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Collective behavior in the single-electron charging regime through classical molecular dynamics
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We studied a semiconductor quantum wire having a smooth and continuous double-barrier potential super-
imposed along its length. The device is prepared at electron densities such that the interelectronic distance is
bigger than the Bohr radius in GaAs. The strong Coulomb interaction between such carriers is accounted for
exactly by classical molecular dynamics methods. We report the presence of charge-density-wave states as the
main single-electron transport mechanism in this device.

I. INTRODUCTION Furthermore, in a semiconductor device, the number of
carriers can be controlled by changing the gate volfage.
Mesoscopic devices with small capacitances have thewery low electron densities, as the screening length increases,
operations dominated by charge-quantization phenomeradditional effects in the transport properties are likely to ap-
whenever the charging energy associated with the addition qfear because of the increased importance of the Coulomb
one electron into the structure exceeds the thermal edergyinteraction, which cannot, therefore, be accounted for by
These phenomena appear through periodic conductanc@mple macroscopic-capacitance arguments. Indeed, below
oscillations as a function of carrier density, and are observedome critical density, an electron gas is expected to “crystal-
in devices such as metallic tunnel junctidnsilicon metal-  lize” into a homogeneous ground stftevhenever the Cou-
oxide-semiconductor field-effect transistbrand GaAs/As lomb energy, which tends to localize electrons as far apart as
.Ga;_,As heterojunctioné=® Indeed, the possibility of ex- possible from each other, dominates over the kinetic energy,
ploiting these phenomena in the fabrication of high-which favors a smooth variation of the electron density. In
frequency oscillators and low-power nonvolatile memoriessemiconductor devices, therefore, as the interelectronic dis-
with improved endurance characterisfiesd operating at 1 tance becomes comparable to, or even larger than, the device
electron/bit (in contrast with the 1D or more of today’s relevant lengths, increased stability charge-density waves
flash-EEPROM’s has spurred many experimental as well as(CDW) or Wigner crystalWC) states are expected. Forma-
theoretical efforts towards a better understanding of thdion of CDW or WC has already been put forward to explain
physics underlying them. the periodic conductance oscillations in semiconductor
In small metallic junctions, single-electron charging ef- devices*®
fects have been successfully explained, within the semiclas- The purpose of this paper is to analyze the low-density
sical Coulomb-blockade model, by invoking tunneling regime by evaluating the microscopic electron-electron cor-
through the discrete energy levels of an electron in a quarrelations exactly. As shown by several authdrs! this can
tum well, and accounting for the Coulomb interaction by thebe accomplished by classical molecular dynamics simula-
macroscopic device capacitanice. tions, which, by operating in the full classical regime, also
In semiconductor structures, however, the various simpliallow one to account for the nontunneling transfer occurring
fications inherent in the Coulomb-blockade theory are nowith the smooth potential barriers present in semiconductor
longer justified, and may lead to errdrsinlike metallic sys- ~ structures. Indeed, along the lines of Ref. 14, we consider
tems, the potential barriers in semiconductor structures arejngle-electron charging phenomena in semiconductor de-
in general, smooth and continuous, and electron transfer mayices to be a pure classical effect that can be activated ther-
be activated thermically, through a continuous energy speanically, and does not depend on the availability of a quan-
trum. This violates the basic requirement of the Coulomb4ized spectrum. The formation of WC or CDW states relies
blockade formulation, for a discrete spectrum. on charge discreteness, and can be detected by classical nu-
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FIG. 1. Model structure of the wire and ground plane used in the 0 5 10 15 20

simulation. Electron density (10%m’™
merical simulations provided a sufficiently low-density re- Lo
gime is considered, ellond the microscopic C){)ulomb interétction FIIG 2. .Confuaance VS ele_ctronl density in the absence of po-
is properly taken into account, tential barriers for a source-draln_vo tage of 42Y at a tempgrft-
. . . . ture of 0.37 K. An electron density increment of X.00* cm

This paper is organgd as follqws. In Sec.lll we descr'becorresponds to a gate voltage change of 0.475(Réf. 18.
the physical model studied, and give full details of the setup
for our numerical simulations. We do not, however, review
the molecular dynamics methods as these can be found in\dce, another must enter in order for the number of carriers to
variety of textbooks®€In Sec. Il the numerical results will be conserved. The injected electron enters the device with its
be given, and a summarizing Sec. IV will conclude the papervelocity assigned randomly according to a Maxwellian dis-
tribution that accounts for equilibration in the source
contact'® Since this procedure is repeated several times dur-
ing a simulation run, care must be taken in the choice of the

