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Interaction of excitons with a generalized Morse surface potentialp-polarization geometry
of the incident light at a semiconductor surface
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Instituto de Fsica, Universidad Autcoma de Puebla, Apartado Postal J-48, 72570 Puebla, Pueblajdde
(Received 20 September 1995

We investigate theoretically the optical response of excitons localized near the surface of a semiconductor.
Spectra of reflection ob-polarized light from strongly treated semiconductor surfaces are calculated by using
a generalized Morse surface potential. The spectra exhibit prominent dips produced by the generation of
exciton bound states and their corresponding longitudinal polariton modes. The position and the form of
spectral dips depend not only on potential-well parameters but also on the value of the longitudinal-transverse
splitting and the surface damping. Our results are compared with experimental spectra for CdSe and we also
calculate reflectivity spectra for GaAs.

I. INTRODUCTION fined excitons. Thus, for example, it was established that the
shape of reflectivity spectra for quantum w&lland quan-

In the past few years optical properties of excitons intum well wires3~**drastically changes with switching from
confined systems have been intensively investigéf@ys- s-polarized light top-polarized light. In the latter geometry,
tems of this kind display interesting optical effects that fre-neéw spectral resonancédips) appear. Recentf, we have
quently are not observed in crystals dominated by bulk beteported a similar polarization effect in the reflectivity of
havior. The usual systems for confining excitons are thirsémiconductors with near-surface localized excitons. Our
films =7 quantum well€-! quantum wired>*®and quan- Calculations there gave rise to resonanceips) that are

tum dotst®—1°Nevertheless. excitons can also be confined ifnanifestations of longitudinal, polarization waves. Among
the vicinity of the :surface of a semi-infinite €Xamples of the polarization effect, the experimental results
semiconducto?®?! Indeed. surface treatments such as dop_of Ref. 37 should be mentioned too. In that work the changes
ing, electron and ion bombardment, application of electric” the spectra of reflection gb-polarized light from CdSe
field, and others, modify the concentration of impurity ionscrystals, which had been subjected to distinct doses of elec-
near' the sam Ie’ surface. The space charge produced iVtrons, were investigated. These changes turned out to be
fise 0 a macFr)oscopic eléctric figl 4 and ags apresult togaaaite different from those obtained for normally incident

extrinsic contribution to the excitonic surface potential. This The aim of the present work is to investigate the interac-

contribution can be attractive, unlike intrinsic potentials, andjon of excitons with strongly treated surfaces and the ensu-
can lead to the formation of a potential well. If the size Ofing influence on the shape of optical spectra. This work is
this well is sufficiently large, exciton bound states are gentomplementary to previous papéRefs. 33, 34, and 3Gind
erated. The optical manifestation of localized excitons withinprovides the full theoretical framework to another paper of
extrinsic surface potentials has been studied theoretically ansurs®® Therefore, the theory is restricted here to the
experimentally’*~>® However, several aspects of exciton p-polarization geometry. We solve analytically the system of
confinement in surface-potential wells merit further study. equations for the exciton-polariton fields using the general-
The generation of excitonic bound states leads to resazed Morse surface potentiébec. 1). In Sec. Il we employ
nances in the optical spectra of reflectivity and transmissionour theory to interpret experimental reflectivity spettraf
The shape and position of these spectral resonances are d@dSe(a Il-VI semiconductor. Finally (Sec. IV), we analyze
termined by the form of the surface-potential well and by thethe peculiarities of the optical manifestation of near-surface
coupling between localized excitons and light. In Refs.localized excitons in IlI-V semiconductors.
24-32 the normal-incidence optical spectra were analyzed
by employing a multiple-step model for the potential well. A
more convenient, continuous model, based on the truncated
Morse potential, was proposed in Refs. 33—36. The results Let us assume that a nonlocal dielectric medium occupies
obtained with these models show that in the case ofhe infinite half spacez>0, with vacuum in the region
s-polarized light excitonic bound states manifest themselveg<0. At the dielectric surfacez&0), p-polarized light is
as maxima(minima) in the reflectivity (transmission The incident with an electric field
positions of these extrema are close to exciton eigenfrequen-

