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We studied a semiconductor quantum wire having a smooth and continuous double-barrier potential super-
imposed along its length. The device is prepared at electron densities such that the interelectronic distance is
bigger than the Bohr radius in GaAs. The strong Coulomb interaction between such carriers is accounted for
exactly by classical molecular dynamics methods. We report the presence of charge-density-wave states as the
main single-electron transport mechanism in this device.

I. INTRODUCTION

Mesoscopic devices with small capacitances have their
operations dominated by charge-quantization phenomena
whenever the charging energy associated with the addition of
one electron into the structure exceeds the thermal energy.1

These phenomena appear through periodic conductance
oscillations as a function of carrier density, and are observed
in devices such as metallic tunnel junctions,2 silicon metal-
oxide-semiconductor field-effect transistors3 and GaAs/As
xGa12xAs heterojunctions.

4–6 Indeed, the possibility of ex-
ploiting these phenomena in the fabrication of high-
frequency oscillators and low-power nonvolatile memories
with improved endurance characteristics7 and operating at 1
electron/bit ~in contrast with the 104 or more of today’s
flash-EEPROM’s! has spurred many experimental as well as
theoretical efforts towards a better understanding of the
physics underlying them.

In small metallic junctions, single-electron charging ef-
fects have been successfully explained, within the semiclas-
sical Coulomb-blockade model, by invoking tunneling
through the discrete energy levels of an electron in a quan-
tum well, and accounting for the Coulomb interaction by the
macroscopic device capacitance.1

In semiconductor structures, however, the various simpli-
fications inherent in the Coulomb-blockade theory are no
longer justified, and may lead to errors.8 Unlike metallic sys-
tems, the potential barriers in semiconductor structures are,
in general, smooth and continuous, and electron transfer may
be activated thermically, through a continuous energy spec-
trum. This violates the basic requirement of the Coulomb-
blockade formulation, for a discrete spectrum.

Furthermore, in a semiconductor device, the number of
carriers can be controlled by changing the gate voltage.9 At
very low electron densities, as the screening length increases,
additional effects in the transport properties are likely to ap-
pear because of the increased importance of the Coulomb
interaction, which cannot, therefore, be accounted for by
simple macroscopic-capacitance arguments. Indeed, below
some critical density, an electron gas is expected to ‘‘crystal-
lize’’ into a homogeneous ground state10 whenever the Cou-
lomb energy, which tends to localize electrons as far apart as
possible from each other, dominates over the kinetic energy,
which favors a smooth variation of the electron density. In
semiconductor devices, therefore, as the interelectronic dis-
tance becomes comparable to, or even larger than, the device
relevant lengths, increased stability charge-density waves
~CDW! or Wigner crystal~WC! states are expected. Forma-
tion of CDW or WC has already been put forward to explain
the periodic conductance oscillations in semiconductor
devices.4,5

The purpose of this paper is to analyze the low-density
regime by evaluating the microscopic electron-electron cor-
relations exactly. As shown by several authors,11–14 this can
be accomplished by classical molecular dynamics simula-
tions, which, by operating in the full classical regime, also
allow one to account for the nontunneling transfer occurring
with the smooth potential barriers present in semiconductor
structures. Indeed, along the lines of Ref. 14, we consider
single-electron charging phenomena in semiconductor de-
vices to be a pure classical effect that can be activated ther-
mically, and does not depend on the availability of a quan-
tized spectrum. The formation of WC or CDW states relies
on charge discreteness, and can be detected by classical nu-
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merical simulations provided a sufficiently low-density re-
gime is considered, and the microscopic Coulomb interaction
is properly taken into account.

This paper is organized as follows. In Sec. II we describe
the physical model studied, and give full details of the setup
for our numerical simulations. We do not, however, review
the molecular dynamics methods as these can be found in a
variety of textbooks.15,16In Sec. III the numerical results will
be given, and a summarizing Sec. IV will conclude the paper.