The device analyzed in this work is a semiconductor wire random-number-generator and Gaussian-deviate routines, so
such as obtained in a GaAs/f&a;_,As heterojunction as to assure a sufficiently long period and no sensible se-
transistors, with a superimposed double-barrier potentiafjuential correlation in the generation of the random
along its lengtt?. This device allows for a direct control of its numbers?
geometry, and observation of single-electron transport is The time stepst for the integration of Newton’s equations
achieved by simply applying a constant voltdde. was optimized so as to both ensure that the system energy is

Our model consists of a classical one-dimensional eleca constant for the motiofmicrocanonical ensembleand to
tron gas with only one degree of freedom. This is justifiedbe able to cover the total simulation run with an acceptable
since neither the shape of the confining potential determining.PU time. This leads to time steps of the order of 100 fs and
the wire nor the structure of the transverse energy spectrugimulation runs between 10 and 30 ns. We verified that the
is relevant for the detection of charge-quantization phenomvelocity change caused by the forces acting on the carriers is
ena. Only the Coulomb interaction is assumed, and an imaggmall, and the electron velocity is mainly due to the thermal
charge is employed in order to mimic a positively chargedenergy, which, indeed, yields traversal times of the order of
metal gate that keeps electrical neutrality in the device. Achs.
cording to the experimental conditidt®the image chargeis ~ Once the time step was determined, the simulations were
placed at 0.725%:m away from the wire center. then performed in the canonical ensemble: the device is as-

The potential well is obtained from two Lorentzian-type sumed to be in contact with a thermal bath and its tempera-
barriers at a distande,. A schematic drawing of the device ture is kept constant by rescaling of the electrons’ veldGity.
described is shown in Fig. 1. An applied source-drain voltage We evaluated the conductance as a function of the elec-
difference is considered by calculating the electric field forcetron densityn, which corresponds to variations of the gate
acting on the electrons in the device. voltage. Simulations in the classical regime are justified pro-

The classical equation of motion for the electron system igided the average Coulomb interaction potential of the elec-
solved by the velocity-Verlet discretization algorithm. We tronic system is larger then the Fermi level. This condition
adopted the usual periodic boundary conditions in order tdgestricts the electron densities to a range where the interelec-
avoid source-drain edge effects. The long-range tail of théronic distances are larger than the Bohr radigsfor the
Coulomb interaction is taken into account through the mini-semiconductor material~{10 nm in GaA$. Therefore, we
mum image conventiof?. performed our simulations at densities up to®@* cm™?!

The device contacts are dealt with by assuming that thavhere nag<<0.5. Under this condition, however, a one-
electrons exiting the device equilibrate in the drain, losing alldimensional Wigner crystal may form, and its pinning is ex-
their velocity information. For each electron exiting the de-pected whenever commensurability between its lattice con-

Il. PHYSICAL MODEL AND NUMERICAL METHOD



10 156 CARBONARO, BERTONCINI, MELONI, AND ROVERE 53

8 20 120
(1T N i
L .\.\ 4
\.\. L=0.52m I L,=0.52 um pe—
v T=0.37K T=0.37K
6 Vpg=0.425 mV 15 1 Vpg=0.05 mV o 19 o
i o
3
2 3 1 &
3 ? b
(] z - g
g a4t 10 | 460 &
S > 2
: - { B
2 2
Q — N’
5 ¥
2 - 5k — — 30
%
X - |
0 . 1 L. * - 0 l—.;.‘{..fu J " ; M 0
0 100 200 300 0 5 10 15 20
@) Barrier height (ueV) (a) Electron density (104cm'1)
8 . = 1 20 120
-
./- L] L
{ L L,=0.78#m
a -
L,=0.52 um I \T/°'307§
6| | v =0.05mV i
T=037K 15 [ Yos™om S e %
o Vps=0.425 mV 0 A
3 ES I e
z 7l :
g 4r 10 | — 16 &
2 7 | 2
k= ~ @
o 7~
O =
w2
2 F 5| 430 —
[ — - . 1 . 1 L 0 L -t y o i 0
0.05 0.10 0.15 0.20 0.25 0 5 10 15 20
(b) Barrier width (4m) (b) Electron density (10%cm™

FIG. 3. Conductance depend the barrier héayhand . .
width (b) pendence on the barrier heghan FIG. 4. Conductance vs electron density for two different values

of the isolated segment,.

