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We present a treatment of the defect-pool model, for the calculation of the density of electronic gap states in
hydrogenated amorphous silicon, based on the equilibration ofelementalchemical reactions involving the
separate release and capture of hydrogen. We derive the corresponding hydrogen density of states, describing
the distribution of hydrogen binding energies, and show that the two densities of states are completely con-
sistent. Hydrogen can be captured into weak SiSi bonds, which can be occupied by one or two hydrogen atoms.
These are the dominant chemical reactions controlling the defect density. The effective hydrogen correlation
energy is variable, being negative for most sites but positive where most defects occur. We show that the
electronic density of states reproduces the main features of our earlier defect-pool model, with more charged
defects than neutral defects for intrinsic amorphous silicon. The electronic density of states and the correspond-
ing hydrogen density of states are consistent with a wide range of experimental results, including
hydrogenation-dehydrogenation and hydrogen diffusion.

I. INTRODUCTION

The density of electronic gap states in amorphous silicon
is of fundamental importance. It is the key to understanding
the basic physics of the material and it controls the perfor-
mance of all device applications. The density of gap states
can be divided into tail states originating from SiSi weak-
bond states and defect states originating from Si dangling
bonds. There is now widespread agreement that the density
of Si dangling-bond states is determined by a chemical equi-
librium process due to the interconversion of weak bonds
and dangling bonds.1–4

If the energy of the dangling-bond state can take a range
of values due to the inherent disorder of the amorphous net-
work, then a proper consideration of the chemical equilib-
rium model, allowing for the formation of defects in different
charge states, leads to densities of states with bands of posi-
tive, neutral, and negatively charged defects at different en-
ergies. This is the so-calleddefect-poolmodel.5,6 Further-
more, allowing for thesimultaneousformation of defects in
all three charge states leads to significantly more charged
than neutral defects in intrinsic amorphous silicon.5,7,8

The involvement of hydrogen in the equilibration process
has been proposed following a wide range of experimental
studies of the similarities between hydrogen diffusion and
defect equilibration.9–12 Hydrogen is not necessary for the
basic defect-pool model, but it is found to be essential, not
only in providing microscopic mechanisms for defect
equilibration,13,14 but equally in providing the necessary ex-
tra entropy from hydrogen reactions to give the observed
defect densities.3,8No other mechanism has been proposed to
date that can do this, to our knowledge.

The concept of the hydrogen density of states was intro-
duced by Street15,16 to represent the different binding ener-
gies of hydrogen atoms at different sites in thea-Si:H net-
work. Originally the concept was applied to the growth
surface, but later it was applied to the solid bulk phase. The
energies of chemical reactions involving hydrogen motion
were then represented by transitions on the hydrogen density

of states. The energy of the chemical reaction can also be
represented as an electronic energy change and so there is a
relationship between transitions on the hydrogen density of
states and transitions on the electronic density of states.17

Hydrogen motion, needed for complete equilibration, is then
represented by the emission of hydrogen to a mobile inter-
stitial, transport, and subsequent trapping in a SiSi or at a
SiH site.

In this paper, we solve the defect-pool model, specifically
for these chemical reactions, involving the separate emission
and trapping of hydrogen. We show that the trapping of one
or two hydrogen atoms in weak SiSi bonds is the dominant
chemical reaction involving defects and that defects formed
from the emission of hydrogen from isolated SiH bonds are
negligible. We calculate the energy dependence of electronic
states in the gap and the corresponding hydrogen density of
states. In the defect-pool model, silicon dangling-bond states
form with a distribution in energy and with different charge
states. Hydrogen transitions involve silicon dangling-bond
defects and so these transition energies will, in turn, depend
on the defect energy and the Fermi energy. The hydrogen
density of states thus becomes quite complex. In practice, the
hydrogen density of states is dominated by the exponentially
distributed weak-bond states and the underlying complexity
is hidden.18

II. THEORETICAL FRAMEWORK

A. Chemical equations

Street and Winer3 considered the following reactions for
defect equilibration:

SiH1SiSi↔D1~SiHD !, ~1!

2SiH1SiSi↔2D1~SiHHSi!. ~2!

In reaction~1!, hydrogen from an isolated SiH bond is in-
serted into a SiSi bond. Two defects are formed, which are
chemically distinct. TheD defect~denotedDH by Street and
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Winer! originates from the isolated SiH bond, while~SiHD!
represents a singly hydrogenated SiSi bond, equivalent to an
intimate, nonseparable, SiH bond andD defect~denotedDW
by Street and Winer!. In reaction~2! a second hydrogen from
another isolated SiH bond is inserted into the SiSi bond,
forming a doubly hydrogenated bond denoted SiHHSi. Note
that, according to reaction~2!, SiSi bonds can have only zero
or two hydrogen atoms, which means that the correlation
energy for hydrogen occupancy is negative.13 This is neces-
sary to account for the fact that asa-Si:H is dehydrogenated
and hydrogenated, orders of magnitude more hydrogen is
removed than dangling bonds created.13 The H2* complex
proposed by Jackson14,19is one specific proposal for SiHHSi.
In some papers, SiHHSi is referred to as SiHSiH to reflect
the more likely spatial arrangement of the atoms, as in the
H2* complex~where one hydrogen is on the bond-centered
site and one on theTd site!. In a-Si:H there exists a range of
bond angle and length disorder. This allows some relaxation
and strain redistribution of the surrounding silicon atoms,
resulting in a range of possible final configurations.19 In this
paper, we label this distribution of possibilities SiHHSi, to be
consistent with our previous papers. This assignment makes
no specific claim about the arrangement of the two H atoms,
except that if they are both removed, then a SiSi bond re-
forms.

The equilibrium defect density can be solved by applying
the law of mass action to the above reactions. When we
include a distribution of SiSi~weak-bond! energiesEt and a
range of defect energiesE then this needs to be done differ-
entially, allowing for equilibrium between weak bonds in a
slice of energydEt and defects in a slice of energydE. Care
is needed in the application of the law of mass action, since
different assumptions effectively correspond to different mi-
croscopic models and the appropriate model needs to be cor-
rectly applied.

