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We investigate theoretically the optical response of excitons localized near the surface of a semiconductor.
Spectra of reflection ofp-polarized light from strongly treated semiconductor surfaces are calculated by using
a generalized Morse surface potential. The spectra exhibit prominent dips produced by the generation of
exciton bound states and their corresponding longitudinal polariton modes. The position and the form of
spectral dips depend not only on potential-well parameters but also on the value of the longitudinal-transverse
splitting and the surface damping. Our results are compared with experimental spectra for CdSe and we also
calculate reflectivity spectra for GaAs.

I. INTRODUCTION

In the past few years optical properties of excitons in
confined systems have been intensively investigated.1,2 Sys-
tems of this kind display interesting optical effects that fre-
quently are not observed in crystals dominated by bulk be-
havior. The usual systems for confining excitons are thin
films,3–7 quantum wells,8–11 quantum wires,12–15 and quan-
tum dots.16–19Nevertheless, excitons can also be confined in
the vicinity of the surface of a semi-infinite
semiconductor.20,21 Indeed, surface treatments such as dop-
ing, electron and ion bombardment, application of electric
field, and others, modify the concentration of impurity ions
near the sample surface. The space charge produced gives
rise to a macroscopic electric field and, as a result, to an
extrinsic contribution to the excitonic surface potential. This
contribution can be attractive, unlike intrinsic potentials, and
can lead to the formation of a potential well. If the size of
this well is sufficiently large, exciton bound states are gen-
erated. The optical manifestation of localized excitons within
extrinsic surface potentials has been studied theoretically and
experimentally.22–36 However, several aspects of exciton
confinement in surface-potential wells merit further study.

The generation of excitonic bound states leads to reso-
nances in the optical spectra of reflectivity and transmission.
The shape and position of these spectral resonances are de-
termined by the form of the surface-potential well and by the
coupling between localized excitons and light. In Refs.
24–32 the normal-incidence optical spectra were analyzed
by employing a multiple-step model for the potential well. A
more convenient, continuous model, based on the truncated
Morse potential, was proposed in Refs. 33–36. The results
obtained with these models show that in the case of
s-polarized light excitonic bound states manifest themselves
as maxima~minima! in the reflectivity ~transmission!. The
positions of these extrema are close to exciton eigenfrequen-
cies. They do not coincide exactly with the corresponding
eigenvalues because of exciton-light coupling~polariton ef-
fect!.

There is evidence of strong light-polarization dependence
of the interaction between the electromagnetic field and con-

fined excitons. Thus, for example, it was established that the
shape of reflectivity spectra for quantum wells11 and quan-
tum well wires13–15drastically changes with switching from
s-polarized light top-polarized light. In the latter geometry,
new spectral resonances~dips! appear. Recently,35 we have
reported a similar polarization effect in the reflectivity of
semiconductors with near-surface localized excitons. Our
calculations there gave rise to resonances~dips! that are
manifestations of longitudinal, polarization waves. Among
examples of the polarization effect, the experimental results
of Ref. 37 should be mentioned too. In that work the changes
in the spectra of reflection ofp-polarized light from CdSe
crystals, which had been subjected to distinct doses of elec-
trons, were investigated. These changes turned out to be
quite different from those obtained for normally incident
light.

The aim of the present work is to investigate the interac-
tion of excitons with strongly treated surfaces and the ensu-
ing influence on the shape of optical spectra. This work is
complementary to previous papers~Refs. 33, 34, and 36! and
provides the full theoretical framework to another paper of
ours.35 Therefore, the theory is restricted here to the
p-polarization geometry. We solve analytically the system of
equations for the exciton-polariton fields using the general-
ized Morse surface potential~Sec. II!. In Sec. III we employ
our theory to interpret experimental reflectivity spectra37 of
CdSe~a II-VI semiconductor!. Finally ~Sec. IV!, we analyze
the peculiarities of the optical manifestation of near-surface
localized excitons in III-V semiconductors.