Il. THEORY

cies. They do not coincide exactly with the corresponding Ei(x,z,t)=E;[1,0,— qy/q,]e' a2~ Tt 1)

eigenvalues because of exciton-light couplipglariton ef-

fect). whereqy, g, are the components of the wave vector,
There is evidence of strong light-polarization dependence

of the interaction between the electromagnetic field and con- d,=gsingd, q,=qcos, (= wlc, 2
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6 is the angle of incidencey is the circular frequency, and | 42 , L[ # )
c is the speed of light in vacuum. The reflected field has the 7,2+ €=0"~ x|} | 72+ T'a+AL"(2) |P«(2)
form
iqyx—ig,z—iwt wFZ)M 2_ 2 . w;Z)M P,(z)
E(x,2) =E/[1,00,/q ]eb 9=l (3) T ey &0 T BIP(D A e = =0,
Inside the dielectric mediumz{0) the electric fieldE
satisfies the Maxwell equations, which are coupled to the o ([ 52 5 ) waM
equation of motion for the excitonic polarizatidh?* The 19x—>1 |72 T et Al"(29)|Px(2) [ +q - PA2)
system of coupled equations is written as follows: ,
J
7 wEM —(e.0?= )| o2 T T5+AT%(2) |PA(2)=0. (10)
(—2-+r2(z))P=— z
0z Arhot
In a semispacez>0) the functionsP,(z), P,(z) can be
VXVXE=€.Q°E=4mq°P, (4) expressed as a linear combination of three independent solu-
where tions 0f(10) ThUS,

I'%(z)=T3+AT'%(z), 3 .
P(2)=2, P(2), P& (2)=€9F(z);
s=1

M hw
2 _ 2_ 2 T 2,
FB_ﬁwT Wt g Gtlevy, ,
= (s) (3)( 7\ — pilsZ,
AF2(z)= - 2MU@ . P(2)=2, P(2), P(2)=€%G(2). (1D
Z)=— ————.
ﬁ2

] ) ] Hereqs (s=1,2,3; Ings>0) arez components of the wave
Here M is the exciton massey is the frequency of the yector for modes propagating towards the bulk, where
exciton resonanceyp is a measure of the oscillator strength, AT?(z)—0 and the function&4(z), G4(2) are, in fact, con-
€. is the high-frequencybackground dielectric constant, siants. The valueg, and g, are thez components of the

and v is the damping constant. The surface poteritldf)  transverse modes and are given by the formula
appears in the formula foF?(z) (5) and is modeled by

means of the generalized Morse surface potential,
Ule_Z/a+Uze_ZZ/a 7>0 ql,ZI{ E Fé+fooq2_q)2(i<[Fé_eocq2+q)2(]2
U(2)= o, z<O0. ©) 4w§,w2|\/| vz 12
. - o (12
According to the assumed geometrympolarization, the o7
exciton-polariton fields in an isotropic medium can be ex- . o
pressed as The valueqs is the z component of the longitudinal mode
and is expressed as
E(X,z,t)=[E«(2),0,E,(z)]e'" 4!,
2 12
. . (7) _ 2 pr
P(x,2,0)=[Py(2),0,P(2)]eb o1, %= e ¢ oy (19

Hence the systert¥) takes the form

Near the surfacez<a, where a is the characteristic
width of the excitonic surface potentjghe behavior of the
excitonic polarizatiorP (11) is determined by the functions
F<(2), Gs(2). In the case of the generalized Morse surface

2

Pu(2)=— WEX(Z)a

(?2
P + FZ(Z)

P WM potential[Eq. (6)] these functions have the forteee Appen-
el (Z))PZ(Z)=—4WﬁwTEZ(z), @  dix)
JEL(2) 92 ) o » . " »
QX—(;Z _((9_22+qu2) Ex(z)—4ﬂ-q2px(z)zo, FS(Z)_kZO ae *7a GS(Z)_I(EO bee 72 (14
IEX(2) The recursion relations for the coefficients,g, byg

+(05— €-9°)EA2)—4mq°P,(2)=0. (9)  (s=1,2,3) of series(14) are given by Eqs(A10)—(A13).