The law of mass action is most appropriate for gas and
liquid phase reactions, where all reactants are free to diffuse
throughout the medium and react with all other reactants. In
the solid phase, positions in the lattice are constrained, but
the law of mass action can still be applied, providing not
more than one component on each side of a multicomponent
system reaction is immobile, thus allowing equilibration.
Strictly speaking, applying the law of mass action to Eqs.~1!
and~2! implies that SiH is mobile. In fact, SiH as a species is
not mobile. Rather, we believe it is hydrogen that is mobile
and so a more correct approach is to divide the defect creat-
ing reactions into elemental chemical reactions involving
only truly mobile species, such as interstitial hydrogen and
electrons. Thus the microscopic model becomes the release
of hydrogen at one site, creating a dangling bond, followed
by hydrogen diffusion through interstitial sites and capture
into a SiSi weak-bond site, creating a second defect.

The elemental chemical equations that we need to solve
are

SiH↔D1Hi , ~3!

~SiHD !↔SiSi1Hi , ~4!

~SiHHSi!↔~SiHD !1Hi , ~5!

where Hi represents a mobile interstitial hydrogen atom.
These equations should be solved independently, for a given
concentration of Hi , by applying the law of mass action to
each equation in turn. The microscopic details of hydrogen
interstitial diffusion are not fully known. Here for simplicity
we use a notation implying a single hydrogen mobility level,
and a neutral mobile species. In fact, we shall later rewrite
these equations in terms of the hydrogen chemical potential,
mH , and only solve equations where the details of the mobile
hydrogen are eliminated. Thus, our work is quite general,
and it would not matter what microscopic migration path the
hydrogen takes, or even if the mobile hydrogen species was
charged. This is analogous to the fact that, at equilibrium,
dangling-bondelectron occupancy depends only on the
Fermi level~i.e., electron chemical potential!, and not on the
position or nature of the conduction-band mobility edge.

We can see that Eqs.~1! and~2! can be simply expressed
as~3!2~4! and~3!1~3!2~4!2~5!, respectively. However, ap-
plying the law of mass action to the elemental chemical re-
actions leads todifferentresults from~1! and~2!, when both
the weak bonds and the defects have a distribution in energy.
Physically this originates from the fact that the two defects
are really formed independently and will minimize their free
energy independently. In reactions~1! and ~2! defects are
formed locally in pairs and will minimize their free energy in
pairs. However, even in the case where the defectsare ini-
tially formed in pairs, say due to weak bond breaking, and
then diffuse apart, the appropriate model is equivalent to the
use of the elemental chemical reactions~3!–~5! andnot ~1!
and ~2!. In a true chemical equilibrium, only the end points
matter and not the intermediate reactions. Our model corre-
sponds to a global equilibration between weak bonds and
defects and the end point is two spatially and energetically
independent defects.

B. Key assumption

An important experimental observation is that device
gradea-Si:H is very little affected by further hydrogenation
or limited dehydrogenation.20,21No change is seen in the tail
state distribution or in the defect density. The density of tail
states is typically 1020 cm23 and vastly more H atoms
~331021 cm23! are added or removed, without affecting the
tail state distribution. This is an important observation and
from this Nickel and Jackson20,21deduced that a combination
of reactions~4! and ~5! produce the chemical reaction

~SiHHSi!↔SiSi12Hi , ~6!

which must beindependentof the SiSi bond energy. If dur-
ing hydrogenation, H occupied only the weakest bonds, i.e.,
tail states, then a sharp reduction of the tail state density
would occur on low-level hydrogenation. However, experi-
ment shows that this does not occur. This means that reaction
~6! must relate to a typical SiSi bond rather than a weak bond
as was more commonly thought. The Si network can be hy-
drogenated or dehydrogenated over surprisingly wide limits
without affecting the tail state or defect density. This places
severe constraints on the possible models for hydrogen bond-
ing in a-Si:H.

If we were to calculate the energy of reaction~6!, by
using the simple one-electron energies of the electron states,
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assuming the SiSi state is a tail state, then the right-hand side
would contain the weak-bond energyEt . This would result
in weak bonds being preferentially occupied by hydrogen,
inconsistent with the above experimental results. In order for
reaction~6! not to depend onEt , the left-hand side of Eq.~6!
must contain an additional term than just the one-electron
energy differences. One way of visualizing this is to recog-
nize that the left-hand side can contain an additional strain
term. The SiHHSi state creates strain in the surrounding sili-
con lattice, due to the fact it requires more space to accom-
modate the two H atoms in a SiSi bond compared to the
unhydrogenated SiSi bond.19 The strain energy is really a
multielectronic term comprising distortion terms over the lat-
tice surrounding the occupied SiSi bond. The net result is
that other bonds are weakened, maintaining the distribution
of weak bonds. If a doubly occupied bond state were to
produce less strain energy than the energy of the bond state,
then that bond would already be occupied with hydrogen.
Thus the shape of the valence-band tail results from a steady-
state situation during the hydrogenation of SiSi bonds. If a
sample has no hydrogen, then the tail state distribution is
broad. As hydrogen is added, the weakest bonds are occu-
pied, making the band tails sharper. At some hydrogen and
weak-bond concentration a steady state is achieved, where
for each doubly occupied weak bond there is an equivalent
lattice distortion creating new weak bonds. The valence-band
tail slope is not therefore a function of the defect equilibra-
tion process, rather it is a function of the underlying Si lattice
and this can depend on deposition conditions in a complex
way.