II. THEORY

Let us assume that a nonlocal dielectric medium occupies
the infinite half spacez.0, with vacuum in the region
z,0. At the dielectric surface (z50), p-polarized light is
incident with an electric field

Ei~x,z,t !5Ei@1,0,2qx /qz#e
iqxx1 iqzz2 ivt, ~1!

whereqx , qz are the components of the wave vector,

qx5qsinu, qz5qcosu, q5v/c, ~2!
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u is the angle of incidence,v is the circular frequency, and
c is the speed of light in vacuum. The reflected field has the
form

Er~x,z,t !5Er@1,0,qx /qz#e
iqxx2 iqzz2 ivt. ~3!

Inside the dielectric medium (z.0) the electric fieldE
satisfies the Maxwell equations, which are coupled to the
equation of motion for the excitonic polarizationP.21 The
system of coupled equations is written as follows:

S ]2

]z2
1G2~z! DP52

vP
2M

4p\vT
E,

¹3¹3E2e`q
2E54pq2P, ~4!

where

G2~z!5GB
21DG2~z!,

GB
25

M

\vT
Fv22vT

22
\vT

M
qx
21 ivn G ,

DG2~z!52
2MU~z!

\2 . ~5!

Here M is the exciton mass,vT is the frequency of the
exciton resonance,vP is a measure of the oscillator strength,
e` is the high-frequency~background! dielectric constant,
and n is the damping constant. The surface potentialU(z)
appears in the formula forG2(z) ~5! and is modeled by
means of the generalized Morse surface potential,

U~z!5HU1e
2z/a1U2e

22z/a, z.0

`, z,0.
~6!

According to the assumed geometry ofp polarization, the
exciton-polariton fields in an isotropic medium can be ex-
pressed as

E~x,z,t !5@Ex~z!,0,Ez~z!#eiqxx2 ivt,
~7!

P~x,z,t !5@Px~z!,0,Pz~z!#eiqxx2 ivt.

Hence the system~4! takes the form

S ]2

]z2
1G2~z! DPx~z!52

vP
2M

4p\vT
Ex~z!,

S ]2

]z2
1G2~z! DPz~z!52

vP
2M

4p\vT
Ez~z!, ~8!

iqx
]Ez~z!

]z
2S ]2

]z2
1e`q

2DEx~z!24pq2Px~z!50,

iqx
]Ex~z!

]z
1~qx

22e`q
2!Ez~z!24pq2Pz~z!50. ~9!

After eliminating thex andz components of the electric field
from the system of Eqs.~8! and ~9!, we obtain two coupled
equations for the components of the excitonic polarization,
which can be written as follows:

F ]2

]z2
1e`q

22qx
2G H F ]2

]z2
1GB

21DG2~z!GPx~z!J
2

vp
2M

e`\vT
~e`q

22qx
2!Px~z!2 iqx

vp
2M

e`\vT

]Pz~z!

]z
50,

iqx
]

]z H F ]2

]z2
1GB

21DG2~z!GPx~z!J 1q2
vp
2M

\vT
Pz~z!

2~e`q
22qx

2!F ]2

]z2
1GB

21DG2~z!GPz~z!50. ~10!

In a semispace (z.0) the functionsPx(z), Pz(z) can be
expressed as a linear combination of three independent solu-
tions of ~10!. Thus,

Px~z!5(
s51

3

Px
~s!~z!, Px

~s!~z!5eiqszFs~z!;

Pz~z!5(
s51

3

Pz
~s!~z!, Pz

~s!~z!5eiqszGs~z!. ~11!

Hereqs (s51,2,3; Imqs.0) arez components of the wave
vector for modes propagating towards the bulk, where
DG2(z)→0 and the functionsFs(z), Gs(z) are, in fact, con-
stants. The valuesq1 and q2 are thez components of the
transverse modes and are given by the formula

q1,25H 12 FGB
21e`q

22qx
26S @GB

22e`q
21qx

2#2

1
4vP

2v2M

c2\vT
D 1/2G J 1/2. ~12!