Because these relations are coupled there are only three in-
After eliminating thex andz components of the electric field dependent coefficients. Without loss of generality, we can
from the system of Eqg8) and(9), we obtain two coupled choosea, 4, a5, andbg zto be the independent coefficients.
equations for the components of the excitonic polarization, The expression for the electric fiekl (7) is obtained by
which can be written as follows: using (8) and(11). We find

Ux—;
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3 2
A7h ot iad 9Fs . dFs
= — qsZ > >
Ex(2) wiM 521 e o2 T2
+[T%(2) - qZIF«(2) |,
47'rﬁwT #Gs _ dGq
ED=— g 2 ¢ [ +2ias

+[T'%(2)-qZ]G4(2)|. (15

The coefficientesa ;, a9, andbgzin Eq. (14) and the
amplitudeE, in Eq. (3) should be found from the boundary
conditions. We will apply the continuity conditions on the
tangential components of the electric and magnetic fields at
the surface=0 and the “additional boundary condition” for
the excitonic polarizatiof®

v/
P(z=0)=0. (16
After calculatingE, , we get straightforwardly the reflectiv- FIG. 1. Mechanical, fw;+U(z), and “longitudinal,”
ity R=|E, /E;|2. hw +U(z), exciton potentials with bound states.

The formalism developed above allows us to calculate the
reflectivity spectra for semiconductors with a surface- |n spatially dispersive media, longitudinal normal modes
potential well. As was mentioned in the Introduction, theare excited in thep-polarization geometry. As a conse-
generation of bound states in the potential well may producguence, the component of the electric field, which is perpen-
resonances in the optical spectra. These states of excito@gular to the surface, can couple strongly to quasiparticles in
localized near the surface are found from the Sdimger  the crystaf The condition for exciting longitudinal normal
equation for the translational motiéh, modes is the vanishing of the displacement vector,

2 2
;—M(qi—%) 92 +[hor+U(2)]9(2)=ho(2), D=e.E+4nP. 20

17 Under this condition D=0) the first equation irf4) can be

with the boundary conditions rewritten in terms exclusively of the excitonic polarization:

$(0)=0, ¢()=0. (18) h? ( 2 62

The quantityq, in (17) coincides with thex component of
the wave vector of the incident lighEq. (2)]. So, the eigen-
values of energyi w+,, for the potential welk v+ U(z) can

5 |P+[fhw +U(2)]P=hoP,  (21)

wherew, is the exciton longitudinal frequency,

be expressed in the form o2
P
~wr+ .
h2q2 DEOTY S e (22

hwt,= ﬁw(o) +

2M (19
In obtaining Eq.(21) we omitted the damping term and we
where (% are the eigenenergies for the case of normatook into account that the differences betweenwy, and
incidence of light. They are calculated numerically. The secw, are very small. Obviously, E¢21) is also satisfied by the
ond term on the right-hand side of EL9) gives a small electric fieldE.
contribution to the eigenvalues, which is of the order of Notice Eq.(21) is the one-dimensional Schiimger equa-
107 ° eV. tion for the mechanical excitofEq. (17)], with the wave
The eigenstates manifest themselves in the reflectivitfunction ¢(z) and the mechanical potentifkw++U(z) re-
spectra as prominent maxinflaroad peakswhose positions placed by the excitonic polarizatidhand the “longitudinal”
are near their corresponding eigenfrequency. However, as thexciton potentialz w_+U(z), respectively. Hence, the ei-
incidence anglé is increased, new resonance structures magenvaluesfw , of the polarization waveP are simply
appear® This is a polarization effect since the new reso-shifted (Fig. 1), in comparison to exciton bound states
nances(dips are absent in the case sfpolarization geom- (Zwy,), by the longitudinal-transverse  splitting
etry (Refs. 33 and 34 The appearance of spectrum dips atf o 1= —fot [EQ. (23)]. These quantized polarization
frequencies that differ notably from eigenvalues of excitonmodes give rise to resonant dips at frequeneigg in the
bound states can be explained by means of the followingeflectivity3® According to Eq. (19), eigenfrequencies
analysis. o = w1t o7 depend on incidence angke
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FIG. 2. Experimental reflection spectra of CdSe obtained in Ref.
37 by Batyrev, Karasenko, and Sel'kin fqu-polarized light
(#=83°) and different durations of electron bombardméai:ini-
tial state(before bombardmepntafter bombardment witlib) 3.5-
keV electrons for 9.5 min, angt) 4.5-keV electrons for 22 min.