C. Law of mass action

In order to derive both the electron and hydrogen densi-
ties of states, we need to apply the law of mass action to the
different chemical equilibria, using the reaction energies.
Table I lists the four basic chemical equilibrium equations
~3!–~6!, together with the reaction energies, expressed both
as hydrogen binding energies~as used in the hydrogen den-
sity of states! and expressed as electron energies~as used in
an electron density of states!. HM is the energy of a mobile
hydrogen atom, while HSiH represents the energy of a hydro-
gen atom in an isolated SiH bond. H0/1 is the energy of the
0/1 transition of a hydrogen atom in a SiSi bond, i.e., when
the bond occupancy changes from zero hydrogen atoms to
one hydrogen atom or vice versa. Similarly H1/2 is the tran-
sition energy when the occupancy changes from 1 to 2 or
from 2 to 1. Hav is the average binding energy of a pair of H
atoms in a SiSi bond. It is equal to the average of H0/1 and
H1/2. For the electron energies,E is the1/0 transition energy
of an amphoteric dangling bond, i.e., the change in occupa-
tion from zero to one electron or vice versa.Et is the energy

of an electron in a SiSi bond,Ev is the energy of the valence-
band mobility edge,ESiH is the energy of an electron in a
SiH bond, andEHi

is the energy of the electron in a mobile,
neutral hydrogen atom. As we shall see later, the unknown
energiesEHi

andESiH ~used here for simplicity of presenta-
tion! can be canceled out by use of the hydrogen chemical
potential, which is experimentally measurable.

The reaction energies in Table I all assume that the dan-
gling bond is formed in the neutral state and so contains a
single electron. This is modified later, when we introduce the
defect-pool model, which allows defects to be formed in all
three charge states, and produces very significant effects in
the density of states. Additional complications could be in-
troduced by also considering occupation of the tail states, but
as we are solving forequilibrium distributions~i.e., not un-
der light soaking or carrier stress!, it may be shown that this
effect is never significant in any physical situation.
The extra strain term in the SiHHSi state is represented by
the Ev2Et term in the electron energy in reaction~5!. The
strain term is referenced to the valence-band mobility edge,
as unstrained bonds correspond to the extended~mobile!
states. A similar term is present in reaction~6!, but it is
canceled by theEt term from Eq.~4!, as Eqs.~4!1~5!5~6!.
This is in agreement with experiment, which shows that re-
action ~6! contains no netEt term; i.e., typical bonds rather
than weak bonds are occupied. Thus, both Eqs.~4! and ~5!
must have anEt term.

We first apply the law of mass action to Eq.~6! as fol-
lows:

@SiSi#

@SiHHSi#

@Hi #
2

@NHM
#2

5expS 2Hav22HM

kT D . ~7!

NHM
is the effective density of hydrogen states at the energy

of the hydrogen mobility edge, HM . This term is required as
a normalization term for the concentration of mobile hydro-
gen interstitials Hi . Hav is the average binding energy, per
hydrogen atom, and since hydrogen binds in pairs to~typi-
cal! SiSi bonds, then Hav is a constant.

We can now define the hydrogen chemical potential~mH!
by

@Hi #

@NHM
#

5expS mH2HM

kT D . ~8!

Such a definition is completely analogous to the definition of
an electron chemical potential, i.e., the Fermi level, by

@n#

@NC#
5expSEF2EC

kT D , ~9!

whereNC is the effective density of conduction-band states
at the electron mobility edgeEC .

If we now substitute Eq.~8! into Eq. ~7!, we obtain

@SiSi#

@SiHHSi#
5expS 2Hav22mH

kT D . ~10!

This can be regarded as an alternative form of the law of
mass action, where the hydrogen is included implicitly via
the hydrogen chemical potential. This is analogous to choos-
ing to use the Fermi level when considering electronic tran-

TABLE I. Key reaction energies.

Chemical equations H energy Electron energy

~3! SiH↔D1Hi HM2HSiH E1EHi
22ESiH

~4! SiHD↔SiSi1Hi HM2H0/1 2Et1EHi
22ESiH2E

~5! SiHHSi↔SiHD1Hi HM2H1/2 E1EHi
22ESiH12(Ev2Et)

~6! SiHHSi↔SiSi12Hi 2HM22Hav 2EHi
12Ev24ESiH
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sitions of defects. In this case, energies are usually consid-
ered relative to the Fermi level, rather than considering the
concentration of electrons at the mobility edge. The use of a
chemical potential is more general, as the precise details of
where the hydrogen or electrons are located is irrelevant at
equilibrium.

Next, we define H as the total concentration of hydrogen
in the a-Si:H that exists in pairs in SiSi bonds. We define
NSiSi as the total number of electrons in the silicon bonding
states.H is about 531021 cm23, i.e., 10 at. %, as most hy-
drogen in device qualitya-Si:H is bound in this way.NSiSi is
;231023 cm23, i.e., four electrons per Si atom. Therefore
Eq. ~10! can be rearranged to give

mH5Hav1
kT

2
lnS H

NSiSi
D . ~11!

Substituting the appropriate values forH andNSiSi we find
thatmH is strongly pinned about 80 meV below Hav ~taking
kT at freeze-in to be 43 meV, i.e.,T5500 K!. A doubling of
the hydrogen concentration~to 20 at. %! would result in only
about a 15-meV shift in hydrogen chemical potential. A wide
range of hydrogen diffusion experiments measure the activa-
tion energy of hydrogen diffusion to be;1.5 eV, which cor-
responds to HM2mH .

22,23

We now apply the law of mass action to Eqs.~3!–~5!, this
time writing the reaction energy both as hydrogen and elec-
tron energy terms:

@SiH#

@D#
5

@Hi #

@NHM
#
expSHM2HSiH

kT
D

5
@Hi #

@NHM
#
expS E1EHi

22ESiH

kT
D , ~12!

@SiHD#

@SiSi#
5

@Hi #

@NHM
#
expSHM2H0/1

kT
D

5
@Hi #

@NHM
#
expS 2Et1EHi

2E22ESiH

kT
D , ~13!

@SiHHSi#

@SiHD#
5

@Hi #

@NHM
#
expSHM2H1/2

kT
D

5
@Hi #

@NHM
#
expS EHi

1E22ESiH12~Ev2Et!

kT
D .
~14!

Equating the hydrogen and electron energy terms from Table
I, we can write

HM2HSiH5E1EHi
22ESiH , ~15!

HM2H0/152Et1EHi
2E22ESiH , ~16!

HM2H1/25EHi
1E22ESiH12~Ev2Et!, ~17!

HM2Hav5EHi
1Ev22ESiH . ~18!

When Eqs.~11! and ~18! are combined with~15!–~17! we
can determine the relations relevant to occupancy of the hy-
drogen density of states:

HSiH2mH5Ev2E1
kT

2
lnSNSiSi

H D , ~19!