The valueq3 is the z component of the longitudinal mode
and is expressed as

q35S GB
22

vP
2M

e`\vT
D 1/2. ~13!

Near the surface (z<a, where a is the characteristic
width of the excitonic surface potential! the behavior of the
excitonic polarizationP ~11! is determined by the functions
Fs(z), Gs(z). In the case of the generalized Morse surface
potential@Eq. ~6!# these functions have the form~see Appen-
dix!

Fs~z!5 (
k50

`

akse
2kz/a, Gs~z!5 (

k50

`

bkse
2kz/a. ~14!

The recursion relations for the coefficientsaks , bks
(s51,2,3) of series~14! are given by Eqs.~A10!–~A13!.
Because these relations are coupled there are only three in-
dependent coefficients. Without loss of generality, we can
choosea0,1, a0,2, andb0,3 to be the independent coefficients.

The expression for the electric fieldE ~7! is obtained by
using ~8! and ~11!. We find
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Ex~z!52
4p\vT

vP
2M (

s51

3

eiqszF]2Fs

]z2
12iqs

]Fs

]z

1@G2~z!2qs
2#Fs~z!G ,

Ez~z!52
4p\vT

vP
2M (

s51

3

eiqszF]2Gs

]z2
12iqs

]Gs

]z

1@G2~z!2qs
2#Gs~z!G . ~15!

The coefficientesa0,1, a0,2, andb0,3 in Eq. ~14! and the
amplitudeEr in Eq. ~3! should be found from the boundary
conditions. We will apply the continuity conditions on the
tangential components of the electric and magnetic fields at
the surfacez50 and the ‘‘additional boundary condition’’ for
the excitonic polarization,33

P~z50!50. ~16!

After calculatingEr , we get straightforwardly the reflectiv-
ity R5uEr /Ei u2.

The formalism developed above allows us to calculate the
reflectivity spectra for semiconductors with a surface-
potential well. As was mentioned in the Introduction, the
generation of bound states in the potential well may produce
resonances in the optical spectra. These states of excitons
localized near the surface are found from the Schro¨dinger
equation for the translational motion,21

\2

2M S qx22 ]2

]z2Dc~z!1@\vT1U~z!#c~z!5\vc~z!,
~17!

with the boundary conditions

c~0!50, c~`!50. ~18!

The quantityqx in ~17! coincides with thex component of
the wave vector of the incident light@Eq. ~2!#. So, the eigen-
values of energy\vTn for the potential well\vT1U(z) can
be expressed in the form

\vTn5\vTn
~0!1

\2qx
2

2M
, ~19!

where \vTn
(0) are the eigenenergies for the case of normal

incidence of light. They are calculated numerically. The sec-
ond term on the right-hand side of Eq.~19! gives a small
contribution to the eigenvalues, which is of the order of
1025 eV.

The eigenstates manifest themselves in the reflectivity
spectra as prominent maxima~broad peaks! whose positions
are near their corresponding eigenfrequency. However, as the
incidence angleu is increased, new resonance structures may
appear.35 This is a polarization effect since the new reso-
nances~dips! are absent in the case ofs-polarization geom-
etry ~Refs. 33 and 34!. The appearance of spectrum dips at
frequencies that differ notably from eigenvalues of exciton
bound states can be explained by means of the following
analysis.

In spatially dispersive media, longitudinal normal modes
are excited in thep-polarization geometry. As a conse-
quence, the component of the electric field, which is perpen-
dicular to the surface, can couple strongly to quasiparticles in
the crystal.21 The condition for exciting longitudinal normal
modes is the vanishing of the displacement vector,

D5e`E14pP. ~20!

Under this condition (D50) the first equation in~4! can be
rewritten in terms exclusively of the excitonic polarization:

\2

2M S qx22 ]2

]z2DP1@\vL1U~z!#P5\vP, ~21!

wherevL is the exciton longitudinal frequency,

vL'vT1
vP
2

2vTe`
. ~22!