II. PHYSICAL MODEL AND NUMERICAL METHOD

The device analyzed in this work is a semiconductor wire,
such as obtained in a GaAs/AlxGa12xAs heterojunction
transistors, with a superimposed double-barrier potential
along its length.5 This device allows for a direct control of its
geometry, and observation of single-electron transport is
achieved by simply applying a constant voltage.17

Our model consists of a classical one-dimensional elec-
tron gas with only one degree of freedom. This is justified
since neither the shape of the confining potential determining
the wire nor the structure of the transverse energy spectrum
is relevant for the detection of charge-quantization phenom-
ena. Only the Coulomb interaction is assumed, and an image
charge is employed in order to mimic a positively charged
metal gate that keeps electrical neutrality in the device. Ac-
cording to the experimental condition,5,18 the image charge is
placed at 0.725mm away from the wire center.

The potential well is obtained from two Lorentzian-type
barriers at a distanceL0 . A schematic drawing of the device
described is shown in Fig. 1. An applied source-drain voltage
difference is considered by calculating the electric field force
acting on the electrons in the device.

The classical equation of motion for the electron system is
solved by the velocity-Verlet discretization algorithm. We
adopted the usual periodic boundary conditions in order to
avoid source-drain edge effects. The long-range tail of the
Coulomb interaction is taken into account through the mini-
mum image convention.15

The device contacts are dealt with by assuming that the
electrons exiting the device equilibrate in the drain, losing all
their velocity information. For each electron exiting the de-

vice, another must enter in order for the number of carriers to
be conserved. The injected electron enters the device with its
velocity assigned randomly according to a Maxwellian dis-
tribution that accounts for equilibration in the source
contact.19 Since this procedure is repeated several times dur-
ing a simulation run, care must be taken in the choice of the
random-number-generator and Gaussian-deviate routines, so
as to assure a sufficiently long period and no sensible se-
quential correlation in the generation of the random
numbers.20

The time stepdt for the integration of Newton’s equations
was optimized so as to both ensure that the system energy is
a constant for the motion~microcanonical ensemble!, and to
be able to cover the total simulation run with an acceptable
CPU time. This leads to time steps of the order of 100 fs and
simulation runs between 10 and 30 ns. We verified that the
velocity change caused by the forces acting on the carriers is
small, and the electron velocity is mainly due to the thermal
energy, which, indeed, yields traversal times of the order of
ns.

Once the time step was determined, the simulations were
then performed in the canonical ensemble: the device is as-
sumed to be in contact with a thermal bath and its tempera-
ture is kept constant by rescaling of the electrons’ velocity.15

We evaluated the conductance as a function of the elec-
tron densityn, which corresponds to variations of the gate
voltage. Simulations in the classical regime are justified pro-
vided the average Coulomb interaction potential of the elec-
tronic system is larger then the Fermi level. This condition
restricts the electron densities to a range where the interelec-
tronic distances are larger than the Bohr radiusaB for the
semiconductor material (;10 nm in GaAs!. Therefore, we
performed our simulations at densities up to 203104 cm21

where naB,0.5. Under this condition, however, a one-
dimensional Wigner crystal may form, and its pinning is ex-
pected whenever commensurability between its lattice con-

FIG. 1. Model structure of the wire and ground plane used in the
simulation.

FIG. 2. Conductance vs electron density in the absence of po-
tential barriers for a source-drain voltage of 425mV at a tempera-
ture of 0.37 K. An electron density increment of 1.03104 cm21

corresponds to a gate voltage change of 0.475 mV~Ref. 18!.
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stant and the barriers distanceL0 is achieved.
4,21–23

The different values for the electron density were ob-
tained by varying both the number of electrons and the de-
vice length. In fact we need both a minimum number of
electrons for the statistical average to be stable, and a device
length bigger than the distance between the two barriers
L0 . Therefore, we use a minimum device length of 1.0mm
and a minimum of ten electrons. On the other hand, we veri-
fied that the results obtained with a bigger number of par-
ticles do not differ significantly.

Conductance is given by the ratio between the applied
voltage and the resulting current, which, in turn, is the charge
variation in the unit time. Therefore, we evaluated the aver-
age time lapse between the passage of two electrons above
the rightmost barrier. The choice of the point where the elec-
tron passage is detected is crucial: should electrons arrange
themselves in a crystal-like configuration, they might oscil-
late, and carry no net current. Therefore, only if the electron
detector is placed on a unsteady equilibrium point~a barrier

peak!, will no oscillating electron be recorded, and the net
current at the drain is measured.