H0/12mH5E1Ev22Et1
kT

2
lnSNSiSi

H D , ~20!

H1/22mH52Et2E2Ev1
kT

2
lnSNSiSi

H D . ~21!

It is of interest to combine~16! and ~17! to derive the ex-
pression:

H1/22H0/154Et22E22Ev . ~22!

H1/22H0/1 is the difference in transition energies of a SiSi
bond undergoing a change of occupancy from one to two
hydrogen atoms and a SiSi bond undergoing a change in
occupancy from zero to one hydrogen atom. This has been
called the hydrogen correlation energyUH .

13,16 For most
SiSi bonds the hydrogen correlation energy is large and
negative, but for bonds in the valence-band tail, it becomes
increasingly more positive, until those sites where defects are
formed, i.e., a SiSi occupied by one H atom, where the cor-
relation energy is positive.

D. Defect pool and the electronic density of states

The key feature of the defect-pool model is that we allow
defects to be formed at a range of energiesE, and in all three
charge states~1,0,2!. The mean energy of the electrons in
the defect depends on the probability of the defect being in
each charge state. If the defect is positively charged then the
electron has been removed to the Fermi level. If the defect is
neutral, then the defect’s electron is at the defect energyE. If
the defect is negative, then a second electron is placed on the
defect, from the Fermi level, giving a total energy of
2E2EF1U, whereU is the defect electron correlation en-
ergy. We can then calculate the mean defect energy and the
mean electron entropy to give the defect chemical potential
md , which is defined as the free energy per defect.7,8

To account for charged defects in the law of mass action
equations, then it is necessary to replaceE, the defect energy,
with the defect chemical potential,md5E1kT ln@f 0(E)/2#,
where f 0(E) is the neutral occupation function for amphot-
eric silicon dangling bonds:

f 0~E!

5
2 exp~@EF2E#/kT!

112 exp~@EF2E#/kT!1exp~@2EF22E2U#/kT!
.

~23!

Note that in our previous work,7,8md contained an extra term
for the hydrogen entropy. Here we deal with the hydrogen
entropy implicitly by the use of the law of mass action to the
elemental reactions~3!–~5!, so the defect chemical potential
is definedwithout the explicit hydrogen entropy term.

To allow for distributions of defect energies, i.e., a defect
pool, and for distributions of bond energies it is necessary to

10 124 53M. J. POWELL AND S. C. DEANE



replace the single expressions SiHD and SiSi with distribu-
tion functions. Therefore we replace@SiSi# by
gt(Et)P(E)2D(E,Et), where gt(Et) is the one-electron
density of states for the valence band,P(E) is the unit area
distribution function for potential defect sites~the defect-
pool function!, and D(E,Et) is the density of defects on
~SiHD! sites with energyE due to bonds of energyEt . The
expressiongt(Et)P(E) is the density of SiSi bonds at energy
Et that would form a defect at an energyE. Subtracting
D(E,Et) allows for the depletion of these SiSi weak bond
sites by the defects that have formed.gt(Et) only needs de-
fining in the region of the valence-band tail, as almost all
defects occur in this region. We take
gt(Et)5Nv0 exp[(Ev2Et)/Ev0], whereEv0 is the character-
istic energy andNv0 is the density of states of the valence-
band tail exponential region extrapolated to the valence-band
mobility edgeEv . P(E) is usually taken as a Gaussian,
P(E)5~2s2p!21/2 exp@2(E2Ep)

2/~2s2!#, where s is the
pool width, andEp is the most probable potential defect
energy. Remember thatE is the energy of the1/0 transition
of the defect. The 0/2 transition occurs at an energyE1U.

We now write down the differential form of the law of
mass action in Eq.~13!, substituting the expression for the
hydrogen chemical potential;

D~E,Et!5@gt~Et!P~E!2D~E,Et!#expS mH2H0/1

kT D .
~24!

This can be rearranged to give

D~E,Et!5
gt~Et!P~E!

11exp@~H0/12mH! /kT#
. ~25!

From this point we can either substitute for H0/12mH in
terms of electron energies, and integrate over the tail states to
derive the electronic density of defect states, or we can sub-
stitute for the electronic energies and integrate to get the
hydrogen density of states multiplied by an occupation func-
tion.

First we derive the electronic density of defect states by
substituting using Eq.~20! and integrating over the bond
energy distribution, using a similar method as previously:7,8

D~E!5E gt~Et!P~E!

11exp$@E1Ev22Et1~kT/2!ln~NSiSi/H !#/kT%

3dEt . ~26!

Substituting for the exponential tail state distribution and
performing the integral leads to the following result for the
density of defect states:

D~E!5gS 2

f 0~E! D
kT/2Ev0

PSE1
s 2

2Ev0
D , ~27!

g5Nv0S H

NSiSi
D kT/4Ev0S 2Ev0

2

2Ev02kTD
3expF2

1

2Ev0
SEp2Ev2

s2

4Ev0
D G . ~28!

This result is similar to our earlier expression forD(E),7,8

but Ev01 ikT/2 has been replaced by 2Ev0, and there are
changes to the energy-independent prefactorg that reduce
the overall density of states by a factor of about 3.

Expressions~27! and ~28! give the density of defect
states, corresponding to SiSi bonds occupied by a single hy-
drogen atom, i.e., SiHD states. This does not include defects
on isolated SiH bonds, i.e.,D defects, which could be calcu-
lated separately, using Eq.~12!. Since the density of isolated
SiH sites is about 1020 cm23, and since the binding energy of
the hydrogen in a SiH bond is higher than H in a weak SiSi
bond, we find that the density of theD defects is several
orders of magnitude lower than the density of the SiHD de-
fects, and so the total defect density is always dominated by
the SiHD states.

E. Hydrogen density of states

If we now return to Eq.~25!, we can substitute for the
electron energies and derive the hydrogen density of states,
which is completely consistent with the electronic density of
states incorporating the defect-pool model. By substituting
for Et in terms ofE and H0/1, and then integrating overE,
Eq. ~25! becomes the hydrogen density of states multiplied
by a Fermi occupation function:

D~H0/1!5
h0/1~H0/1!