In obtaining Eq.~21! we omitted the damping term and we
took into account that the differences betweenv, vT , and
vL are very small. Obviously, Eq.~21! is also satisfied by the
electric fieldE.

Notice Eq.~21! is the one-dimensional Schro¨dinger equa-
tion for the mechanical exciton@Eq. ~17!#, with the wave
function c(z) and the mechanical potential\vT1U(z) re-
placed by the excitonic polarizationP and the ‘‘longitudinal’’
exciton potential\vL1U(z), respectively. Hence, the ei-
genvalues\vLn of the polarization waveP are simply
shifted ~Fig. 1!, in comparison to exciton bound states
(\vTn), by the longitudinal-transverse splitting
\vLT[\vL2\vT @Eq. ~23!#. These quantized polarization
modes give rise to resonant dips at frequenciesvLn in the
reflectivity.35 According to Eq. ~19!, eigenfrequencies
vLn5vTn1vLT depend on incidence angleu.

FIG. 1. Mechanical, \vT1U(z), and ‘‘longitudinal,’’
\vL1U(z), exciton potentials with bound states.
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Below we shall use the present theory to interpret experi-
mental results and analyze the manifestation of near-surface
localized excitons in both II-VI and III-V semiconductors.

III. COMPARISON WITH EXPERIMENT „CdSe…

Spectra of oblique reflection of light from strongly treated
CdSe crystals were experimentally investigated in Ref. 37.
The surface transition layers were produced by bombarding
the samples with electrons of a few keV. In Fig. 2 we present
reflection spectra obtained in Ref. 37 for oblique incidence
(u583°) of light and different durations of electron irradia-
tion: ~a! initial state~before irradiation!; after irradiation with
3.5-keV electrons for 9.5 min~b!, and with 4.5-keV electrons
for 22 min ~c!. From Fig. 2 it is clear that optical spectra
undergo notable changes due to the surface treatment. In
order to interpret these experimental results we calculated the
CdSe reflection spectra~Fig. 3! using different surface po-
tentialsU(z) @Eq. ~6!#; exponential@Fig. 4~a!#:

U~z!5U1e
2z/a, ~23!

with U151 meV, a560 Å; and two potential wells of dif-
ferent sizes having the form of the ‘‘classical’’ Morse peten-
tial, truncated atz50 @Figs. 4~b,c!#,

ReU~z!5uUmu@e22~z2zm!/a22e2~z2zm!/a#,

ImU~z!5ImU1e
2z/a, ~24!

that is,

ReU1522uUmuezm /a, ReU25uUmue2zm /a. ~25!

Here zm denotes the position of the surface-potential mini-
mum @U(zm)5Um#. The respective parameters used are
Um521 meV, a5zm5200 Å, ImU1520.6 meV,
ImU250 @Fig. 4~b!#; and Um522.1 meV, a5300 Å,
zm5250 Å, ImU1520.6 meV, ImU250 @Fig. 4~c!#.
Other parameters are\vT51.825 20 eV,\vP50.1715 eV
(\vL51.826 15 eV!, e`58.4, n50.1 meV, M50.415m
(m is the free-electron mass!. The well ~c! is both wider and
deeper than the well~b!.

The reflection curves~Fig. 3! for the chosen surface po-
tentials reproduce qualitatively the experimental spectra. So,
when the size of the surface-potential well is increased@from
~b! to ~c!#, the reflection line shape changes notably. We shall
demonstrate that this structure may be produced by the gen-
eration of excitonic bound states near the surface, however
strongly attenuated by surface~rather than bulk! damping.

The potential well~b! has two (nb51,2) excitonic bound
states at

\vT1
~b!51.824 65 eV, \vT2

~b!51.825 14 eV, ~26!

and the well~c! has four eigenstates (nc51,2,3,4) at

\vT1
~c!51.823 55 eV, \vT2

~c!51.824 29 eV,

\vT3
~c!51.824 81 eV, \vT4

~c!51.825 11 eV. ~27!