stant and the barriers distantg is achieved:?!-%2

The different values for the electron density were ob-Peak, will no oscillating electron be recorded, and the net
tained by varying both the number of electrons and the decurrent at the drain is measured.
vice length. In fact we need both a minimum number of
electrons for the statistical average to be stable, and a device
length bigger than the distance between the two barriers
Lo. Therefore, we use a minimum device length of At Before inserting the barriers in the device, we applied a
and a minimum of ten electrons. On the other hand, we verisource-drain bias of 0.425 mV and evaluated the wire con-
fied that the results obtained with a bigger number of parductance as a function of the carrier density. As shown in
ticles do not differ significantly. Fig. 2, the conductance has a linear behavior, as expected for

Conductance is given by the ratio between the appliedn electron gas under the electric field drift force and the
voltage and the resulting current, which, in turn, is the chargeénterparticle Coulomb interaction only.
variation in the unit time. Therefore, we evaluated the aver- In our simulation we noticed that once thermodynamical
age time lapse between the passage of two electrons aboegquilibrium is reached, all the particles assume equidistant
the rightmost barrier. The choice of the point where the elecpositions, even when the initial system configuration is a
tron passage is detected is crucial: should electrons arrangandom distribution of their coordinates: The lowest-energy
themselves in a crystal-like configuration, they might oscil-configuration results in a crystal-like arrangement of the car-
late, and carry no net current. Therefore, only if the electrorriers. This indicates the predominant “ordering” role of the
detector is placed on a unsteady equilibrium pdambarrier  Coulomb force in our one-dimensional system.

Ill. RESULTS
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FIG. 5. Radial distribution function for a conductance zero and
its adjacent peak.

The presence of the barriers in the device requires a de-  -0.20 | * ‘ ‘ () §
tailed analysis, at a given carrier density, of the transport
parameters with variation of the barrier dimensions. In Fig.
3, the conductance behavior at a density af110° cm ™ for
different barrier heightsh) and full widths at half height
(wp) is shown.

As expected for a system of classical particles, the con-
ductance goes to zero discontinuously wimgnis increased
beyond a threshold value corresponding to the electronic en-
ergy, whereas it saturates towards the “unconstricted” device
ashy, is lowered.

An analogous discontinuity is present by increasing 023 . . . ,
however this now accounts more directly for the discrete ) 2 4 6 8 10
nature of the electrons: for small, the well is big enough & Time (ns)
for all of the electrons to be allocated inside it. No conduc-
tion can occur in this condition. Increasing, reduces the FIG. 6. Electrqn trajectories in the case of a conductance zero
size of the well, and, thus, the number of electrons that caff¥: @nd of the adjacent pedk).
be trapped inside it. However, although the detrapping is
now favored, and the conduction mechanism may yet be aawith the rise inN,,,. That the oscillations are related to the
tivated because of the discreteness of the charges, it cannaddition of a single electron to the isolated segmiegtis
occur until the carriers’ energy is high enough for the detrap-confirmed by their period being inversely proportional to the
ping of at least one electron to occur. barrier distance. As for the absolute values of the conduc-

Therefore, this analysis is crucial to the selection of thetance, they are comparable with the experimental values,
appropriate barrier parameters for the detection of the trangrovided the temperature and the source-drain volidge
port phenomena we are interested in. The choice of thesare appropriately chosen, as we verified. Here, we prefer to
parameters indeed lies in a limited range, further restrictedhow the results for a rather lowyg, in order to have a
by the fact that the extreme values should be discarded tsharper view of the single-electron charging.

-0.21 | 1

Electron position (um)

-0.22

avoid instabilitiegat the discontinuity; or the unconstricted- During the simulation, we noticed that in correspondence
device limiting case. An appropriate choice turned out to beo the conductance zeros, the average velocity of the electron
hy=140 neV andw,=0.13 um. system assumed alternating positive and negative values, the

In Fig. 4 the conductance for two different barrier dis- magnitude of which was smaller than in the case of any of
tancesL is shown, together with a plot of the number of the conductance peaks: all the electrons seem to oscillate
electronsN,,; whose coordinates lie inside the well, be- around a fixed position.
tween the barrier peaks. The conductance behavior is now In order to further investigate this phenomenon, we cal-
highly nonlinear, with periodic peaks and zeros. Clearly, theculated the radial distribution functiog(r). This is shown
zeros in the conductance correspond to an integer number of Fig. 5 for a conductance zero and its adjacent peak. In
electrons being trapped into the potential welateau in the  both cases, the system appears to have a crystalline structure,
Nwen curve, whereas the finite conductance values coincidewith all the electrons localized at their equilibrium positions,
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FIG. 7. (a) Temperature dependence of the conductance at a zero

and a peak of an oscillatiortb) The dependence of the activation

energy on the source-drain voltage. FIG. 8. (@) The dependence of the conductance on the source-
drain voltage at a zero and a peak of an oscillatibhTemperature

the only difference being slightly wider peaks in tgér) ~ dependence of the threshold voltage.

from the case of the zero.