11expF ~H0/12mH!

kT G , ~29!

whereh0/1~H0/1! is the hydrogen density of states, i.e., the
total density of hydrogen 0/1 transitions at a hydrogen bind-
ing energy H0/1;

h0/1~H0/1!5E gtSHav2H0/11E1Ev1kT ln@ f 0~E!/2#

2 D
3P~E!dE. ~30!

In the same way as we derived Eq.~24! from ~13! we can
derive from~14!:

D~E,Et!5
H

NSiSi
@gt~Et!P~E!2D~E,Et!#expSH1/22mH

kT D .
~31!

Here theH/NSiSi term comes from the fact that only this
fraction of bond states are doubly hydrogenated. If this term
is taken inside the exponent, then we obtain a similar expres-
sion to ~29!, for the density of defects:

D~H1/2!5
h1/2~H1/2!

11exp$@H1/22mH2kT ln~H/NSiSi!#/kT%
,

~32!

where we define the density of states for the H1/2 transition
by

h1/2~H1/2!5E gtSH1/22Hav1E1Ev1kT ln@ f 0~E!/2#

2 D
3P~E!dE. ~33!
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Note that due to theH/NSiSi term in Eq.~31! theh1/2 transi-
tion has an effective chemical potential of
mH1kT ln~H/NSiSi!. This is a degeneracy term due to the
fact that for each bond that is doubly hydrogenated, there are
many more that are identical but empty. Strictly speaking, a
similar term should exist in theh0/1 transition level, but as
almost all bonds are empty, this is insignificant. This is like
the degeneracy term for electron occupation statistics of a
dangling bond, where the spin degeneracy term results in a
chemical potential given byEf1kT ln~2! for theD1/0 tran-
sition, and (Ef2U)2kT ln~2! for theD0/2 transition.7,8

III. CALCULATED ELECTRONIC DENSITY OF
STATES

Using the new expression for the density of electronic
states, given in Eqs.~27! and~28!, we can now evaluate the
expression for both intrinsic and doped amorphous silicon.
The method is substantially the same as described in our
previous paper,8 except that the revised expression leads to
about a factor of 3 lower densities and we have chosen to
revise some of the input parameters so as to give better fits to
experimental results. Most parameters are identical to those
used previously,8 in particular, we takeNv05231021

cm23 eV21, H5531021 cm23, EG ~the band gap!51.9 eV,
T*5500 K, and the correlation energyU50.2 eV. However,
we now takes to be 0.190 eV, compared to 0.178 eV used
previously. The value ofs is chosen to keep the energy sepa-
ration between theD e

2 and D h
1 states to be 0.44 eV, in

agreement with experiment, as before,8 but due to the new
expression forD(E), this now leads to the new value. We
take the room-temperature value forEv0 to be 0.045 eV,
which is typical for good quality material and we allow for
the temperature dependence in Ev0, by
E v0

2 5E v0 T50
2 1(kT)2,24 so Ev0, at theT*5500 K equili-

bration temperature, is 0.056 eV.
Compared to the numerical results presented in our previ-

ous paper,8 the main changes are the factor of 3 lower defect
densities, a small change in the energy spectra, due to the
increaseds, and a lower thermal activation energy of the
neutral spin density~D0 states!. We now find a thermal acti-
vation energy of theD0 states of 0.27 eV, compared to the
earlier reported 0.39 eV. This gives somewhat better agree-
ment with experiment, which finds a range of activation en-
ergies from 0.18 eV,3 through 0.3 eV,25 to 0.35 eV.26

Calculations using the above parameters represent state of
the art high-quality amorphous silicon, with state of the art
low defect densities. This does not cover all intrinsic material
and we handle poorer quality material by simply increasing
Ev0, the valence-band tail slope. However, we also increase
s in such a way that the energy position of theD2 andD1

peaks is kept constant,8 which is consistent with experiment.
BothEv0 ands are disorder parameters and it seems reason-
able that they should change together.

Figure 1 shows the dependence of the total defect density
on the room-temperature valence-band tail slope,Ev0, and
the comparison with experimental data, taken from a data
compilation in Stutzmann.27 Exactly howEv0 is varied is
outside the scope of our model, sinceEv0 is merely an input
parameter. However, experimentally, we find increasedEv0
for deposition at reduced temperatures, or at higher tempera-

tures with low hydrogen content and generally at less than
optimum deposition conditions.27

There is good agreement between experiment and theory,
both in the magnitude of the defect densities and in theEv0
dependence. Remember these are room-temperature mea-
surements ofEv0, notEv0* , which is the value at the equili-
bration temperature, and that the spin density is about a fac-
tor of 5 lower than the defect density. Included in Fig. 1 is
the single point, representing our model. Clearly this set of
parameters represents state of the art amorphous silicon.

When the amorphous silicon is doped, then the density of
De states~for n type! or Dh states~for p type! increases
exponentially with the shift in Fermi level and dominates the
total defect density.8 With the new expression forD(E), the
Fermi-level dependence of the total defect density is given
~for n type! by

De'exp~EF/2Ev0* !, ~34!

with a similar expression forDh states inp-type material.
The characteristic temperature 2Ev0* ~112 meV! agrees well
with experiment, where 100 meV is found.28

We now discuss two interesting consequences of the
defect-pool model, not discussed in our previous paper.8

These are the statistical shift and the defect density profile in
junction devices. Figure 2 shows the density of states for
lightly doped n-type a-Si:H, with the equilibrium Fermi
level, EF*51.30 eV. For highly dopedn-type a-Si:H, the
density ofDe states increases and the Fermi level rises into
the conduction-band tail states. Therefore, the Fermi level
can be in a region where the density of states is either in-
creasing or decreasing with energy and this leads to different
behaviors for the temperature dependence of the Fermi level,
known as the statistical shift. In Fig. 3, we plot the statistical
shift for lightly dopeda-Si:H ~as in Fig. 2! as well as for
more heavily dopeda-Si:H. For the lightly dopedn-type
a-Si:H, the statistical shift of the Fermi level is positive at
low temperatures and changes sign at higher temperatures,
whereas for the highly dopeda-Si:H, the statistical shift is
negative. Proper account of the statistical shift is needed to

FIG. 1. The dependence of the total defect densityNd on the
valence-band tail slope,Ev0, compared to experimental data com-
piled by Stutzmann~Ref. 27!. Data point marked with a cross re-
sults from the model parameters used in this paper.
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relate room-temperature Fermi levels to equilibrium tem-
perature Fermi levels and to conductivity activation energies.