The transverse resonances, which of course are also present
in the s-polarization geometry,33 have the form of broad
peaks belowvT and nearvTn ~see solid lines in Figs. 5 and
6!. In addition, the generation of quantized polarization
waves gives rise to resonant dips that are close tovLn . Un-
fortunately, the identification of peaks and dips with the
nominalvTn’s andvLn’s is not easy. However, because of
the increase in damping in the extrinsic transition layer30,31

@Dn(z)522ImU(z)/\#, all resonances are smoothed out
and two or more of them may coalesce into a single one

FIG. 2. Experimental reflection spectra of CdSe obtained in Ref.
37 by Batyrev, Karasenko, and Sel’kin forp-polarized light
(u583°) and different durations of electron bombardment:~a! ini-
tial state~before bombardment!; after bombardment with~b! 3.5-
keV electrons for 9.5 min, and~c! 4.5-keV electrons for 22 min.

FIG. 3. Reflectivity spectra of CdSe forp-polarized light
(u583°). The curves~a!, ~b!, and ~c! were calculated with the
respective surface potentials~a!, ~b!, and~c!, shown in Fig. 4.

FIG. 4. Graphs of the surface potentialsU(z): ~a! exponential
~intrinsic!, U151 meV,U250, a560 Å; ~b! well, Um521 meV,
a5200 Å, zm5200 Å; ~c! well, Um522.1 meV, a5300 Å,
zm5250 Å.
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~dashed lines in Figs. 5 and 6!. The process of formation of
the reflection line shape, as surface damping is increased, can
be observed in Figs. 5 and 6@the dashed lines are the same as
Figs. 3~b,c!#. This allows us to conlcude that the peaks and
dips observed in the experiment~Fig. 2! are likely to be
caused by transverse and longitudinal resonances, respec-
tively, whose structure depends considerably on surface
damping.

IV. SMALL LONGITUDINAL-TRANSVERSE SPLITTING
„GaAs…

Besides the surface damping, there is another factor that
also affects the structure of spectral resonances. It is associ-
ated with the value of the longitudinal-transverse splitting.
When\vLT is small in comparison with the depthuUmu of
the surface-potential well, the longitudinal resonances
(vLn) may appear belowvT . This means that longitudinal
and transverse resonances will interfere, as can happen even
for group II-VI semiconductors~see Fig. 6!. In particular,

this fact concerns semiconductors of the group III-V because
of their relatively small longitudinal-transverse splitting.21 In
this case the ‘‘polariton effect’’ on the resonances is consid-
erable.

In Fig. 7 the p-polarization reflectivity spectrum of a
III-V semiconductor~GaAs! is shown. The spectrum was
calculated for the incidence angleu580°. The parameters
used for the GaAs crystal are38 \vT51.515 eV, \vP
50.071 06 eV,\n50.035 meV,e`512.6. Here we applied
the approximation of a single exciton branch with an average
massM50.298m.39 We employed a potential well as in Eq.
~24! with parametersUm520.5 meV,a5550 Å, zm5550
Å. For this potential well there are three excitonic bound
states:

\vT151.514 65 eV, \vT251.514 85 eV,

\vT351.514 97 eV. ~28!

The corresponding longitudinal eigenvalues\vLn
(n51,2,3) are shifted by the longitudinal-transverse splitting
\vLT50.13 meV, which is approximately four times smaller
than the well depthuUmu. In Fig. 7 various peaks and dips
are observed near the transverse and longitudinal eigenvalues
when the surface dampingDn(x)50. Note that the reso-
nancesL2 andT3 are practically at the same frequency and,
as a consequence, they interfere. After increasing the surface
damping the reflection spectrum changes radically~see Fig.
7!. There, it can be seen that the wide dip below\vT in the
reflection spectrum is a result of the generation of the longi-
tudinal modesL1 andL2.