FIG. 4. Graphs of the surface potenti&#lgz): (a) exponential
(intrinsic), U;=1 meV,U,=0, a=60 A; (b) well, U,=—1 meV,
a=200 A, z,=200 A; (c) well, U,=—2.1 meV, a=300 A,
z,=250 A.

i : ReU(z)=|U,|[e” ¥z Zma_ g~ (z=zm)ia]
Below we shall use the present theory to interpret experi- (2)=|Unl[ ]

mental results and analyze the manifestation of near-surface ImU(z) = ImU, e~ %2 (24)
localized excitons in both 1I-VI and IlI-V semiconductors. ’
that is,
Ill. COMPARISON WITH EXPERIMENT (CdSe ReU,= —2|Um|ezm/a, RdJ2:|Um|e22m/a- (25)

Spectra of oblique reflection of light from strongly treated Here z,, denotes the position of the surface-potential mini-
CdSe crystals were experimentally investigated in Ref. 37mum [U(z,)=Uy]. The respective parameters used are
The surface transition layers were produced by bombardingm=—1 meV, a=z,=200 A, ImU;=-0.6 meV,
the samples with electrons of a few keV. In Fig. 2 we presentmU,=0 [Fig. 4(b)]; and U,=-2.1 meV, a=300 A,
reflection spectra obtained in Ref. 37 for oblique incidenceZnm=250 A, ImU;=-0.6 meV, InU,=0 [Fig. 4(0)].
(6=83°) of light and different durations of electron irradia- Other parameters arewr=1.82520 eV,/iwp=0.1715 eV
tion: (a) initial state(before irradiatioy after irradiation with ~ (Aw_ =1.826 15 eV, €.=8.4, v=0.1 meV, M=0.415n
3.5-keV electrons for 9.5 mifb), and with 4.5-keV electrons (m is the free-electron mapsThe well(c) is both wider and
for 22 min (c). From Fig. 2 it is clear that optical spectra deeper than the we(b).
undergo notable changes due to the surface treatment. In The reflection curvesFig. 3) for the chosen surface po-
order to interpret these experimental results we calculated thgntials reproduce qualitatively the experimental spectra. So,
CdSe reflection spectréig. 3 using different surface po- Wwhen the size of the surface-potential well is incregg$eain
tentialsU(z) [Eq. (6)]; exponentialFig. 4(a)]: (b) to (c)], the reflection line shape changes notably. We shall
demonstrate that this structure may be produced by the gen-
eration of excitonic bound states near the surface, however
strongly attenuated by surfa¢eather than bulkdamping.

The potential wellb) has two fi,=1,2) excitonic bound
states at

U(z)=U,e 7?3, (23

with U;=1 meV,a=60 A; and two potential wells of dif-
ferent sizes having the form of the “classical” Morse peten-
tial, truncated az=0 [Figs. 4b,0)],

ho)=1.82465 eV, fo\)=1.82514 eV, (26)

and the well(c) has four eigenstates{=1,2,3,4) at

ho'9=1.82355 eV, hw'Y=1.82429 eV,

O
OV\)
g

ho\9=1.82481 eV, fo!y=1.82511 eV. (27)

The transverse resonances, which of course are also present
in the s-polarization geometry? have the form of broad
peaks belowwt and nearmw-, (see solid lines in Figs. 5 and

6). In addition, the generation of quantized polarization
waves gives rise to resonant dips that are close tp. Un-
fortunately, the identification of peaks and dips with the
nominal wt,’s and @ ,'s is not easy. However, because of
the increase in damping in the extrinsic transition 1832¥
[Av(z)=—-2ImU(2)/%], all resonances are smoothed out
and two or more of them may coalesce into a single one

o
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FIG. 3. Reflectivity spectra of CdSe fop-polarized light
(#=83°). The curveda), (b), and (c) were calculated with the
respective surface potentials), (b), and(c), shown in Fig. 4.
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FIG. 5. Reflectivity spectrum of CdSe fprpolarized light with FIG. 7. Reflectivity spectrum of GaAs f@-polarized light with

angle of incidenc#)=83°. The parameters of the surface-potential angle of incidence#=80°. The parameters of the surface-potential
well are the same as in Fig(i9, and the dashed curve is the same Well areU,= —0.5 meV,a=550 A, z,,=550 A. The surface damp-
as Fig. 3b). The surface damping if\»(0)=0 (solid ling,  ing is A»(0)=0 (solid ling), Av(0)=0.1 meV(dashed curve
Av(0)=1.2 meV(dashed curve

(dashed lines in Figs. 5 and.6lhe process of formation of this fact concerns semiconductors of the group Ill-V because
the reflection line shape, as surface damping is increased, caf their relatively small longitudinal-transverse splittifign

be observed in Figs. 5 and the dashed lines are the same asthis case the “polariton effect” on the resonances is consid-
Figs. 3b,0)]. This allows us to conlcude that the peaks anderable.