Figure 4 shows the dependence of then-type active-
dopant level,Ndonor ~identically equal to the net negatively
charged dangling-bond defect density,De2Dh! on the con-
ductivity activation energy. There is an extremely nonlinear
response that is due to the statistical shift increasing at the
point where the activation energy changes strongly with little
change in the active-dopant level. This curve shows that a 1
part per 106 active-doping level~Ndonor5531016 cm23!
would correspond to a Fermi-level shift of about 0.2 eV, in
reasonable agreement with experiment.29,30 At the higher
doping levels, we find an activation energy of about 0.15 eV,
for 231018 cm23 active dopants. In the model,Ev0 is as-
sumed constant, but there is some experimental evidence that
Ev0 actually increases with doping, at the higher doping
levels.28 We presume this effect is due to increased disorder
in the presence of a large concentration of dopant atoms,
remembering that the number of dopant atoms is roughly the
square of the number of active dopants, for high doping
levels.31 In Fig. 4, we also plot by the dotted line,EF* , as a
function of conduction activation energy, which illustrates
the effect of the statistical shift more directly.

Figure 5 shows the band-bending potential profile and the
equilibrium defect density, through thei -layer region of a pin
diode. We adopt the usual convention thatc is positive for
positive band bending, which is drawn increasing down-
wards. Thus we plot the energy band-bending profile through
a pin diode, with thep- i interface at the left side and then- i
interface at the right side. The density of states will equili-
brate to the Fermi-level position at the equilibration tempera-
ture throughout the 1.0mm-thick i layer, and so the defect
density will vary through the thickness of thei layer, as
shown in the figure. We find the density of defects stays
approximately constant throughout most of the thickness of
the i layer, but increases rapidly towards then- i and p- i
interfaces, where it increases over an order of magnitude.
This inhomogeneity in the defect density leads to an increase
in the field near to then- i and p- i interfaces and a corre-

FIG. 2. The one-electron density of states for lightly doped
n-type a-Si:H. The equilibrium Fermi level is shifted by 0.25 eV
from the intrinsic position but the Fermi energy is shown at 313 K.

FIG. 3. The calculated statistical shift of the Fermi energy, for
lightly doped a-Si:H ~as shown in Fig. 2! ~solid line! and more
highly dopeda-Si:H ~dotted line!.

FIG. 4. The active-dopant level dependence on the activation
energy of conduction forn-type conduction. Also shown by the
dotted line is the equilibrium Fermi-level position, as a function of
the activation energy of conduction.

FIG. 5. Equilibrium defect density profile~solid line! and band-
bending potential profile~dotted line! through thei -layer region of
an equilibratedpin diode, according to our defect-pool model.
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sponding decrease in the field in the center of thei layer,
compared to the non-defect-pool model situation with a ho-
mogeneous defect distribution. The band-bending potential
profile is shown atT5313 K, which differs from the equi-
librium band-bending profile atT5500 K, due to the statis-
tical shift. This latter effect causes the field in the center of
the diode to be larger at room temperature, than it is at the
equilibration temperature and we can see that there is a no-
ticeable field at the center of the diode. This field leads to the
high zero-bias quantum efficiency, which is measured in so-
lar cells.

IV. CALCULATED HYDROGEN DENSITY OF STATES

A. Hydrogen density of states curves

Figure 6 shows the calculated hydrogen density of states.
The h0/1 andh1/2 distributions are shown separately, but the
distributions of defect states SiHD appear in both distribu-
tions. Also shown are the distributions of SiSi and SiHHSi
states. The defect states in theh0/1 distribution exist in the
part of the band tail that extends belowmH , together with an
exponential tail abovemH . Similarly, the same defect states
appear in theh1/2 distribution, abovemH1kT ln~H/NSiSi! and
in an exponential tail to lower energies. Note thath0/1 and
h1/2 include all possible sites. This is nearly the same as SiSi
for theh0/1 distribution abovemH , but SiSi is depleted by the
formed defects belowmH . On the other hand, SiHHSi is a
constant fraction of theh1/2 distribution belowmH and this is
further depleted by the SiHD states above
mH1kT ln~H/NSiSi!.

It is important to realize that the SiHD states are thesame
states in theh0/1 andh1/2 distributions. The SiHD states are
amphoteric to H occupancy, in a similar way that theD(E)
states are amphoteric to electron occupancy. The total den-
sity of SiHD states, i.e., the integral of SiHD in the hydrogen
density of states is identical to the integral ofD(E) in the
electron density of states.

To understand the origin of the hydrogen density of states
~HDOS! it is instructive to calculate it for two simplified
situations. Firstly, we can calculate it for the case where there

are no tail states, i.e.,Et50, so all electrons in SiSi bonds
have the same energy. The second situation is where there is
no defect pool, i.e., whereP(E) is a d function and all the
defects occur at a single electronic energy,E8. It is also
interesting to show how the total density of states divides
into states of different potential charge state. We can define
the hydrogen density of states that would form defects in the
negative charge state by

he
0/15E gtSHav2H0/11E1Ev1kT ln@ f 0~E!/2#

2 D
3P~E! f2~E!dE, ~35!

with similar expressions for neutral (h z
0/1) and positive

(h h
0/1) charge states.
Figure 7 shows the hydrogen density of states, when there

are no SiSi electron tails. Compared to Fig. 6, the hydrogen
density of states shows a small amount of structure, which
can be identified with the different charge states having dif-
ferent hydrogen binding energy dependence. Also shown is
the energy cutoff of the hydrogen density of states, which
occurs in a model with no tail states. As we might expect, the
overall density of states shows reduced tailing and the den-
sity of defect states~SiHD! is too low to be shown.