It should be noted that the excitonic reflection spectra of
GaAs crystals with treated surfaces have been investigated in
various works.25,33,40–42The spectra of reflection of light
with polarization parallel to the plane of incidence were ana-
lyzed in Ref. 42. There it was shown that the application of
an electric field affects notably the excitonic spectra. The
surface-potential wells, which were produced by the applied
electric fields, were of relatively small depths and the surface
damping was considerable. For this reason, after increasing

FIG. 5. Reflectivity spectrum of CdSe forp-polarized light with
angle of incidenceu583°. The parameters of the surface-potential
well are the same as in Fig. 3~b!, and the dashed curve is the same
as Fig. 3~b!. The surface damping isDn(0)50 ~solid line!,
Dn(0)51.2 meV~dashed curve!.

FIG. 6. Refectivity spectrum of CdSe forp-polarized light with
angle of incidenceu583°. The parameters of the surface-potential
well are the same as in Fig. 3~c!, and the dashed curve is the same
as Fig. 3~c!. The surface damping isDn(0)50 ~solid line!,
Dn(0)51.2 meV~dashed curve!.

FIG. 7. Reflectivity spectrum of GaAs forp-polarized light with
angle of incidenceu580°. The parameters of the surface-potential
well areUm520.5 meV,a5550 Å,zm5550 Å. The surface damp-
ing is Dn(0)50 ~solid line!, Dn(0)50.1 meV~dashed curve!.
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the electric field at the sample surface, the appearance of
only one new dip in the oblique-incidence reflection spec-
trum belowvL was observed.

V. CONCLUSION

The developed theory allows us to explain qualitatively
the changes in the reflectivity spectra forp polarization that
are observed in semiconductors with strongly treated sur-
faces. The changes are due to the generation of excitonic
bound states. In this geometry the near-surface localized ex-
citons produce transverse~broad peaks! and longitudinal
~dips! resonances in the reflectivity spectra. The number and
form of the dips are considerably affected not only by the
parameters of the surface-potential well, but also by the
value of the longitudinal-transverse splittingvLT and the sur-
face dampingDn(z). These results should be useful for de-
termining the profile of the surface-potential well. However,

in order to obtain trustworthy modelsU(z) it would be nec-
essary to compare with miscellaneous experimental spectra
(s- and p-polarized reflectivity, attenuated total reflection,
etc.! of the same sample.

ACKNOWLEDGMENTS

We are grateful to A.V. Sel’kin and B. Flores-Desirena for
stimulating discussions. This work was partially supported
by the Consejo Nacional de Ciencia y Tecnologı´a
~CONACyT! under Grant No. 3923 E 9402.

APPENDIX: RECURSION RELATIONS

Substituting the expressions~11! for Px(z), Pz(z) into
Eqs.~10!, we obtain a system of equations for the functions
Fs(z), Gs(z) (s51,2,3):

]4Fs

]z4
14iqs

]3Fs

]z3
1@26qs

21GB
21e`q

22qx
21DG2~z!#

]2Fs

]z2
1F24iqs

312iqs~GB
21e`q

22qx
2!12iqsDG2~z!

12
]DG2

]z G]Fs

]z
1Fqs42qs

2~GB
21e`q

22qx
2!1GB

2~e`q
22qx

2!2
vP
2M

e`\vT
~e`q

22qx
2!1~2qs

21e`q
22qx

2!DG2~z!

12iqs
]DG2

]z
1

]2DG2

]z2 GFs~z!2 iqx
vP
2M

e`\vT
F iqsGs~z!1

]Gs

]z G50. ~A1!

iqxF ]3Fs

]z3
13iqs

]2Fs

]z2
1@23qs

21GB
21DG2~z!#

]Fs

]z
1S 2 iqs

31 iqsGB
21 iqsDG2~z!1

]DG2

]z DFs~z!G
2~e`q

22qx
2!F ]2Gs

]z2
12iqs

]Gs

]z S 2qs
21GB

21DG2~z!2
vP
2M

\vT

q2

e`q
22qx

2DGs~z!G50, ~A2!