dips observed in the experimeffig. 2) are likely to be In Fig. 7 the p-polarization reflectivity spectrum of a
caused by transverse and longitudinal resonances, respdt-V semiconductor(GaA9 is shown. The spectrum was
tively, whose structure depends considerably on surfacealculated for the incidence angle=80°. The parameters

damping. used for the GaAs crystal afefw;=1.515 eV, hwp
=0.07106 eVAr=0.035 meVe,,=12.6. Here we applied
IV. SMALL LONGITUDINAL-TRANSVERSE SPLITTING the approximation of a single exciton branch with an average
(GaAs) massM = 0.298n.%° We employed a potential well as in Eq.

_ . . (24) with parameterdJ,,= —0.5 meV,a=550 A, z,=550
Besides the surface damping, there is another factor th&. For this potential well there are three excitonic bound
also affects the structure of spectral resonances. It is assogjtates:

ated with the value of the longitudinal-transverse splitting.

When# w1 is small in comparison with the deptl ;| of hv=1.51465 eV Aw-—=151485 eV

the surface-potential well, the longitudinal resonances e ’ Tem '

(w_,) may appear beloww;. This means that longitudinal

and transverse resonances will interfere, as can happen even hwr3=1.51497 eV. (28)

for group II-VI semiconductorgsee Fig. & In particular, ] o ]
The corresponding longitudinal eigenvaluesiw,

(n=1,2,3) are shifted by the longitudinal-transverse splitting
T T2 T3 Ta o 7=0.13 meV, which is approximately four times smaller

"o | T L Ln than the well depthU,,|. In Fig. 7 various peaks and dips

are observed near the transverse and longitudinal eigenvalues
when the surface damping»(x)=0. Note that the reso-
nanced.2 andT3 are practically at the same frequency and,
as a consequence, they interfere. After increasing the surface
damping the reflection spectrum changes radicage Fig.
7). There, it can be seen that the wide dip belbwsy in the
reflection spectrum is a result of the generation of the longi-
tudinal moded_1 andL?2.
It should be noted that the excitonic reflection spectra of
00 1 524 1825 T aoe 827 828 GaAs crystals with treated surfaces have been investigated in
FREQUENCY (eV) various works>3349-42The spectra of reflection of light
with polarization parallel to the plane of incidence were ana-
FIG. 6. Refectivity spectrum of CdSe fprpolarized light with  lyzed in Ref. 42. There it was shown that the application of
angle of incidence®=83°. The parameters of the surface-potential@n electric field affects notably the excitonic spectra. The
well are the same as in Fig(@, and the dashed curve is the same surface-potential wells, which were produced by the applied
as Fig. 3c). The surface damping i\»(0)=0 (solid line,  electric fields, were of relatively small depths and the surface
Av(0)=1.2 meV(dashed curve damping was considerable. For this reason, after increasing

0.8 4

0.6 4

0.4 4

0.2 4

REFLECTIVITY
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the electric field at the sample surface, the appearance @f order to obtain trustworthy models(z) it would be nec-

only one new dip in the oblique-incidence reflection spec-essary to compare with miscellaneous experimental spectra

trum beloww, was observed. (s- and p-polarized reflectivity, attenuated total reflection,
etc) of the same sample.

V. CONCLUSION

The developed theory allows us to explain qualitatively ACKNOWLEDGMENTS
the changes in the reflectivity spectra foipolarization that . .
are observed in semiconductors with strongly treated sur- Ve are grateful to A.V. Sel’kin and B. Flores-Desirena for
faces. The changes are due to the generation of exciton imulating discussions. This work was partially supported
bound states. In this geometry the near-surface localized e é/OILrEC Conszjo GNaC|o|(|1aI 3823 E'SZB’;‘ y Tecnoiog)
citons produce transvers@road peaKs and longitudinal yT) under Grant No. '

(dips) resonances in the reflectivity spectra. The number and

form of the dips are considerably_affected not only by the APPENDIX: RECURSION RELATIONS
parameters of the surface-potential well, but also by the
value of the longitudinal-transverse splitting; and the sur- Substituting the expressiondl) for P,(z), P,(z) into

face dampingA »(z). These results should be useful for de- Eqgs.(10), we obtain a system of equations for the functions
termining the profile of the surface-potential well. However, F,(2), G¢(2) (s=1,2,3):