Figure 8 shows the hydrogen density of states when there
are tails but no defect pool. Comparison with Fig. 6 shows

FIG. 6. The hydrogen density of states for intrinsica-Si:H. The
left part depictsh0/1 transitions and the right depictsh1/2 transitions.
The solid line represents all potential transitions, while the other
lines show allowed transitions. Thus only SiSi and SiHD may un-
dergo 0/1 transitions, while only SiHD and SiHHSi may undergo
1/2 transitions.

FIG. 7. The hydrogen density of states, for intrinsica-Si:H in a
model where there are no SiSi tail states.

FIG. 8. The hydrogen density of states, for intrinsica-Si:H, in a
model where there are tail states, but no defect pool.
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that the density of states has the same general shape as in the
full model. The only real difference is that with no pool, the
vast majority of states are neutral, whereas in the full model,
the majority of states occur either as positive or negative. We
therefore conclude that the hydrogen density of states is
dominated by the tail state distribution and the only effect of
the defect pool is to determine the charge state of the defects
and potential defect sites. This can be contrasted with the
effect of the defect pool on the electronic density of states,
where the density of states is completely modified by the
effect of the defect pool.

Figure 9 shows the full model hydrogen density of states
for ~a! n-type and~b! p-type a-Si:H. The density of states
and the corresponding density of defects is increased by dop-
ing. The vast majority of defect states and potential defect
states are negatively charged, forn-type material, but the
opposite is true forp-type material. The hydrogen densities
of states in Fig. 9~a! correspond to the electron density of
states shown in Fig. 2 and the integrated defect densities are
identical.

By way of comparison, Fig. 10 shows the calculated den-
sity of states for~a! n-type and~b! p-type material, for the
no-tail model. Compared to Fig. 9, there is a strong asym-
metry in the densities, betweenn-type andp-type material,
due to the broader distribution ofhe states compared to the
hh states. Note that the energy position of the cutoff is Fermi
energy dependent. In the full model, the effect of the tail is
dominant and the asymmetry betweenn-type andp-type dis-
tribution is lost.

B. Comparison with experiment

As we have derived it, the HDOS shows howa-Si:H is
relatively insensitive to the addition or subtraction of quite
large amounts of hydrogen, for example, in hydrogenation
and dehydrogenation experiments.20,21 In hydrogenation, the
hydrogen chemical potential is virtually pinned and there is
no change in the defect density. In dehydrogenation, the hy-
drogen chemical potential will also be pinned until almost all
the hydrogen is removed, i.e., except for the hydrogen lo-
cated on isolated SiH bonds. The hydrogen chemical poten-
tial drops towards the SiH level, whereupon the defect den-
sity from empty SiSi bonds reduces slightly and hydrogen is
slowly emitted from the isolated SiH sites. At this point, the
defect density rises sharply, due to one of two reasons; either
there is an increase in the spin density from isolated SiH sites
that have lost a hydrogen atom, or there is an increase inEv0,
due to an increase in disorder, as the last hydrogen is
evolved, and the density of spins from singly occupied SiSi
states increases. This is consistent with experimental mea-
surements of the spin density on dehydrogenation.32

Hydrogen diffusion can also be understood with the hy-
drogen density of states. Hydrogen moves by thermal emis-
sion from SiHHSi states to the mobility edge, HM . Long-
range motion occurs then by a series of capture and emission
events within the SiSi band states. The thermal activation
energy for hydrogen diffusion is given by HM2mH , by anal-
ogy with the process of steady-state electrical conduction,
which has an activation energy ofEc2EF . The position of

FIG. 9. The hydrogen density of states in the full model, for~a!
n-type and~b! p-type a-Si:H, showing the division into potential
states of different charge state. FIG. 10. The hydrogen density of states, for~a! n-type and~b!

p-type a-Si:H, in a model where there are no tail states, showing
the division into potential states of different charge state.
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mH is taken to give a diffusion activation energy of 1.5 eV, in
agreement with the thermal activation energy found in a
wide range of diffusion experiments.23

Our model presented here has the primary defect site as
the SiHD, a singly hydrogenated weak SiSi bond. There is
some controversy with this, as several electron spin reso-
nance~ESR! and nuclear magnetic resonance~NMR! experi-
ments have shown no dangling-bond–hydrogen spin interac-
tion. Indeed some claim that there is no significant hydrogen
density within 5 Å of adangling bond, implying an anticor-
relation of hydrogen and defects.33,34However, we feel there
are problems with this concept. Given that device grade
a-Si:H typically contains 531021 cm23 hydrogen, a 5 Å
sphere around each H atom does not leave any room for the
dangling bonds. Additionally, if most hydrogen were bound
as isolated SiH bonds, then a defect would result for each
hydrogen removed, in clear contradiction to
experiment,13,20,21where several orders of magnitude more
hydrogen is removed than there are defects created. A pos-
sible explanation is that these experiments are measuring sur-
face spin signals, where the surfaces are likely to have a
hydrogen deficit. ESR and NMR experiments are usually
performed on powdered samples, formed by depositing on
aluminum foil, which is subsequently dissolved. These gen-
erally exhibit surface spin signals of 1012 cm22,35 so for de-
vice gradea-Si:H, the films would have to be several tens of
micrometers thick to actually be measuringbulk spins. Such
films are difficult to grow due to the internal stresses in-
volved and long times required. An alternative approach is to
raise the bulk spin density by lowering the deposition tem-
peratures, and while we should be a little cautious as this
material is likely to contain some microvoids, indeed the
dangling-bond–hydrogen interaction is seen for a large frac-
tion of the native and light-induced dangling bonds both in
NMR ~Ref. 36! and ESR,37 and a
dangling–bond-hydrogen,36,37 separation of about 2 Å is
measured, in agreement with our model.

V. COMPARISON WITH OTHER MODELS

In this section, we compare the details of our model with
those of previous work, in order to pinpoint the differences.
There are two broad categories of model that we wish to
compare: defect-pool models and hydrogen density of states
models.