To solve this system of equations with the surface potentialU(z) @Eq. ~6!#, it is convenient to introduce the variable

z5e2z/a. ~A3!

We obtain

z4
]4f s
]z4

1a1sz
3
]3f s
]z3

1@a2sz
21a3sz

31a4sz
4#

]2f s
]z2

1@a5sz1a6sz
21a7sz

3#
] f s
]z

1@a10s1a8sz1a9sz
2# f s1a11sz

]gs
]z

1a12sgs50, ~A4!

a13sz
3
]3f s
]z3

1a14sz
2
]2f s
]z2

1@a15sz1a16sz
21a17sz

3#
] f s
]z

1@a18s1a19sz1a20sz
2# f s1a21sz

2
]2gs
]z2

1a22sz
]gs
]z

1@a23s1a24sz1a25sz
2#gs50. ~A5!

Here the functionsf s(z) (s51,2,3) are defined by

f s5„z~z!…5Fs , gs„z~z!…5Gs~z!. ~A6!

The coefficientsa is ( i51,2, . . . ,9;s51,2,3) have the same form as in Eqs.~18! of our previous paper, Ref. 33~even for
s53). Other coefficients are
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a10s5
vP
2M

e`\vT
qx
2a41S GB

2~e`q
22qx

2!2
q2vP

2M

\vT
Da41~GB
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22qx
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3

vP
2M
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,

a12s52 iqxa
3ks

vP
2M

e`\vT
, a13s52qxa, a14s5 iqsa~3ks23!, a15s52 iqxa~3ks

21GB
2a223ks11!, a16s5 iqxa

U1

W
,

a17s5 iqxa
U2

W
, a18s5 iqxa~ks

31GB
2a2ks!, a19s5 iqxa~12ks!

U1

W
, a20s5 iqxa~22ks!

U2

W
, a21s52a2~e`q

22qx
2!,

a22s52a2~e`q
22qx

2!~122ks!, a23s52a2~e`q
22qx

2!S ks
21GB

2a22
vP
2M

\vT

q2a2

e`q
22qx

2D ,
a24s5a2~e`q

22qx
2!
U1

W
, a25s5a2~e`q

22qx
2!
U2

W
. ~A7!

The quantitiesks andW are expressed as

ks5 iqsa, W5\2/2a2M . ~A8!

The coupled equations~A4!,~A5! can be solved by writing

f s~z!5 (
k50

`

aksz
k; gs~z!5 (

k50

`

bksz
k. ~A9!

Substituting Eq.~A9! into Eqs.~A4!,~A5!, we obtain a system of recursion relations foraks andbks (s51,2,3) withk>2:

aks@k~k21!~k22!~k23!1a1sk~k21!~k22!1a2sk~k21!1a5sk1a10s#1ak21,s@a3s~k21!~k22!1a6s~k21!1a8s#

1ak22,s@a4s~k22!~k23!1a7s~k22!1a9s#1bks@a11sk1a12s#50,

aks@a13sk~k21!~k22!1a14sk~k21!1a15sk1a18s#1ak21,s@a16s~k21!1a19s#1ak22,s@a17s~k22!1a20s#

1bks@a21sk~k21!1a22sk1a23s#1bk21,sa24s1bk22,sa25s50. ~A10!

The termsa1s andb1s are obtained from the system of equations

a1s@a5s1a10s#1b1s@a12s1a11s#52a0sa8s ,

a1s@a15s1a18s#1b1s@a22s1a23s#52a0sa19s2b0sa24s , ~A11!

where

b0s52
a10s

a12s
a0s for s51,2 ~A12!

and

a0s52
a12s

a10s
b0s for s53. ~A13!

So, there are only three independent coefficients (a0,1, a0,2, andb0,3) that are found from boundary conditions.
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