9*Fs 9Fs &ZF

— +4|qs—g+[ 6qS+FB+ewq2—qx+AF2(z)] —4iq3+2iqy(T3+ €..0°— q2) + 2iqAT?(2)

IAT?]9 w5M
|5 +| A dA(TE+ .0~ g + (€0~ ) — (e-9°— 09 +(— G2+ e.0°— gD AI(2)
hot
. dAT?  G2AT? . . wEM g AL
+ 1095 97 + (922 s(z)_| Xeocﬁ 'qs s(z) 9z — Y. ( )

9°Fs 9°Fs 2 2 vz aOFs ) aAFZ
igy —3—+3|qs—2—+[ 39+ g+ AT (z)]EﬁL —|qs+|qSFB+|qSAF (2)+ F(2)

#*Gg
—(exqz—qb{

(A2)

2 2

wsM q
—qi+T3+AT?(2)~ ﬁZ)T W)GS(Z) =0,
© X

To solve this system of equations with the surface potett{@) [Eqg. (6)], it is convenient to introduce the variable

(=e 73 (A3)
We obtain
L 3 5 AR
. T P+ gl I P+ [ pel®+ argel+ agsl ](952
3 of
+assl + apsl?+ arsl®l— 9 >+ [ayost agsl + agsl?]fs +a115§ { >+ a120s=0, (A4)
*f 9*f of 9%gs 99

al$§3a_§:3+al4s§2#+[a15s§+ el + a17s§3](9_;+[alss+ 195l + a1 s+ a235§2(9—§2+a223§(9—£
+[ gzt sl + a2554%19s=0. (A5)
Here the functiong¢({) (s=1,2,3) are defined by

fs=((2)=Fs, 9s({(2))=GCy(2). (AB)

The coefficientse;s (i=1,2,...,9;5=1,2,3) have the same form as in E4$8) of our previous paper, Ref. 3@&ven for
s=23). Other coefficients are
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2 2 2 2
wpM g“wpM wpM
_ 4 2 2_ 2 4 2 2 2\a2,2, 4 _ 3
A= a*+ | I'a(e.q°— ——a"+(I'fg+e.0°—0Q)a’ks+ ke, ags=I0,a ,
10s Exth qx B( q qx) ﬁwT ( B q qx) s s 11s Ox EocﬁwT
w,%M

. . . Uy
alzs:_|QxaBKse fror a13= —0x@, @14=1qsa(3Kks—3), alSs:_|QXa(3K§+Féa2_3KS+ 1), alezquan

. UZ . 3 2.2 . Ul . U2 _ 2 2 2
al7S_IarW’ a1g=i0,a(ks+gasxs), algs_qua(l_Ks)Wv a205_|qxa(2_Ks)Wa az15= —a“(€,9°—0y),

w,z:,l\/l q%a?

fiwt equ_ Ox ’

o=~ %€, G (1= 2ky), = —a%(e.0?~G})| k2 +Ta’~

U, U,
ap =2 (e QPO aos=a%(€0P— AR (A7)
The quantities<; andW are expressed as
ks=i0sa, W=#2/2a’M. (A8)

The coupled equation®4),(A5) can be solved by writing

f(0=2 al; 940)= 2 biel* (A9)
Substituting Eq(A9) into Eqgs.(A4),(A5), we obtain a system of recursion relations &g andb,s (s=1,2,3) withk=2:

ad K(K—=1)(k—2)(k—3) + a1k(K—1)(k—2) + aysk(K— 1) + assk+ ags] + ax— 1 @zs(K—1)(K—2) + ags(k— 1) + args]
+ak_2’5[a4s(k—2)(k—3)+ a7s(k— 2)+ ags]+ bks[allsk-l- a1$]=0,

A @13K(k—=1)(k=2) + ay4k(K—1) + @15k + al8s]+ a1 | @1e(K—1) + aqgs] +ax— o @175(K—2) + apn]

+ by @p1K(K—1) + appk+ g ]+ by 1 s@pss+ Dy 2 5a25=0. (A10)

The termsa; andb,¢ are obtained from the system of equations

aqg asst aqgs] + b1 a1t aq15]= —Apsags,

Aqg @155t @8] T D1 @opst @pas]= — Aps@igs— Dos@auss » (A11)
where
o
bos=— ﬁaOS for s=1,2 (A12)
125
and
o
Qps= — ﬁbOS for s=3. (A13)
108

So, there are only three independent coefficieats, ( ay,, andbg 5 that are found from boundary conditions.
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