A. Defect-pool models

In our earlier paper, we discuss the differences between
the early papers on the defect-pool model.8 In this paper, we
discuss the specific differences between more recent papers
on the defect-pool model and the model presented in this
work. The common feature of the previous defect-pool mod-
els is that they all consider chemical reactions of the type
given in Eqs.~1! and~2! and then attempt to apply the law of
mass action to these equations. The problem lies in the fact
that Eqs.~1! and~2! strictly only apply if not more than one
species on each side of the reaction isimmobile. As we have
previously discussed, this is not really correct. Alternatively,
if the chemical reaction describes a purely local reaction
where the SiH bonds are neighboring to the SiSi bonds, then

the reactions describe H bond flipping into a neighboring
SiSi site. In this case, since reactants and products are inti-
mately linked, the law of mass action does apply, but only if
reactants and products are treated as a single species,
strongly reducing any entropy terms. This is a perfectly
valid, but different, model for defect creation, which would
result in far too few defects. The much larger defect densities
that are observed experimentally originate from the increase
in entropy due to the H motion between neighboring sites.
The only correct way to solve this problem is to recognize
that H is the truly mobile species and solve Eqs.~3!–~5!, as
we have done in this paper. The interesting feature of the
previous defect-pool models is how they handled the H en-
tropy problem.

Winer6 considered Eq.~1! and applied the law of mass
action. The hydrogen entropy was included, but calculated
incorrectly assuming the defect gained entropy from all SiH
sites, rather than from only those at the same energy.
Schumm38 considered an essentially local model and allowed
energy exchange between the defects, which were formed in
pairs. This treatment is basically correct for a local reaction.
Hydrogen entropy was then calculated, allowing defect sites
to exchange with SiH sites at the same energy. However, all
the hydrogen entropy was assigned to only one of the two
formed defects, which led to the result that the energy spec-
trum of the density of states was independent of the choice of
specific reaction~1! or ~2!. In our earlier paper,8 we recog-
nized that the physical picture we wished to model was of a
delocalized formation of pairs of defects. We therefore as-
signed the two defects thesameenergy, on the basis that the
two defects were formed independently and on average they
would have the same energy. This enabled us to produce an
analytical solution for the density of states, which had some
of the features of a delocalized reaction. The calculated en-
ergy spectrum of the density of states was found to be dif-
ferent for reactions~1! and ~2!.8

Both the papers of Schumm38 and our earlier papers7,8 are
flawed when applied to trying to solve reactions~1! and ~2!
for a delocalized reaction. Neither model handles the hydro-
gen entropy properly, since the only way to model a delocal-
ized reaction is to decouple it into the correct microscopic
components, namely, Eqs.~3!–~5!. The distinction between
there being one SiH bond or two SiH bonds mediating the
defect forming reaction then disappears.

Asensi and Andreu39 were the first to combine the defect-
pool model with elemental hydrogen reactions. However,
they did not solve the complete set of equations~3!–~5!,
instead they solved a simplified version, using Eq.~3! with
Eq. ~6!. They recognized that most hydrogen binds in the
network in pairs, but by using Eq.~6! they allowed hydrogen
in SiSi bonds to have occupancy ofonly zero or two. Occu-
pancy by a single H atom, in a defect forming site~SiHD!
was disallowed. In their model, all defects were formed from
reaction ~3! on isolated SiH bonds. The resulting energy
spectrum of the formed defects gave an energy separation
between theD e

2 andD h
1 of 2s2/kT*2U, independent of

the valence-band tail slopeEv0, and an increase of the defect
density upon doping with a characteristic energy ofkT*
~;43 meV!, far too steep compared to experiment.28
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B. Hydrogen density of states models

The concept of the hydrogen density of states was intro-
duced by Street.15,16His original model is as sketched in Fig.
11~a!. The distinction between SiH and SiHHSi was either
not made or they were lumped together. The tail state energy
was contained in the SiSi states. Jackson12,19 introduced the
distinction of the SiHHSi states and placed them at a higher
energy than the isolated SiH, but neglected the tail state en-
ergy @Fig. 11~b!#. The SiHHSi states were identified with the
specific H2* configuration.14,40 Zafar and Schiff13,32 reversed
the order of the SiHHSi and SiH states, so all the defects are
formed in isolated SiH states@Fig. 10~c!#. This is the same
model used later by Asensi and Andreu.39

None of the HDOS models incorporated the defect-pool
model, prior to the paper by Asensi and Andreu,39 but it is of
interest to consider the result we would obtain if we were to
do this. The Street model basically consists of solving Eqs.
~3! and ~4!. The defects are of two distinct types, located

either on an isolated SiH site or in a SiSi weak-bond site. If
this problem is solved properly, the energy spectra of the two
defects would be different, with the energy shift between the
D e

2 and theD h
1 states being 2s2/kT*2U, for defects origi-

nating from isolated SiH ands2/Ev02U, for defects origi-
nating from SiSi weak bonds. For a localized reaction, which
is represented on the same HDOS by a hydrogen transition
directly from the SiH state to the SiSi state, we obtain for the
energy separation,s2/Ev02U, for both defects, which is the
same answer as obtained by Schumm.38 In the HDOS models
of Jackson12,19 and Zafar and Schiff,13,32 since no tail states
are included, the energy spectra of all defect states will be
the same, with a characteristic energy separation of
2s2/kT*2U.

In our new model, the energy separation of theD e
2 and

D h
1 states iss2/Ev02U, which is the same answer as ob-

tained in the local model of Schumm.38 However, the agree-
ment with Schumm38 is coincidental, since it is actually due
to the fortuitous cancellation of two differences, the use of a
local model and the incorrect calculation of H entropy. Theg
term, which gives the absolute defect densities, according to
Eq. ~28!, is different from the g terms given in both
Schumm38 and Deane and Powell.7,8

VI. CONCLUSIONS

We have developed a model for the hydrogen density of
states that incorporates the defect-pool model for the elec-
tronic density of silicon dangling-bond defect states.

The hydrogen density of states has been described in a
quantitative way, and shown to reproduce the density of
states of the defect-pool model. It is somewhat different from
an electronic density of states in that the correlation energy
of hydrogen in a silicon-silicon bond varies. It ispositivefor
most sites that form defects, butnegativefor most sites that
bind hydrogen. In device qualitya-Si:H, the majority of de-
fects result from singly hydrogenated silicon-silicon bonds,
which we term~SiHD!, rather than isolated SiH sites.
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