III. RESULTS

Before inserting the barriers in the device, we applied a
source-drain bias of 0.425 mV and evaluated the wire con-
ductance as a function of the carrier density. As shown in
Fig. 2, the conductance has a linear behavior, as expected for
an electron gas under the electric field drift force and the
interparticle Coulomb interaction only.

In our simulation we noticed that once thermodynamical
equilibrium is reached, all the particles assume equidistant
positions, even when the initial system configuration is a
random distribution of their coordinates: The lowest-energy
configuration results in a crystal-like arrangement of the car-
riers. This indicates the predominant ‘‘ordering’’ role of the
Coulomb force in our one-dimensional system.

FIG. 3. Conductance dependence on the barrier height~a! and
width ~b!. FIG. 4. Conductance vs electron density for two different values

of the isolated segmentL0 .
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The presence of the barriers in the device requires a de-
tailed analysis, at a given carrier density, of the transport
parameters with variation of the barrier dimensions. In Fig.
3, the conductance behavior at a density of 13105 cm21 for
different barrier heights (hb) and full widths at half height
(wb) is shown.

As expected for a system of classical particles, the con-
ductance goes to zero discontinuously whenhb is increased
beyond a threshold value corresponding to the electronic en-
ergy, whereas it saturates towards the ‘‘unconstricted’’ device
ashb is lowered.

An analogous discontinuity is present by increasingwb ,
however this now accounts more directly for the discrete
nature of the electrons: for smallwb the well is big enough
for all of the electrons to be allocated inside it. No conduc-
tion can occur in this condition. Increasingwb reduces the
size of the well, and, thus, the number of electrons that can
be trapped inside it. However, although the detrapping is
now favored, and the conduction mechanism may yet be ac-
tivated because of the discreteness of the charges, it cannot
occur until the carriers’ energy is high enough for the detrap-
ping of at least one electron to occur.

Therefore, this analysis is crucial to the selection of the
appropriate barrier parameters for the detection of the trans-
port phenomena we are interested in. The choice of these
parameters indeed lies in a limited range, further restricted
by the fact that the extreme values should be discarded to
avoid instabilities~at the discontinuity!, or the unconstricted-
device limiting case. An appropriate choice turned out to be
hb5140meV andwb50.13mm.

In Fig. 4 the conductance for two different barrier dis-
tancesL0 is shown, together with a plot of the number of
electronsNwell whose coordinates lie inside the well, be-
tween the barrier peaks. The conductance behavior is now
highly nonlinear, with periodic peaks and zeros. Clearly, the
zeros in the conductance correspond to an integer number of
electrons being trapped into the potential well~plateau in the
Nwell curve!, whereas the finite conductance values coincide

with the rise inNwell . That the oscillations are related to the
addition of a single electron to the isolated segmentL0 is
confirmed by their period being inversely proportional to the
barrier distance. As for the absolute values of the conduc-
tance, they are comparable with the experimental values,
provided the temperature and the source-drain voltageVDS
are appropriately chosen, as we verified. Here, we prefer to
show the results for a rather lowVDS , in order to have a
sharper view of the single-electron charging.

During the simulation, we noticed that in correspondence
to the conductance zeros, the average velocity of the electron
system assumed alternating positive and negative values, the
magnitude of which was smaller than in the case of any of
the conductance peaks: all the electrons seem to oscillate
around a fixed position.

In order to further investigate this phenomenon, we cal-
culated the radial distribution functiong(r ). This is shown
in Fig. 5 for a conductance zero and its adjacent peak. In
both cases, the system appears to have a crystalline structure,
with all the electrons localized at their equilibrium positions,

FIG. 5. Radial distribution function for a conductance zero and
its adjacent peak.

FIG. 6. Electron trajectories in the case of a conductance zero
~a!, and of the adjacent peak~b!.
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the only difference being slightly wider peaks in theg(r )
from the case of the zero.

The conduction mechanism is, therefore, better explained
through the analysis of the electron trajectories, as shown in
Fig. 6. At the conductance zero, the whole system freezes,
and the electrons oscillate around their positions~pinned
CDW!. For a finite value of the conductance, the system
maintains its crystal structure, but now it slides as a whole
along the device~sliding CDW!. The periodic entering and
leaving the device occurs at a frequencyf5I /e51.443109

s21, where I is the average dc current due to the electron
motion.