The conduction mechanism is, therefore, better explainetion energy of 0.198eV above which the oscillations dis-
through the analysis of the electron trajectories, as shown iappear and the conductance assumes the value it would have
Fig. 6. At the conductance zero, the whole system freezesn the absence of the barriefBig. 2).
and the electrons oscillate around their positigpsined We then analyzed the influence of finite source-drain volt-
CDW). For a finite value of the conductance, the systemage on the activation enerdiig. 7(b)]. In the limit of very
maintains its crystal structure, but now it slides as a wholesmall Vg, where the influence of the finite source-drain
along the devicdsliding CDW). The periodic entering and Vvoltage can be excluded, the activation energy is found to be
leaving the device occurs at a frequerfeyl/e=1.44x10° 39 ueV, quite close to the experimental value of Scott-
s~ 1, wherel is the average dc current due to the electronThomaset al® The most striking feature, however, is the
motion. stepwise behavior dE, . It means that there are stable elec-

The temperature dependence of the conductance is maogbnic configurations that are not changed by the energy sup-
clearly examined by plotting the conductance at one pair oplied by the electric field, and are, therefore, characterized by
the periodic peaks and zeros. This is done in Fig):for a  a constant activation energy. The total energy of the collec-
source-drain voltage of 0.425 mV, the conductance zero itive system of electrons has a bandlike structure, with energy
characterized by a highly nonlinear behavior, with an activagaps separated by ranges of continuous energy spectra, as
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indicated by the linear step rises in Figby. lowered without breaking the periodical arrangement of the
For the same zero considered in the previous figure, thelectrons. Indeed, the radial distribution function shows a
conductance dependence on the source-drain vo[taige  crystalline structure where, as clearly shown by the electron
8(a)] shows a threshold valu®/t=0.11 mV atT=0.37 K.  trajectories, each particle has an oscillatory motion.
<<<BeyondV;=0.11 mV the conductance rises by orders Increasing the density, the interelectronic spacing is re-
of magnitude, and then decreases at the same rates as for théced to the extent that only a noninteger number of elec-
peak, both values eventually approaching the ones thetrons could be trapped into the well. However, the discrete
would have in the “unconstricted case.” The threshold volt- nature of the particles and the Coulomb force binding them
age increases with a decrease in temperature, as shown do not allow a noninteger number of electrons to fall into the
Fig. 8b) where a stepwise structure can again be observedvell. Thus, all the particles traverse the device, none getting
This behavior confirms the band structure of the system totdrapped. The radial distribution function still shows a crys-
energy. talline structure; however, now each particle does not have
an oscillatory motion around its equilibrium position, but the
whole system slides rigidly along the device, from source to
drain. Therefore, as the density increases, the pinning
We analyzed several types of potential barriers in order tQtrength oscillates and with it the conductance, which as-
verify which of them is more suitable for the observation of gymes a value of zero each time the commensurability con-
conductance oscillations, and whether the single-electrogition is satisfied.
transfer is affected by their different shapes. We could not wjthin this model, the bandlike structure of the collective
find any qua_llitative difference between the several barrier@nergy spectrum, as it appears through the stepwise behavior
shapes studied. of both the activation energy and the threshold voltage, indi-
It is difficult to devise a one-electron explanation for all cates the existence of stable energy configurations that hold
these data, especially within the classical regime imposed by, within some range of temperature or of the applied volt-
the molecular dynamics techniques employed here. A picturgge, The stable configurations are separated by unstable
that explains our results is the one suggested by severghes, where infinitesimal change of one of the parameters
author$* in-which the electron in the device forms a causes a corresponding change in the others. Such behavior
charge-density wave or a Wigner crystal, as already mengrther confirms the pinning and/or depinning of a particular

tioned above. _ _ ~ CDW pattern by the segmerit, as the main transport
A pinned CDW is formed whenever the interelectronic mechanism in this devicd.

distance is such as to allow precisely an integer number of
particles to fit into the well, namely, when an integer number
of periods of the density wave is commensurate with the
isolated segmerit,. The whole system then freezes, and the This work was supported by the Regione Autonoma della
conductance goes to zero, since the collective energy can I&ardegna.

IV. CONCLUSIONS
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