(n( ))~ ~, (2k+ K+ K') n~, (k) = 0,

the nontrivial solution of which de6.nes the dispersion
relation cu = wy of the plasmons of the modulated Q1D
wire.

To proceed, we have to specify the actual profiles of
our system: 1V(x, y) and n( ) (z). We assume parabolic
confinement, and that along the Y direction it is much
stronger than along the X direction. This implies that
the excitation of motion along Y requires an energy much
higher than that associated with the X confinement.
Therefore, the Q1D system looks like a flat strip of a
characteristic width, say a. With this choice,

—2vrx /o.

a

yielding

v(q) = e~ ~ Kp(q a /8vr),

For the ground-state electronic density, we choose a sim-
ple sinusoidal modulation of period A,

where e~ is the Fermi energy and e,. is the quantized en-
ergy associated to the harmonic confinement e, = i~0,
with i = 1, 2, 3, . . . up to the highest occupied subband,

", , and we included a factor of 2 to account for
spin. Equation (21) is solved self-consistently for the to-
tal number of occupied subbands and total Fermi energy.

With our choice of parameters, we can increase the
density modulation of the wire up to 4/n = 0.4, before
we start filling the second subband. The Fermi energy is
e~ ——6.63 meV, the effective Fermi velocity of the Huid
is v~ = 1.07 x 10 cm/s, and ei = 4.4 meV. Notice that
we can write p in terms of the Fermi velocity, as p =
mv+~/n~z It h. as been shown by Mendoza and Schaichs
that with this choice of p, the plasmons of a homogeneous
quantum wire calculated within the hydrodynamic model
are in good agreement with the RPA calculation in both
the low and high frequency limit. In this regard, Q1D
systems are unique, since a single choice of p reproduces
both frequency limits.

In Fig. 1, we have plotted the dispersion relation cu(q)
for a relatively small modulation 4/n = 0.1 and a large
modulation A/n = 0.4. We also display the dispersion
relation w„(q) for the unmodulated wire, given by

n( ) (z) = n + 4 cos(gz),
e n

~„(q) = q v(a(q() +/3 q . (22)

with n the unmodulated electron density, 4 the modu-
lation amplitude, and g =

&
the 6.rst reciprocal lattice

wave vector along the direction of the wire. Therefore,
the Fourier transforms of n( )(z) and of (n( )) (z) are

( )(q) = 2 6(q) + —8(q+ g) + —8(q —g)
2 2

(n( )) (q) = 27r
(

n +
( h(q)2)

+n A[8(q + g) + b(q —g)j
Q2

+ [~(q+ 2g) + ~(q —2g)] (2o)

III. H.ESUI TS

In this section, we calculate the plasmon dispersion
relation obtained by diagonalizing the matrix in Eq. (15).
We assume that the quantum wire is made of GaAs with
effective mass m = 0.068m,„that its characteristic width

We notice that w(q) follows ur„(q), except at the bound-
ary of the Brillouin zone, where a gap develops. The size
of the gap increases almost in linear proportion to the
modulation A. We mention that the phase space where
the gap falls is within the experimental range of values
that could be experimentally explored with inelastic Ra-
man light scattering.

No gap is apparent in Fig. 1 neither at the center of
the Brillouin zone nor at the crossing between the third
and fourth bands. However, in Fig. 2, we amplify that
crossing for the case 4/n = 0.4 and observe that there is
indeed a small gap. Its size scales roughly as A, which is
the result we would expect using perturbation theory, i.e. ,
the gap opens due to the modulation induced interaction
between the unmodulated plasmon at q = 3g/2 and the
degenerate plasmon at q = —3g/2, going through the
intermediate states q = +g/2.

Similarly, we could have expected a gap at the zone
center due to the interaction between the unmodulated
plasmons at q = +g going through that at q = 0. How-
ever, an analysis of Eq. (15) shows that the degeneration



53 BRIEF REPORTS 1029

v
«li

18.1

3

q (10'" et@ ')
FIG. 2. Detail of the dispersion relation shown in Fig. 1,

showing the gap that develops between the third and fourth
bands at the zone boundary for the modulation A/n = 0.4.
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FIG. 1. Dispersion relation u vs q for the plasmons of a
modulated @1Dwire, with modulation amplitude 4/n = 0.1
(continuous), A/n = 0.4 (dashed), and for the unmodulated
wire A/n = 0.0 (dotted). The other parameters are dis-
cussed in the text.

at the zone center is exact. The second term of this equa-
tion is zero when k = 0 and K = 0, due to the presence
of the factor k + K. Therefore, the plasmon at q = g is
uncoupled to that at q = 0 and the term linear in the den-

sity modulation n~ is uncapable of coupling the states
at q = +g. On the other hand, the third term of Eq. (15)
is also zero when k = 0, K = —g, and K' = g, due to the
presence of the factor 2k+ K+ K'. Therefore, the direct
coupling among q = +g through the term quadratic in
the modulation is also absent. Then, there is no interac-
tion among the plasmons at q = +g and their degeneracy
is not lifted. A gap would appear at the zone center if
we add more Fourier components to the modulation. For
example, a term proportional to cos(2gz) would induce
a gap at q = g, in a similar way as the gap at g/2 dis-
played in Fig. 1 was induced by a term proportional to
cos(gz). That gap would be zone folded into the center of
the zone. However, the induced density would still have

no Fourier components with a wave vector close to k = 0,
except for u —0. As a consequence, the usual strategy
of superlattice-induced zone folding the Brillouin zone
to make short-wavelength elementary excitations observ-
able with long-wavelength probes is not applicable to the
collective charge oscillations of a Q1D wire.

IV. CONCLUSIONS

We have developed a hydrodynamic model to calculate
the plasmon spectra of a Q1D wire, the ground state of
which has a smoothly varying density along its length.
We applied our model to a periodic Q1D superlattice
with a single sinusoidal modulation term and we obtained
its corresponding band structure. As expected, a series
of gaps open at the first Brillouin zone boundary, which
may be probed using inelastic Raman scattering. Sur-
prisingly, we found no gap at the zone center due to a van-
ishing coupling between degenerate states when Bloch's
wave vector is zero. This null coupling has physical con-
sequences even if a gap may be produced artificially by
including additional modulating terms.
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