The temperature dependence of the conductance is most
clearly examined by plotting the conductance at one pair of
the periodic peaks and zeros. This is done in Fig. 7~a!: for a
source-drain voltage of 0.425 mV, the conductance zero is
characterized by a highly nonlinear behavior, with an activa-

tion energy of 0.198meV above which the oscillations dis-
appear and the conductance assumes the value it would have
in the absence of the barriers~Fig. 2!.

We then analyzed the influence of finite source-drain volt-
age on the activation energy@Fig. 7~b!#. In the limit of very
small VDS , where the influence of the finite source-drain
voltage can be excluded, the activation energy is found to be
39 meV, quite close to the experimental value of Scott-
Thomaset al.3 The most striking feature, however, is the
stepwise behavior ofEa . It means that there are stable elec-
tronic configurations that are not changed by the energy sup-
plied by the electric field, and are, therefore, characterized by
a constant activation energy. The total energy of the collec-
tive system of electrons has a bandlike structure, with energy
gaps separated by ranges of continuous energy spectra, as

FIG. 7. ~a! Temperature dependence of the conductance at a zero
and a peak of an oscillation.~b! The dependence of the activation
energy on the source-drain voltage. FIG. 8. ~a! The dependence of the conductance on the source-

drain voltage at a zero and a peak of an oscillation.~b! Temperature
dependence of the threshold voltage.
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indicated by the linear step rises in Fig. 7~b!.
For the same zero considered in the previous figure, the

conductance dependence on the source-drain voltage@Fig.
8~a!# shows a threshold value,VT50.11 mV atT50.37 K.
,,,BeyondVT50.11 mV the conductance rises by orders
of magnitude, and then decreases at the same rates as for the
peak, both values eventually approaching the ones they
would have in the ‘‘unconstricted case.’’ The threshold volt-
age increases with a decrease in temperature, as shown in
Fig. 8~b! where a stepwise structure can again be observed.
This behavior confirms the band structure of the system total
energy.

IV. CONCLUSIONS

We analyzed several types of potential barriers in order to
verify which of them is more suitable for the observation of
conductance oscillations, and whether the single-electron
transfer is affected by their different shapes. We could not
find any qualitative difference between the several barriers
shapes studied.

It is difficult to devise a one-electron explanation for all
these data, especially within the classical regime imposed by
the molecular dynamics techniques employed here. A picture
that explains our results is the one suggested by several
authors3,4,23 in which the electron in the device forms a
charge-density wave or a Wigner crystal, as already men-
tioned above.

A pinned CDW is formed whenever the interelectronic
distance is such as to allow precisely an integer number of
particles to fit into the well, namely, when an integer number
of periods of the density wave is commensurate with the
isolated segmentL0 . The whole system then freezes, and the
conductance goes to zero, since the collective energy can be

lowered without breaking the periodical arrangement of the
electrons. Indeed, the radial distribution function shows a
crystalline structure where, as clearly shown by the electron
trajectories, each particle has an oscillatory motion.

Increasing the density, the interelectronic spacing is re-
duced to the extent that only a noninteger number of elec-
trons could be trapped into the well. However, the discrete
nature of the particles and the Coulomb force binding them
do not allow a noninteger number of electrons to fall into the
well. Thus, all the particles traverse the device, none getting
trapped. The radial distribution function still shows a crys-
talline structure; however, now each particle does not have
an oscillatory motion around its equilibrium position, but the
whole system slides rigidly along the device, from source to
drain. Therefore, as the density increases, the pinning
strength oscillates and with it the conductance, which as-
sumes a value of zero each time the commensurability con-
dition is satisfied.4

Within this model, the bandlike structure of the collective
energy spectrum, as it appears through the stepwise behavior
of both the activation energy and the threshold voltage, indi-
cates the existence of stable energy configurations that hold
on within some range of temperature or of the applied volt-
age. The stable configurations are separated by unstable
ones, where infinitesimal change of one of the parameters
causes a corresponding change in the others. Such behavior
further confirms the pinning and/or depinning of a particular
CDW pattern by the segmentL0 as the main transport
mechanism in this device.24
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